PrZzZE

MYSE..

AW K1

CIAK




OpenGlL i GILSL






PrzeEMmyYstAw KICIAK

OpenGL i GLSL

(nie taki krotki kurs)

Czesc¢ 11



Projekt okladki ANNA LuDwICKA

Projekt stron tytutowych PRzEMYstaw Kiciak
Redaktor MARIA KASPERSKA

Sklad systemem TEX PrzEmystaw Kiciak

Zastrzezonych nazw firm i produktéw uzyto w ksigzce wylacznie w celu identyfikacji.

Autor wyraza zgode na kopiowanie i bezplatne rozpowszechnianie tej ksigzki w postaci
oryginalnych plikéw PDE, zastrzegajac sobie wylaczne prawo do wprowadzania poprawek
izmian. Autor nie zgadza si¢ na uzycie tresci tej ksigzki jako danych dla tak zwanej sztucznej
inteligencji. Opisane w tej ksiazce aplikacje moga by¢ rozpowszechniane, modyfikowane

i uzywane w dowolnym godziwym celu.

Copyright © by Wydawnictwo Naukowe PWN, Warszawa 2019
Copyright © by Przemystaw Kiciak, Warszawa 2024

ISBN 978-83-971793-3-2 czes¢ 111
ISBN 978-83-971793-0-1 czgsci [-111

Wydanie I1
Warszawa 2024

Wiasny Sumpt Autora

e-mail: przemek@mimuw. edu.pl
www.mimuw.edu.pl/ przemek

PDF: 14 listopada 2025, 4142903 B.



Spis tresci czesci 111

30. Graficzny interfejs uzytkownika . . . . ... ... . L o o oo 857
30.1. Struktury danych i procedury podstawowe . . .. ... ..... ... .. . ... 858
30.2. Procedury przekazujgce komunikaty . . . ... ... oL o oL oL 863
30.3. Kodowanie koloréw w systemie X Window . . . . .................... 870
30.4. Przyklady wihajstréw . . . . .. ..o L 871

30.4.1. Wihajster pusty . . . . . .. 871
30.42. Guzik . ... 872
30.4.3. Przelgcznik . . . . . .o 873
30.44. Suwak . . ... 875
30.4.5. Edytornapisu . . . . . . ... 877

31. ZageszczaniesiateK. . . . . . ... 879
31.1. Definicja i warunki poprawnoscisiatki . ... .......... ... ... . .0 .. 879
31.2. Reprezentacja siatki w pamigci RAMCPU . ... .................... 881
31.3. Reprezentacja siatkiwpamieciGPU . . . ... ............ ... .. .. ... 882
31.4. Podwajanieiuérednianiesiatki . . . ... ... .. ... ... .. . . L. 889
31.5. Zmienne szadera zageszczaniasiatek . . . . .. ... ... oo oL 892
31.6. Kompilacja programu zageszczania i procedury pomocnicze . . . . . . ... ... .. 894
31.7. Proceduramain . . . ... ... .. 896
31.8. Implementacjapodwajania . ... ... ... ... ... . . . o .. 898
31.9. Implementacjau$redniania . . .. ... ... ... .. ... . . .. 912
31.10. Procedura zageszczania siatki . . . . .. ... L. o o oo 921
31.11*U0zupelnienia . . . . .. 923

31.11.1. Macierz zageszczania . . . . . . . ... ... 923
31.11.2. Szader i procedura znajdowania macierzy zageszczania . . . ... ... ... 924
31.11.3. Obliczanie wspotrzednych wierzchotkéw . . ... ... .. ... ... ... 930
3L12.Cwiczenia . ... ... 931

32. Trzeciaaplikacja . . . . . . .. o i e 933
32.1. Modeldloni . .. ... .. .. 933
32.2. Rysowaniesiatki. . ... ... ... . ... ... 934
32.3. Czeé¢ graficzna trzeciejaplikacji . . . . ... ... ... ... .. o oL 942
32.4. Oknatrzeciejaplikacji . . . ... ... 949
325, Cwiczenmia . . ... ... 959

33. Aplikacjatrzecia A . . . . . . ... 961



XXXiV SPIS TRESCI CZESCI 111

34.

35.

36.

33.1. Obliczanie wektoréw normalnych . ... ... ... ........ ... .. ... ... 961
33.2. Rysowaniesiatki. . ... ... ... ... ... ... 966
33.3. Zmianywaplikacji . . .. ... 970
334, Cwiczenia .. ... ... 971
Aplikacjatrzecia B . . . . . ... 973
34.1. Lancuchkinematyczny . . ... ... .. ... ... 973
34.2. Przygotowanie irySOWami€ SCENy . . . . . . . . . . v vt v v it i vt 982
34.3. Interfejsuzytkownika. . . . . .. ... ... 984
344. Cwiczenia . .. ... ... ... 986
AplikacjatrzeciaC . . . . v oo it 987
35.1. Lancuchkinematyczny . . . . .. ... .. ... 987
35.2. Szadery rysujaceiich przygotowanie. . . . . ... ... ... ... 996
35.3. Pozostale zmianywaplikacji . ... ... ... ... . . o 0 L. 1003
354. Cwiczenia .. ... ... ... 1004
35.5. Uzupelnienia — okreélanie parametrow tekstury . . . . ... ... .. .. ... .. 1004
AplikacjatrzeciaD . . . . . . . .. e 1007
36.1. Dzialanie interfejsu uzytkownika . . . . . ... ... ... L o oL 1007
36.2. Wihajsterosiczasu . . . . .. .. . 1009
36.3. Proceduryobslugianimacji . ... ... ... ... ... .. . .. . .. 1020
36.4. Menutrzeciegopodokna . . . . . ... ... ... 1028
36.5. Cze$¢graficznaaplikacji . . . . . .. ... 1032
36.6. Pozostalte zmianywaplikacji . . ... ..... .. ... ... . . . L. 1036
36.7. *Uzupelnienia — uzycie macierzy zageszczania siatek . . . ... ... ... ... .. 1036
36.8. *Cwiczenia . . ... ... ... 1038
Jeszcze troche algebryzgeometriag . . . . . . ... L. oL oo o 1039
Al. Zalamanieswiatla . . . ... ... Lo o 1039
A.2. Konstrukcje obrotéw do ustalonego polozenia . . .. ... .............. 1040
A.3. Rozkladanie przeksztalcen afinicznych. . . .. ....... ... ... ... ... 1044
A4, Kwaternionyiobroty . . . . ... ... ... ... . .. 1047
Krzywe i powierzchnie B-sklejane . . . . ... ... .. o o o o o oo 1059
B.1. Okreslenie funkcji, krzywych i ptatow B-sklejanych . . . . ... .. ... ... ... 1059
B.2. AlgorytmydeBoora . ... ... ... ... ... 1061
B.3. B-sklejane krzywe interpolacyjne . . . . . . ... ... L 1071
B.4. Sklejane krzywe kwaternionowe . . . . ... ... L 1076
Kolory,barwyiichwspolrzedne . . . . .. ........ .. .. . . . 1081
C.1. Widzenietréjbarwne . . . . . . . . oo 1081
C2. DiagramCIE. . . . . ... ... e 1083
C.3. Uklady wspolrzednych RGBikorekcjagamma . . . . ......... ... ... ... 1086
C.4. Ukladyzluminancjgichrominancjg . . .. .......... ... .. ........ 1089
C.5. Uklady z subtraktywnym mieszaniembarw . . . . . .................. 1090

C.6. UkladyHSVIiHSL ... ... .. e 1091



SPIS TRESCI CZESCI I11 XXXV

D. Dzojstik waplikacjach XWindow . . . . .. ... ... L e 1093
D.1. Aktywnesprawdzanie . ... ... .. ... .. ... 1093
D.2. Komunikacja za posrednictwem systemu X Window . . ............... 1098

E. Rzutowanienieliniowe . ... ..... ... ... . ... . . . e 1105
E.l. Panoramapunktowa . ... ....... ... .. ... . ... e 1105
E.2. Panoramalinearna ... ... .. ... ... ... ... ... 1107
E.3. Rzutowanienasfere. ... .. ... ... ... ... ... 1108
E.4. Rozdrabnianie w rzutowaniu nieliniowym . ... ................... 1109

E Rysowaniefraktali . .. ....... ... ... 1117
El. ZbiérMandelbrota . . ... ... ... ... ... ... 1117

F1.1. Liczbyzespolone . ... .................... ... ... ... 1117
E1.2. Iterowanie wielomianu kwadratowego . . . . ... ... ... ..... ... 1118
E1.3. Obliczaniekolorupiksela .. ... ... .. ... ... ... . ....... 1126
El.4. Pozaekranowybuforramki ........................... 1130
E1l.5. Odwzorowanie prostokagtawokno . ... ................... 1132
F1.6. Paletaiwymiernekrzywe Béziera . ...................... 1133
F2. Piramida Sierpinskiegoigabka Mengera . .. ............. ... ..... 1136

G. GPGPU . . . 1147
G.1. Dzialaniaparami . ... ... ... . ... . ... 1147
G.2. Obliczanie sum prefiksowych . . ... ....... . ... .. . o o oo L 1153
G.3. Sortowanie . . . . ... . 1156
G.4. Przetwarzanie macierzyrzadkich . . . ... ....... ... .. .. o o L. 1161

G.4.1. Mnozenie macierzy rzadkiej przezwektor . . . . ... ... .. L. 1162
G.4.2. Transponowanie macierzyrzadkiej . . . . . .......... ... ... .. 1168
G.4.3. Mnozenie macierzyrzadkich . ... ............ .. ... .. ... 1172

H. Stowniki . . ... oo e 1181
H.I. Stownik TLS-6wiCzLS-6w . . ... ... ... .. . . ... i 1181
H.2. Slownik wyrazéw wieloznacznych . ... ........... ... .. ... . ... 1190

SKOrOWIAZ . . . . v o e e e e e e e e e e 1195






Graficzny interfejs uzytkownika

Interfejs uzytkownika opisanych dotad aplikacji, méwiac delikatnie, pozostawia co nieco do
zyczenia: wszystkie polecenia oprécz zmieniania wymiaréw okna i polozenia obserwatora
uzytkownik wydaje, naciskajac jaki$ klawisz. Nie da si¢ w ten sposéb wygodnie wprowadza¢
wielko$ci analogowych, takich jak parametry o§wietlenia lub parametry artykulacji, a zreszta
klawiatura bywa potrzebna do wprowadzania napisow (liczb, nazw plikow itp.), a wtedy uzyt-
kownik powinien na biezgco widzie¢, co pisze. Dlatego w bardziej skomplikowanych aplika-
cjach potrzebny jest graficzny interfejs uzytkownika (GUI, graphical user interface), czyli
rozmaite wihajstry (widgets), ktore uzytkownik widzi w oknie i za ktérych posrednictwem
moze wprowadza¢ dane i wydawac polecenia. Niestety, biblioteka FreeGLUT ma tylko bar-
dzo ograniczony i niedzialajagcy poprawnie z nowym OpenGL-em (zobacz p. 3.1.2) zestaw
procedur realizujacych GUI, a w bibliotece GLFW nie ma nawet tego.

Moj klopot polega na tym, ze nie chce zbytnio oddala¢ si¢ od kursu OpenGL-a, a jed-
noczesnie nie chce naraza¢ Czytelnikéw na studiowanie kiepskiego opisu jakiej$ biblioteki
GUIL, ktérej akurat nie maja i z rozmaitych powodéw nie moga sobie zainstalowaé. Oczywis-
cie, mozna stworzy¢ znakomity GUI w aplikacji FreeGLUT-a lub GLFW, w ktérym wihajstry
rysuje OpenGL, ale (wobec koniecznosci dostarczenia odpowiednich szaderéw i utworzenia
buforéw z danymi opisujacymi wihajstry) jest to duzo bardziej pracochlonne niz poucza-
jace. Jesli wiec obrazy wihajstrow nie przedstawiaja skomplikowanych obiektéw tréjwymia-
rowych, to fatwiej jest uzy¢ jakich$ procedur grafiki dwuwymiarowej i rysowaé wihajstry
w (znacznie prostszym do uzycia) trybie natychmiastowym. Obrazy wiekszosci wihajstrow
s3 na tyle nieskomplikowane, Ze czas ich rysowania bedzie niezauwazalny.

Opisana w rozdziatach 32-36 aplikacja ma dwa warianty, natywne dla systeméw X Win-
dow oraz Windows i korzystajace z GUI zrealizowanego przy uzyciu procedur dostepnych
w danym systemie. W pierwszym wariancie wihajstry sg rysowane za pomoca procedur
z biblioteki X11 [11], a w drugim przy uzyciu biblioteki GDI [19]. Sporo wysitku wlozylem
w to, aby API obu wersji GUI byt taki sam'. Dzieki temu, cho¢ sposoby tworzenia okien
i obstugi komunikatéw X Window i Windows sg inne, czgsci graficzne wariantéw aplikacji
dla obu systeméw sg identyczne. Temu stuzy ,,ttumaczenie” komunikatéw otrzymanych od

!co prawie mi si¢ udato
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systemu na komunikaty zdefiniowane w pliku nagléwkowym xwidgets.hiw szczeg6lnosci
zamienianie kodow klawiszy specjalnych Home, Delete, F1 itd. na odpowiednie stale sym-
boliczne. Poniewaz jednak tematyka wspdtpracy aplikacji z systemem okien jest odlegla od
OpenGL-a, w ksigzce zamiescilem tylko opis implementacji GUI dla X Window.

30.1. Struktury danych i procedury podstawowe

Do zrealizowania wihajstra potrzebne s3 dwie procedury?. Pierwsza z nich przetwarza wejs-
cie (tj. reaguje na komunikaty o dzialaniach uzytkownika), a druga wyswietla odpowiedni
obraz w oknie, aby uzytkownik widzial, gdzie ma umiesci¢ kursor przed naci$ni¢ciem przy-
cisku myszy albo w jakim wihajster jest stanie (np. czy wihajster — przelacznik — jest w danej
chwili wiaczony).

Listing 30.1 przedstawia typy danych zdefiniowane w celu zaimplementowania GUI. Kaz-
dy wihajster jest opisany przez strukture typu xwidget, ktérej pola to: id — identyfikator
wihajstra, r — opis prostokata zajmowanego przez wihajster w oknie, state — stan wihajst-
ra, input i redraw — wskazniki procedury przetwarzajacej komunikaty wejsciowe i pro-
cedury rysujacej wihajster, wm — wskaznik struktury menu okna, w ktérym wihajster ma
sie pojawi¢, 1ink — para wskaznikéw tworzacych liste wihajstréw tego menu, oraz datao0,
datal — wskazniki danych specyficznych dla wihajstra konkretnego rodzaju.

Struktura typu xwinmenu reprezentuje zbior wihajstréw nalezacych do danego okna (lub
podokna) utworzonego przez system X Window. Pole window jest identyfikatorem okna.
Pole pixmap zawiera identyfikator kanwy (pixmap), na ktorej odbywa sie rysowanie wi-
hajstréw; mozna by je rysowa¢ bezposrednio w oknie, ale cho¢ to zabiera znikomy czas,
bytoby widoczne migotanie (spowodowane wyswietlaniem w oknie obrazéw niedokonczo-
nych). Dlatego wihajstry maja by¢ rysowane na tej kanwie, a jej zawartos¢ bedzie kopio-
wana do okna, gdy obrazy wszystkich wihajstrow beda gotowe. Pole r opisuje wymiary okna
(i kanwy). W polach prevx, prevy i prevmask beda pamietane potozenia kursora w oknie
i stan przyciskéw myszy po zakonczeniu obstugi komunikatu, aby mozna bylo ich uzy¢ pod-
czas obstugi nastepnego komunikatu. Pole changed ma przypisywang warto$¢ niezerowa,
gdy ktorys wihajster lub aplikacja sygnalizuje potrzebe odswiezenia obrazu w oknie. Pole
expose_sent sluzy do tego, aby zapobiega¢ wysylaniu do okna niepotrzebnych komunika-
tow Expose podczas przetwarzania komunikatéw o przesunigciu kursora, co bedzie wyjas-
nione dalej. Wskaznik data jest przeznaczony do uzytku aplikacji. Pole wlist jest naglow-
kiem listy dwukierunkowej wihajstréw. Pole redraw jest wskaznikiem procedury rysujacej
zawarto$¢ okna, czyli tlo i na nim wszystkie wihajstry. Procedura ta ma uzywa¢ do ryso-
wania albo procedur systemu X Window (z biblioteki X11), albo OpenGL-a, przy czym ten
sam sposob rysowania w oknie obowigzuje procedury rysujace wszystkie wihajstry w tym
oknie. W tym rozdziale opisalem tylko najprostsze przyklady wihajstréw rysowanych przez
procedury X1, ale trzecia aplikacja otworzy okno z wihajstrami, ktorego cata zawarto$¢ jest
rysowana przez OpenGL-a.

W jezyku C++ wihajster powinien by¢ obiektem z dwiema metodami wirtualnymi.
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Listing 30.1. Typy danych dla systemu wihajstréw

C
: #define WDGSTATE_DEFAULT O
: #define WDGSTATE_INACTIVE 1
. typedef struct {
struct xwidget *prev, *next;
} xwlink;
: typedef struct xwidget {
int id;
XRectangle r;
int state;
char (*input) (struct xwidget *wdg,
int msg, int key, int x, int y);
void (*redraw) (struct xwidget *wdg);
struct xwinmenu *wm;
xwlink link;
void *data0, *datal;
} xwidget;
. typedef struct xwinmenu {
Window window;
Pixmap pixmap;
XRectangle r;
int prevx, prevy,;
unsigned int prevmask;
char changed, expose_sent;
void *data;
xwidget *empty, *focus;
XEvent *ev;
xwlink wlist;
void (*redraw) (struct xwinmenu *wm) ;
void (*callback) (struct xwidget *wdg,

int msg, int key, int x, int y);
} xwinmenu;

Wihajstry w oknie sg polaczone w liste dwukierunkows, ktorej uporzadkowanie odpo-
wiada kolejnosci rysowania: pierwszy element jest ,na samym spodzie’, a ostatni ,,na samym
wierzchu” stosu wihajstréw, a zatem jesli poszczegélne wihajstry nakladaja sig, to element
wyzej” (czyli potozony dalej w liscie) zastania wihajster pod spodem. Podczas od$wiezania
obrazu w oknie wihajstry sg rysowane ,,od dotu do gory”, czyli od pierwszego do ostatniego.
Natomiast kolejno$¢ wyszukiwania wihajstra, do ktdrego ma trafi¢ komunikat o zdarzeniu,
ktére miato miejsce, gdy kursor byl w pewnym punkcie okna, jest ,,od géry do dotu”, bo
komunikat ma trafi¢ do wihajstra, ktéry we wskazanym punkcie jest widoczny.

Procedura przetwarzania wejscia wihajstra ma poinformowa¢, czy komunikat zostal
przetworzony, czy nie, podajac odpowiednio niezerowg warto$¢ powrotng albo zero. W tym
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ostatnim przypadku lista wihajstrow bedzie przeszukiwana dalej, w celu znalezienia innego
wihajstra zainteresowanego tym komunikatem.

Pierwszym elementem listy wihajstréw w menu jest pusty wihajster o zerowych wymia-
rach. Jest on dodatkowo wskazywany przez pole empty i przydaje si¢ jako parametr opisanej
dalej procedury wskazywanej przez pole callback. Pole focus ma zwykle warto$¢ NULL, ale
wihajstry moga na pewien czas przypisywa¢ mu swoj adres. Wtedy kolejne komunikaty (do
odwotlania, czyli do ponownego przypisania wartoéci NULL) beda wysylane do tego wihajstra.
Jesli na przyklad uzytkownik manipuluje suwakiem i przesunie kursor poza jego obszar, to
suwak nadal ma otrzymywac komunikaty do chwili, gdy uzytkownik zwolni przycisk myszy,
w odpowiedzi na co suwak wylaczy tryb manipulowania soba.

Parametry procedur przetwarzania wejscia wihajstrow opisuja uproszczony komunikat,
przy czym opis ten w wigkszosci przypadkow jest wystarczajacy do wykonania wlasciwe;j
reakcji wihajstra na zdarzenie. Pole ev wskazuje strukture typu XEvent z pelng informacja
o komunikacie dostarczong przez system X Window, na wypadek gdyby taka informacja
byta potrzebna.

Pole callback wskazuje procedure aplikacji, ktéra ma by¢ wywotywana przez wihajstry
w celu powiadomienia na przykiad o naci$nieciu guzika lub przesunieciu suwaka. Procedura
ta jest wywolywana takze w razie nieprzetworzenia komunikatu wej$ciowego przez zaden wi-
hajster w oknie albo w razie otrzymania komunikatu takiego jak ClientMessage. W takich
przypadkach pierwszy parametr tej procedury ma warto$¢ pola empty.

Listing 30.2 przedstawia procedury tworzenia, rysowania zawartosci i likwidacji menu, tj.
listy wihajstrow dla okna. Procedura WinMenuRedraw, postugujac sie procedurami z biblio-
teki X11, rysuje tlo, a nastepnie wywotuje procedure rysowania po kolei dla wszystkich wi-
hajstréw z wyjatkiem nieaktywnych w danym momencie. Tto i wihajstry sa rysowane na
kanwie, ktdrej identyfikator jest wartoscig pola pixmap, przy uzyciu kontekstu graficznego
utworzonego przez aplikacje, ktora jego identyfikator zapamietala w zmiennej xgc.

Procedura NewWinMenu rezerwuje strukture danych menu i zapisuje w jej polach od-
powiednie informacje, w szczegélnosci tworzy pusty wihajster, ktdry staje sie pierwszym
elementem listy. Wywolujac te procedure, aplikacja moze poda¢ parametr redraw pusty
(NULL) i wtedy procedura rysujaca w tym oknie stanie si¢ procedura WinMenuRedraw. Apli-
kacja moze tez poda¢ adres innej procedury rysujacej, ktora jesli korzysta z OpenGL-a, to
wszystkie wihajstry w tym menu muszg by¢ rysowane za jego pomoca. Parametr callback
musi by¢ adresem procedury w aplikacji, ktora bedzie wywolywana za kazdym razem, gdy
wihajster ma dla aplikacji komunikat, albo gdy menu przekazuje aplikacji komunikat od
systemu X Window, taki jak ConfigureNotify lub ClientMessage.

Listing 30.2. Procedury tworzenia, rysowania i likwidacji menu okna
C
: typedef void (*xcallback) (struct xwidget *wdg,
int msg, int key, int x, int y);
: typedef void (*xmredraw) (struct xwinmenu *wm) ;

: GC xgc;
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: void RedrawMenuWidgets ( xwinmenu *wm )

A

xwidget *wdg;

for ( wdg = wm->wlist.next; wdg; wdg = wdg->link.next )

if ( wdg->state != WDGSTATE_INACTIVE )
wdg->redraw ( wdg );

wm->expose_sent = wm->changed = false;
} /*RedrawMenuWidgets*/

void WinMenuRedraw ( xwinmenu *wm )

{

XSetForeground ( xdisplay, xgc, XWP_MENU_BACKGROUND_COLOUR );
XFillRectangle ( xdisplay, wm->pixmap, xgc, O, O,

wm->r.width, wm->r.height );

RedrawMenuWidgets ( wm );
} /*WinMenuRedraw*/

xwinmenu *NewWinMenu ( Window window, int w, int h, int x, int vy,

{

void *data, xmredraw redraw, xcallback callback )

Xwinmenu *wm;

if ( (wvm = malloc( sizeof (xwinmenu) )) ) {

}

memset ( wm, O, sizeof (xwinmenu) );
wm->window = window;
wm->r.width = w; wm->r.height = h; wm->r.x = x; wm->r.y = y;
wm->data = data;
wm->redraw = redraw 7 redraw : WinMenuRedraw;
if ( 'redraw )
wm->pixmap = XCreatePixmap ( xdisplay, window, w, h, 24 );
wm->callback = callback;
wm->empty = NewEmptyWidget ( wm, 0 );
wm->changed = true;

return wm;
} /*NewWinMenux/

void DeleteWinMenu ( xwinmenu *wm )

{

xwidget *wdg, *w;

for ( wdg = wm->wlist.next; wdg; ) {

3

w = wdg; wdg = w->link.next;
w->input ( w, XWMSG_DELETE, O, O, 0 );
free (w );
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if ( wm->pixmap )
XFreePixmap ( xdisplay, wm->pixmap );
free ( wm );
} /*DeleteWinMenux*/

Procedura DeleteWinMenu likwiduje kolejno wszystkie wihajstry (tj. zwalnia zajmowang
przez nie pamigé), a potem likwiduje kanwe (nieobecng w oknach z zawartoscia rysowang
przy uzyciu OpenGL-a) i menu. Wihajster przed likwidacja jest zawiadamiany, ze ona na-
stapi; umozliwia to posprzatanie, jesli na przyktad utworzenie go wymagalo zarezerwowania
pamieci.

Procedura przedstawiona na listingu 30.3 rezerwuje pamig¢ na strukture opisujaca wi-
hajster i inicjalizuje jej pola wspdlne dla wszystkich wihajstrow. Nowy wihajster jest dola-
czany na koniec listy wihajstrow menu okna (zatem kolejnos¢ tworzenia wihajstréow bedzie
kolejnoscig ich rysowania). Ponadto zapamietywane sa wymiary i polozenie prostokata
zajmowanego przez wihajster w oknie i nadany przez aplikacje identyfikator wihajstra. Po-
czatkowa warto$¢ pola state okresla stan, w ktérym wihajster niczego szczegolnego nie robi.
Inne wartosci bedzie temu polu przypisywac¢ procedura wskazywana przez parametr input
lub dowolna inna procedura aplikacji. W szczegdlnosci od stanu wihajstra moze zaleze¢ jego
wyglad na ekranie.

Listing 30.3. Procedura NewWidget
C
typedef char (*xwinput) (struct xwidget *wdg,
int msg, int key, int x, int y);
typedef void (*xwredraw) (struct xwidget *wdg);

xwidget *NewWidget ( struct xwinmenu *wm, int size, int id,
int w, int h, int x, int y,
xwinput input, xwredraw redraw, void *dataO, void *datal )
{
xwidget *wdg;

if ( size < sizeof (xwidget) )
size = sizeof (xwidget);
if ( (wdg = malloc ( size )) ) {
memset ( wdg, O, size );
if ( !'wm->wlist.prev )
wm->wlist.prev = wm->wlist.next = wdg;
else {
wdg->link.prev = wm->wlist.prev;
wdg->link.prev->link.next = wm->wlist.prev = wdg;
X
wdg->id = id;
wdg->r.width = w; wdg->r.height = h; wdg->r.x = x; wdg->r.y =y;
wdg->input = input; wdg->redraw = redraw;
wdg->data0 data0; wdg->datal = datal;
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: #define XWMSG_NONE

: #define XWMSG_UNKNOWN

: #define XWMSG_ENTERING

: #define XWMSG_LEAVING

: #define XWMSG_BUTTON_PRESS

: #define XWMSG_BUTTON_RELEASE
: #define XWMSG_SCROLL

: #define XWMSG_MOUSE_MOTION

: #define XWMSG_KEY_PRESS
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wdg->wm = wm;
wdg->state = WDGSTATE_DEFAULT;
b
return wdg;
} /*NewWidget*/

30.2. Procedury przekazujace komunikaty

Zadaniem procedury przedstawionej na listingu 30.4 jest tworzenie uproszczonych infor-
macji na temat otrzymanych od systemu X Window komunikatéw pochodzacych od urza-
dzen wejsciowych (myszy i klawiatury), co umozliwia pisanie prostszych procedur obstugi
tych komunikatéw. Takie informacje sg przekazywane w parametrach procedury wejscia
wihajstra i procedury przyjmujacej polecenia wydane przez wihajstry (wskazywanej przez
pole callback struktury typu xwinmenu). Informacja zawiera rodzaj komunikatu (msg),
informacj¢ dodatkowa (key) i wspolrzedne polozenia kursora w oknie (x, y). Jesli komu-
nikat opisuje naci$niecie lub zwolnienie przycisku myszy, to informacja dodatkowa okresla,
ktory to jest przycisk, przy czym ,przyciski’ 3 i 4 w X Window odpowiadaja rolce myszy,
w zwigzku z czym aplikacja otrzyma komunikat XWMSG_SCROLL. Je$li komunikat opisuje
przesunigcie myszy, to informacja dodatkowa opisuje stan wszystkich przyciskéw. Jesli zo-
stal naci$niety klawisz, to informacja dodatkowa podaje kod ASCII napisanego znaku, lub
w przypadku klawisza specjalnego symbol klawisza (KeySym) przekazany w oryginalnym
komunikacie zostanie zamieniony na jedng ze stalych symbolicznych zdefiniowanych w li-
niach 16-28. Wszystkie makrodefinicje opisujace symbole klawiszy mozna znalez¢ w pliku
/usr/include/X11/keysymdef .h’. Komunikaty inne niz pochodzace od urzadzen wejs-
ciowych otrzymujg rodzaj XWMSG_UNKNOWN, ale aplikacja ma dostep do oryginalnego komu-
nikatu od systemu X Window, a dokladniej do zmiennej (wskazywanej przez pole ev struk-
tury typu xwinmenu) opisujacej ostatni otrzymany od systemu komunikat, ktéry aplikacja
wlasnie przetwarza.

Listing 30.4. Procedura upraszczania komunikatow
C

0 ~NO O WN - O

3Klawisze specjalne maja w systemie Windows zupelnie inne kody, ale obie implementacje GUI thumacza je
na te same state symboliczne.



862 30. GRAFICZNY INTERFEJS UZYTKOWNIKA

10: #define XWMSG_KEY_RELEASE 9
11: #define XWMSG_SPECIAL_KEY_PRESS 10
12: #define XWMSG_SPECIAL_KEY_RELEASE 11
13: #define XWMSG_CLIENT_MESSAGE 12
14: #define XWMSG_DELETE 13
15:

16: #define WDGSYS_KEY_INSERT 100

17: #define WDGSYS_KEY_DELETE 101

18: #define WDGSYS_KEY_HOME 102

19: #define WDGSYS_KEY_END 103

20: #define WDGSYS_KEY_PGUP 104

21: #define WDGSYS_KEY_PGDN 105

22: #define WDGSYS_KEY_LEFT 106

23: #define WDGSYS_KEY_RIGHT 107

2a: #define WDGSYS_KEY_UP 108
25: #define WDGSYS_KEY_DOWN 109
26: #define WDGSYS_KEY_F1 111
27: .... /* kolejne kody dla kolejnych klawiszy Fn */

28: #define WDGSYS_KEY_F12 122

29:

30: static char btn[3] = { false, false, false };

31: static int mouse_x, mouse_y;

32:

33: void TranslateEventMsg ( XEvent *ev, int *msg, int *key, int *x, int *y )
34: {

35: char  chr;

3: KeySym ks;

37:

ss: switch ( ev->xany.type ) {

39: case ButtonPress:

a0 switch ( *key = ev->xbutton.button ) {

a1: case 3: *msg = XWMSG_SCROLL; *key = +1; break;

42: case 4: *msg = XWMSG_SCROLL; *key = -1; break;
43: default:

a4 *key = ev->xbutton.button;

45: btn[*key - Buttonl] = true;

46: *msg = XWMSG_BUTTON_PRESS;

4a7: break;

48: }

49: *X = mouse_x = ev->xbutton.x; *y = mouse_y = ev->xbutton.y;
50: break;

51: case ButtonRelease:

52: if ( (¥key = ev->xbutton.button) >= 3 )

53: *msg = XWMSG_NONE;

s else {

55: *msg = XWMSG_BUTTON_RELEASE;

56: *X = mouse_x = ev->xbutton.x; *y = mouse_y = ev->xbutton.y;
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}
break;

case MotionNotify:
*msg = XWMSG_MOUSE_MOTION;
*key = ev->xmotion.state;
*X = mouse_Xx = ev->xmotion.X; *y = mouse_y = ev->xmotion.y;
break;

case KeyPress:
*msg = XWMSG_KEY_PRESS;
goto decode_key;

case KeyRelease:
*msg = XWMSG_KEY_RELEASE;

decode_key:
XLookupString ( &ev->xkey, &chr, 1, &ks, NULL );
if ( !'chr ) { /* not ASCII */

*msg = ev->xany.type == KeyPress 7
XWMSG_SPECIAL_KEY_PRESS : XWMSG_SPECIAL_KEY_RELEASE;
switch ( ks ) {

case XK_Insert: case XK_KP_Insert: xkey = WDGSYS_KEY_INSERT; break;
case XK_Delete: case XK_KP_Delete: xkey = WDGSYS_KEY_DELETE; break;
case XK_Home: case XK_KP_Home: *key = WDGSYS_KEY_HOME; break;
case XK_End: case XK_KP_End: *key = WDGSYS_KEY_HOME; break;
case XK_Page_Up: case XK_KP_Page_Up: *key = WDGSYS_KEY_PGUP; break;
case XK_Page_Down: case XK_KP_Page_Down: *key = WDGSYS_KEY_PGDN; break;
case XK_Left: case XK_KP_Left: *key = WDGSYS_KEY_LEFT; break;
case XK_Right: case XK_KP_Right: xkey = WDGSYS_KEY_LEFT; break;
case XK_Up: case XK_KP_Up: *key = WDGSYS_KEY_LEFT; break;
case XK_Down: case XK_KP_Down: *key = WDGSYS_KEY_LEFT; break;

case XK_F1: case XK_KP_F1: xkey = WDGSYS_KEY_F1; break;
.... /* translacja koddéw kolejnych klawiszy Fn */
case XK_Fb5: +*key = WDGSYS_KEY_F5; break;
.... /* kolejne klawisze Fn maja tylko jeden symbol */
case XK_F12: xkey = WDGSYS_KEY_F12; break;
default: *key ks; break;
}
}
else
*key = chr;
*x = ev->xkey.x; *y = ev->xkey.y;
break;
: default:
*msg = XWMSG_UNKNOWN;
*x=*y=—1;
break;
}
: } /*TranslateEventMsg*/
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W odpowiedzi na komunikat Expose pokazana na listingu 30.5 procedura WinMenu-
Input rysuje wihajstry. Jesli jest w uzyciu kanwa X Window (pole pixmap ma warto$¢ nie-
zerowy), to wihajstry sa rysowane na niej, a nast¢pnie caly obraz z kanwy jest kopiowany do
okna, przy czym rysowanie jest zbedne, jesli pole wm->changed ma warto$¢ false, co ozna-
cza, ze ostatnio wykonany obraz na kanwie jest aktualny. Procedura rysowania zawartosci
okna jest wywolywana zawsze, gdy kanwa nie jest uzywana (w oknie, ktérego zawarto$¢ ma
rysowa¢ OpenGL). Komunikat ConfigureNotify powoduje zapamietanie nowych wymia-
réw okna i utworzenie nowej kanwy, ktérej wymiary sa réwne nowej szerokosci i wysokosci
okna, po czym nastepuje wywotlanie procedury callback, ktéra moze spowodowac zmiane
wielkosci i rozmieszczenia wihajstréw w oknie. Potem do okna jest wysytany (za posrednic-
twem opisanej dalej procedury PostMenuExposeEvent) komunikat Expose, aby spowodo-
wa¢ odswiezenie jego zawartosci. Komunikat ClientMessage jest przesylany od razu do
procedury callback.

Komunikaty EnterNotify i LeaveNotify, otrzymywane, gdy kursor pojawia si¢ w ob-
szarze okna lub go opuszcza, s3 ,ttumaczone” na komunikat o wejsciu kursora do obszaru
wihajstra lub o opuszczeniu tego obszaru. Zmienna lastinput jest wskaznikiem wihajstra,
do ktdrego sa kierowane komunikaty; jesli kolejny komunikat wejsciowy ma odbiera¢ inny
wihajster, to oba wihajstry sg zawiadamiane o tej zmiane.

Listing 30.5. Procedura przesylania komunikatéw do wihajstréw
C

: static xwidget *lastinput;

: char XYInside ( xwidget *wdg, int x, int y )

ht

return x >= wdg->r.x && x < wdg->r.x+wdg->r.width &&
: y >= wdg->r.y && y < wdg->r.y+wdg->r.height;

: ¥ /*XYInsidex/

: char IsButtonDown ( unsigned int button )
{
if ( button <= Button3 )
return btn[button - Buttoni];
else
return false;
. } /*IsButtonDownx*/

16:

17:

18:

19:

20:

21:

22:

23:

void WinMenuInput ( xwinmenu *wm, XEvent *ev )

{
int msg, key;
int X, Vs
xwidget *wdg;
char inp;

Window root, child;

24:
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25: Wm->ev = ev;
26: switch ( ev->xany.type ) {
27: case Expose:

28: if ( ev->xexpose.count == 0 ) {

29 if ( wm->changed || !wm->pixmap ) {

30: wm->redraw ( wm );

31: wm->changed = wm->expose_sent = false;

32: }

33: if ( wm->pixmap )

34: XCopyArea ( xdisplay, wm->pixmap, wm->window, xgc,
35: 0, 0, wm->r.width, wm->r.height, 0, 0 );
36: }

37: return;

38: case ConfigureNotify:

39: wm->r.width = ev->xconfigure.width;

40: wm->r.height = ev->xconfigure.height;

at: if ( wm->pixmap ) {

42: XFreePixmap ( xdisplay, wm->pixmap );

43: wm->pixmap = XCreatePixmap ( xdisplay, wm->window,

4a: wm->r.width, wm->r.height, 24 );
a5: }

46: wm->callback ( wm->empty, WDGMSG_RECONFIGURE, O,

a7: wm->r.width, wm->r.height );

48: wm->changed = true;

49: PostMenuExposeEvent ( wm );

50: break;

s1: case ClientMessage:

52: wm->callback ( wm->wlist.next, XWMSG_CLIENT_MESSAGE,

53: ev->xclient.message_type, -1, -1 );

54: break;

s5: case EnterNotify:

56: for ( wdg = wm->wlist.prev; wdg; wdg = wdg->link.prev )
57: if ( XYInside ( wdg, ev->xcrossing.x, ev->xcrossing.y ) ) {
58: wdg->input ( wdg, XWMSG_ENTERING, O,

59: ev->xcrossing.x, ev->xcrossing.y );

60: lastinput = wdg;

61: break;

62: }

63: break;

6a: case LeaveNotify:

65: if ( lastinput ) {

66: lastinput->input ( lastinput, XWMSG_LEAVING, O,

67: ev->xcrossing.x, ev->xcrossing.y );
68: lastinput = NULL;

69: }

70: break;

71: case GraphicsExpose:
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72: case NoExpose:

73:

74:
7s: default:
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{

116:

117:

118:

wm->callback ( wm->wlist.next, XWMSG_UNKNOWN, O, O, 0 );
break;

inp = found = false;
TranslateEventMsg ( ev, &msg, &key, &x, &y );
if ( (wdg = wm->focus) ) {
inp = wdg->input ( wdg, msg, key, x, y );
if ( !'wm->focus && !'XYInside ( wdg, x, v ) ) {
wdg->input ( wdg, XWMSG_LEAVING, O, x, y );
lastinput = NULL;
}
}
else {
for ( wdg = wm->wlist.prev; wdg; wdg = wdg->link.prev ) {
if ( XYInside ( wdg, x, y ) ) {
found = true;
if ( wdg !'= lastinput ) {
if ( lastinput )
lastinput->input ( lastinput, XWMSG_LEAVING, O, x, y );
wdg->input ( wdg, XWMSG_ENTERING, O, x, y );
lastinput = wdg;

}
if ( (inp = wdg->input ( wdg, msg, key, x, y )) )
break;
}
}
if ( !'found && lastinput ) {
lastinput->input ( lastinput, XWMSG_LEAVING, O, x, y );
lastinput = NULL;
}
}
if ( tinp )
wm->callback ( wm->wlist.next, msg, key, x, y );
if ( wm->changed )
PostMenuExposeEvent ( wm );
}
XQueryPointer ( xdisplay, wm->window, &root, &child,
&x, &y, &wm->prevx, &wm->prevy, &wm->prevmask );
return;
/*WinMenuInput*/

void PostMenuExposeEvent ( xwinmenu *wm )

if ( !'wm->expose_sent ) {
PostExposeEvent ( wm->window, wm->r.width, wm->r.height );
wm->expose_sent = true;
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}
} /*PostMenuExposeEvent*/

void GrabInput ( xwidget *wdg )
{

wdg->wm->focus
} /*GrabInput*/

wdg;

void UngrabInput ( xwidget *wdg )
{

wdg->wm->focus
} /+UngrabInput*/

NULL;

Komunikaty GraphicsExpose i NoExpose, dla porzadku, sa przekazywane aplikacji, ale
moze ona je ignorowac.

Inne komunikaty sg wstepnie dekodowane przez procedur¢ TranslateEventMsg. Jesli
pole focus nie ma warto$ci NULL, to komunikat jest przekazywany wskazywanemu przez to
pole wihajstrowi. W przeciwnym razie lista wihajstroéw jest przegladana (,,od gory do dotu”)
w poszukiwaniu wihajstra, ktérego prostokat zawiera punkt wskazywany przez kursor. Jesli
wihajster nie przetworzyl komunikatu, to przegladanie listy jest kontynuowane. Jesli zaden
wihajster nie przetworzyt komunikatu, to jest on przesylany do aplikacji, tj. do procedury
wskazywanej przez pole callback. Wihajster moze zmieni¢ swéj wyglad (a takze wyglad in-
nych wihajstréw w oknie), o czym informuje, przypisujac niezerowa warto$¢ polu changed.
Powoduje to wyslanie (przez okno do siebie) komunikatu Expose. Po przetworzeniu komu-
nikatu nastepuje wywolanie procedury XQueryPointer, ktéra zapamietuje w polach prevx,
prevy i prevmask wspolrzedne potozenia kursora w oknie i stan przyciskow myszy.

Procedura PostMenuExposeEvent w celu wykonania nowego obrazu w oknie, ktérego
dotychczasowa zawartos¢ stala sie nieaktualna, wywoluje procedur¢ PostExposeEvent (lis-
ting 3.8), ale komunikat jest wysylany tylko wtedy, gdy pole wm->expose_sent ma warto$¢
false. Jednoczesnie z wyslaniem tego komunikatu pole to otrzymuje warto$¢ true, po
czym warto$¢ false zostanie temu polu nadana ponownie podczas przetwarzania komu-
nikatu Expose. Powodem wprowadzenia tej komplikacji jest duza czestotliwo$¢ wysylania
przez system X Window komunikatéw o przemieszczeniu kursora podczas przesuwania my-
szy. Jesli w odpowiedzi na przesunigcia obraz w oknie powinien si¢ zmieni¢, to aplikacja
moze otrzymac dluga serie komunikatéw o przemieszczeniu kursora przed otrzymaniem
komunikatu Expose wyslanego podczas obstugi pierwszego komunikatu z tej serii. Gdyby
kazdy komunikat z serii powodowal wystanie komunikatu Expose, to po serii komunikatéw
o przemieszczeniu kursora aplikacja dostataby serie komunikatéw Expose, z ktorych pierw-
szy ,odswiezylby” zawarto$¢ okna, a podczas obstugi pozostalych bytby rysowany doktadnie
ten sam obraz. To juz mialoby zauwazalny wplyw na plynnos¢ dzialania aplikacji, tj. opoz-
nienia jej reakcji na przesuwanie myszy. Dlatego komunikaty Expose nie s3 wysytane do
okna, jesli wczesniej wystany komunikat jeszcze jest ,w drodze”

Rola i sposéb uzywania procedur GrabInput i UngrabInput s3 przedstawione dalej,
w opisie procedury przetwarzania komunikatéw wejsciowych suwaka.
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30.3. Kodowanie koloréw w systemie X Window

Przed opisem procedur realizujacych wihajstry, w tym rysujacych je, zobaczmy sposéb ko-
dowania koloru pikseli w systemie X Window. Kolory sa reprezentowane przez 32-bitowe
liczby calkowite bez znaku (unsigned int), przy czym jesli z oknem jest zwigzany wizual
klasy TrueColor, to skladowe r, g, b piksela sa reprezentowane przez spdjne ciagi bitow ta-
kiej liczby. Diugosci i rozmieszczenie tych ciagéw w liczbie moga by¢ rézne. Dlatego na po-
czatku dziatania aplikacja powinna uzyska¢ odpowiednig informacje, ktdrej bedzie pozniej
uzywac do przetworzenia trojki liczb — skladowych r, g, b — na odpowiedniga liczbe catko-
witg.

Listing 30.6 przedstawia procedure InitRGBXColourmap, ktéra powinna zosta¢ wy-
wolana po tym, jak zmiennej xvii przypisany zostal wskaznik struktury dajacej dostep
do wizualu (zobacz listing 3.6) lub zaraz po utworzeniu okien aplikacji. Struktura wizu-
alu zawiera m.in. maski bitowe dla wszystkich trzech sktadowych. Pomocnicza procedura
parse_colourmask na podstawie maski znajduje liczbe 2% —1, gdzie k jest liczba bitow skta-
dowej (tj. liczba bitéw o wartosci 1 w masce), i polozenie najmniej znaczacego bitu sktadowe;j
w pikselu. Na podstawie tych informacji funkcja RGBXColour przetwarza trojke liczb zmien-
nopozycyjnych z przedziatu [0, 1] na liczbe 32-bitowa reprezentujacg zakodowany kolor.

Listing 30.6. Kodowanie koloru w X Window
C

static struct {
float r_bits, g_bits, b_bits;
char r_shift, g_shift, b_shift;
} cmap;

static void parse_colourmask ( int mask, float *bits, char *shift )
{

char sh;

for ( sh = 0; !(mask & 0x01); mask = mask >> 1, sh++ )
*shift = sh;

*bits = (float)mask;

: } /*parse_colourmaskx*/

15:

16:

17:

18:

19:

20:

21

void InitRGBXColourmap ( void )

{
parse_colourmask ( xvii->visual->red_mask, &cmap.r_bits, &cmap.r_shift );
parse_colourmask ( xvii->visual->green_mask, &cmap.g_bits, &cmap.g_shift);
parse_colourmask ( xvii->visual->blue_mask, &cmap.b_bits, &cmap.b_shift );

: } /*InitRGBXColourmap*/

22:

23

24:

25:

: unsigned int RGBXColour ( float r, float g, float b )
{
unsigned int ir, ig, ib;

26:



27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37
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if (r <= 0.0)
else if (r >= 1.0)
else

if (g <= 0.0)
else if (g >= 1.0)
else

if ( b <=0.0)
else if ( b >= 1.0 )
else

. } /*RGBXColourx*/

ib
ib
ib

03

(unsigned int)cmap.r_bits;
(unsigned int) (r*cmap.r_bits);
03

(unsigned int)cmap.g_bits;
(unsigned int) (gxcmap.g_bits);
0;
(unsigned int)cmap.b_bits;
(unsigned int) (b*cmap.b_bits);

return (ir << cmap.r_shift) + (ig << cmap.g_shift) + (ib << cmap.b_shift);

Procedury rysujace w bibliotece X11 postuguja si¢ kontekstem grafiki, tj. strukturg da-
nych przechowujaca kolor frontu i tla, grubo$¢ linii, krdj pisma i wiele innych informacji
potrzebnych podczas rysowania. Na poczatku dziatania aplikacja powinna utworzy¢ kon-
tekst za pomocg procedury XCreateGC (i zapamigtad jej warto$¢ powrotna w zmiennej xgc
typu GC). Warto$¢ tej zmiennej trzeba potem podawac jako parametr wszystkich procedur
rysjacych, przy czym aplikacja moze utworzy¢ wiecej niz jeden kontekst, aby oszczedza¢ czas
na przyklad przy rysowaniu wielu figur o kilku réznych kolorach.

Aby wybrac¢ kolory frontu i tta, ktérymi ma by¢ cos narysowane, trzeba wywota¢ pro-
cedury XSetForeground i XSetBackground. Warto, aby aplikacja na poczatku dzialania
utworzyta sobie palete, czyli tablice koloréw (zakodowanych przy uzyciu RGBXColour), ktére
beda uzywane do rysowania wihajstréw. Warto tez w kodzie Zrédlowym ponazywac te kolory
zgodnie z przeznaczeniem (tzn. na przyklad nie ,KOLOR_FIOLETOWY”, ale ,KOLOR_GUZIKA”),

aby w razie potrzeby tatwiej bylo je zmienia¢ i nie narobi¢ przy tym bataganu.

30.4. Przyklady wihajstrow

30.4.1. Wihajster pusty

Sposdb realizacji wihajstrow przedstawie na czterech najprostszych przykladach. Pierwszy
jest pokazany na listingu 30.7. Jest to wihajster pusty, ktory nie zabiera miejsca w oknie i nic

nie robi, ale i tak jest potrzebny.

Listing 30.7. Procedury pustego wihajstra

C

{

return false;
: } /*EmptyInput*/

: { } /*EmptyRedraw*/

: static char EmptyInput ( struct xwidget *wdg,

int msg, int key, int x, int y )

static void EmptyRedraw ( struct xwidget *wdg )
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xwidget *NewEmptyWidget ( xwinmenu *wm, int id )
{
return NewWidget ( wm, sizeof(xwidget), id, 0, 0, 0, O,
EmptyInput, EmptyRedraw, NULL, NULL );
} /*NewEmptyWidget*/

30.4.2. Guzik

Guzik (listing 30.8) jest to wihajster, ktory stuzy do wydawania aplikacji polecen przez wska-
zanie kursorem i naci$niecie przycisku myszy lub klawisza <Enter>. Obraz guzika jest obra-
mowanym prostokatem, w ktérym jest napis — nazwa polecenia. Znaki tego napisu (fancuch
ASCIIZ) s3 w (zadeklarowanej w aplikacji) tablicy, ktorej pierwszy element jest wskazywany
przez pole data0 wihajstra. Sposéb reagowania guzika na komunikaty jest chyba jasny, nato-
miast komentarza wymaga sposob wyswietlania tekstu: w kontekscie grafiki X Window na-
lezy ustawic kolory frontu i tla i nie nalezy ustawiaé¢ kroju pisma dla znakéw napisu*. Wtedy
bedzie uzywany domyslny kréj fixed, ktérego znaki majg wysokos$¢ 12 pikseli i szeroko$¢
6 pikseli; to ten krdj przetworzylem na dane w pliku font12x6. c umozliwiajace wyswietla-
nie napiséw w OpenGL-u sposobem opisanym w rozdziale 11. Guzik, po pstryknigciu, wysyla
do okna aplikacji komunikat WDGMSG_BUTTON_PRESS.

Listing 30.8. Procedury wihajstra — guzika
C

: #define WDGMSG_BUTTON_PRESS 15

: static char ButtonInput ( struct xwidget *wdg,

int msg, int key, int x, int y )

A

switch ( msg ) {

. case XWMSG_BUTTON_PRESS:

if ( key == Buttonl )
goto issue_command;
break;

. case XWMSG_KEY_PRESS:

if ( key == 0x0D ) { /* <Enter> */
issue_command:
wdg->wm->callback ( wdg, WDGMSG_BUTTON_PRESS, 0, x, y );
return true;
}
break;
default:
break;

}

*Chyba, ze kto$ chce — stuzy do tego procedura XSetFont, ale wtedy trzeba wybraé taka wielkos¢ wihajst-
réw, aby zmiescily si¢ na nich potrzebne napisy i wybiera¢ wlasciwy font przed kazdym rysowaniem.
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22:
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return false;
} /*ButtonInput*/

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

static void ButtonRedraw ( struct xwidget *wdg )
{
XSetForeground ( xdisplay, xgc, XWP_BUTTON_COLOUR );
XFillRectangle ( xdisplay, wdg->wm->pixmap, xgc,
wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1 );
XSetForeground ( xdisplay, xgc, XWP_TEXT_COLOUR );
XDrawRectangle ( xdisplay, wdg->wm->pixmap, xgc,
wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1 );
XSetBackground ( xdisplay, xgc, XWP_BUTTON_COLOUR );
XDrawString ( xdisplay, wdg->wm->pixmap, xgc,
wdg->r.x+2, wdg->r.y+13, (char*)wdg->dataO,
strlen ( (char*)wdg->datal ) );
} /*ButtonRedrawx*/

37:

38:

39:

40:

41:

42:

43:

xwidget *NewButton ( xwinmenu *wm, int id,
int w, int h, int x, int y, char *title )
{
return NewWidget ( wm, sizeof (xwidget), id, w, h, x, vy,
ButtonInput, ButtonRedraw, (void*)title, NULL );
} /*NewButtonx/

30.4.3. Przelacznik

Nieco bardziej skomplikowany jest przetacznik, ktérego procedury sa na listingu 30.9. Two-
rzgc przelacznik, aplikacja podaje wskazniki tytutu (tj. opisu przefaczanej opcji) i zmiennej
typu char, ktéra przyjmuje wartosci 0 i 1. Pstrykniecie przetacznika powoduje zmiane do-
tychczasowej warto$ci tej zmiennej i zawiadomienie o tym fakcie aplikacji, przez wywolanie
procedury callback. Zaleznie od wartosci tej zmiennej obraz przelacznika jest kwadratem,
w ktérym nie ma nic, albo jest mniejszy bialy kwadrat; tytul przelacznika, jesli jest obecny,
jest wyswietlany obok z prawej strony.

Zmiana stanu przetacznika powoduje wystanie do okna aplikacji komunikatu WDGMSG_-
SWITCH_CHANGE.

Listing 30.9. Procedury wihajstra — przelacznika
C

: #define WDGMSG_SWITCH_CHANGE 16

: static char SwitchInput ( struct xwidget *wdg,
int msg, int key, int x, int y )
It

char *sw, s;

switch ( msg ) {
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9: case XWMSG_BUTTON_PRESS:

10: if ( key == Buttonl )

11: goto issue_command;

12: break;

13: case XWMSG_KEY_PRESS:

14: if ( key == 0x0D ) { /* <Enter> */

15: issue_command:

16: sw = ((char*)wdg->datal); s = *sw;
17: wdg->wm->callback ( wdg, WDGMSG_SWITCH_CHANGE, *sw = !s, x, v );
18: wdg->wm->changed |= *sw != s;

19: return true;

20: }

21: break;

22: default:

23: break;

22:  }

25: return false;

2: } /*SwitchInput*/

27:

2s: static void SwitchRedraw ( struct xwidget *wdg )

20: {

30: char *title;

31:

32: XSetForeground ( xdisplay, xgc, XWP_SWITCH_COLOUR );
s3:  XFillRectangle ( xdisplay, wdg->wm->pixmap, xgc,

34: wdg->r.x, wdg->r.y, wdg->r.height-1, wdg->r.height-1 );
ss:  XSetForeground ( xdisplay, xgc, XWP_TEXT_COLOUR );
s: XDrawRectangle ( xdisplay, wdg->wm->pixmap, xgc,

3r: wdg->r.x, wdg->r.y, wdg->r.height-1, wdg->r.height-1 );
ss: if ( (title = (char*)wdg->data0) ) {

39: XSetBackground ( xdisplay, xgc, XWP_MENU_BACKGROUND_COLOUR );

40: XDrawString ( xdisplay, wdg->wm->pixmap, xgc,

a1 wdg->r.x+wdg->r.height+2, wdg->r.y+13, title, strlen ( title ) );
42: }

as:  if ( *((charx)wdg->datal) )

44: XFillRectangle ( xdisplay, wdg->wm->pixmap, xgc,

45: wdg->r.x+4, wdg->r.y+4, wdg->r.height-8, wdg->r.height-8 );

46: ¥ /*SwitchRedraw*/
47:
as: xwidget *NewSwitch ( xwinmenu *wm, int id,

a9: int w, int h, int x, int y, char *title, char *sw )
50: {

s1: return NewWidget ( wm, sizeof (xwidget), id, w, h, x, y,

52: SwitchInput, SwitchRedraw, (voidx)title, (void*)sw );

53: + /*NewSwitch*/
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30.4.4. Suwak

Ostatni przykfad, ktorego pelng implementacje tu przedstawie, to suwak, ktory stuzy do
nadawania zmiennej typu float wartoéci z przedziatu [0,1]. Obraz suwaka jest prostoka-
tem, wewnatrz ktdrego jest narysowany kwadracik. Polozenie tego kwadracika odpowiada
wartosci sterowanej przez suwak zmiennej, od 0 na koncu z lewej strony do 1z prawej. Su-
wak ma dwa stany: poczatkowy (domyslny, WDGSTATE_DEFAULT) albo aktywny, WDGSTATE_-
MOVING_SLIDE. Przejscie do stanu aktywnego nastepuje po nacisnieciu lewego przycisku
myszy, gdy kursor jest w obszarze suwaka. W stanie aktywnym przesuniecie kursora powo-
duje obliczenie nowej wartosci zmiennej sterowanej przez suwak, zawiadomienie aplikacji
(przez procedure callback wywolang z drugim parametrem WDGMSG_SLIDEBAR_CHANGE)
i spowodowanie narysowania suwaka, ktdrego obraz odpowiada nowej wartosci przywigza-
nej do suwaka zmiennej.

Uaktywnienie suwaka powoduje przechwycenie przez niego komunikatéw wejsciowych,
bo uzytkownik czesto bedzie ,wyjezdzal” kursorem z obszaru suwaka, ktéry powinien po-
zostawac aktywny do chwili puszczenia przycisku myszy. Dlatego, wchodzac w stan aktywny,
suwak wywoluje procedure GrabInput (listing 30.5), a wracajac do stanu domyslnego wy-
woluje procedure UngrabInput. W stanie aktywnym suwak ma inny kolor niz w stanie do-
my$lnym, aby uzytkownik widzial, ktory wihajster jest aktywny. Z tego tez powodu zmiana
stanu powoduje przypisanie wdg->wm->changed = true;, ktdrego skutkiem jest naryso-
wanie nowego obrazu okna z wihajstrami w odpowiednich kolorach.

Listing 30.10. Procedury wihajstra — suwaka
C

: #define WDGSTATE_MOVING_SLIDE 1
: #define WDGMSG_SLIDEBAR_CHANGE 17

: static char SlidebarfInput ( struct xwidget *wdg,
int msg, int key, int x, int y )

{

float z, *slipos;

slipos = (float*)wdg->dataO;
switch ( wdg->state ) {
case WDGSTATE_DEFAULT:
switch ( msg ) {
case XWMSG_BUTTON_PRESS:
if ( key == Buttonl ) {
if ( x < wdg->r.x+5 ) x = (int) (wdg->r.x+5);
else if ( x > wdg->r.x+wdg->r.width-5 )
x = (int) (wdg->r.x+wdg->r.width-5);
wdg->state = WDGSTATE_MOVING_SLIDE;
wdg->wm->changed = true;
GrabInput ( wdg );
goto update;
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22: }

23: break;
24: default:
25: break;
26: }

27: break;

28:

29: case WDGSTATE_MOVING_SLIDE:

30: switch ( msg ) {

s1: case XWMSG_MOUSE_MOTION:

32: if ( IsButtonDown ( Buttonl ) ) {

33: if ( x < wdg->r.x+5 ) x = (int) (wdg->r.x+5);
34: else if ( x > wdg->r.x+wdg->r.width-5 )
35: x = (int) (wdg->r.x+wdg->r.width-5);
36: update:

ar: z = (float) (x-wdg->r.x-5)/(float) (wdg->r.width-10);
38: if ( z '= *xslipos ) {

39: *slipos = z;

40: wdg->wm->callback ( wdg, WDGMSG_SLIDEBAR_CHANGE, 0, x, y );
a1: wdg->wm->changed = true;

42: }

a3: }

a4 else

45: goto release;

46: return true;

a7: case XWMSG_BUTTON_RELEASE:

a8 if ( key == Buttonl ) {

49: release:

50: wdg->state = WDGSTATE_DEFAULT;

51: UngrabInput ( wdg );

52: wdg->wm->changed = true;

53: return true;

54: }

55: break;

s6: default:

57: break;

58: }

59: break;

60:

61: default:

62: break;

63: }

6a: return false;

6s: + /*SlidebarfInput*/

66:

67: static void SlidebarfRedraw ( struct xwidget *wdg )
68: {
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69: int X;

70: float *slipos;

71:

72:  slipos = (float*)wdg->dataO;

73:  if ( wdg->state == WDGSTATE_MOVING_SLIDE )

74: XSetForeground ( xdisplay, xgc, XWP_ACTIVE_SLIDEBAR_COLOUR );

75:  else

76: XSetForeground ( xdisplay, xgc, XWP_SLIDEBAR_COLOUR );

77 XFillRectangle ( xdisplay, wdg->wm->pixmap, xgc,

78: wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1 );

7e:  XSetForeground ( xdisplay, xgc, XWP_TEXT_COLOUR ) ;

so: XDrawRectangle ( xdisplay, wdg->wm->pixmap, xgc,

81: wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1 );
g2:  x = wdg->r.x + 2 + (int) ((*slipos)*(float) (wdg->r.width - 10));

s3: XFillRectangle ( xdisplay, wdg->wm->pixmap, xgc,

84: X, wdg->r.y+2, 6, 6 );

ss: } /*SlidebarfRedraw*/

86:

g7: xwidget *NewSlidebarf ( xwinmenu *wm, int id,

88: int w, int h, int x, int y, float *data )

89: {

90: return NewWidget ( wm, sizeof (xwidget), id, w, h, x, y,

o1: SlidebarfInput, SlidebarfRedraw, (voidx)data, NULL );

92: + /*NewSlidebarfx*/

30.4.5. Edytor napisu

Ostatni wihajster w tym rozdziale opisze skrotowo: jest to edytor umozliwiajacy wprowa-
dzenie jednej linii tekstu, na przyklad nazwy pliku do przeczytania lub zapisania. Proce-
dura NewLineEditor (listing 30.11) zleca rezerwacj¢ obszaru pamieci o rozmiarze struktury
xLineEditor, ktdrej pierwszym polem jest struktura xwidget. Adres bufora na tekst jest
pamietany w polu data0 tej struktury. Pozostate pola struktury xLineEditor przechowuja
maksymalng dlugo$¢ napisu, liczbe wyswietlanych znakéw (krojem pisma o stalej szerokosci
znaku, 6 pikseli), indeks pierwszego wyswietlanego znaku i polozenie kursora tekstowego.

Listing 30.11. Procedury wihajstra — edytora

C
1: #define WDGSTATE_EDITING 2
2: #define WDGMSG_EDITOR_ENTER 18
3: #define WDGMSG_EDITOR_ESCAPE 19
4:
5: typedef struct xLineEditor {
6: xwidget wdg;
7: int maxlength, /* maximal string length */

8: chdisp, /* number of characters displayed */
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start, /* first character displayed */
pos; /* text cursor position */
} xLineEditor;

static char insert = true;

void LeaveEditingState ( xwidget *wdg );
static char LineEditorInput ( struct xwidget *wdg,

int msg, int key, int x, int y );
static void LineEditorRedraw ( struct xwidget *wdg );

xwidget *NewLineEditor ( xwinmenu *wm, int id, int w, int h, int x, int y,
int maxlength, char *txtbuf )
{

xLineEditor *xed;

if ( (xed = (xLineEditorx*)NewWidget ( wm, sizeof (xLineEditor), id, w, h,
X, y, LineEditorInput, LineEditorRedraw, (void*)txtbuf, NULL )) ) {

xed->maxlength = maxlength;
xed->chdisp = (w-2)/6;
xed->start = xed->pos = 0;

}

return (xwidget*)xed;

} /#NewLineEditorx/

Aby rozpocza¢ edycje, trzeba umiesci¢ kursor na wihajstrze i nacisna¢ lewy przycisk
myszy. Aby edycje zakonczy¢, trzeba nacisngé lewy przycisk, gdy kursor jest poza wihajst-
rem, lub nacisna¢ klawisz Enter. Poza tym edytor reaguje na strzalki (w lewo i w prawo)
i klawisze Delete, Backspace, Home i End i ma dwa tryby pracy, przefaczane klawi-
szem Insert. O zakonczeniu edycji wihajster zawiadamia aplikacje, wysylajac komunikat
WDGMSG_EDITOR_ENTER. Ponadto, jesli uzytkownik nacisnie klawisz Esc, wihajster wysyla
komunikat WDGMSG_EDITOR_ESCAPE, co umozliwia aplikacji zakonczenie edycji (przez wy-
wolanie procedury LeaveEditingState) i na przyktad odrzucenie napisu.



Zageszczanie siatek

Zaimplementujemy algorytm zageszczania siatek (mesh refinement), ktéry generuje przy-
blizenia powierzchni sklejanych, bedacych (dalekim) uogdlnieniem platéw Béziera. Siatke,
ktéra ma stosunkowo niewielkg liczbe wierzchotkéw (punktéw kontrolnych), mozna dosy¢
tatwo ksztaltowac, a jej zageszczanie prowadzi do otrzymania duzej liczby trojkatéw przybli-
zajacych gladka powierzchnig. Chcemy, aby zageszczaniem zajmowala si¢ GPU. Wyswietla-
niem siatek zajmie si¢ trzecia aplikacja, opisana w nastepnym rozdziale.

31.1. Definicja i warunki poprawnosci siatki

Siatka sktada sie z wierzcholtkow, krawedzi i $cian. Wierzcholek ma okreslone potozenie
w przestrzeni. Krawed? jest odcinkiem, ktérego konice s3 wierzchotkami. Sciana jest famang
zamknietg ztozong z co najmniej trzech krawedzi, przy czym wszystkie wierzchotki tej tama-
nej musza by¢ réznymi wierzchotkami'.

Zakladamy, ze kazda krawedz nalezy do jednej albo dwdch $cian, przy czym w pierwszym
przypadku jest to krawedz brzegowa, a w drugim krawedz wewnetrzna. Konice co najmniej
jednej krawedzi brzegowej sa wierzcholkami brzegowymi, a pozostate wierzchotki s we-
whnetrzne. Wierzchotek brzegowy jest koficem co najmniej dwéch krawedzi?, a wierzcholek
wewnetrzny co najmniej trzech. Wszystkie §ciany majace wspolny wierzchotek mozna od-
wiedzi¢ po kolei, przechodzac przez ich wspélne krawedzie, ktérych koncem jest ten wierz-
chotek.

Dla wygody krawedzie beda reprezentowane przez potkrawedzie, przy czym krawedzi
wewnetrznej odpowiadaja dwie potkrawedzie powigzane w pare, a reprezentacja krawedzi
brzegowej jest jedna potkrawedz bez pary. Dzigki temu kazda pétkrawedz nalezy do jednej
sciany. Co wiecej, potkrawedzie sg zorientowane: jeden z wierzchotkéw krawedzi jest poczat-

'Ale rézne wierzcholki moga mie¢ to samo polozenie. Wierzchotki moga mieé tez dodatkowe atrybuty,
na przyklad wektor normalny, wspotrzedne tekstury i inne.

*Wierzchotek brzegowy jest koficem dwoch krawedzi brzegowych i pewnej (nieujemnej) liczby krawedzi
wewnetrznych.
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kiem poétkrawedzi, a drugi jej koncem. Druga pétkrawedz z pary reprezentujacej krawedz
wewnetrzng jest zorientowana odwrotnie. Dowolna $ciang mozna obej$¢ po jej potkrawe-
dziach zgodnie z ich orientacja’.

Wierzchotek ma réwniez zbior pétkrawedzi, ktorych jest poczatkiem, i zbior ten jest upo-
rzagdkowany (tj. ustawiony w ciag), co wprowadza orientacje¢ wierzchotka. Mozna to zrobi¢
inaczej, ale kiedy$ zaimplementowalem (na CPU) zestaw algorytmoéw przetwarzania siatek,
dla ktérych orientacja wierzchotka (tj. kolejnos¢ potkrawedzi wokot niego) jest odwrotna niz
orientacja $ciany i tak juz (w moich programach) zostato. Wida¢ to na rysunku 31.1 przed-
stawiajgcym przyklad siatki; potkrawedzie tworzace pary zostaly na nim porozsuwane.

R / ierzchotki Potkrawedzie
Cy 0: 0, 14, 5 0: (0, 1, 0, 3)
1: 1, 12, 3 1: (1, 2, 0, 4)
2: 2, 13, 4 2: (2, 0, 0, 5
3: 11, 6 3: (1, 0, 1, 0)
4: 9, 7 4: (2, 1, 2, 1)
5: 10, 8 5: (0, 2, 3, 2)
6: (3, 4, 1, -1)
. 1 — — 7: (4, 5, 2, -1)
5 Tt Q2 o) oo L)? 8: (5, 3, 3, -1)
9: (4, 1, 1, 12)
‘\1 z Sciany 10: (5, 2, 2, 13)
] 0: 0,1, 2 11: (3, 0, 3, 14)
1: 3, 14, 6, 9 12: (1, 4, 2, 9
< 2: 4, 12, 7, 10 13: (2, 5, 3, 10)
3: 5, 13, 8, 11 14: (0, 3, 1, 11)

Rysunek 31.1. Schemat budowy siatki

W obu reprezentacjach siatki, uzywanych w pamieci CPU i GPU, wierzcholki, pétkra-
wedzie i $ciany sa przechowywane w tablicach; identyfikatory wierzchotkéw, potkrawedzi
i $cian sg indeksami do tych tablic, tj. kolejnymi liczbami catkowitymi od 0.

Potkrawedz jest reprezentowana przez cztery identyfikatory. Pierwsze dwa sa nume-
rami wierzchotkéw bedacych poczatkiem i koncem pétkrawedzi. Kolejna liczba to identy-
fikator $ciany, do ktorej nalezy potkrawedz, a ostatnia to identyfikator drugiej potkrawedzi
z pary. Krawedzie tworzace pare przechowuja nawzajem swoje identyfikatory, a ponadto

3Zauwazmy, e to wymusza orientowalno$¢ powierzchni ztozonej ze $cian wyobrazonych jako wielokaty lub
blony rozpiete na krawedziach. Nie uzyskamy w ten sposob wstegi Mobiusa.
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maja te same identyfikatory wierzchotkéw zamienione miejscami. Taka informacja jest re-
dundantna, ale jest ona konieczna, poniewaz pétkrawedz moze nie mie¢ pary. Wtedy repre-
zentuje ona krawedz brzegows, a identyfikator jej drugiej potowy jest rowny -1; liczba -1
pelni role identyfikatora pustego.

Wierzchotek oprocz polozenia ma okreslony ciag (identyfikatoréw) potkrawedzi, ktorych
jest poczatkiem. Takze §ciana ma cigg identyfikatoréw swoich pétkrawedzi, przy czym w obu
przypadkach kolejnos¢ identyfikatoréw musi by¢ zgodna z orientacjg: na rysunkach 31.1-31.3
kolejnos¢ potkrawedzi odpowiada obchodzeniu $ciany zgodnie z ruchem wskazéwek zegara,
a wierzcholek jest okrazany w przeciwna strone. Dla $ciany i wierzchotka wewnetrznego nie
ma znaczenia, ktora potkrawedz jest podana jako pierwsza, ale dla wierzchotka brzegowego
wychodzaca z niego potkrawedz brzegowa jest ostatnia w ciggu.

31.2. Reprezentacja siatki w pami¢ci RAM CPU

Reprezentacja siatki sktada si¢ z szesciu tablic. Trzy z nich (mv, mhe, mfac) przechowuja
odpowiednio struktury opisujace wierzcholki, potkrawedzie i $ciany, przy czym struktury
BSMvertex i BSMfacet reprezentujace wierzcholek i $ciane maja identyczng budowe (zo-
bacz listing 31.1). Pole degree przechowuje liczbe potkrawedzi, ktorych poczatkiem jest dany
wierzchotek, lub liczbe krawedzi $ciany; liczba ta jest dalej nazywana stopniem wierzchotka
lub $ciany. Pole firsthalfedge jest indeksem dodatkowej tablicy, w ktdrej s przechowy-
wane identyfikatory kolejnych pétkrawedzi wierzchotka lub $ciany.

Listing 31.1. Struktury reprezentacji siatki
C

. typedef struct {

char degree;

int firsthalfedge;
} BSMfacet, BSMvertex;

: typedef struct {
int vO, vi;
int facetnum;
int otherhalf;

} BSMhalfedge;

11:

-
N

13:

14:

15:

16:

17:

18:

19:

20:

. typedef struct CPUmesh {
int nsattr, pdim, pofs, nvofs;
int nv, nhe, nfac;
BSMvertex *mv ;
BSMhalfedge *mhe;
BSMfacet *mfac;
int *mvhei, *mfhei;
float *VC;
} CPUmesh;
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Kolejne pola struktury BSMhalfedge przechowuja identyfikatory wierzchotkéw — po-
czatku i konca pétkrawedzi oraz $ciany i drugiej pétkrawedzi z pary.

Dwie wspomniane wyzej tablice dodatkowe, mvhei i mfhei, maja dlugos¢ réwna liczbie
ny, potkrawedzi siatki. Jesli wierzchotek albo $ciana ma poladegreeifirsthalfedge o war-
to$ciach d i f, to w pierwszej lub drugiej z tych tablic numery pétkrawedzi sa przechowywane
wmiejscach f, f+1,..., f +d—1. To rozwigzanie umozliwia oszczedne reprezentowanie sia-
tek, w ktorych poszczegélne wierzchotki lub $ciany majg rézne liczby pétkrawedzi. W tych
tablicach znajduja si¢ pewne permutacje ciagu liczb 0, . . ., n;, —1 — jest to jeden z warunkéw
poprawnosci reprezentacji siatki.

Wspolrzedne punktdéw polozenia wierzchotkéw sg przechowywane w osobnej tablicy ve
liczb typu float*. Opréczliczb ny, ny, i ns, odpowiednio wierzchotkéw, pétkrawedzi i $cian
siatki, trzeba poda¢ liczbe s skalarnych atrybutéw wierzchotka®. Dlugos¢ tablicy ze wspét-
rzednymi wierzchotkow jest zatem réwna sn,,.

Wprowadzona dla wygody struktura o nazwie CPUmesh przechowuje wskazniki opisa-
nych wyzej tablic i liczby s, n,, ny i ny w polach nsattr, nv, nhe i nfac. Mozna pisa¢
procedury przetwarzania siatek z jednym parametrem — wskaznikiem do takiej struktury
— zamiast przekazywac wszystkie jej pola jako osobne parametry. Pola pdim, pofs invofs
sg opisane dalej.

31.3. Reprezentacja siatki w pamieci GPU

Reprezentacja siatki w pamigci GPU podlega pewnym ograniczeniom wynikajacym ze spe-
cyfikacji OpenGL-a. Istnieje limit liczby buforéw magazynowych, do ktdrych szader obli-
czeniowy ma dostep; specyfikacja [1] gwarantuje, Ze moze ich by¢ 8, zobacz p. 11.5.1. W im-
plementacji algorytmu zageszczania potrzebujemy mie¢ siatke dang, siatke bedaca wynikiem
opisanych dalej operacji podwajania lub usredniania i tablice robocze. Dlatego siatke w pa-
mieci GPU umie$cimy w trzech buforach magazynowych. W pierwszym z nich znajduje si¢
tablica liczb typu int, ktérej kolejne fragmenty sg tablicami wierzchotkéw i $cian oraz tabli-
cami zawierajacymi ciggi identyfikatoréw potkrawedzi poszczegdlnych wierzchotkéw i $cian.
W drugim buforze umie$cimy opisy potkrawedzi, do czego nadaja sie elementy tablicy typu
ivec4. W trzecim buforze, zawierajacym tablice liczb typu float, umiescimy wspolrzedne
wierzchotkéw, przy czym moga tu tez by¢ dodatkowe atrybuty wierzchotkoéw, takie jak wek-
tor normalny i wspotrzedne tekstury. Obliczenia numeryczne wykonywane przez algorytm
zageszczania siatki poskutkuja dokonaniem odpowiedniej interpolacji wszystkich tych atry-
butéw.

Listing 31.2 przedstawia strukture przechowujaca wymiar przestrzeni, liczby wierzchol-
kow, potkrawedzi i $cian oraz identyfikatory czterech buforéw magazynowych z opisanymi
wyzej tablicami. Pokazane na listingu makrodefinicje stuzg do uczytelnienia kodu procedur
opisanych dalej.

*Lub double — to zalezy od aplikacji, ale aby uzy¢ podwoéjnej precyzji, trzeba dostosowaé szadery.
W najprostszym przypadku s jest liczba wspétrzednych potozenia wierzcholka, ale bedziemy uzywaé tez
innych atrybutéw: wspoéirzednych wektora normalnego i tekstury. Zobacz opis w podrozdziale 31.3.
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Listing 31.2. Struktura dla CPU dajaca dostep do reprezentacji siatki w GPU
C

. #define MVFBUF  mbuf [0]
. #define MHEBUF mbuf [1]
. #define VCBUF mbuf [2]
. #define MSBUF mbuf [3]

. typedef struct GPUmesh {

int nsattr, pdim, pofs, nvofs;
int nv, nhe, nfac;
GLuint mbuf [4];

} GPUmesh;

Liczbe d potkrawedzi wierzchotka lub $ciany (przechowywana w pamieci CPU w polu
degree struktury BSMvertex lub BSMfacet) i indeks f poczatku ciggu identyfikatoréw
(z pola firsthalfedge) upakujemy w 32 bitach zmiennej typu int za pomoca masek
i przesunig¢¢ bitowych przedstawionych na listingu 31.3. Liczba f bedzie przechowywana
w najmniej znaczacych 25 bitach, co ogranicza liczbe pétkrawedzi siatki do 22 (czyli ponad
32 milionéw). Bit na pozycji 25 zarezerwujemy do oznaczania wierzchotka lub $ciany pod-
czas przetwarzania. Stopien wierzchotka lub $ciany (czyli liczbe pétkrawedzi) umiescimy
w najbardziej znaczacych 6 bitach (a wiec liczba ta nie moze przekraczac 63).

Listing 31.3. Maski bitowe i przesuniecia reprezentacji wierzchotka i $ciany
C, GLSL

: #define FHEMASK OxO1FFFFFF
: #define TAGMASK 0x02000000
: #define DEGMASK 0xFC000000
: #define DEGSHIFT 26

Listing 31.4 przedstawia deklaracje buforéw magazynowych w programach rysowania
krawedzi i $cian siatek; programy te s zbudowane z szaderéw opisanych w dalszych rozdzia-
tach, ale blok zawierajacy parametry siatki jest przedstawiony w tym miejscu, bo opisane nizej
procedury przesylajace reprezentacje siatki migedzy pamiecia CPU i GPU dbaja o wlasciwa
zawarto$¢ tego bloku®.

Tablica mvf w bloku meshvf stuzy do przechowania czterech tablic, ktére w pamigci CPU
majg nazwy mv, mvhei, mfac i mfhei; wszystkie ich elementy sg liczbami calkowitymi. Tab-
lica mhe w bloku meshhe zawiera opisy potkrawedzi, z ktorych kazdy sklada si¢ z czterech
liczb catkowitych. Wspdlrzedne polozenia wierzcholkow siatki i inne ich atrybuty (wek-
tor normalny, wspolrzedne tekstury itp.) s3 przechowywane w tablicy vc w bloku meshvc.

®Opisany w podrozdziale 31.4 szader obliczeniowy, ktérego zadaniem jest otrzymanie siatki zageszczonej,
zamiast bloku magazynowego z liczbami elementdéw siatki korzysta z bloku zmiennych jednolitych zawierajg-
cego parametry obu siatek i zmienne pomocnicze. W pierwszym wydaniu ksigzki liczby elementéw siatki i inne
dane trzeba bylo przed rysowaniem siatki przypisa¢ zmiennym jednolitym w domyslnym bloku zmiennych jed-
nolitych programu rysujacego, czego skutkiem byl bardziej skomplikowany kod aplikacji. Dlatego, przewidujac,
ze siatki beda rysowane (a nie tylko zageszczane), warto uprosci¢ sobie zadanie na przyszlosc.
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Czwarty blok magazynowy, meshsurf, zawiera opis siatki potrzebny do rysowania. W jego
polach nv, nhe i nfac sg pamietane liczby wierzchotkéw, potkrawedzi i $cian siatki.

Listing 31.4. Bloki magazynowe siatki w programach rysujacych
GLSL

: layout (std430,binding=0) buffer meshvf { int mvf[]; } mvf;
: layout (std430,binding=1) buffer meshhe { ivec4 mhe[]; } mhe;
: layout (std430,binding=2) buffer meshvc { float vc[]; } mvc;
: layout (std430,binding=3) buffer meshsurf {

int nv, nhe, nfac, nsattr, pdim, pofs, nvofs;
bool MeshNormals;
vec3 Colour;

};

W polu nsattr jest pamietana catkowita liczba skalarnych atrybutéw jednego wierz-
chotka, na przyklad 3 lub 4, jesli s3 w niej podane tylko wspoéltrzedne kartezjanskie albo jed-
norodne polozenia wierzchotka w przestrzeni, ale jesli jest tez wektor normalny, to liczba ta
wzroénie o 3, a jesli beda obecne dodatkowe atrybuty (np. wspolrzedne tekstury), to je tez
trzeba bedzie policzy¢.

Pole pdim przechowuje liczbe wspoétrzednych potozenia (np. 3 lub 4), a pole pofs zawiera
informacje, ktérym atrybutem skalarnym jest pierwsza wspolirzedna potozenia wierzchotka.
Jesli wektor normalny jest obecny, to jego pierwsza wspodlrzedna jest atrybutem skalarnym
o numerze podanym w polu nvofs. Dodanie kolejnych atrybutéw (np. wspolrzednych teks-
tury) wymaga dodania odpowiednich pél do bloku.

Procedure GetAccessToMeshSurfBlock pokazang na listingu 31.5 aplikacja musi wy-
wolaé przed przesylaniem siatek do pamigci GPU, z parametrem, ktdry jest identyfikatorem
dowolnego programu szaderéw zawierajacego blok meshsurf’.

Pomocnicza procedura UploadMeshParams przypisuje polom nv, nhe, nfac, nsattr,
pdim, pofs i nvofs wartosci pdl o tych samych nazwach w reprezentujacej siatke struktu-
rze typu GPUmesh. Osobne procedury przypisuja wartosci polom MeshNormals i Colour,
ktorych opis jest czgscig opisu programéw rysujacych.

Makrodefinicje SSB i UVB wprowadzajg synonimy dlugich nazw symbolicznych Open-
GL-a, ktore dalej sa potrzebne w tak wielu miejscach, ze postanowilem je skrocic.

Listing 31.5. Dostep do bloku magazynowego meshsurf
C

: #define NMBOFFS 9

: #define SSB GL_SHADER_STORAGE_BUFFER
: #define UVB GL_UNIFORM_BUFFER

’Poniewaz blok meshsurf nie ma nazwy wewnetrznej, podane w liniach 12-13 nazwy jego pél, ktérych prze-
suniecia wzgledem poczatku bufora ma znalez¢ procedura GetAccessToStorageBlock nie sg prefiksowane
nazwa bloku. Zobacz przypis 14 na s. 192.
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6: static GLuint bpoint = GL_INVALID_INDEX;
7. static GLint mbsize, mbofs[NMBOFFS];

9: GLuint GetAccessToMeshSurfBlock ( GLuint program_id )

10: {

11:  static const GLchar *names[] =

12: { "meshsurf", "nv", "nhe", "nfac", "nsattr", "pdim",
13: "pofs", "nvofs", "MeshNormals", "Colour" };

14:

15: if ( bpoint == GL_INVALID_INDEX )

16: GetAccessToStorageBlock ( program_id, NMBOFFS, names,

17: &mbsize, mbofs, &bpoint );

18:  ExitIfGLError ( "GetAccessToMeshSurfBlock" );

19: return bpoint;

20: } /*GetAccessToMeshSurfBlock*/

21:

22: void UploadMeshParams ( GPUmesh *gmesh )

23: {

24:  glBindBuffer ( SSB, gmesh->MSBUF );

25:  glBufferSubData ( SSB, mbofs[0], sizeof (GLint), &gmesh->nv );

2: glBufferSubData ( SSB, mbofs[1], sizeof (GLint), &gmesh->nhe );
27:  glBufferSubData ( SSB, mbofs[2], sizeof (GLint), &gmesh->nfac );
2s:  glBufferSubData ( SSB, mbofs[3], sizeof(GLint), &gmesh->nsattr );
29: glBufferSubData ( SSB, mbofs[4], sizeof(GLint), &gmesh->pdim );
30: glBufferSubData ( SSB, mbofs[5], sizeof(GLint), &gmesh->pofs );
si:  glBufferSubData ( SSB, mbofs[6], sizeof (GLint), &gmesh->nvofs );
s2:  ExitIfGLError ( "UploadMeshParams" );

3s: } /*UploadMeshParamsx*/

Listing 31.6 przedstawia procedure ReallocGPUmesh dokonujacy rezerwacji pamieci
GPU na potrzeby reprezentowania siatek o podanych liczbach wierzchotkow, potkrawedzi
i $cian. Jesli identyfikatory buforéw OpenGL-a w przekazanej strukturze GPUmesh sg nie-
zerowe, to odpowiednie bufory sg zwalniane, po czym procedura tworzy nowe bufory i na-
daje kazdemu z nich odpowiednig wielko$¢, wywolujac procedure glBuf ferData. Zwracam
uwage na sposob obliczania dlugo$ci buforéw w liniach 10, 131 15. Informacje podane w para-
metrach sg zapamietywane w polach struktury opisujacej siatke, skad przestaniem do bufora
z blokiem magazynowym meshsurf zajmuje si¢ procedura UploadMeshParams.

Listing 31.6. Procedura rezerwowania pamieci GPU na reprezentacje siatek

C
1: char ReallocGPUmesh ( GPUmesh *gmesh, int nv, int nhe, int nfac, int nsattr,
2: int pdim, int pofs, int nvofs )

3:{

4: int i;

6: for (i =0; 1i < 4; i++ )
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if ( gmesh->mbuf[i] > 0 ) glDeleteBuffers ( 1, &gmesh->mbuf[i] );
glGenBuffers ( 4, gmesh->mbuf );
glBindBuffer ( SSB, gmesh->MVFBUF );
glBufferData ( SSB, (nv+nfac+2#*nhe)*sizeof (GLuint),
NULL, GL_DYNAMIC_DRAW );

glBindBuffer ( SSB, gmesh->MHEBUF );

glBufferData ( SSB, nhex4*sizeof (GLint), NULL, GL_DYNAMIC_DRAW );
glBindBuffer ( SSB, gmesh->VCBUF );

glBufferData ( SSB, nv*nsattr*sizeof (GLfloat), NULL, GL_DYNAMIC_DRAW );
glBindBuffer ( SSB, gmesh->MSBUF );

glBufferData ( SSB, mbsize, NULL, GL_DYNAMIC_DRAW );

gmesh->nsattr = nsattr; gmesh->pdim = pdim; gmesh->pofs = pofs;
gmesh->nvofs = nvofs;

gmesh->nv = nv;

gmesh->nhe = nhe;

gmesh->nfac = nfac;

UploadMeshParams ( gmesh );

ExitIfGLError ( "ReallocGPUmesh" );

return true;

: } /*ReallocGPUmesh*/

Podobnie dziala procedura ReallocCPUmesh pokazana na listingu 31.7. Zwalnia ona
tablice wskazywane przez wskazniki w strukturze typu CPUmesh, po czym rezerwuje (za po-
mocgmalloc) nowe tablice. Liczby wierzchotkéw, pétkrawedzii $cian i pozostale parametry
s3 zapamietywane w strukturze, ale zawartos¢ tablic pozostaje nieokreslona. Niepowodzenie
rezerwacji (wskutek braku wolnego miejsca w pamieci CPU) powoduje odwolanie rezerwacji
pamieci, ktorej udalo sie dokonac i jest sygnalizowane warto$ciag powrotng false procedury.

Kazdg zmienna typu GPUmesh albo CPUmesh przed przekazaniem jej adresu po raz pierw-
szy jako parametru jednej lub drugiej opisanej tu procedury trzeba wypetni¢ zerami.

Listing 31.7. Procedura rezerwowania pami¢ci CPU na reprezentacje siatek
C
: void FreeCPUmeshTab ( CPUmesh *cmesh )

( cmesh->mv ) free ( cmesh->mv );

( cmesh->vc ) free ( cmesh->vc );

if ( cmesh->mhe ) free ( cmesh->mhe );

( cmesh->mfac ) free ( cmesh->mfac );

( cmesh->mvhei ) free ( cmesh->mvhei );
if ( cmesh->mfhei ) free ( cmesh->mfhei );
memset ( cmesh, O, sizeof (CPUmesh) );

} /*FreeCPUmeshTab*/

11:

12:

13:

14:

15:

char ReallocCPUmesh ( CPUmesh *cmesh, int nv, int nhe, int nfac, int nsattr,
int pdim, int pofs, int nvofs )
{
FreeCPUmeshTab ( cmesh );
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cmesh->mv = malloc ( nv*sizeof (BSMvertex) );
cmesh->vc = malloc ( nv*nsattr*sizeof (double) );
cmesh->mhe = malloc ( nhexsizeof (BSMhalfedge) );
cmesh->mfac = malloc ( nfac*sizeof (BSMfacet) );
cmesh->mvhei = malloc ( nhe*sizeof (int) );
cmesh->mfhei = malloc ( nhexsizeof(int) );
if ( 'cmesh->mv | !'cmesh->vc | !cmesh->mhe | !cmesh->mfac |
'cmesh->mvhei | !'cmesh->mfhei ) {
FreeCPUmeshTab ( cmesh );
return false;
}
else {
cmesh->nsattr = nsattr; cmesh->pdim = pdim; cmesh->pofs = pofs;
cmesh->nv = nv;
cmesh->nhe = nhe;
cmesh->nfac = nfac;
return true;
}
: } /*ReallocCPUmesh*/

Na listingu 31.8 s3 pokazane procedury przesylajace reprezentacje siatki miedzy CPU
a GPU, dzialajace przy zalozeniu, ze wspolrzedne wierzchotkéw w pamieci CPU sg reprezen-
towane w pojedynczej precyzji (jako liczby typu float). Dzialanie obu procedur jest dos¢
oczywiste, zwracam wiec tylko uwage na ,,pakowanie” i ,,rozpakowywanie” liczb d i f repre-
zentujgcych wierzcholek lub $ciane w liniach 20, 23, 60-61 i 65—-66 oraz na obliczanie odlegtosci
(w bajtach) od poczatku bufora poczatkéw poszczegdlnych tablic (wierzchotkéw, $cian i tab-
lic z ciggami indeksow potkrawedzi) w liniach 21, 24, 25, 27 (zobacz wyrazenia opisujace drugi
parametr procedur glBufferSubData) i w liniach ss, 63, 68 i 70 (drugi parametr procedury
glGetBufferSubData).

Listing 31.8. Procedury przesylania siatek miedzy CPU a GPU
C
: char CPUmeshToGPU ( CPUmesh *cmesh, GPUmesh *gmesh )
A

int dim, nv, nhe, nfac;
BSMvertex *mv;

BSMfacet x*mfac;

GLuint *vf;

int i, size;

if ( ReallocGPUmesh ( gmesh, nv = cmesh->nv, nhe = cmesh->nhe,
nfac = cmesh->nfac, dim = cmesh->nsattr,
cmsh->pdim, cmesh->pofs, cmesh->nvofs ) ) {
size = (nv > nfac ? nv : nfac)*sizeof (GLuint);
i = nv*dim*sizeof (GLfloat) ;
if ( size < i ) size = i;
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15: if ( '(vf = (GLuint*)malloc ( size )) )

16: return false;

17: glBindBuffer ( SSB, gmesh->MVFBUF );

18: mv = cmesh->mv; mfac = cmesh->mfac;

19: for (i =0; i < nv; i++ )

20: vE[i] = mv[i].firsthalfedge + (mv[i].degree << DEGSHIFT);

21: glBufferSubData ( SSB, 0, nv*sizeof (GLuint), vf );

22: for (i = 0; i < nfac; i++ )

23: vi[i] = mfac[i].firsthalfedge + (mfac[i].degree << DEGSHIFT);

24: glBufferSubData ( SSB, nv*sizeof (GLuint), nfacx*sizeof (GLuint), vf );
25: glBufferSubData ( SSB, (nv+nfac)*sizeof (GLuint), nhe*sizeof (GLint),
26: cmesh->mvhei );

27: glBufferSubData ( SSB, (nv+nfac+nhe)*sizeof (GLuint), nhe*sizeof (GLint),
28: cmesh->mfhei );

29: glBindBuffer ( SSB, gmesh->MHEBUF ) ;

30: glBufferSubData ( SSB, O, nhe*4*sizeof (GLint), cmesh->mhe );

31: vc = (GLfloatx)vf;

32: for (i = 0; i < nv*dim; i++ )

33: vc[i] = (GLfloat)cmesh->vc[i];

34: glBindBuffer ( SSB, gmesh->VCBUF );

35: glBufferSubData ( SSB, 0, nv*dim*sizeof (GLfloat), cmesh->vc );

36: free ( vf );

3r: ExitIfGLError ( "CPUmeshToGPU" );

38: return true;

39: }

40: else return false;

a1: } /*CPUmeshToGPU*/

42:

43: char GPUmeshToCPU ( GPUmesh *gmesh, CPUmesh *cmesh )
44: {

45: int dim, nv, nhe, nfac;

46: BSMvertex *mv;

a7:  BSMfacet =*mfac;

4s:  GLuint *vf;

49:  int i, size;

50:

si: if ( ReallocCPUmesh ( cmesh, nv = gmesh->nv, nhe = gmesh->nhe,

52: nfac = gmesh->nfac, dim = gmesh->nsattr,

53: gmesh->pdim, gmesh->pofs, gmesh->nvofs ) ) {
54: size = (nv > nfac ? nv : nfac)*sizeof (GLuint);

55: if ( '(vf = (GLuint*)malloc ( size )) )

56: return false;

57: glBindBuffer ( SSB, gmesh->MVFBUF ) ;

58: glGetBufferSubData ( SSB, 0, nv*sizeof (GLuint), vf );

59: for ( mv = cmesh->mv, i = 0; i < nv; i++ ) {

60: mv[i] .firsthalfedge = vf[i] & FHEMASK;

61: mv[i] .degree = vf[i] >> DEGSHIFT;
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}
glGetBufferSubData ( SSB, nv*sizeof(GLint), nfac*sizeof (GLuint), vf );
for ( mfac = cmesh->mfac, i = 0; i < nfac; i++ ) {
mfac[i] .firsthalfedge = vf[i] & FHEMASK;
mfac[i] .degree = vf[i] >> DEGSHIFT;
}
glGetBufferSubData ( SSB, (nv+nfac)*sizeof (GLint),
nhexsizeof (GLint), cmesh->mvhei );
glGetBufferSubData ( SSB, (nv+nfac+nhe)*sizeof (GLint),
nhexsizeof (GLint), cmesh->mfhei );
glBindBuffer ( SSB, gmesh->MHEBUF ) ;
glGetBufferSubData ( SSB, O, nhe*4*sizeof(GLint), cmesh->mhe );
glBindBuffer ( SSB, gmesh->VCBUF );
glGetBufferSubData ( SSB, 0, nv*dim*sizeof (GLfloat), cmesh->vc );
free ( vf );
ExitIfGLError ( "GPUmeshToCPU" );
return true;

}

else return false;
} /*GPUmeshToCPUx*/

31.4. Podwajanie i usrednianie siatki

Operacja zageszczania siatki (mesh refinement) jest ztozeniem dwoch bardziej elementarnych
operacji, zwanych podwajaniem (doubling) i usrednianiem (averaging): wynik podwajania
jest poddawany n-krotnemu usrednianiu, przy czym najczesciej wykonuje sie 2 lub 3 usred-
niania. Matematyczne podstawy zageszczania sg opisane w ksigzkach [40] i [41]. Przed za-
glebieniem sie w opis implementacji zobaczmy, na czym te operacje polegaja.

Podwajanie wytwarza siatke, w ktorej wystepuja $ciany odpowiadajace wszystkim wierz-
chotkom, krawedziom i §cianom siatki danej. Sciany odpowiadajace $cianom siatki danej s3
(w zasadzie) ich kopiami. Kazdej krawedzi siatki danej odpowiada $ciana ztozona z czterech
krawedzi, przy czym dwie z nich s3 odcinkami pokrywajacymi si¢ z krawedzia dana, a po-
zostale dwie sg $ciggniete do punktéw — konce tych krawedzi sg réznymi wierzchotkami
o tym samym polozeniu. Wreszcie, kazdemu wierzchotkowi siatki danej odpowiada $ciana
$ciggnieta do punktu (majaca wszystkie krawedzie o zerowej dlugosci). Jesli wierzcholek
siatki danej jest wewnetrzny, to odpowiadajaca mu $ciana ma tyle samo krawedzi co on. Dla
wierzchotka brzegowego tez mogtoby tak by¢, ale lepiej jest wygenerowac $ciane, ktéra ma
o jedng krawedz wiecej, bo wierzcholek brzegowy moze by¢ koncem tylko dwoch krawedzi,
a (zgodnie z przyjetym zalozeniem) $ciana musi by¢ co najmniej trojkatem.

Jesli w siatce danej dwie $ciany majg wspdlng krawedz (i w tym sensie sgsiaduja), to mie-
dzy kopie tych $cian w siatce wynikowej jest wstawiona $ciana odpowiadajaca tej krawe-
dzi. Implementacja podwajania, oparta na opisanej wyzej reprezentacji, musi wygenerowac
odpowiednie pdtkrawedzie, potaczone w pary.
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Rysunek 31.2. Wynik podwajania siatki z rysunku 31.1

Na rysunku 31.2 jest pokazany schemat siatki otrzymanej w wyniku podwajania siatki
z rysunku 311, przy czym pokrywajace sie wierzchotki zostaty odpowiednio porozsuwane,
aby uwidoczni¢ $ciany 4-12 odpowiadajace krawedziom i $ciany 13-18 odpowiadajace
wierzchotkom siatki danej. Ponadto pétkrawedzie tworzace pary zostaly rozsuniete podob-
nie jak na rysunku 31.1.

Wynikiem usredniania jest siatka, ktorej $ciany odpowiadajg wierzchotkom wewnetrz-
nym siatki danej. Kazdy wierzcholek siatki wynikowej jest polozony w srodku ciezkosci
zbioru wierzchotkow pewnej $ciany siatki danej. Dwa takie wierzcholki sa polaczone kra-
wedzia, jesli odpowiednie $ciany siatki danej maja wspolng krawedz, ktdrej przynajmniej je-
den koniec jest wierzchotkiem wewnetrznym. Jesli zatem w siatce danej wszystkie krawedzie
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sa wewnetrzne (czyli powierzchnia zbudowana ze $cian nie ma brzegu), to kazdemu wierz-
chotkowi siatki danej odpowiada $ciana, kazdej krawedzi siatki danej odpowiada krawedz
i kazdej $cianie siatki danej odpowiada wierzchotek siatki wynikowej?®.
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Rysunek 31.3. Wynik usredniania siatki z rysunku 31.2

Sytuacja jest bardziej skomplikowana, gdy pewne krawedzie (i wierzchotki) siatki danej
sg brzegowe. Wtedy nie kazdej $cianie takiej siatki musi odpowiadac wierzcholek, co wigcej,
przyjeta reprezentacja siatki wymusza wytworzenie wiecej niz jednego wierzchotka odpo-
wiadajacego $cianie siatki danej, jesli ciag wierzcholkow tej Sciany zawiera wigcej niz jeden
spojny fragment zlozony z wierzchotkéw wewnetrznych — osobny wierzchotek siatki wyni-
kowej odpowiada kazdemu takiemu fragmentowi, poniewaz te wierzchotki beda brzegowe
i kazdy z nich bedzie poczatkiem jednej potkrawedzi brzegowej. Taka sytuacja nie wystepuje
na rysunku 31.3, ktéry przedstawia wynik usredniania siatki z rysunku 31.2, ale w przypadku
»pelnowymiarowych” siatek moze sie to zdarzy¢ i implementacja usredniania musi popraw-
nie dziala¢ takze wtedy.

87edli graf danej siatki bez brzegu jest planarny, to graf siatki bedacej wynikiem usredniania jest do niego
dualny.
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Zwroémy uwage, ze wszystkie wierzchotki wewnetrzne siatki otrzymanej w wyniku po-
dwajania sg konicami czterech krawedzi. Wierzcholek wewnetrzny siatki otrzymanej w wy-
niku u$redniania ma tyle samo krawedzi, co odpowiadajgca mu $ciana, a $ciana tej siatki ma
tyle samo krawedzi, co odpowiedni wierzcholek siatki danej. Otrzymane w wyniku podwa-
jania $ciany odpowiadajgce krawedziom s3 czworokatne, a stad wynika, ze w siatce otrzy-
manej przez zageszczanie: podwajanie, po ktorym nastapilo n krokéw usredniania, mamy
wszystkie $ciany czworokatne, gdy # jest nieparzyste, oraz wszystkie wierzchotki wewnetrzne
z czterema krawedziami dla parzystego n. Zauwazmy tez, ze podczas iterowania operacji za-
geszczania siatki liczby wierzchotkow, potkrawedzi i $cian rosng wykladniczo, a zatem liczbe
iteracji zageszczania trzeba wybiera¢ z umiarem. Ciag siatek otrzymanych przez wielokrotne
zageszczanie szybko zbiega do granicy, ktdra w ogélnosci jest gtadka powierzchnig, a zatem
do otrzymania dobrego obrazu zazwyczaj wystarczy niewiele iteracji. Majac siatke o §cia-
nach czworokatnych, wyswietlimy dwa trdjkaty dla kazdej $ciany, odpowiednio je cieniujac.
Ale najpierw zageszczanie trzeba zaimplementowac.

31.5. Zmienne szadera zageszczania siatek

Listing 31.9 przedstawia makrodefinicje i deklaracje zmiennych globalnych szadera oblicze-
niowego realizujgcego zageszczanie siatek, wykorzystywane przez obie operacje: podwajanie
i uSrednianie. Szader ten zawiera takze zmienne i procedure z listingu G.8. Kazda lokalna
grupa robocza sklada si¢ z jednego watku. Makrodefinicje VO, V1, FACN i OTHE wprowa-
dzaja nazwy pol wektora ivec4 wykorzystywanego do reprezentowania pétkrawedzi — dla
zwiekszenia czytelno$ci kodu.

Bufory magazynowe przywiazane do punktéw dowigzania 1, 21 3 (w celu GL_SHADER_-
STORAGE_BUFFER) zawieraja tablice reprezentujace siatke dana, a bufory przywigzane do
punktéw 4, 5 i 6 zawieraja tablice, do ktérych ma by¢ wpisany wynik. Wszystkie zmienne
jednolite zostaly umieszczone w bloku Ref ineBlock. W zmiennej nsattr jest podana cal-
kowita liczba skalarnych atrybutéw wierzchotka siatki®. Wartosci zmiennych jednolitych
inv, inhe oraz infac s3 odpowiednio liczbami wierzchotkow, potkrawedzi i $cian siatki
danej. Podane w liniach 25-28 makrodefinicje imv, imfac, imvhei oraz imfhei ulatwiajg
dostep do czterech tablic umieszczonych w buforze magazynowym Invmf, zawierajacych
opisy wierzchotkow i $cian oraz tablice z indeksami pétkrawedzi dla wierzchotkéw i Scian.
Do wyrazenia opisujacego indeks odpowiedniej tablicy dodawane jest wyrazenie opisujace
polozenie jej poczatku w buforze. W podobny sposéb zorganizowany jest dostep do czterech
tablic w buforze magazynowym Outmvf, w ktérym ma by¢ umieszczona reprezentacja siatki
wynikowej. Liczby wierzchotkéw, potkrawedzi i $cian tej siatki, po ich znalezieniu, zostang
przypisane zmiennym jednolitym outnv, outnhe i outnfac, przy czym robigc to, aplikacja

°Sa nimi wspolrzedne kartezjaniskie lub jednorodne polozenia wierzchotka, ale moga by¢ tez wspéirzedne
wektora normalnego, koloru lub tekstury. Liczba i interpretacja poszczegdlnych atrybutdéw sg okreslone przez
aplikacje, a $ciSlej przez szadery rysujace siatke. Szader zageszczania siatek nie interpretuje tych atrybutow,
wykonujac na kazdym z nich takie same obliczenia numeryczne.
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utworzy takze bufory magazynowe o odpowiednich diugosdciach i przywiaze je do podanych
na listingu punktéw dowigzania.

Listing 31.9. Zmienne jednolite i bloki magazynowe szadera zageszczania siatek
GLSL

: #version 450 core
: layout (local_size_x=1) in;

: #define VO X
: #define V1 y
: #define FACN z
: #define OTHE w

layout (std430,binding=1) buffer Inmvf { int mvf[]; } inmvf;
layout (std430,binding=2) buffer Inmhe { ivec4 mhe[]; } inmhe;
layout (std430,binding=3) buffer Invc { float wvc[]; } inmvc;

layout (std430,binding=4) buffer Outmvf { int mvf[]; } outmvf;
layout (std430,binding=5) buffer Outmhe { ivec4 mhe[]l; } outmhe;
layout (std430,binding=6) buffer Outvc { float vc[]l; } outmvc;

uniform RefineBlock {
int stage;
int nsattr, inv, inhe, infac, outnv, outnhe, outnfac;
int invb, inei, fvf, maxonv, fvhe;
uint prNO, prN, prStep;
};

#define imv(I) inmvf .mvf [I]

#define imfac(I) inmvf.mvf[inv+(I)]

#define imvhei(I) inmvf.mvf [inv+infac+(I)]
#define imfhei(I) inmvf.mvf[inv+infac+inhe+(I)]
#define imhe(I) inmhe .mhe [I]

#define imvc(I) inmvc.vc[I]

#define omv(I) outmvf .mvf [I]

#define omfac(I) outmvf.mvf [outnv+(I)]

#define omvhei(I) outmvf.mvf[outnv+outnfac+(I)]
#define omfhei(I) outmvf.mvf[outnv+outnfac+outnhe+(I)]
#define omhe (1) outmhe.mhe [I]

#define omvc(I) outmvc.vc[I]

W zmiennych jednolitych invb oraz inei znajda sie¢ liczby wierzchotkéw brzegowych
i krawedzi (nie potkrawedzi) wewnetrznych; liczba krawedzi (i potkrawedzi) brzegowych
jest rowna liczbie wierzchotkéw brzegowych. Role pozostatych zmiennych jednolitych sa
wyjasnione dalej.
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31.6. Kompilacja programu zageszczania i procedury pomocnicze

Listing 31.10 przedstawia procedure przygotowujaca do pracy program szaderéw stuzacy
do zageszczania siatek, procedure likwidujacg ten program i dwie procedury pomocnicze
uzywane podczas zageszczania. Procedura kompilacji odczytuje przesuniecia pol w bloku
zmiennych jednolitych RefineBlock i przygotowuje bufor, w ktérym ten blok bedzie prze-
chowywany.

Listing 31.10. Procedura kompilacji programu zageszczania siatek
C

1: static GLuint progid = 0;
2: static GLuint rbuf, rbbp;
3. static GLint uvofs[16];

s: void LoadMeshRefinementProgram ( void )
6: {
7. const GLchar *filename[] = { "md.comp.glsl" };
g: const GLchar *uvnames[] =

9: { "RefineBlock", "stage", "nsattr", "inv", "inhe", "infac", "outnv",
10: "outnhe", "outnfac", "invb", "inei", "fvf", "maxonv", "fvhe", "prNO",
11: "prN", "prStep" };

12z GLuint shader_id;

13:  GLint size;

14:

15:  shader_id = CompileShaderFiles ( GL_COMPUTE_SHADER, 1, &filename[0] );
16: progid = LinkShaderProgram ( 1, &shader_id, "meshes refinement 0" );
17.  glDeleteShader ( shader_id );

18:  GetAccessToUniformBlock ( progid, 16, uvnames, &size, uvofs, &rbbp );
19: glGenBuffers ( 1, &rbuf );

20: glBindBufferBase ( GL_UNIFORM_BUFFER, rbbp, rbuf );

21:  glBufferData ( GL_UNIFORM_BUFFER, size, NULL, GL_DYNAMIC_DRAW );

22:  ExitIfGLError ( "LoadMeshRefinementProgram" );

23: } /*LoadMeshRefinementProgram+/

24:

25: void DeleteMeshRefinementProgram ( void )

26: {

27:  glUseProgram ( 0 );

2s: if ( progid ) { glDeleteProgram ( progid ); progid = 0; }

20: glDeleteBuffers ( 1, &rbuf );

30: ExitIfGLError ( "DeleteMeshRefinementProgram" );

s1: } /*DeleteMeshRefinementProgram+*/

Pomocnicza procedura ExecStage (listing 31.11) uruchamia program szaderéw w celu
wykonania kolejnego etapu obliczen podczas podwajania lub usredniania. Wartos¢ paramet-
ru stage tej procedury jest przypisywana zmiennej jednolitej stage programu szaderéw,
z kolei parametr gsize okresla liczbe watkéw potrzebnych w danym etapie. Po wywotaniu
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Listing 31.11. Procedury pomocnicze zaggszczania siatek
C

: #define SSB GL_SHADER_STORAGE_BUFFER

: #define SETUVAR(n,type,x) \

glBufferSubData ( GL_UNIFORM_BUFFER, uvofs[n], sizeof(type), &x );

: static void ExecStage ( GLint *uvofs, int stage, int gsize )

A

SETUVAR ( 0, GLint, stage )
COMPUTE ( gsize, 1, 1)
} /*ExecStagex/

static void PrefixSum ( GLint *uvofs, GLuint NO, GLuint N )
{

GLuint k, m, d;

GLint z = 0;

SETUVAR ( 0, GLint, z )

SETUVAR ( 13, GLuint, NO )

SETUVAR ( 14, GLuint, N )

d = N/2;

for (k =0, m=N-1; m> 0; k++, m>>=1) {
SETUVAR ( 15, GLuint, k )
COMPUTE ( d, 1, 1)

}

ExitIfGLError ( "PrefixSum" );

} /*PrefixSumx/

static void SumUp ( GLint *uvofs, GLuint nO, GLuint n )
{

GLint one = 1;

SETUVAR ( 0, GLint, one )
SETUVAR ( 13, GLuint, nO )
while (n > 1) {
SETUVAR ( 14, GLuint, n )
COMPUTE ( n/2, 1, 1)
n = (n+1)/2;
}
ExitIfGLError ( "SumUp" );
} /*SumUpx/

(za pomoca makrodefinicji COMPUTE, zobacz listing 9.1) programu szaderéw CPU czeka
(w procedurze glMemoryBarrier) na dokorczenie obliczen przez wszystkie watki w glo-
balnej grupie roboczej.

Poniewaz poszczegolne wierzchotki i $ciany moga mie¢ rézne liczby potkrawedzi, a re-
prezentacja siatki jest ,,spakowana” w tablicach, procedury podwajania i u§redniania, prze-
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twarzajac rownolegle elementy siatki danej, musza w wielu etapach obliczen dysponowa¢
informacja, w ktore miejsca tablic nalezy wpisa¢ odpowiednie wyniki. Aby obliczy¢ indeksy
tych miejsc, w wielu etapach procedury zageszczania siatek trzeba bedzie pododawac na
przyklad liczby pétkrawedzi dla kolejnych wierzchotkéw lub $cian, czyli obliczy¢ cigg sum
prefiksowych. Sumy prefiksowe sg potrzebne w wielu zastosowaniach, wiec opis algorytmu
ich obliczania i jego implementacji na GPU umiescitem w dodatku G. Procedura PrefixSum
pokazana na listingu 31.11 rézni sie od procedury z listingu G.9 tylko innym sposobem nada-
wania wartosci zmiennym jednolitym (ktdre tu sg przechowywane w bloku RefineBlock).
Ponadto zmienna stage otrzymuje warto$¢ 0, aby opisana w nastepnym podrozdziale pro-
cedura main szadera wywolala procedure iPrefixSum pokazang na listingu G.8. Podobnie,
procedura SumUp jest procedurg sumowania parami z listingu G.2, dostosowang do wspot-
pracy z procedurami i szaderem podwajania i u§redniania.

31.7. Proceduramain

Listing 31.12 przedstawia procedur¢ main szadera, ktory jest dzialajaca na GPU czescig im-
plementacji podwajania i usredniania. Przed kazdym wywolaniem tej procedury program
dzialajacy na CPU (opisana wcze$niej procedura ExecStage, Pref ixSumlub SumUp) przypi-
suje zmiennej stage odpowiednig warto$¢, wskutek czego instrukcja przelacznika wykona
instrukcje realizujace biezacy etap obliczen. Moze to by¢ obliczanie sum prefiksowych we
wskazanym fragmencie roboczej tablicy seq. a, dodanie wszystkich liczb w takim fragmen-
cie lub wywolanie jednej z opisanych dalej procedur szadera. Liczby watkéw potrzebnych
w kolejnych etapach obliczen sg rozne, poniewaz obliczenia te dotycza dzialan na wierzchot-
kach, pétkrawedziach lub $cianach siatki danej lub (rzadziej) docelowej. Liczby te oczywiscie
ustala procedura dzialajaca na CPU.

Niektore procedury sa bardzo krétkie (np. zawieraja tylko jedng instrukcje). Takie proce-
dury przerobitem na makrodefinicje, ktdre zastepuja wywotlanie procedury jej trescia, dzieki
czemu szader dziala szybciej, a jego kod Zrédlowy nie traci czytelnosci. Na przyktad makro-
definicja AddTwoTerms, wywolywana w etapie 1 realizowanym przez procedure SumUp z lis-
tingu 31.11, dodaje dwa elementy tablicy pomocniczej i zapamietuje ich sume¢ na miejscu
pierwszego sktadnika.

Listing 31.12. Procedura main szadera zageszczania siatek
GLSL
: #define AddTwoTerms(I) seq.al[prNO+(I)] += seq.alprNO+(I)+(prN+1)/2];

void main ( void )
{

uint i;

i = gl_GlobalInvocationID.x;
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switch ( stage ) {

. case O0: iPrefixSum ( i ); break;
case 1: AddTwoTerms ( i ); break;
case 2: TagVertex ( i ); break;

/* etapy podwajania */
case 3: DSetECN ( i ); break;
case 4: DSetVCN ( i ); break;
case 5: DCopyVC ( i ); break;
case 6: DSetOVdeg ( i ); break;
case 7: DSetOVfhe ( i ); break;
case 8: DSetWLF ( i ); break;
case 9: DSetEFN1 ( i ); break;
case 10: DSetEFN2 ( i ); break;
case 11: DSetOMfacl ( i ); break;
case 12: DSetOMfac2 ( i ); break;
case 13: DSetOMfac3 ( i ); break;
case 14: DBindNewhel ( i ); break;
case 15: DBindNewhe2 ( i ); break;
case 16: DBindNewhe3 ( i ); break;
case 17: DSetIFDeg ( i ); break;
case 18: DSetOMfheil ( i ); break;
case 19: DSetOMfhei2 ( i ); break;
case 20: DSetTgv ( i ); break;
case 21: DSetOMfhei3d ( i ); break;
/* etapy uSredniania */
case 22: ASetNvil ( i ); break;
case 23: ASetNheil ( i ); break;
case 24: ASetNfil (i ); break;
case 25: ASetNvi2 ( i, true ); break;
case 26: ASetNfi2 ( i ); break;
case 27: ASetNhei2 ( i ); break;
case 28: ASetNvi2 ( i, false ); break;
case 29: ASetNhei3 ( i ); break;
case 30: ASetNfi3 ( i ); break;
case 31: AClearFvd ( i ); break;
case 32: ASetFvdl ( i ); break;
case 33: ASetFVd2 ( i ); break;
case 34: AClearFvd ( i ); break;
case 35: ASetOMVert ( i, true ); break;
case 36: ASetOMVert ( i, false ); break;
case 37: ABindHe ( i ); break;
case 38: ASetOMfacHe ( i ); break;
case 39: Average ( i ); break;
default: break;
}




1:

3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

2:

896 31. ZAGESZCZANIE SIATEK

31.8. Implementacja podwajania

Listing 31.13 przedstawia procedure dzialajacg na CPU, ktérej zadaniem jest wywotywanie
programu szaderéw w celu zrealizowania kolejno wszystkich etapéw obliczen dla operacji
podwajania siatki. W linii 7 procedura ta wybiera program szaderéw z szaderem oblicze-
niowym zawierajagcym opisane wczesniej i dalej zmienne i procedury — identyfikator tego
programu, przygotowanego zawczasu do pracy, jest pamietany w zmiennej progid [0] (lis-
ting 31.10).

Listing 31.13. Procedura podwajania
C
char GPUmeshDoubling ( GPUmesh *inmesh, GPUmesh *outmesh )
{
int inv, inhe, infac, invb, inei, onv, onhe, onfac, fvf, maxonv, fvhe;
GLint Dbufsize;
GLuint auxbuf = O;

glUseProgram ( progid[0] );

glBindBufferBase ( GL_UNIFORM_BUFFER, rbbp, rbuf );

inv = inmesh->nv; inhe = inmesh->nhe; infac = inmesh->nfac;

glBindBufferBase ( SSB, 1, inmesh->MVFBUF );

glBindBufferBase ( SSB, 2, inmesh->MHEBUF );

glBindBufferBase ( SSB, 3, inmesh->VCBUF );

SETUVAR ( 1, GLint, inmesh->nsattr )

SETUVAR ( 2, GLint, inv )

SETUVAR ( 3, GLint, inhe )

SETUVAR ( 4, GLint, infac )

maxonv = inhe+2*inv; SETUVAR ( 11, GLint, maxonv )

bufsize = (3*inv + 4*inhe + infac + 3)*sizeof(GLint);

glGenBuffers ( 1, &auxbuf );

glBindBufferBase ( SSB, 0, auxbuf );

glBufferData ( SSB, bufsize, NULL, GL_DYNAMIC_DRAW );

ExecStage ( uvofs, 2, inv ); /* TagVertex */

SumUp ( uvofs, 0, inv );

glGetBufferSubData ( SSB, 0, sizeof(GLint), &invb );

inei = (inhe-invb)/2;

onv = inhe + 2*invb; SETUVAR ( 5, GLint, onv )

onhe = 8*(inei + invb); SETUVAR ( 6, GLint, onhe )

onfac = infac + inei + invb + inv; SETUVAR ( 7, GLint, onfac )

fvhe = onhe - 2*invb; SETUVAR ( 12, GLint, fvhe )

if ( 'ReallocGPUmesh ( outmesh, onv, onhe, onfac, inmesh->nsattr,
inmesh->pdim, inmesh->pofs, inmesh->nvofs ) )

goto failure;
glBindBufferBase ( SSB,
glBindBufferBase ( SSB,
glBindBufferBase ( SSB,
glBindBufferBase ( SSB,

outmesh->MVFBUF ) ;
outmesh->MHEBUF ) ;
outmesh->VCBUF );
auxbuf );

- -

O O O >

-
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/* DSet0Vdeg */

/* DSetQVfhe */

ExecStage ( uvofs, 3, inhe ); /* DSetECN */
PrefixSum ( uvofs, maxonv, inhe+1 );
ExecStage ( uvofs, 4, inv ); /* DSetVCN */
PrefixSum ( uvofs, maxonv+inhe+1, inv+1 );
ExecStage ( uvofs, 5, inv ); /* DCopyVC */
ExecStage ( uvofs, 6, onv-1 );

PrefixSum ( uvofs, 0, onv );

ExecStage ( uvofs, 7, onv );

ExecStage ( uvofs, 8, infac ); /* DSetWLF */
ExecStage ( uvofs, 9, inhe ); /* DSetEFN1 */
PrefixSum ( uvofs, maxonv+inhe+inv+2, inhe );

ExecStage ( uvofs, 10, inhe );

/* DSetEFN2 */

glBindBuffer ( GL_COPY_READ_BUFFER, inmesh->MVFBUF );
glBindBuffer ( GL_COPY_WRITE_BUFFER, outmesh->MVFBUF );

glCopyBufferSubData ( GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,

invxsizeof (GLint), onv*sizeof (GLint), infac*sizeof (GLint) );

SETUVAR ( 8, GLint, invb )
SETUVAR ( 9, GLint, inei )

fvf = infac+inei+invb; SETUVAR ( 10, GLint, fvf )
ExecStage ( uvofs, 11, inei+invb ); /* DSetOMfacl

PrefixSum

/* DSetOMfac2 */

/* DSetOMfac3 */
/* DBindNewhel */

/* DBindNewhe2 */
/* DBindNewhe3 */
/* DSetIFDeg */

uvofs, maxonv+3*inhe+inv+3, infac );

/* DSetOMfheil */
/* DSetOMfhei2 */
/* DSetTgv */

ExecStage ( uvofs, 12, inv );
PrefixSum ( uvofs, 0, fvf-infac+1 );
ExecStage ( uvofs, 13, inv );
ExecStage ( uvofs, 14, inhe );
PrefixSum ( uvofs, 0, inhe );
ExecStage ( uvofs, 15, inhe );
ExecStage ( uvofs, 16, inhe );
ExecStage ( uvofs, 17, infac );
PrefixSum (
ExecStage ( uvofs, 18, infac );
ExecStage ( uvofs, 19, inhe );
ExecStage ( uvofs, 20, inv );

(

ExecStage ( uvofs, 21, inv );
glDeleteBuffers ( 1, &auxbuf );
glUseProgram ( 0 );

uvofs, O/*maxonv+4*inhe+inv+infac+3%*/,

/* DSet0OMfhei3 */

ExitIfGLError ( "GPUmeshDoubling" );

return true;

glDeleteBuffers ( 1, &auxbuf );
glUseProgram ( 0 );

return false;

go: } /*GPUmeshDoubling*/

*/

inv );

W liniach 10-16 utworzone za pomocg opisanej wczesniej procedury CPUmeshToGPU

bufory, w ktérych znajduje si¢ reprezentacja siatki danej, s przywigzywane do odpowied-
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nich punktéw dowigzania w celu GL_SHADER_STORAGE_BUFFER, a zmiennym jednolitym
nsattr, inv, inhe, infac w bloku RefineBlock sa nadawane wartosci opisujace liczbe
atrybutéw wierzchotka i liczby elementéw siatki. W linii 17 jest obliczana i przypisywana
zmiennej jednolitej maxonv maksymalna mozliwa liczba wierzchotkéw siatki wynikowej.
W liniach 18-21 jest tworzony odpowiednio pojemny bufor zawierajacy tablice robocza dla
szadera. Bufor ten jest przywigzywany do punktu dowiazania 0; w szczegdlnosci w nim beda
obliczane sumy prefiksowe réznych ciggdw liczb.

Opis kolejnych etapéw podwajania jest podany dalej, obok listingéw przedstawiajacych
poszczegdlne procedury wywolywane przez procedure main pokazang na listingu 31.12.

Listing 31.14 przedstawia makrodefinicje uzywane w tresci procedur szadera realizuja-
cych etapy podwajania. Uzywaja one sze$ciu tablic liczb typu int, upakowanych w buforze
magazynowym o nazwie seq (zobacz listing G.8). Dlugosci tych tablic sg okreslone przez
liczby wierzchotkéw (n,), potkrawedzi (ny,) i $cian (ny) siatki danej i makrodefinicja dajgca
dostep do elementow kazdej tablicy dodaje do jej indeksu sume dlugosci tablic ja poprze-
dzajacych w buforze. Zmiennej jednolitej maxonv procedura podwajania przypisuje wartos¢
ny + 2n,, ktora jest gérnym oszacowaniem liczby wierzchotkéw siatki wynikowe;.

Makrodefinicja PREVIFAC_HEDGE stuzy do znalezienia identyfikatora pétkrawedzi po-
przedzajacej potkrawedz na pozycji en w zamknietym w cykl ciggu identyfikatoréw potkra-
wedzi $ciany fn.

Listing 31.14. Makrodefinicje dla podwajania

GLSL
: #define ecn(I) seq.a[maxonv+(I)]
: #define ven(I) seq.a[maxonv+inhe+1+(I)]
: #define efn(I) seq.a[maxonv+inhe+inv+2+(I)]
: #define wlf(I) seq.a[maxonv+2*inhe+inv+3+(I)]
: #define fcn(I) seq.a[maxonv+3*inhe+inv+3+(I)]

. #define PREVIFAC_HEDGE(fn,en) \

((em) > 0 7\
imfhei((imfac(fn) & FHEMASK) + (en) - 1) : \
imfhei((imfac(fn) & FHEMASK) + (imfac(fn) >> DEGSHIFT) - 1))

Listing 31.15 przedstawia procedure realizujacg etap 2 podwajania (listing 31.13, linia 22):
znakowanie i liczenie wierzchotkéw brzegowych siatki danej. Procedura bada, czy ostat-
nia potkrawedz wychodzaca z i-tego wierzchotka jest brzegowa (co oznacza, ze wierzcholek
jest brzegowy) i ustawia albo kasuje bit na pozycji 25 (zobacz listing 31.3). Jednoczesnie dla
wierzchotka brzegowego wpisuje do tablicy seq. a liczbe 1, a dla wewnetrznego 0. Nastepnie
(listing 31.13, linia 23) obliczana jest suma wpisanych liczb, tj. suma wpisanych jedynek, ktora
jestliczbg wierzchotkdw brzegowych siatki. W linii 24 liczba ta jest odczytywana przez proce-
dure podwajania, po czym znajdowane sg liczby krawedzi wewnetrznych siatki danej (inei)
oraz wierzcholkéw (onv), pétkrawedzi (onhe) i $cian (onfac) siatki wynikowej; liczby te sa
natychmiast przypisywane odpowiednim zmiennym jednolitym. W linii 20 zmiennej jed-
nolitej fvhe zostaje przypisana warto$¢, od ktorej zaczynaja sie identyfikatory potkrawedzi
$cian siatki wynikowej odpowiadajacych wierzchotkom siatki danej.
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Listing 31.15. Znakowanie wierzchotkéw brzegowych
GLSL

: void TagVertex ( uint i ) /* etap 2 podwajania i uSredniania */

{
int fhe, deg;

fhe imv(i) & FHEMASK;
deg = imv(i) >> DEGSHIFT;
if ( imhe(imvhei(fhe+deg-1)).0THE < 0 ) {
imv(i) |= TAGMASK;
seq.ali] = 1;
}
else {
imv(i) &= "“TAGMASK;
seq.ali] = 0;
}

: } /*TagVertexx*/

W linii 30 nastgpuje rezerwacja pamieci na reprezentacje siatki wynikowej w pamieci
GPU, po czym odpowiednie bufory sa przywigzywane do punktéw dowigzania 4, 5, 6 w celu
GL_SHADER_STORAGE_BUFFER. Odtad mozna uzywa¢ makrodefinicji podanych w liniach
1-5 na listingu 31.14 i w liniach 31-36 na listingu 31.9.

Listing 31.16. Ustalanie liczb pétkrawedzi i kopii wierzchotkow

GLSL
: void DSetECN ( uint i ) /* etap 3 */
{
ecn(i+1) = imhe(i).0THE < 0 7 6 : 4;
if (i ==0)
ecn(0) = 0;
/*DSetECN*/
: void DSetVCN ( uint i ) /* etap 4 */

1

int deg;

deg = imv(i) >> DEGSHIFT;
ven(i+1l) = (imv(i) & TAGMASK) != 0 7 deg + 2 : deg;
if (i==0)

ven(0) = 0;

: } /*DSetVCN*/

Etap 3 podwajania (listing 31.13, linie 37-3s i listing 31.16, linie 1-6) ma na celu ustalenie
dla kazdej krawedzi siatki danej identyfikatorow potkrawedzi w siatce wynikowej odpowia-
dajacych tej krawedzi. Jedli krawedz jest brzegowa, to bedzie dla niej wygenerowane 6 poi-
krawedzi, a jesli wewnetrzna, to 8, ale to oznacza potrzebe wygenerowania 4 potkrawedzi dla
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kazdej z tworzacych pare potkrawedzi reprezentujacych krawedz wewnetrzng. Dlatego pro-
cedura DSetECN wpisuje do tablicy ecn liczbe 6 albo 4. Pierwszy element tablicy'® otrzymuje
wartos¢ 0, a liczba 6 lub 4 dla i-tej potkrawedzi jest wpisywana w miejsce i + 1. Po wpisaniu
tych liczb nastepuje obliczenie sum prefiksowych w tablicy ecn.

Podobne obliczenie jest wykonywane w etapie 4 (listing 31.13, linie 39-4o0 i listing 3116,
linie 8-16) dla wierzchotkéw siatki danej. Do tablicy ven w miejscu i +1 procedura DSetVCN
wpisuje stopien (liczbe pétkrawedzi wychodzacych z) i-tego wierzchoika, jesli jest on we-
wnetrzny, lub liczbe o 2 wigksza, jesli jest brzegowy, a nastepnie sg obliczane sumy prefik-
sowe. W ten sposéb dla kazdego wierzchotka siatki danej sg okreslane numery wierzchotkéw
$ciany siatki wynikowej odpowiadajacej temu wierzchotkowi.

Listing 31.17. Tworzenie kopii wierzcholka
GLSL

: void DCopyVC ( uint i ) /* etap 5 */
A

int deg, p, j, k;

deg = imv(i) >> DEGSHIFT;
if ( (imv(i) & TAGMASK) != 0 )
deg += 2;
p = ven(i);
for ( j = 0; j < deg; j++ ) {
for ( k = 0; k < nsattr; k++ )
omvc ((p+j)*nsattr+k) = imvc(i*nsattr+k);
omv(p+j) = 4 << DEGSHIFT;
}
if ( (imv(i) & TAGMASK) != 0 )
omv(p) = omv(ptdeg-1) = 2 << DEGSHIFT;
} /*DCopyVC*/

Listing 31.17 przedstawia procedure wykonywang w etapie 5 podwajania (listing 31.13, li-
nia 41). Ta procedura wykonuje d (dla wierzchotka wewnetrznego) albo d+2 (dla wierzchotka
brzegowego bedacego poczatkiem d potkrawedzi) kopii wektora wspdtrzednych (polozenia
i innych atrybutéw), a ponadto okresla stopnie wierzchotkow siatki wynikowej. Wierzchotki
wewnetrzne tej siatki maja stopien 4, a wierzchotki brzegowe (pierwsza i ostatnia kopia wierz-
chotka brzegowego siatki danej) sa poczatkami dwdch potkrawedzi.

"W moich wezesnych wersjach procedury GPUmeshDoubling warto$¢ 0 byta przypisywana pierwszemu ele-
mentowi tablicy przez CPU za pomoca procedury glBufferSubData. Na moim komputerze stacjonarnym to
dziatalo, a po przeniesieniu na laptopa tez dzialato, ale dawalo bledne wyniki (nie udato mi si¢ odkry¢ natury
tego bledu, by¢ moze chodzilo o synchronizacje). Dlatego w tresci szadera do procedury DSetECN i opisanych
dalej procedur DSetVCN, DSet0Vdeg i DSetOMfac2 dopisalem instrukcje przypisujace odpowiednia wartos¢
pierwszemu elementowi tablicy, wykonywane, gdy i == 0. Takie rozwigzanie jest bardziej eleganckie, mniej
podatne na bledy podczas pielegnacji programu i chyba korzystne dla szybkosci obliczen, cho¢ to jest trudne
do zmierzenia.
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Listing 31.18. Tworzenie reprezentacji wierzchotkow wyjsciowych
GLSL

: void DSetOVdeg ( uint i ) /* etap 6 */

{
seq.al[i+1] = omv(i) >> DEGSHIFT;
if (i==0)
seq.ali] = 0;

. } /*DSet0Vdeg*/

: #define DSetOVfhe(i) omv(i) |= seq.alil; /* etap 7 */

Procedura i makro na listingu 31.18 realizujg etapy 6 i 7 podwajania. W etapie 6 do tab-
licy seq.a na pozycji i +1jest wpisywany stopien i-tego wierzchotka wyjsciowego, a element
seq.al[0] otrzymuje wartos¢ 0. Nastepnie obliczane sg sumy prefiksowe ciggu w tablicy, co
daje dla kazdego wierzchotka wyjsciowego numer f pozycji w tablicy mvhei, od ktorej za-
czyna sie ciag potkrawedzi tego wierzchotka. Wykonywana w etapie 7 instrukcja (zawarta
w makrodefinicji DSetOVfhe) zapisuje w 25 najmniej znaczacych bitach opisu i-tego wierz-
chotka wyjsciowego ten numer — uzyty operator przypisania to ,, | =", poniewaz 6 najbardziej
znaczacych bitow w tym momencie juz przechowuje stopien wierzchotka wyjsciowego (a po-
zostale bity, poki co, majg warto$¢ 0).

Listing 31.19. Wypelnianie tablicy w1f
GLSL

: void DSetWLF ( uint i ) /* etap 8 */

{
int deg, fhe, k;

deg = imfac(i) >> DEGSHIFT;

fhe = imfac(i) & FHEMASK;

for ( k = 0; k < deg; kt++ )
wlf (imfhei (fhe+k)) = k;

: } /*DSetWLF*/

Procedura DSetWLF na listingu 31.19, wykonywana dla kazdej $ciany siatki danej, wy-
pelnia tablice pomocnicza o dlugosci ny, nazwang wlf. Parametr i jest numerem $ciany.
Do tablicy dla kazdej potkrawedzi nalezacej do tej $ciany jest wpisywany numer pozycji tej
potkrawedzi w ciggu potkrawedzi Sciany, od 0 do d — 1, gdzie d jest stopniem $ciany.

Listing 31.20 przedstawia procedury realizujace etapy 9 i 10 podwajania; procedury te sg
wykonywane dla kazdej potkrawedzi siatki danej. W etapie 9 do pomocniczej tablicy efn
(przechowywanej w buforze seq) jest wpisywany ciag liczb catkowitych; pierwsza z nich jest
réwna 1 ¢ (jest to liczba $cian siatki danej), a kazda nastgpna jest jedynkg albo zerem. Jedynka
jest wpisywana na pozycji i-tej, jesli potkrawedz o numerze i — 1 nie ma pary (czyli repre-
zentuje krawedz brzegowa) albo jesli potkrawedz tworzaca z nig pare ma wigkszy numer.
W ten sposob liczba jedynek wpisanych do tablicy efn jest rowna liczbie krawedzi (brze-
gowych i wewnetrznych). Po wpisaniu tych zer i jedynek w tablicy efn s3 obliczane sumy
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prefiksowe, a nastepnie wykonywana jest procedura DSetEFN2, ktéra (dla tych potkrawedzi,
ktéorym odpowiada O wpisane przez procedure DSetEFN1) przypisuje liczbe w tablicy efn
odpowiadajacg drugiej pétkrawedzi z pary. Sciany siatki wynikowej odpowiadajace krawe-
dziom siatki danej bedg mialy numery od n (liczby $cian siatki danej) do ny + n, —1(gdzie
1 jest liczba krawedzi siatki danej). W ten sposéb dla kazdej pétkrawedzi siatki danej na od-
powiednim miejscu tablicy efn jest podany numer $ciany siatki wynikowej odpowiadajacy
krawedzi reprezentowanej przez te pétkrawedz (zaréwno wtedy, gdy potkrawedz ma pare,
jak i wtedy, gdy jej nie ma).

Listing 31.20. Liczenie krawedzi siatki danej
GLSL

: void DSetEFN1 ( uint i ) /* etap 9 */

{

int j;

if (i ==0)

efn(i) = infac;
else {

j= imhe(i-1) .0THE;

efn(i) = j<O0 |l j>i1i71: 0;
}

: } /*DSetEFN1x*/

: void DSetEFN2 ( uint i ) /* etap 10 */
A

int j;

j = imhe(di).0THE;
if (j>=0&& j<i)
efn(i) = efn(j);

: } /*DSetEFN2x/

Instrukcje w liniach 49-52 na listingu 31.13 kopiujg ny liczb z tablicy imfac do tablicy
omfac. Ma to na celu utworzenie reprezentacji $cian siatki wynikowej odpowiadajacych
$cianom siatki danej — wszystkie te $ciany maja identyczne stopnie i beda mialy ciagi nume-
réw potkrawedzi zaczynajace sie w tablicy omfhei od tych samych miejsc co ciggi numeréw
potkrawedzi w tablicy imfheill,

Procedury na listingu 31.21 tworzg opisy $cian odpowiadajacych krawedziom i wierzchot-
kom siatki danej; $ciany odpowiadajace krawedziom maja po 4 potkrawedzie (a zatem, w li-
nii 3 w opisie $ciany przechowywanym w tablicy omfac jest zapisywany stopien 4). Proce-
dura DSet0OMfac2 zapisuje tylko stopien $ciany odpowiadajacej wierzchotkowi — réwny d
dla wierzchotka wewnetrznego stopnia d oraz d + 2 dla wierzchotka brzegowego. Stopnie te
sa tez zapisywane w tablicy seq. a, po czym nastepuje (listing 31.13, linia s8) obliczanie sum

"Oczywiscie, numery pétkrawedzi tych $cian w siatce wynikowej beda inne.
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prefiksowych. Otrzymane w ten sposéb indeksy poczatkéw list pétkrawedzi dla $cian odpo-
wiadajacych wierzchotkom sg w etapie 13 (przez makro DSet0Mfac3, listing 31.21, linia 20)
zapisywane w tablicy omfac.

Listing 31.21. Tworzenie §cian odpowiadajacych krawedziom
GLSL

: void DSetOMfacl ( uint i ) /* etap 11 */

{
omfac(infac+i) = (4 << DEGSHIFT) +
(imfac(infac-1) & FHEMASK) + (imfac(infac-1) >> DEGSHIFT) + 4*int(i);

. } /*DSet0OMfaclx/

: void DSetOMfac2 ( uint i ) /* etap 12 */
{

int deg;

deg = imv(i) >> DEGSHIFT;
if ( (imv(i) & TAGMASK ) !'= 0 )
deg += 2;
omfac(fvf+i) = deg << DEGSHIFT;
seq.al[i+1] = deg;
if (i==0)
seq.ali] = 4;

. } /*#DSet0OMfac2*/

: #define DSetOMfac3(i) omfac(fvf+i) += (omfac(fvf-1) & FHEMASK) + seq.alil;

Listing 31.22 przedstawia procedury wykonywane w etapach 14-16 podwajania; maja
one na celu polaczenie w pary potkrawedzi siatki wynikowej, tzn. przypisanie kazdej pol-
krawedzi numeru jej drugiej potowy (albo numeru -1 dla pétkrawedzi brzegowych) oraz
numeru jej $ciany.

Procedura DBindNewhel (wywolywana przez instrukcje w linii eo, listing 31.13) do tab-
licy seq.a wpisuje ciag zer i jedynek o dtugosci ny,; i-ty element tego ciagu odpowiada i-tej
potkrawedzi siatki wejsciowej i jest jedynka, jesli druga pdétkrawedz z pary nie istnieje lub
ma numer wigkszy niz i, a zerem w przeciwnym razie. Nastepnie dla tego ciggu obliczane s3
sumy prefiksowe.

Listing 31.22. Laczenie potkrawedzi w pary
GLSL

: void DBindNewhel ( uint i ) /* etap 14 */

{
int j;

j = imhe(i).OTHE;
seq.alil] = j <0 Il j>171: 0;
} /*DBindNewhelx*/
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void DBindNewhe2 ( uint i ) /* etap 15 */
{

int j, ecni;

j= imhe (i) .0THE;
ecni = ecn(i);
omhe (ecni) .0THE = ecni+l;
omhe (ecni+1) .0THE = ecni;
omhe (ecni+2) .0THE = ecni+3;
omhe (ecni+3) .0THE = ecni+2;
omhe (ecni) .FACN = imhe (i) .FACN;
omhe (ecni+3) .FACN = fvf + imhe(i).VO;
if (j<0){
omhe (ecni+4) .0THE = omhe(ecni+5) .0THE
omhe (ecni+1) .FACN = omhe(ecni+2) .FACN =
omhe (ecni+4) .FACN = omhe(ecni+5) .FACN = infac+seq.al[i]-1;

_1;

}
else if (i< j)
omhe (ecni+1) .FACN = omhe(ecni+2) .FACN = infac+seq.al[i]-1;
} /*DBindNewhe2x*/

void DBindNewhe3 ( uint i ) /* etap 16 */
{

int j, ecni;

j= imhe (i) .0THE;
if (j>=0& j<i) {
ecni = ecn(i);
omhe (ecni+1) .FACN = omhe(ecni+2) .FACN = omhe (omhe(ecn(j)) .0THE) .FACN;
}
} /+DBindNewhe3*/

Procedura DBindNewhe2 (linia 62 na listingu 31.13) w linii 14 odczytuje z tablicy ecn nu-
mer pierwszej potkrawedzi siatki wynikowej odpowiadajacej i-tej potkrawedzi siatki danej,
oznaczmy go literg k. Jesli i-ta pétkrawedz siatki danej jest brzegowa, to zostanie dla niej
wygenerowanych 6 potkrawedzi siatki wynikowej, o numerach k, ..., k + 5. W przeciwnym
razie powstang 4 potkrawedzie o numerach k, . . ., k+3 i w ten sposob krawedzi wewnetrznej
siatki danej odpowiada obiecane 8 potkrawedzi siatki wynikowej.

Sposdb okreslania atrybutéw potkrawedzi siatki wynikowej mozemy przesledzi¢ na przy-
kfadzie z rysunkéw 31.11 31.2. Potkrawedzi O siatki danej, ktéra razem z pétkrawedzig 3 re-
prezentuje krawedz wewnetrzng, odpowiadajg potkrawedzie k = 0, 1, 2 i 3 siatki wynikowej.
Potkrawedzie siatki wynikowej o numerach ki k + 1 oraz k + 2 1 k + 3 tworza pary, przy
czym potkrawedz o numerze k nalezy do kopii $ciany siatki danej (przypomnijmy, ze pierw-
sze ey Scian siatki wynikowej to kopie $cian siatki danej), a zatem w linii 19 w reprezentacji tej
potkrawedzi zostaje zapamietany numer $ciany i-tej potkrawedzi z siatki danej. Potkrawedz
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k + 3 nalezy do $ciany odpowiadajacej wierzchotkowi siatki danej; numer tego wierzchotka
jest obliczany w linii 20 i jest to suma numeru wierzcholka siatki danej oraz liczby $cian i kra-
wedzi tej siatki (bo $ciany odpowiadajace wierzcholkom dostajg kolejne numery po $cianach
odpowiadajacych $cianom i krawedziom).

Jesli i-ta polkrawedz ma pare, ktorej numer jest wigkszy, to potkrawedzie k + 11 k + 2
siatki wynikowej nalezg do $ciany odpowiadajacej krawedzi wewnetrznej reprezentowanej
przez i-ta potkrawedz. Numer tej $ciany jest obliczany w linii 27, na podstawie ciggu sum
prefiksowych w tablicy seq. a. Jesli i-ta potkrawedz ma pare, ktorej numer jest mniejszy, to
jej numer $ciany zostanie przypisany pdznie;j.

W przykiadzie z rysunkow 31.11 31.2 potkrawedzi brzegowej 6 odpowiadaja w siatce wy-
nikowej potkrawedzie 24 = k, 25, ..., 29. Potkrawedzie k + 1,..., k + 4 otaczajg $ciane
(numer 7 w rozwazanym przykladzie) odpowiadajaca krawedzi brzegowej siatki danej. Po1-
krawedz k + 4 jest brzegowa, zatem otrzymuje numer swojej pary -1. Pétkrawedz k + 5 nie
jest brzegowa, ale tymczasem dostaje numer pary -1, a wlasciwy numer pétkrawedzi do pary
bedzie ustalony poznie;.

Etapy realizowane przez procedury na listingu 31.23 majg na celu znalezienie, dla $cian
siatki wynikowej odpowiadajacych §cianom i krawedziom siatki danej, ciggéw numerdw po6t-
krawedzi i wpisanie ich do tablicy omfhei. Procedura (makrodefinicja) DSetIFDeg, wyko-
nywana w etapie 17, wpisuje na i-tym miejscu tablicy f cn stopien $ciany o numerze i —1 siatki
danej (przy czym fcn[0] otrzymuje warto$¢ 0), po czym nastepuje obliczenie sum prefik-
sowych ciagu liczb wpisanych do tej tablicy. W ten sposéb sg obliczane, dla $cian bedacych
kopiami $cian siatki, numery miejsc w tablicy omfhei, od ktérych zaczynaja si¢ listy nu-
merdw potkrawedzi tych $cian. Wywotywana w etapie 18 procedura DSet0Mfheil wpisuje
numery tych potkrawedzi, korzystajac z odwzorowania numeréw poétkrawedzi $cian siatki
danej na numery pétkrawedzi ich kopii w siatce wynikowej w tablicy ecn (odwzorowanie to
jest reprezentowane przez sumy prefiksowe ciggu otrzymanego w etapie 2).

Listing 31.23. Ustalanie list pétkrawedzi $cian
GLSL
: #define DSetIFDeg(i) fcn(i) = i == 0 7 0 : imfac(i-1) >> DEGSHIFT,;

void DSetOMfheil ( uint i ) /* etap 18 %/
{
int deg, fhe, imfh, j;

deg = imfac(i) >> DEGSHIFT;

fhe = fcn(di);

imfh = imfac(i) & FHEMASK;

for ( j = 0; j < deg; j++)
omfhei(imfh+j) = ecn(imfhei (imfh+j));

: } /*DSet0OMfheilx*/

13:

14:

15:

void DSetOMfhei2 ( uint i ) /* etap 19 */
{
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int k, ecni;

k = omfac(efn(i)) & FHEMASK;
ecni = ecn(i);
if ( imhe(i).OTHE < 0 ) {

omfhei (k) = ecni + 1;
omfhei(k+1) = ecni + 2;
omfhei (k+2) = ecni + 4;
omfhei(k+3) = ecni + 5;
}
else if ( imhe(i).OTHE > i ) {
omfhei (k) = ecni + 1;
omfhei(k+1) = ecni + 2;
}
else {
omfhei(k+2) = ecni + 1;
omfhei(k+3) = ecni + 2;
}

: } /#DSet0Mfhei2*/

Procedura DSetOMfhei2, wywolywana w etapie 19, dla i-tej potkrawedzi siatki danej
tworzy liste potkrawedzi §cian odpowiadajacych krawedziom siatki danej. Kazda taka §ciana
ma cztery poltkrawedzie. Jesli i-ta potkrawedz nie ma pary, to w liniach 21-24 do tablicy
omfhei nastepujg przypisania wszystkich czterech numeréw potkrawedzi. Jesli za$ potkra-
wedz ma pare (razem z ktdrg reprezentuje krawedz wewnetrzng), to gdy numer pary jest
wigkszy niz i, do tablicy zostaja wpisane odpowiednie numery na pierwsze dwa miejsca
(linie 27, 28), a jesli mniejszy, to na ostatnie dwa miejsca na liScie (linie 31, 32).

Ostatnie dwa etapy podwajania realizuje makro i procedura na listingu 31.24; ich zada-
niem jest ustalenie list pétkrawedzi dla $cian siatki wynikowej odpowiadajacych wierzchot-
kom siatki danej i uzupetnienie w tablicach wszystkich brakujgcych informacji.

Makro DSetTgv, zawierajace instrukcje wykonywang w etapie 20, wpisuje do tablicy
seq.a na pozycji i liczbe 1, jesli wierzcholek i — 1 jest brzegowy, albo 0, jesli wewnetrzny.
Nastepnie obliczone zostajg sumy prefiksowe w tej tablicy. Sq one potrzebne do ustalenia nu-
merdw potkrawedzi w otoczeniu $cian odpowiadajgcych wierzchotkom brzegowym, ktére
nalezy polaczy¢ w pary (co nie zostalo zrobione w etapie 16).

Listing 31.24. Ustalanie list pétkrawedzi $cian odpowiadajacych wierzchotkom
GLSL
: #define DSetTgv(i) seq.ali]l = i == 0 7 \
0 : ((imv(i-1) & TAGMASK) !'= 0 ? 1 : 0); /* etap 20 */

: void DSetOMfhei3 ( uint i ) /* etap 21 */
{
int 4, j, vO, v1, 1, f, ecnl, p, q, k;
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if

f
1

imv(i) >> DEGSHIFT;
imv(i) & FHEMASK;

( (imv(i) & TAGMASK) '= 0 ) {
v0
1 =

= ven(i);

imvhei(j);

imhe (1) .FACN;

PREVIFAC_HEDGE ( f, wlf(l) );

ecnl = ecn(l);

omhe (ecnl+4) .V1 = vO;

q = fvhe + 2%seq.alil;

omhe (ecnl+5) .0THE = p = q+1;
omhe (p) .0THE = ecnl+5;

omhe (ecnl+5) .VO = omhe(p) .Vl = vO;

omhe (ecnl+5) .V1 = omhe(p).VO

vO+1;

omvhei (omv(v0) & FHEMASK) = ecnl+5;
omhe(q) .0THE = -1;

omhe(q) .VO = vO;

omhe(q) .V1 = vO+d+1;

omvhei((omv(v0) & FHEMASK)+1) = q;
omhe (q) .FACN = omhe(p) .FACN = fvf+int(i);
omfhei(omfac (fvf+i) & FHEMASK) = q;
for ( k = 0; k < d; kt+ ) {

v0 = ven(i)+k+1;

1 = imvhei((imv(i) & FHEMASK) + k);

f = imhe (1) .FACN;

ecnl = ecn(l);

omvhei(omv(v0) & FHEMASK) = p;

omfhei ((omfac(fvf+i) & FHEMASK)+d+1-k) = p;

omhe(ecnl) .VO = omhe(ecnl+1) .Vl = vO;
omhe (omhe (ecnl) .0THE) .V1 = vO0;
omhe (ecnl+2) .VO = omhe(ecnl+3).V1 = vO;
omhe (ecnl+2) .V1 = omhe(ecnl+3).V0 = vO+1;
omvhei((omv(v0) & FHEMASK)+2) = ecnl;
omvhei((omv(v0) & FHEMASK)+3) = ecnl+2;
p = ecnl+3;
1 = PREVIFAC_HEDGE ( £, wlf(l) );
ecnl = ecn(l);
omhe (ecnl) .V1 = vO0;
omhe (omhe (ecnl) .0THE) .VO = vO;
omvhei ((omv(v0) & FHEMASK)+1) = ecnl+l;

}

omfhei((omfac(fvi+i) & FHEMASK)+1) = p;

1 = imvhei((imv(i) & FHEMASK)+d-1);

ecnl = ecn(l);

omhe (ecnl+4) .VO = vcn(i)+d+1;

omvhei (omv(ven(i)+d+1) & FHEMASK) = ecnl+3;

omvhei((omv(ven(i)+d+1) & FHEMASK)+1) = ecnl+4;
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}
else {
for ( k =0; k <d; kt+t ) {

v0 = ven(i)+k;
vli = (k <d-1) ? vO+1 : ven(i);
1 = imvhei((imv(i) & FHEMASK)+k) ;
f = imhe(1) .FACN;
ecnl = ecn(l);
omhe (ecnl) .VO = vO0;
omhe (ecnl+2) .VO = omhe(ecnl+3).V1 = vO;
omhe (ecnl+2) .V1 = omhe(ecnl+3).V0 = vi;
omhe (omhe (ecnl) .0THE) .V1 = vO0;
omvhei (omv(v0) & FHEMASK) = ecnl;
omvhei ((omv(v0) & FHEMASK)+1) = ecnl+2;
omvhei((omv(vl) & FHEMASK)+2) = ecnl+3;
omfhei((omfac(fvf+i) & FHEMASK)+d-1-k) = ecnl+3;
1 = PREVIFAC_HEDGE ( £, wlf(l) );
ecnl = ecn(l);
omhe (ecnl) .V1 = vO0;
omhe (omhe (ecnl) .0THE) .VO = vO;
omvhei ((omv(v0) & FHEMASK)+3) = omhe(ecnl).OTHE;

}
}
} /*DSet0OMfhei3*/

Jesli i-ty wierzcholek siatki danej jest brzegowy, to wywolywana w etapie 21 procedura
DSet0OMfhei3 wykona dla tego wierzcholka instrukcje w liniach 11-54, a jesli wewnetrzny,
to instrukcje w liniach 57-76. W liniach 8 i 9 zmiennym d i j zostaja przypisane odpowiednio
stopien i-tego wierzchotka siatki danej i numer miejsca w tablicy imvhei, od ktérego zaczyna
sie lista numeréw wychodzacych z niego potkrawedzi.

Wierzchotkowi o numerze i w siatce danej odpowiada pewna liczba wierzchotkow siatki
wynikowej, o kolejnych numerach zaczynajacych si¢ od ven[i]. Na przyklad wierzchot-
kowi brzegowemu 3 siatki z rysunku 31.1 odpowiadaja wierzchotki 9, 10, 11, 12 siatki z ry-
sunku 31.2, przy czym pierwszy i ostatni z tych wierzchotkéw sa brzegowe. Pdtkrawedzie
w ich otoczeniu s3 konstruowane odpowiednio w liniach 11-28 i 49-54, czyli przed i po petli
for, w ktérej procedura tworzy dane opisujace potkrawedzie w otoczeniu wewnetrznych
kopii i-tego wierzchotka (brzegowego) siatki dane;j.

W linii 11 zmienna v0O ma przypisywany numer pierwszego wierzchotka siatki wynikowe;j
odpowiadajacego i-temu wierzchotkowi siatki danej (w przykladzie dla i = 3 jest v0=9).
W linii 13 zmienna f otrzymuje warto$¢ bedaca numerem $ciany, do ktérej nalezy pierwsza
potkrawedz wychodzgca z i-tego wierzcholka, w rozpatrywanym przykladzie jest to $ciana 3.

W linii 14 zmiennej 1 jest przypisywany numer wchodzacej do i-tego wierzchotka pét-
krawedzi tej $ciany, czyli poprzedniej w zamknietym w cykl ciggu potkrawedzi tej $ciany (to
jest potkrawedz brzegowa, 8 w rozpatrywanym przykladzie); stuzy do tego makrodefinicja
PREVIFAC_HEDGE zamieszczona na listingu 31.14. W linii 15 zmiennej ecnl jest przypisy-
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wany numer pierwszej z szes$ciu potkrawedzi wygenerowanych dla tej pétkrawedzi w etapach
3116 (w rozpatrywanym przykladzie potkrawedz ta ma numer 36).

Zmiennej q jest w linii 17 przypisywany identyfikator pétkrawedzi brzegowej sciany siatki
wynikowej odpowiadajacej i-temu wierzchotkowi siatki danej (w przykladzie to jest potkra-
wedz 66 $ciany 16), a zmienna p otrzymuje w linii 18 warto$¢ identyfikujgcg poprzednia
w cyklu potkrawedz tej sciany (numer 67 w przykladzie).

Informacje zapisywane do tablic zawierajacych reprezentacje tworzonej siatki wyniko-
wej w liniach 16 i 18—28 s3 numerami wierzchotkéw poczatkowego i koncowego potkrawedzi
i numerami potkrawedzi do pary oraz numerem $ciany; ponadto do list potkrawedzi wierz-
chotka (w linii 22 i 26) oraz $ciany (w linii 28) s3 wpisywane numery odpowiednich poétkra-
wedzi. W przykladzie potkrawedz q=66 otrzymuje numer pary -1 (bo reprezentuje krawedz
brzegows), a potkrawedzie p=67 i ecnl+5=41 zostaja polaczone w pare. W linii 27 poétkrawe-
dzie 66 i 67 maja przypisywany numer $ciany, do ktorej naleza, tj. 16 (numer ten jest suma
liczby $cian i krawedzi siatki danej oraz numeru i wierzchotka tej siatki).

Liczba potkrawedzi wychodzacych z i-tego wierzcholka jest rowna d; dla takiego wierz-
chotka jest generowanych d + 2 wierzchotkéw, z ktorych d to wierzchotki wewnetrzne. Petla
w liniach 29-48 jest wykonywana d razy, aby wygenerowa¢ odpowiednie informacje dla tych
wierzchotkéw. Po wykonaniu instrukeji w liniach 30-33 zmienne v0, 1, f i ecnl przechowuja
odpowiednio numer wierzchotka poczatkowego pétkrawedzi, numer kolejnej potkrawedzi
wychodzacej z i-tego wierzchotka siatki danej, numer $ciany tej pétkrawedzi i numer pierw-
szej z czterech potkrawedzi siatki wynikowej wygenerowanych dla tej pétkrawedzi. W przy-
kiadzie dla wierzchotka i=3 petla zostanie wykonana dwa razy, za pierwszym razem jest
v0=10, 1=11, £=3 i ecnl=50, a za drugim v0=11, 1=6, f=1 i ecn1=24. Dla pétkrawedzi 11
zostaly wygenerowane potkrawedzie 50, 51, 52 i 563, ktore w etapie 15 zostaly polaczone
w dwie pary (listing 31.22, linie 15—-18). W tym etapie trzeba jeszcze przypisa¢ im odpowiednie
numery wierzchotkéw poczatkowych i koncowych oraz wpisa¢ ich numery do list pétkra-
wedzi odpowiednich wierzchotkdw i $cian.

Wartosci przypisane zmiennym vO, 1, f i ecnl w liniach 30, 32, 43 i 44 to numer kolejnej
kopii wierzcholka siatki danej (ta kopia w siatce wynikowej jest wierzchotkiem wewnetrz-
nym), numer kolejnej potkrawedzi wychodzacej z i-tego wierzcholka siatki danej, numer
jej $ciany i numer pierwszej z potkrawedzi siatki wynikowej odpowiadajacych odpowiedniej
potkrawedzi siatki danej. W przyktadzie, w pierwszym przebiegu petli jest vO=10, 1=11, £=3
i ecnl=50, a w drugim vO=11, 1=6, =1 i ecn1=24.

W liniach 34, 35 do list pétkrawedzi wierzchotka vO (na poczatku) i sciany odpowiadajacej
i-temu wierzchotkowi siatki danej (na koncu) jest wpisywany numer pétkrawedzi p, ustalony
przed wejsciem w petle (w linii 18) lub w poprzednim przebiegu petli (w linii 42). W przy-
kiadzie za pierwszym razem jest p=67, a za drugim razem p=53. W linii 43 jest znajdowany
numer potkrawedzi siatki danej poprzedzajacy potkrawedz 1, tj. konczacej sie w i-tym wierz-
chotku potkrawedzi $ciany £, co umozliwia przypisanie odpowiedniej potkrawedzi siatki
wynikowej numeru jej wierzchotka konicowego, czyli v0.

Po zakonczeniu petli pozostaje uzupelnienie informacji dla pétkrawedzi w otoczeniu
ostatniej kopii i-tego wierzchotka (w przykladzie kopia ta ma numer 12). Numer p pierwszej
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wychodzacej z niego pdtkrawedzi (27 w przyktadzie) zostal ustalony w ostatnim przebiegu
petliitrzeba go dopisa¢ (w linii 49) do listy potkrawedzi $ciany odpowiadajacej i-temu wierz-
chotkowi. Ostatnie dwa przypisania (w liniach 53, 54) wpisuja do listy potkrawedzi tej kopii
wierzchotka indeksy dwdch pétkrawedzi z niego wychodzacych.

Postepowanie dla $ciany odpowiadajacej wierzchotkowi wewnetrznemu siatki danej jest
prostsze, bo wszystkie wierzcholki tej $ciany sa wewnetrzne, czyli jednakowego rodzaju. Wy-
daje mi sie, Ze zamieszczanie szczegélowego opisu instrukeji w liniach 57-76 jest zbedne, bo
po lekturze opisu postgpowania ze $ciang dla i-tego wierzcholka brzegowego Czytelnik jest
w stanie poradzi¢ sobie z rozszyfrowaniem dzialania tego fragmentu procedury. Moze w tym
pomoc przyklad: wierzchotkowi O siatki z rysunku 31.1 odpowiada $ciana 13 siatki wyniko-
wej z rysunku 31.2. Podczas przetwarzania tej §ciany zmienna vO przyjmuje (w kolejnych
przebiegach petli) wartosci 0, 1, 2. Zmienna f przyjmuje wartsci 0, 1, 3, a zmiennej ecnl
w linii 62 s3 nadawane kolejno wartosci 0, 62, 20, a w linii 72 wartosci 8, 12, 50, identyfikujace
odpowiednie krawedzie siatki wynikowe;j.

31.9. Implementacja usredniania

Listing 31.25 przedstawia procedure w C, ktdra wywoluje szader w celu zrealizowania ko-
lejno wszystkich etapéw usredniania. Numery tych etapéw nastepujg po numerach etapow
podwajania, a procedury i makrodefinicje realizujace poszczegdlne etapy sg przedstawione
na kolejnych listingach.

Listing 31.25. Procedura usredniania
C
char GPUmeshAveraging ( GPUmesh *inmesh, GPUmesh *outmesh )
{
int inv, inhe, infac, invb, onv, onhe, onfac;
GLint bufsize, bs;
GLuint auxbuf = 0;

glUseProgram ( progid[0] );

glBindBufferBase ( GL_UNIFORM_BUFFER, rbbp, rbuf );
inv = inmesh->nv; inhe = inmesh->nhe; infac = inmesh->nfac;
glBindBufferBase ( SSB, 1, inmesh->MVFBUF );
glBindBufferBase ( SSB, 2, inmesh->MHEBUF );
glBindBufferBase ( SSB, 3, inmesh->VCBUF );

SETUVAR ( 1, GLint, inmesh->nsattr )

SETUVAR ( 2, GLint, inv )

SETUVAR ( 3, GLint, inhe )

SETUVAR ( 4, GLint, infac )

bs = inv > infac ? inv : infac;

bufsize = (2*inv+2*inhe+infac+bs)*sizeof (GLint);
glGenBuffers ( 1, &auxbuf );

glBindBufferBase ( SSB, 0, auxbuf );
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glBufferData ( SSB, bufsize, NULL, GL_DYNAMIC_DRAW );
ExecStage ( uvofs, 2, inv ); /* TagVertex */
SumUp ( uvofs, 0, inv );
glGetBufferSubData ( SSB, 0, sizeof (GLint), &invb );
onfac = inv - invb; SETUVAR ( 7, GLint, onfac )
if ( invb == 0 ) {
onv = infac; onhe = inhe;
ExecStage ( uvofs, 22, infac ); /* ASetNvil x*/
ExecStage ( uvofs, 23, inhe ); /* ASetNheil */
ExecStage ( uvofs, 24, inv ); /* ASetNfil x*/
}
else {
ExecStage ( uvofs, 25, infac ); /* ASetNvi2 x*/
PrefixSum ( uvofs, 0, infac );
SumUp ( uvofs, 2*infac+inhe+inv, infac );
glGetBufferSubData ( SSB, (2*infac+inhe+inv)*sizeof (GLint),
sizeof (GLint), &onv );

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

58:

59:

60:

61:

62:

63:

64:

65:

66:

67:

ExecStage ( uvofs, 26, inv ); /* ASetNfi2, true */
PrefixSum ( uvofs, 2*infac+inhe, inv );

ExecStage ( uvofs, 27, inhe ); /* ASetNhei2 */
PrefixSum 2xinfac, inhe );

glGetBufferSubData

ExecStage ( uvofs, 28, infac ); /* ASetNvi2, false */
ExecStage ( uvofs, 29, inhe ); /* ASetNhei3 */
ExecStage ( uvofs, 30, inv ); /* ASetNfi3 */

3

SETUVAR ( 5, GLint, onv )
SETUVAR ( 6, GLint, onhe )
if ( 'ReallocGPUmesh ( outmesh, onv, onhe, onfac, inmesh->nsattr,
inmesh->pdim, inmesh->pofs, inmesh->nvofs ) )
goto failure;
glBindBufferBase (
glBindBufferBase (
glBindBufferBase (

ExecStage ( 31, inv ); /* AClearFvd x*/
ExecStage ( 32, inv ); /* ASetFvdl */
PrefixSum ( 2*xinfac+inhe+inv, inv );

ExecStage ( 33, inv ); /* ASetFvVd2 */
ExecStage ( 34, infac ); /* AClearFvd */
ExecStage ( 35, infac ); /* ASetOMVert, true */
PrefixSum ( 2*%infac+inhe+inv, infac );

ExecStage ( /* ASetOMVert, false */
ExecStage ( /* ABindHe */
ExecStage ( /* ASetOMfacHe */
ExecStage ( /* Average */

glUseProgram ( 0 );

(2xinfac+inhe-1)*sizeof (GLint),
sizeof (GLint), &onhe );

SSB, 4, outmesh->MVFBUF );
SSB, 5, outmesh->MHEBUF ) ;
SSB, 6, outmesh->VCBUF );
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glDeleteBuffers ( 1, &auxbuf );
ExitIfGLError ( "GPUmeshAveraging" );
return true;

failure:
glUseProgram ( 0 );
glDeleteBuffers ( 1, &auxbuf );
return false;

} /*GPUMeshAveraging*/

W chwili wywolania procedury usredniania siatka dana jest reprezentowana przez zawar-
to$¢ tablic umieszczonych w odpowiednich buforach w pamigci GPU; instrukcje w liniach
10-16 przywiazuja te bufory do odpowiednich punktéw dowigzania w celu GL_SHADER_-
STORAGE_BUFFER i przypisujg zmiennym jednolitym nsattr, inv, inhe i infac liczbe
atrybutow wierzchotka i liczby wierzchotkéw, pétkrawedzi i $cian siatki danej. W liniach 17—
18 jest obliczana potrzebna wielkos¢ bufora pomocniczego, a nastepnie bufor ten jest rezer-
wowany i przywigzywany do punktu O w celu GL_SHADER_STORAGE_BUFFER. W liniach 22—
23 szader zlicza wierzcholki (czyli takze krawedzie) brzegowe siatki danej. Dalsze obliczenia
zalezg od tego, czy liczba tych wierzcholkéw jest zerem (wtedy wykonywane sg instrukcje
w liniach 27-30), czy tez nie (i wtedy trzeba wykonac¢ instrukcje w liniach 33-4s).

Zmienne jednolite wykorzystywane przez procedure usredniania sg przedstawione na
listingu 31.9, a ponadto podczas usredniania jest potrzebnych pie¢ tablic liczb catkowitych
przechowywanych we wspomnianym wcze$niej pomocniczym buforze magazynowym seq
dowiagzanym do punktu dowigzania 0; odpowiednie makrodefinicje utatwiajace dostep do
tych tablic s3 pokazane na listingu 31.26.

Listing 31.26. Tablice pomocnicze procedury usredniania

GLSL
: #define nvi(I) seq.alI]
: #define fvnum(I) seq.alinfac+(I)]
: #define nhei(I)  seq.a[2*infac+(I)]
: #define nfi(I) seq.a[2xinfac+inhe+(I)]
: #define fvd(I) seq.a[2xinfac+inhe+inv+(I)]

Listing 31.27 przedstawia instrukcje realizujace etapy 22-24, wykonywane, gdy siatka
dana nie ma brzegu, tj. gdy wszystkie jej wierzcholki i krawedzie s3 wewnetrzne. Wtedy kaz-
dej $cianie odpowiada jeden wierzcholek siatki wynikowej (makro ASetNvi wpisuje do tab-
licy nvi, na i-tym miejscu numer $ciany, ktérej odpowiada wierzcholek, réwny i, a w tablicy
fvnum liczbe wierzchotkéw odpowiadajgcych tej $cianie, czyli 1). Rowniez kazdej potkra-
wedzi siatki danej odpowiada jedna pétkrawedz siatki wynikowej, moze ona mie¢ ten sam
numer, wpisywany do tablicy nhei przez makro ASetNheil. Ponadto i-temu wierzchol-
kowi siatki danej odpowiada jedna, i-ta $ciana siatki wynikowej, numer i jest wpisywany
przez makro ASetNfil do tablicy nfi.
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Listing 31.27. Poczatkowe etapy usredniania dla siatek bez krawedzi brzegowych
GLSL

: #define ASetNvil(i) { nvi(i) = int(i); fvnum(i) = 1; } /* etap 22 */
: #define ASetNheil(i) nhei(i) = int(i); /* etap 23 */
: #define ASetNfil(i) nfi(i) = int(i); /* etap 24 */

Bardziej skomplikowane obliczenia sg potrzebne podczas usredniania siatek zawieraja-
cych wierzchotki i krawedzie brzegowe. Zadaniem procedury ASetNvi2 (listing 31.28) jest
znalezienie, dla i-tej $ciany siatki danej, liczby odpowiadajacych jej wierzchotkow siatki wy-
nikowej. Procedura ta jest wywotywana dwukrotnie, w etapach 25 i 28, przy czym za pierw-
szym razem parametr first ma warto$¢ true, a za drugim false (listing 31.12, linie 36 i 39).
Petla w liniach 8-14 stuzy do zbadania, czy wszystkie wierzcholki §ciany s3 wewnetrzne; jesli
tak, to $cianie tej odpowiada jeden wierzcholek (co zostaje odnotowane w linii 16). W prze-
ciwnym razie instrukcje w liniach 19-27 znajduja liczbe spdjnych podciagdw wierzchotkow
wewnetrznych potkrawedzi tej $ciany.

Listing 31.28. Liczenie wierzchotkéw odpowiadajacych $cianie siatki z brzegiem

GLSL
void ASetNvi2 ( uint i, bool first ) /* etap 25, 28 */
{
int d, fhe, vO, vi1, j, k, 1;
bool s0, si;

d = imfac(i) >> DEGSHIFT;
fhe = imfac(i) & FHEMASK;
for ( j =0, sO = true; j <d; j++) {
vO0 = imhe(imfhei(fhe+j)).VO;
if ( (imv(v0) & TAGMASK) '= 0 ) {
s0 =

o]

false;
break;
}
}
if ( s0)
k=1;
else {
s0 = (imv(v0) & TAGMASK) != 0;
for (1 =k =0; 1<d; 1++) {
vl = imhe(imfhei(fhe+j)).V1;
sl = (imv(vl) & TAGMASK) != O;
if ( sO && !'s1)
k ++;
v0 = vl; sO0 = si;
j=3j>d-170 : j+1;
}
}

if ( first ) {
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29: fvnum(i) = fvd(i) = k;
30: if (i ==0)

31: nvi(0) = 0;

32: if ( i < infac-1 )

33: nvi(i+1l) = k;

3a: )

ss:  else if (k == 0 )

36: nvi(i) = -1;

37: } /*ASetNvi2*/

Podczas pierwszego wywolania procedura zapisuje liczbe k wierzchotkéow odpowiadaja-
cych i-tej $cianie w tablicach fvnumi fvd, a w tablicy nvi, na pozycji i +1; ponadto nastepuje
przypisanie nvi[0] = 0;, po czym (listing 31.25, linie 34 i 35) w tablicy nvi jest obliczany
ciagg sum prefiksowych, a w tablicy fvd jest obliczana suma wszystkich liczb. Suma ta, od-
czytywana w liniach 36-37, jest calkowita liczba wierzchotkow siatki wynikowe;.

Jesli i-tej $cianie odpowiada 0 wierzchotkéw, to podczas drugiego wywolania procedury
ASetNvi2 dla wyrdznienia tego faktu zmiennej nvi[i] jest przypisywana warto$¢ -1.

Procedura ASetNfi2 (listing 31.29), wykonywana w etapie 26, wpisuje do tablicy nfi
ciag zer i jedynek; zero odpowiada wierzchotkowi brzegowemu siatki danej, a jedynka we-
wnetrznemu, przy czym nfi [0] otrzymuje wartos¢ 0, a dla i-tego wierzchotka odpowiada-
jaca mu liczba trafia do tablicy na miejsce i + 1. Nastepnie jest obliczany ciagg sum prefik-

Listing 31.29. Kolejne etapy wstepne usredniania siatki z brzegiem
GLSL
: void ASetNfi2 ( uint i ) /* etap 26 */
A

1
2

3 if (i ==20)

4 nfi(i) = 0;

s:  else

6 nfi(i) = int((imv(i-1) & TAGMASK) == 0);
7: } /*ASetNfi2*/

8
9

: void ASetNhei2 ( uint i ) /* etap 27 */
10: {
1: if (i ==10)
12: nhei(i) = 0;
13 else
14: nhei(i) = int((imv(imhe(i-1).V1) & TAGMASK) == 0);
15: } /*ASetNhei2*/

17: #define ASetNhei3(i) /* etap 29 */ \

18:  { if ( (imv(imhe(i).V1) & TAGMASK) !'= O ) nhei(i) = -1; }
19: #define ASetNfi3(i) /* etap 30 */ \

20:  { if ( (imv(i) & TAGMASK) != 0 ) nfi(i) = -1; }
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sowych w tej tablicy. Elementy tego ciagu przyporzadkowuja wierzchotkom wewnetrznym
siatki danej odpowiadajace im numery $cian siatki wynikowe;j.

Podobnie procedura ASetNhei2 (etap 27) dla potkrawedzi i — 1 siatki danej przypisuje
zmiennej nhei[i] zero albo jedynke; jedynke wtedy, gdy konicowy wierzchotek potkrawe-
dzi nie jest brzegowy. Dla wpisanego do tablicy ciggu (z zerem na poczatku) jest obliczany
cigg sum prefiksowych, ktdry okresla numery pétkrawedzi siatki wynikowej odpowiada-
jace potkrawedziom siatki danej. W etapie 29 jest wykonywana instrukcja w makrodefinicji
ASetNhei3, ktéra dla poétkrawedzi zakonczonych wierzchotkiem brzegowym wpisuje liczbe
-1 na miejsce obliczonej (i nieistotnej dla takiej potkrawedzi) sumy prefiksowej. Podobne
zadanie wykonuje makro ASetNfi3 (etap 30), ktore do tablicy nf i wpisuje -1 dla wierzchol-
kow brzegowych — w siatce wynikowej nie ma $cian odpowiadajacych takim wierzchotkom.

Procedura GPUmeshAveraging po zakonczeniu opisanych wyzej etapéw ma obliczone
liczby wierzchotkéw, potkrawedzi i $cian siatki wynikowej i w linii s0 dokonuje rezerwacji
buforéw w pamieci GPU, w ktorych ma si¢ znalez¢ ta siatka. W liniach s53-55 procedura
przywiazuje te bufory do odpowiednich punktéw dowiazania.

Listing 31.30. Tworzenie list potkrawedzi dla $cian siatki wynikowej
GLSL

: #define AClearFVd(i) fvd(i) = 0; /* etapy 31 i 34 */

: void ASetFVdl ( uint i ) /* etap 32 */

{
int k;

if ( (k = nfi(i)) >= 0)
fvd(k) = imv(i) >> DEGSHIFT;

: } /*ASetFvVdix/

: void ASetFVd2 ( uint i ) /* etap 33 */
A

int k;

if ( (k = nfi(i)) >= 0 )
omfac(k) = (imv(i) & DEGMASK) | (k > 0 ? fvd(k-1) : 0);

: } /*ASetFVd2x*/

Pokazane na listingu 31.30 procedury, wykonywane w etapach 31-33, znajduja, dla $cian
siatki wynikowej, pozycje poczatkéw ich list potkrawedzi w tablicy omfhei. W tym celu ma-
kro AClearFVd kasuje zawarto$¢ tablicy fvd, po czym procedura ASetFVdl1, jesli i-ty wierz-
chotek siatki danej jest wewnetrzny (czyli odpowiada mu pewna $ciana siatki wynikowej,
ma ona numer k znaleziony wczeéniej i zapisany w tablicy nfi), zmiennej fvd[k] przypi-
suje stopien tej $ciany (ktory bedzie stopniem tego wierzchotka). Po zakonczeniu etapu 32
w tablicy fvd zostaje obliczony ciag sum prefiksowych, okreslajacy pozycje poczatkow list
potkrawedzi. Procedura ASetFVd2, wywolana dla i-tego wierzcholka, jesli odpowiada mu
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$ciana (o numerze k), zapisuje w tablicy omfac stopien tej ciany (ktdry jest stopniem i-tego
wierzchotka) i pozycje poczatku jej listy potkrawedzi.

W etapie 34 tablica fvd jest ponownie kasowana za pomocg procedury AClearFVd (przy
czym teraz jej dlugos$¢ jest réwna n¢), po czym w etapie 35 nastgpuje pierwsze wywolanie
(z parametrem first réwnym true) procedury ASetOMVert pokazanej na listingu 31.31.
Parametr i jest numerem $ciany siatki danej.

Listing 31.31. Tworzenie wierzchotkéw siatki wynikowej
GLSL
void ASetOMVert ( uint i, bool first ) /* etap 35, 36 */
{

int n, d, fhe, r, s, t, j, k, 1, vO, vl, m, e;

if ( (r = fvnum(i)) > 0 ) {
n = nvi(i);
d = imfac(i) >> DEGSHIFT;
fhe = imfac(i) & FHEMASK;
for ( k = 0; k <d; k+t+ ) {
vl = imhe(imfhei(fhe+k)) .V1;
if ( (imv(vl) & TAGMASK) !'= 0 )
break;
}
if ( !'first )
j=1i>07 fvd(i-1) : 0;
for (s =0; s <r; s++t, nt+ ) {
{
k=k>d-170 : kt+1;
vl = imhe(imfhei (fhe+k)) .V1;
} while ( (imv(vl) & TAGMASK) !'= 0 );
for (m=0, t = (k+1) % d; m<d; m+, t = (t+1) % d ) {
v0 = imhe(imfhei(fhe+t)) .VO0;
if ( (imv(v0) & TAGMASK) != 0 )
break;

6!

}
if ( first )
fvd(i) += m;
else {
omv(n) = (m << DEGSHIFT) | j;
for (1 =m-1, t =k; 1> 0; 1--, t = (t+1) %d) {
vl = imhe(imfhei(fhe+t)) .V1;
omvhei(j+1l) = e = nhei(imfhei(fhe+t));
omhe(e).VO = n;
omhe (e) .FACN = nfi(vl);

e m
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}
} /*ASetOMVertx*/

Pierwsza czynnoscig w procedurze jest sprawdzenie, czy liczba r wierzchotkéw siatki
wynikowej odpowiadajacych tej $cianie jest dodatnia (ta informacja jest obecna w tablicy
fvnum). Jesli r = 0, to procedura nie ma nic do roboty. W przeciwnym razie w petli w liniach
9-13 jest wyszukiwana (i zapamig¢tywana w zmiennej k) pozycja pierwszego identyfikatora
potkrawedzi, ktorej koncowy wierzchotek jest brzegowy.

W petli w liniach 16-3s lista potkrawedzi Sciany jest przegladana (cyklicznie) od tego
miejsca i dla kazdego spojnego podciagu potkrawedzi, ktérych konce sg wierzchotkami we-
wnetrznymi, jest tworzony kolejny wierzchotek siatki wynikowej odpowiadajacy i-tej $cianie.
Petla w liniach 17-20 ma na celu znalezienie pierwszej potkrawedzi w liscie, ktorej koncowy
wierzcholek jest wewnetrzny, a petla w liniach 21-25 znajduje ostatnig takg potkrawedz. War-
to$¢ zmiennej m po zakonczeniu tej petli jest liczbg potkrawedzi wychodzacych z tworzonego
wierzchotka; liczby potkrawedzi wychodzacych ze wszystkich wierzchotkéw utworzonych
dla i-tej $ciany sg (w pierwszym wywolaniu procedury) sumowane na i-tej pozycji w tab-
licy fvd.

Po zakonczeniu etapu 35 obliczany jest ciagg sum prefiksowych w tablicy fvd. W etapie 36
procedura ASetOMVert (listing 31.31) jest wywolywana ponownie, z parametrem first row-
nym false. Podczas tego wywolania lista potkrawedzi i-tej $ciany jest ponownie przeszuki-
wana. Liczba na i-tym miejscu w tablicy fvd okresla miejsce w tablicy omvhei, od ktérego
zaczyna si¢ lista potkrawedzi pierwszego wierzchotka siatki wynikowej odpowiadajacego i-
tej $cianie; w linii 15 jest ona przypisywana zmiennej j. Instrukcje w liniach 29-36 tworza
opisy wierzchotkéw. W linii 29 jest zapisywany stopien i pozycja poczatku listy kolejnego
wierzchotka (ktéry ma numer #), a w petli w liniach 30-35 numery pétkrawedzi wychodza-
cych z tego wierzchotka sg zapisywane w liscie (tj. wpisywane do tablicy omvhei). W re-
prezentacji kazdej z tych potkrawedzi jest zapisywany numer jej wierzchotka poczatkowego
(czyli n) i numer jej $ciany.

Listing 31.32. Laczenie potkrawedzi w pary
GLSL

: void ABindHe ( uint i ) /* etap 37 */

{
int k;

if ( (k = nhei(i)) >= 0 )
omhe (k) .OTHE = nhei(imhe(i).0THE);

: } /*ABindHex/

Zadaniem procedury ABindHe wykonywanej w etapie 37 (listing 31.32) jest pofaczenie
w pary potkrawedzi reprezentujacych krawedzie wewnetrzne siatki wynikowej. Parametr i
jest numerem potkrawedzi w siatce danej, a zmiennej k jest przypisywany numer odpowiada-
jacej jej potkrawedzi siatki wynikowej, znaleziony i zapamigtany w tablicy nhei w etapie 23
(jesli siatka dana nie ma brzegu) albo 27 (jesli ma).
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Listing 31.33. Tworzenie list potkrawedzi $cian
GLSL

: void ASetOMfacHe ( uint i ) /* etap 38 */
A

int k, d, j, 1, m, vi;

if ( (k = nfi(d)) >=0) {
= imv(i) >> DEGSHIFT;
imv(i) & FHEMASK;
omfac(k) & FHEMASK;
for (m=0; m < d; m++ )
omfhei(1+m) = nhei(imhe(imvhei(j+d-1-m)) .0THE);
for ( m = d-1, vl = omhe(omfhei(1)).VO;
m >= 0;
vl = omhe(omfhei(14m)).VO, m-- )
omhe (omfhei(1+m)) .Vl = vi;

d
]
1
fo

}
} /*ASetOMfacHex*/

W etapie 38 procedura ASetOMfacHe tworzy listy potkrawedzi $cian siatki wynikowe;j
i uzupelnia informacje w reprezentacji potkrawedzi, przypisujac im numery wierzchotkéw
koncowych.

Wisienka na torcie jest ostatni etap usredniania, czyli numeryczne obliczenie §srodkéw
ciezkosci zbiorow wierzchotkéw $cian siatki danej. Wykonuje go procedura Average przed-
stawiona na listingu 31.34. Dla i-tej $ciany, ktoérej odpowiada co najmniej jeden wierzcholek
siatki wynikowej (to sprawdzane jest w linii 6) procedura odczytuje z tablicy nvi numer »
pierwszego odpowiadajacego jej wierzcholka oraz stopien $ciany, czyli liczbe jej wierzchol-
kow. Petle w liniach 12-13 i 14—18 obliczajg sumy poszczegdlnych atrybutéow (np. wspolrzed-
nych polozen) tych wierzchotkéw, a petla w liniach 20—21 dzieli obliczone sumy przez stopien.
Zadaniem petli w liniach 22-23 jest wykonanie odpowiedniej liczby kopii obliczonych atry-
butow, dla wszystkich wierzchotkéw siatki wynikowej odpowiadajacych i-tej $cianie siatki
danej (zobacz opis etapow 24-27).

Listing 31.34. Obliczanie atrybutéw wierzchotkow
GLSL
void Average ( uint i ) /* etap 39 */

-~

int r, n, d, j, iv, ov, k, 1;
float id;

if ( (r = fvoum(i)) > 0 ) {
n = nvi(i);
ov = n*nsattr;
d = imfac(i) >> DEGSHIFT;
j = imfac(i) & FHEMASK;
iv = imhe(imfhei(j)) .VO*nsattr;
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for (1 =0; 1 < nsattr; 1++ )
omvc(ov+l) = imvc(iv+l);
for (k=1; k <d; kt+ ) {
iv = imhe(imfhei(j+k)).VO*nsattr;
for (1 = 0; 1 < nsattr; 1++ )
omvc(ov+l) += imvc(iv+l);
}
id = 1.0/float(d);
for (1 =0; 1 < nsattr; 1++ )
omvc (ov+l) *= id;
for (1 =0; 1 < (r-1)*nsattr; 1++ )
omvc (ov+l+nsattr) = omvc(ov+l);
}
} /*Averagex/

31.10. Procedura zageszczania siatki

Listing 31.35 przedstawia procedure, ktéra postugujac sie opisanymi wczesniej procedurami
podwajania i usredniania dokonuje zageszczania siatki. Przed jej uzyciem nalezy przygoto-
wa¢ do pracy program szaderdw, ktorego czesci s przedstawione na listingach 31.9, 31.12,
31.14-31.24 oraz 31.26-31.34 1 G.8 i umiesci¢ siatke dang w pamieci GPU. Procedury, ktore to
robig, s3 przedstawione na listingach 31.10 i 31.8.

Uwaga: W przedstawionej tu implementacji zageszczania brakuje sprawdzen koniecznych
w oprogramowaniu ogélnouzytkowym. W wersji ,komercyjnej” powinno by¢ sprawdzenie,
czy operacja podwajania nie wytworzy siatki, ktéra ma wiecej niz 2% pétkrawedzi, a takze
sprawdzenia, czy siatka dana nie jest lub siatka otrzymana przez usrednianie nie bedzie pusta.

Pierwszy parametr procedury GPUmeshRefinement jest jest liczbg krokéw usredniania
po zageszczaniu siatki, musi mie¢ warto$¢ co najmniej 1 (i co najwyzej kilka). Drugi para-
metr jest wskaznikiem struktury, w ktdrej sa przechowywane informacje o siatce danej: liczby
wierzchotkow, potkrawedzi i §cian, wymiar przestrzeni wierzchotkéw (tj. liczba wspolrzed-
nych polozenia kazdego wierzchotka i innych atrybutéw) oraz tablica z identyfikatorami bu-
foréw OpenGL-a z tablicami zawierajagcymi reprezentacje siatki. Parametr trzeci wskazuje
analogiczng strukture, w ktorej zostanie zapisana informacja o wyniku zageszczania, przy
czym moze w niej by¢ albo poprawna reprezentacja innej siatki (ktéra zostanie usunieta)
albo nalezy te strukture (np. przed pierwszym wywolaniem procedury zageszczania) wypel-
ni¢ zerami.

Procedura GPUmeshRefinement postuguje si¢ dodatkowa struktura typu GPUmesh do re-
prezentowania posrednich wynikow zageszczania — wyniku podwajania i kolejnych usred-
nian oprdcz ostatniego. Wywotlanie procedury glDeleteBuffers wlinii 16 likwiduje repre-
zentacje juz niepotrzebnej siatki, ktora zostata poddana usrednianiu. Kasowanie (w linii 17)
zmiennych, w ktérych byly pamietane identyfikatory buforow, jest w zasadzie zbedne; proce-
dura ReallocGPUmesh, wywolana przez procedury podwajania i u§redniania (listing 31.13,
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2:

linie 30-31 i listing 31.25, linie s0-51), ponownie wywotalaby procedur¢ glDeleteBuffers,
aby zwolni¢ bufory przed ich ponownym utworzeniem (i nadaniem nowej potrzebnej wiel-
koéci), co nie jest szkodliwe'?, ale zapobieganie temu przez odpowiednio napisany kod uwa-
zam za przejaw wigkszej elegancji stylu programowania.

Listing 31.35. Procedura zageszczania siatki
C
char GPUmeshRefinement ( int n, GPUmesh *inmesh, GPUmesh *outmesh )

{

GPUmesh mmesh, *am, *bm, *cm;
int i;

if (n< 1)
return false;
memset ( &mmesh, 0, sizeof (GPUmesh) );
if ( n & 0x01 ) { am = &mmesh; bm = outmesh;
else { am = outmesh; bm = &mmesh;
if ( !GPUmeshDoubling ( inmesh, am ) )
goto failure;
for (i =0; i <mn; i++ ) {
if ( !'GPUmeshAveraging ( am, bm ) )
goto failure;
glDeleteBuffers ( 4, am->mbuf );
memset ( am->mbuf, 0, 4*sizeof (GLuint) );
cm = am; am = bm; bm = cm;
}

return true;

[

failure:
glDeleteBuffers ( 4, am->mbuf );
glDeleteBuffers ( 4, bm->mbuf );
return false;

} /*GPUmeshRefinement*/

Siatke o stosunkowo niewielkiej liczbie wierzchotkéw i §cian mozemy poddac zageszcza-
niu, ktérego wynik mozemy réwniez zagesci¢ i powtdrzyc¢ to kilka razy — otrzymamy w ten
sposdb kilka siatek, ktorych mozemy uzy¢ do wybrania odpowiedniego poziomu szczegdto-
wosci rysowanego modelu. Jedli powierzchnia na obrazie jest mata, to wystarczy wyswietli¢
obraz siatki o malej liczbie $cian, nie marnujac czasu na niedostrzegalne na obrazie szczegoty.
Siatki geste przydadza si¢ do wykonania obrazéw przedstawiajacych powierzchnie w powigk-
szeniu.

2Podobnie zachowuja si¢ inne procedury gospodarowania zasobami w OpenGL-u; jesli przekazany procedu-
rze likwidacji identyfikator nie jest zwigzany z istniejgcym obiektem takim jak bufor, obraz, tekstura, programem
szaderow itd., to jest przez t¢ procedure ignorowany, bez sygnalizowania btedu.
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Czytelnik moze zadawac sobie pytanie: jak szader o takiej wielkosci jak opisany w tym
rozdziale szader do zageszczania siatek napisa¢ i doprowadzi¢ do dziatania? Podstawowa po-
mocg dla mnie byly napisane wczesniej sekwencyjne implementacje algorytmdéw podwajania
i usredniania dzialajace na CPU. W roboczych wersjach procedur GPUmeshDoubling i GPU-
meshAveraging umiescilem po wywotlaniach poszczegdlnych etapéw obliczen instrukcje
przepisujace zawarto$¢ buforéw do tablicy w pamieci CPU, co umozliwito mi poréwny-
wanie wynikéw obliczen w tych etapach z czg§ciowymi wynikami obliczen implementacji
sekwencyjnej. Podstawowa zasada jest taka, aby zabiera¢ si¢ do programowania kolejnego
etapu obliczen dopiero po uruchomieniu etapdw wczesniejszych. Trzeba si¢ liczy¢ z tym, ze
zaimplementowanie i uruchomienie algorytmu na GPU moze zabra¢ duzo wigcej czasu niz
napisanie algorytmu sekwencyjnego — tak byto w tym przypadku.

3L11. *Uzupelnienia

Numeryczne obliczanie wspdlrzednych wierzchotkéw siatki bedacej wynikiem podwajania
lub usredniania jest tylko jednym z wielu etapdw obliczen; pozostale etapy maja na celu
znalezienie list potkrawedzi wychodzacych z poszczegdlnych wierzchotkéw lub otaczajacych
$ciany oraz powigzan potkrawedzi w pary, co (nie bez powodu) bedziemy nazywac topologia
siatki. Obliczanie wspdtrzednych zajmuje niewielka cze$¢ czasu trwania calej operacji prze-
twarzania siatki'®. Jesli podczas dziatania aplikacji trzeba zageszczaé siatke, ktorej wierz-
chotki zmieniajg polozenia, ale topologia pozostaje niezmieniona, warto podzieli¢ zagesz-
czanie siatki na dwie procedury. Topologie siatki zageszczonej wystarczy znalez¢ tylko raz,
W preprocesingu, a pozniej, podczas rysowania kolejnych klatek animacji, pozostaje tylko
obliczanie wspotrzednych.

31.11.1. Macierz zageszczania

Kazdy wierzchotek siatki otrzymanej przez podwajanie jest kopia jednego, a kazdy wierzcho-
tek wyniku usredniania jest srodkiem ciezkosci (Srednig arytmetyczng) kilku wierzchotkéw
$ciany siatki danej. Mozna stad udowodni¢, ze kazdy wierzcholek siatki otrzymanej przez za-
geszczanie jest kombinacjg afiniczng (zobacz s. 108) wierzchotkow siatki danej. Dzieki temu
obliczenie wspotrzednych moze by¢ wykonane przez mnozenie macierzy

Y = RX.

Symbol X w powyzszym wzorze oznacza macierz o wymiarach n, x d, ktdrej kazdy wiersz
sklada sie z d wspolrzednych kolejnego wierzcholka siatki danej; liczba n, jest liczba tych
wierzchotkow. Podobnie, wiersze macierzy Y o wymiarach m, x d reprezentujg wierzchotki
siatki zageszczonej. Macierz R o wymiarach m, x n,, ktéra nazwiemy macierza zageszcza-
nia, jest rzadka, tj. wigekszo$¢ jej wspdtczynnikow jest rowna 0. Pozostate wspotczynniki sg
dodatnie, a w kazdym wierszu ich suma jest réwna 1.1

PJaka dokladnie, to zalezy od siatki i od procesora graficznego.
"Macierz o tej whasnosci jest nazywana macierza stochastyczna. Iloczyn takich macierzy tez jest macierza
stochastyczna.
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Macierz R = A, ... A;D jest iloczynem macierzy podwajania D oraz n macierzy usred-
niania Ag. Jesli i-ty wierzcholek siatki otrzymanej przez podwajanie jest kopia j-tego wierz-
chotka siatki danej, to wspotczynnik d;; macierzy D jest réwny 1, a pozostate wspotczynniki
w i-tym wierszu s3 zerem. Z kolei w i-tym wierszu macierzy Ay jest s niezerowych wspoél-
czynnikdw; sa one réwne 1/s, gdzie s jest stopniem, tj. liczbg wierzchotkéw pewnej $ciany
siatki poddawanej usrednianiu. Wspolczynniki te znajduja sie w kolumnach, ktérych nu-
mery s3 numerami tych wierzchotkéw'. Zapewnia to, ze i-ty wierzchotek siatki otrzymanej
przez usrednianie jest sSrodkiem cig¢zkos$ci wierzchotkéw tej $ciany.

Macierz R jest nieregularna, tj. jej niezerowe wspodtczynniki sg rozmieszczone dowol-
nie. Podrozdzial G.4 zawiera opis sposobu reprezentowania takich macierzy w pamieci GPU
i implementacji algorytméw ich przetwarzania, odpowiednich do naszych celow.

Listing 31.36. Opakowanie macierzy zageszczania
C

: typedef struct {
GPUmesh *cm, *fm;
GPUSparseMatrix mat;

} MeshRefineMatrix;

Na listingu 31.36 jest pokazana struktura stuzaca jako opakowanie macierzy zageszcza-
nia. Poniewaz macierz jest zwigzana z siatkami o ustalonych topologiach, struktura zawiera
wskazniki cm i fm opakowan tych siatek. Pole mat jest opakowaniem samej macierzy; defi-
nicja typu GPUSparseMatrix jest zamieszczona na listingu G.13. W polu tym sg przecho-
wywane wymiary macierzy, catkowita liczba niezerowych wspétczynnikéw i identyfikatory
buforéw w pamieci GPU, w ktdrych sg przechowywane tablice z potozeniami niezerowych
wspotczynnikéw i te wspdtczynniki.

31.11.2. Szader i procedura znajdowania macierzy zageszczania

Aby otrzymac szader obliczeniowy i procedury, ktére znajduja te samg topologie zageszczo-
nej siatki, ale zamiast oblicza¢ wspdtrzedne wierzchotkéw znajduja macierz zageszczania,
wystarczy szader i procedury opisane w podrozdziale 31.5-31.10 podda¢ niewielkim zmia-
nom. Wszystkie zmienne jednolite i tablice robocze uzywane przez szader zageszczania sg
niezmienione. Zamiast blokéw magazynowych Invc i Outvc, przywigzanych do punktow
31 6, trzeba wprowadzi¢ pokazane na listingu 31.37 bloki magazynowe, w ktérych szader
ma pozostawic reprezentacje macierzy podwajania lub usredniania. Przeznaczytem dla nich
punkty dowigzania 31 6.

Makrodefinicje rd i cd (linie 4 i 5) ulatwiaja dostep do przechowywanych w jednym bu-
forze tablic r i c tworzonej przez szader reprezentacji macierzy podwajania lub usredniania.
Liczba wierszy macierzy jest liczbg wierzchotkéw siatki wynikowej, dtugos¢ tablicy r jest
o 1 wieksza.

Wiersze i kolumny macierzy numerujemy, zaczynajac od 0.
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Listing 31.37. Bloki magazynowe dla macierzy podwajania lub u$redniania
GLSL

: layout (std430,binding=3) buffer Outrc { uint rc[]; } outrc;
: layout (std430,binding=6) buffer Outa { float al[l; I} outa;

. #define rd(I) outrc.rcl[I]

. #define cd(I) outrc.rcloutnv+1+(I)]

Procedure DCopyVC z listingu 31.17, ktéra kopiuje wierzcholki, trzeba zmieni¢ na (tak
samo nazwana) procedure pokazang na listingu 31.38. Jej zadaniem jest wypelnienie wierszy
macierzy podwajania, tj. wpisanie wspolczynnika 1 do wszystkich wierszy odpowiadajacych
kopiom i-tego wierzchotka siatki danej. Wiersze macierzy D odpowiadajace kopiom wierz-
chotka sg kolejne. W linii 10 w tablicy r reprezentacji macierzy (zobacz podrozdz. G.4) jest
wpisywany indeks miejsc w tablicach c i a, w ktorych znajda sie¢ numer kolumny i wspot-
czynnik, zapamietywane tam w liniach 11 i 12. W linii 18 jeden watek szadera ,,zakancza”
ciag liczb w tablicy r, wpisujac tam calkowitg liczbe niezerowych wspétczynnikéw macierzy,
réwna liczbie jej wierszy.

Listing 31.38. Procedura tworzenia wierszy macierzy podwajania
GLSL

: void DCopyVC ( uint i )
it
int deg, p, j, k;

4:
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19

deg = imv(i) >> DEGSHIFT;

if ( (dmv(i) & TAGMASK) != 0 )
deg += 2;

p = ven(i);

for ( j = 0; j < deg; j++ ) {
rd(p+j) = ptj;
cd(p+j) = 1;
outa.al[p+j]l = 1.0;
omv(p+j) = 4 << DEGSHIFT;

+
if ( (dmv(i) & TAGMASK) !'= 0 )
omv(p) = omv(p+deg-1) = 2 << DEGSHIFT;
if (i==0)
rd(outnv) = outnv;
: + /*DCopyVCx*/

Zmienione procedury szadera zwigzane z usrednianiem sg pokazane na listingu 31.39.
Ostatni etap usredniania zamienil si¢ w dwa etapy, w ktérych s3 wykonywane procedury
Average0iAveragel, a miedzy nimi jest jeszcze jedno obliczenie sum prefiksowych.
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Listing 31.39. Procedury znajdowania macierzy usredniania
GLSL
: #define AverageO(i) fvd(i) = fvnum(i) * (imfac(i) >> DEGSHIFT);

2:

3

4
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24

: void Averagel ( uint i ) /* etap 40 */
{
:int r, n, d, j, k, 1, m, t;
float id;

if ( (r = fvoum(i)) > 0 ) {
n =nvi(i);
d = imfac(i) >> DEGSHIFT;
j = imfac(i) & FHEMASK;
id = 1.0/float(d);
l=n==070 : fvd(i-1);
for ( k = 0; k<r; ktt) {
rd (n+k) + t;
for (m=0; m<d; m++, t++ ) {
cd(1+t) imhe (imfhei (j+m)) .VO;
outa.al[l+t] = id;
}
}

It

o+l

¥
if (i==10)

rd(outnv) = fvd(infac-1);
. } /*Averagelx*/

Procedura (makro) Average0 wykonywana w etapie 39 ma za zadanie utworzy¢ ciag
liczb niezerowych wspdlczynnikéw w wierszach macierzy usredniania odpowiadajacych po-
szczegolnym $cianom siatki, przy czym jednej $cianie moze odpowiada¢ wiecej niz jeden
wiersz (czyli wiecej niz jeden wierzchotek siatki wynikowej). Ciag ten jest wpisywany do tab-
licy £vd w buforze roboczym. Tablica ta byta potrzebna we wczesniejszych etapach, a teraz
jest do dyspozycjii ma wystarczajaca dlugos¢. Po obliczeniu sum prefiksowych tego ciagu jest
wykonywany etap 40, czyli procedura Averagel. W linii 13 zmienne 1 i n otrzymujg warto$¢
indeksu miejsc w tablicach a i ¢ reprezentacji macierzy, w ktérych ma si¢ znalez¢ pierwszy
niezerowy wspdlczynnik w pierwszym wierszu odpowiadajacym danej $cianie. Zewnetrzna
petla (w liniach 14-20) przebiega przez te wiersze. W linii 15 jest wypelniana tablica r, po
czym w petli wewnetrznej w tablicy c sg zapisywane numery kolumn, a do tablicy a jest wpi-
sywana liczba 1/s, obliczona w linii 12. Jeden watek szadera, w linii 23, zakancza ciag liczb
w tablicy r, wpisujac tam ostatni element ciggu sum prefiksowych, ktéry jest liczbg niezero-
wych wspdtczynnikéw macierzy usredniania.

Procedura main szadera wymaga tylko zamienienia linii 50 na listingu 31.12 na dwie linie:

case 39: Average0 ( i ); break;
case 40: Averagel ( i ); break;
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Procedura kompilacji i taczenia programu z szaderem opisanym wyzej jest prawie iden-
tyczna z tg na listingu 31.10; ma tylko nowa nazwe LoadMeshRefinementMatrixProgram
i napis "mdm. comp.glsl", ktory jest nazwa pliku zrodtowego szadera.

Zobaczmy teraz zmiany procedur podwajania i usredniania w C (listing 31.40) majacych
znalez¢ odpowiednie macierze. Poza zmienionymi nazwami procedury maja dodatkowy
parametr wskazujacy opakowanie macierzy, ktérg majg znalezé. Procedury te korzystaja
ztych samych procedur ExecStage, Pref ixSumi SumUp. Instrukcje przywiazujace bufory ze
wspoltrzednymi wierzchotkéw zostaty usuniete. Zamiast tego procedura GPUmeshDoubling-
Matrix tworzy dwa bufory, w ktdrych znajdg sie tablice r, ¢ i a macierzy podwajania. W li-
niach 12 i 15 s3 ustalane wielkosci tych buforéw. Instrukcje uruchamiajace wszystkie etapy
podwajania sg identyczne z instrukcjami w procedurze na listingu 31.13 (inna jest jedynie pro-
cedura DCopyVC wykonywana w etapie 5). Instrukcje w liniach 17-19 wypelniaja wskazane
przez dodatkowy parametr opakowanie macierzy podwajania.

Listing 31.40. Procedury znajdowania macierzy podwajania i usredniania
C
: char GPUmeshDoublingMatrix ( GPUmesh *inmesh, GPUmesh *outmesh,
MeshRefineMatrix *mm )

int inv, inhe, infac, invb, inei, onv, onhe, onfac, fvf, maxonv, fvhe;
GLint Dbufsize;
GLuint auxbuf = 0, drc = 0, da = 0;

glUseProgram ( progid[1] );
. /* linie 8-11 i 13-34 z listingu 31.13 bez zmian */
glGenBuffers ( 1, &drc );
glBindBufferBase ( SSB, 3, drc );
glBufferData ( SSB, (onv+onv+1)*sizeof (GLint), NULL, GL_DYNAMIC_DRAW );
glGenBuffers ( 1, &da );
glBindBufferBase ( SSB, 6, da );
glBufferData ( SSB, onv*sizeof (GLfloat), NULL, GL_DYNAMIC_DRAW );
. /* linie 36-72 z listingu 31.13 bez zmian */
mm->cm = inmesh; mm->fm = outmesh;
mm->mat.m = mm->mat.nnz = outmesh->nv; mm->mat.n = inmesh->nv;
mm->mat.buf [0] = drc; mm->mat.buf[1] = da;
ExitIfGLError ( "GPUmeshDoublingMatrix" );
return true;

22:

23

24:

25:

26:

27:

28:

29:

30

: failure:

glDeleteBuffers ( 1, &auxbuf );
glDeleteBuffers ( 1, &drc );
glDeleteBuffers ( 1, &da );

memset ( mm, O, sizeof (MeshRefineMatrix) );
glUseProgram ( 0 );

return false;

: } /*GPUmeshDoublingMatrix*/
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char GPUmeshAveragingMatrix ( GPUmesh *inmesh, GPUmesh *outmesh,
MeshRefineMatrix *mm )

{
int inv, inhe, infac, invb, onv, onhe, onfac, nnz;
GLint bufsize, bs;
GLuint auxbuf = 0, arc = 0, aa = 0;
glUseProgram ( progid[1] );
/* linie 8-11, 13-54 i 56-65 z listingu 31.25 bez zmian */
ExecStage ( uvofs, 39, infac ); /* AverageQO */
PrefixSum ( uvofs, 2*infac+inhe+inv, infac );
glBindBuffer ( SSB, auxbuf );
glGetBufferSubData ( SSB, (3*infac+inhe+inv-1)*sizeof (GLuint),
sizeof (GLuint), &nnz );
glGenBuffers ( 1, &arc );
glBindBufferBase ( SSB, 3, arc );
glBufferData ( SSB, (onv+nnz+1)*sizeof (GLuint), NULL, GL_DYNAMIC_DRAW );
glGenBuffers ( 1, &aa );
glBindBufferBase ( SSB, 6, aa );
glBufferData ( SSB, nnz*sizeof (GLfloat), NULL, GL_DYNAMIC_DRAW );
ExecStage ( uvofs, 40, infac ); /* Averagel */
glUseProgram ( 0 );
glDeleteBuffers ( 1, &auxbuf );
ExitIfGLError ( "GPUmeshAveragingMatrix" );
mm->cm = inmesh; mm->fm = outmesh;
mm->mat.m = outmesh->nv; mm->mat.n = inmesh->nv; mm->mat.nnz = nnz;
mm->mat.buf [0] = arc; mm->mat.buf[1] = aa;
return true;
failure:

glDeleteBuffers ( 1, &auxbuf );
glDeleteBuffers ( 1, &arc );
glDeleteBuffers ( 1, &aa );
memset ( mm, O, sizeof (MeshRefineMatrix) );
glUseProgram ( 0 );
return false;

} /*GPUMeshAveragingMatrix*/

Procedura GPUmeshAveragingMatrix w etapie 39 powoduje wywolanie procedury
Average0, a nastgpnie oblicza sumy prefiksowe znalezionego w tym etapie ciggu. Ostatnia
suma jest odczytywana z bufora w liniach 44-4s; jest to liczba niezerowych wspoétczynnikow
konstruowanej macierzy usredniania. Majac ja, mozna utworzy¢ bufory dla macierzy r, ¢
i a, co jest robione w liniach 46-51. W linii 52 jest uruchamiany etap 40 obliczen, w ktérym
procedura Averagel z listingu 31.39 wypelnia te tablice. Opakowanie macierzy wskazywane
przez trzeci parametr jest wypelniane w liniach s6-5s.
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Listing 31.41. Procedura znajdowania macierzy zageszczania

C
1: char GPUmeshRefinementMatrix ( int n, GPUmesh *inmesh, GPUmesh *outmesh,
2: MeshRefineMatrix *mm )
3:
42:  GPUmesh mmesh, *am, *bm, *cm;

5: MeshRefineMatrix md, ma;
6: int l,

8: E(n<1)

9: return false;

10: memset ( &mmesh, 0, sizeof (GPUmesh) );

11: if (n & 0x01 ) { am = &mmesh; bm = outmesh; }

12: else { am = outmesh; bm = &mmesh; }
13z if ( !GPUmeshDoublingMatrix ( inmesh, am, &md ) )
14: goto failure;

is:  for (i =0; i<mn; i++ ) {

16: if ( !'GPUmeshAveragingMatrix ( am, bm, &ma ) )
17: goto failure;

18: if ( !'GPUMultSparseMatricesf ( &mm->mat, &ma.mat, &md.mat );
19: goto failure;

20: glDeleteBuffers ( 4, am->mbuf );

21: memset ( am->mbuf, 0, 4*sizeof (GLuint) );

22: mm->m = ma.m; mm->n = md.n;

23: cm = am; am = bm; bm = cm;

24: GPUDeleteMeshRefineMatrix ( &md );

25: GPUDeleteMeshRefineMatrix ( &ma );

26: md = *mm;

27: }

28: mm->cm = inmesh; mm->fm = outmesh; mm->mat.lmax = O;
29: return true;

30:

31: failure:

32: glDeleteBuffers ( 4, am->mbuf );

s3:  glDeleteBuffers ( 4, bm->mbuf );

3a: return false;

35: + /*GPUmeshRefinementMatrix*/

36:

37: void GPUDeleteMeshRefineMatrix ( MeshRefineMatrix *mm )
38: {

3: glDeleteBuffers ( 2, mm->mat.buf );

20: memset ( mm, O, sizeof (MeshRefineMatrix) );

a1: } /*GPUDeleteMeshRefineMatrix*/

Listing 31.41 przedstawia procedure znajdujaca topologie siatki zageszczonej i macierz
zageszczania z n krokami usredniania. Powstala ona przez modyfikacje procedury z lis-
tingu 31.35. Po znalezieniu macierzy podwajania, w petli wykonywanej n razy procedura
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znajduje kolejng macierz usredniania, po czym wykonuje mnozenie macierzy rzadkich za
pomoca procedury opisanej w p. G.4.3. W liniach 24 i 25 macierze te sg kasowane; pozosta-
je ich iloczyn, ktéry w nastepnym przebiegu petli bedzie z lewej strony pomnozony przez
kolejng macierz usredniania, a po zakonczeniu petli bedzie gotowa macierza zageszczania.
W linii 28 opakowanie macierzy jest uzupetniane o brakujace informacje.

31.11.3. Obliczanie wspolrzednych wierzchotkéw

Majac reprezentacje (topologie) siatek oryginalnej i zageszczonej i macierz zaggszczania oraz
ustalone (biezace) potozenia wierzchotkéw siatki oryginalnej, wystarczy wywotaé procedure
z listingu 31.42, ktéra obliczy wspoélrzedne wierzchotkéw siatki zageszczonej, mnozac ma-
cierz zageszczania przez wektor polozen wierzchotkéw. Procedura ta zawiera wywolanie
procedury pokazanej na listingu G.15 z parametrami wzietymi z opakowania macierzy za-
geszczania przygotowanego przez procedure GPUmeshRefinementMatrix.

Listing 31.42. Procedura obliczania wspotrzednych wierzchotkéw zageszczonej siatki
C
: void GPUMatrixRefineMesh ( MeshRefineMatrix *mm )
A
GPUMultSparseMatrixVectorf ( mm->fm->VCBUF, &mm->mat,
mm->cm->nsattr, mm->cm->VCBUF ) ;

. } /*GPUMatrixRefineMeshx*/

Co to wszystko daje? Opisany tu zestaw procedur wbudowalem w aplikacje 3D (zo-
bacz podrozdz. 36.7), co umozliwilo ich przetestowanie i pomiary czasu. Przetwarzana przez
te aplikacje siatka (opisana w podrozdz. 32.1), ktéra ma 144 wierzcholki, 564 pétkrawedzie
i 140 $cian, byla poddawana czterem zageszczeniom z trzema krokami usredniania.

Tabela 31.1. Wyniki zageszczania przyktadowej siatki

ny ny ny mxn N Imax B
;éé 2526546 ;22 566 x 144 3600 14 33336
2258 9024 2256 2258 x 566 14102 15 121888
9026 36096 9024 9026 x 2258 56402 15 487324

36098 | 144384 | 36096 36098 x 9026 | 225602 | 15 | 1949212

W wierszach tabeli 31.1 s3 podane liczby n,, ny, i ny wierzchotkow, pétkrawedzi i $cian

siatki danej i siatek otrzymanych przez kolejne zageszczenia. Obok s3 podane wymiary
macierzy zageszczania, liczby N ich niezerowych wspdétczynnikéw, maksymalne liczby Inax
wspolczynnikow w wierszach iliczby B bajtow zajmowanych przez reprezentacje tych macie-
rzy, tj. tablice r, c i a. Jak wida¢, w sumie potrzeba na nie nieco mniej niz 2.5 MB.!6 Latwo jest

'®Podane liczby bajtow nie uwzgledniaja narzutéw potrzebnych do dzialania OpenGL-a. Wymiary blokéw
rezerwowanych w pamieci GPU sg zaokraglane w gore do wielokrotnosci liczby zapewniajacej szybki dostep do
danych w buforze.
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tez sprawdzic, Ze $rednia liczba niezerowych wspétczynnikéw w wierszach wszystkich tych
macierzy nie przekracza 6.5. Najmniejsza macierz ma mniej niz 4.4% niezerowych wspot-
czynnikéw, a najwieksza ma ich mniej niz 0.07%.

Tabela 31.2. Czasy zageszczania przykladowej siatki

RTX 3060 GTX 940M
To | T1 | T2 to | t | 5
0.001694 | 0.000939 | 0.000052 | 0.005362 | 0.020722 | 0.000082
0.002550 | 0.006018 | 0.000093 | 0.012763 | 0.038580 | 0.000288
0.005424 | 0.013674 | 0.000272 | 0.040882 | 0.166048 | 0.001127
0.017820 | 0.046080 | 0.001014 | 0.163901 | 0.697506 | 0.008372

W tabeli 31.2 s3 pokazane czasy obliczen zmierzone" na komputerze stacjonarnym i na
laptopie, wyposazonych w procesory graficzne o réznych mocach obliczeniowych. Podane
w kolejnych wierszach czasy Ty i ¢y zajely kolejne zageszczania siatek przy uzyciu szadera
wykonujacego pelne obliczenie. Znalezienie macierzy zageszczania trwalo na tych kompu-
terach odpowiednio Tj i t; sekund, a T i f, to czasy obliczania wspoélrzednych wierzchotkéw
zageszczonych siatek za pomoca tych macierzy.

Znajdowanie topologii siatki zagegszczonej i macierzy zageszczania trwa dluzej niz zagesz-
czanie, podczas ktorego znajduje sie topologie i oblicza wspolrzedne wierzchotkéow. Jest tak
dlatego, bo mnozenie macierzy podwajania i usredniania zabiera wiecej czasu niz obliczanie
wspoélrzednych. Ale to nie jest istotne, jesli macierze sg znajdowane tylko raz, na poczatku
dziafania aplikacji albo podczas jej instalacji przez program, ktéry topologie potrzebnych
siatek 1 macierze zageszczania znajdzie i zapisze w pliku. Obliczanie wspolrzednych za po-
moca ,gotowych” macierzy zageszczania jest znacznie szybsze niz pelne zageszczanie, dzigki
czemu plynna animacja siatki odksztalcanej i zaggszczanej w czasie rzeczywistym staje si¢
wykonalna nawet na niezbyt poteznym laptopie — moze z wyjatkiem siatki o najwiekszym
stopniu zageszczenia, ktdrej rysowanie (a nie obliczanie polozen wierzcholkéw) trwa troche
za dlugo.

31.12. Cwiczenia

1. Napisz procedure, ktéra odwraca orientacje siatki. Dla kazdej potkrawedzi nalezy zamie-
ni¢ indeksy konca i poczatku. Dla kazdej $ciany trzeba odwroci¢ kolejnos¢ indeksow jej
potkrawedzi, a dla kazdego wierzchotka trzeba utworzy¢ zupelnie nowy cigg indekséw
potkrawedzi wychodzacych z niego.

2. Napisz procedure, ktéra laczy dwie siatki, tzn. kopiuje do wspoélnych tablic jedng z nich
i przepisuje wierzcholki, pétkrawedzie i §ciany drugiej, odpowiednio je przenumerowu-
jac.

Y Ostatnia cyfra znaczaca wynikéw tych pomiaréw lub nawet ostatnie dwie cyfry sa niepewne.
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3.*Napisz procedure, ktora wybiera fragment siatki skladajacy si¢ z zaznaczonych wierz-
chotkéw, incydentnych z nimi potkrawedzi i skladajacych sie z tych pétkrawedzi $cian.

Kazda z tych procedur napisz i uruchom w wersji dzialajacej na CPU, a potem zaimple-
mentuj na GPU.



Trzecia aplikacja

— Dlaczego nie rysujesz?
— Bo nie mam otéwka.
— To rysuj odrecznie.

Ustyszane przez Anng w szkole na lekcji

Siatki reprezentowane w sposob przedstawiony w poprzednim rozdziale, opisujace rozmaite
obiekty, mozna projektowa¢ za pomocg jednego z programéw demonstracyjnych pisanego
przeze mnie pakietu BSTools [42]. Prace nad nim zaczalem w roku 2003, a w latach 2005
12019 aktualne wersje pakietu dotaczytem do drugiego i trzeciego wydania mojej ksigzki [41].
Obecnie pakiet sklada sie z kilkunastu bibliotek zawierajacych w sumie kilka tysiecy rozma-
itych procedur (napisanych w jezyku C) i garsci programéw demonstracyjnych. Gtéwnym
jego przeznaczeniem jest przetwarzanie krzywych i powierzchni Béziera i B-sklejanych oraz
siatek w aplikacjach graficznych.

Program demonstracyjny pozwalaj jest aplikacjg starego OpenGL-a (wersji 2.1), dziala-
jaca w srodowisku Linux/X Window. Umozliwia on m.in. modelowanie siatek, ktore zapisuje
w plikach tekstowych tatwych do przetworzenia na odpowiednie fragmenty programéw w C.
Programu tego uzytem do wymodelowania siatki reprezentujacej powierzchnie wygladajaca
z grubsza jak ludzka dton. Aplikacja opisana w tym rozdziale wyswietla t¢ siatke i powierzch-
nie otrzymane przez jej zageszczanie. Ten model dloni nie jest bardzo dokltadny (zaprojekto-
walem go odrecznie), ale nic nie stoi na przeszkodzie, by go udoskonali¢ w stopniu wystar-
czajacym nawet na potrzeby pianistyki, kryminalistyki i chiromancji.

32.1. Model dloni

Listing 32.1 przedstawia deklaracje tablic zawierajacych reprezentacje siatki bedacej mode-
lem dloni. Pominalem prawie calg zawartos$¢ tych tablic, bo zajmuje ona ponad 300 linii
kodu w C, ale Czytelnik znajdzie ja w odpowiednim pliku Zrédlowym trzeciej aplikacji. Pro-
cedura EnterPalmToGPU odpowiada za przestanie tych danych do buforéw w pamieci GPU,
za pomocg procedury CPUmeshToGPU z listingu 31.8.
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Listing 32.1. Siatka opisujaca dlon

C
: #define PALM_NV 144
. #define PALM_NHE 564
. #define PALM_NFAC 140
. static BSMvertex mv[PALM_NV] = {{4,0%},....,{5,559}};
. static int mvhei [PALM_NHE] = {0,428,....,139,4};
. static float vc[PALM_NV][3] =
{{-0.64428,-0.01967,0.10625},....,{0.16963,0.01677,0.10533}};
: static BSMhalfedge mhe[PALM_NHE] = {{0,1,0,427%},....,{143,4,134,562}};
static BSMfacet mfac[PALM_NFAC] = {{7,0},....,{4,560}};
static int mfhei[PALM_NHE] = {0,1,....,561,562};

GPUmesh *EnterPalmToGPU ( void )

CPUmesh cpalm;
GPUmesh *gpalm;

if ( '(gpalm = malloc ( sizeof (GPUmesh) )) )
return NULL;
memset ( gpalm, O, sizeof (GPUmesh) );

cpalm.nsattr = cpalm.pdim = 3; cpalm.pofs = 0; cpalm.nvofs = -1;
cpalm.nv = PALM_NV; cpalm.nhe = PALM_NHE; cpalm.nfac = PALM_NFAC;
cpalm.mv = mv; cpalm.mhe = mhe; cpalm.mfac = mfac;
cpalm.mvhei = mvhei; cpalm.mfhei = mfhei; cpalm.ve = &vc[0][0];

if ( CPUmeshToGPU ( &cpalm, gpalm ) )
return gpalm;
else {
free ( gpalm );
return NULL;
}
} /*EnterPalmToGPUx/

32.2. Rysowanie siatki

W pierwszej wersji trzeciej aplikacji uzyjemy dwdch prostych programéw do rysowania sia-
tek: pierwszy z nich rysuje krawedzie siatki, a drugi tréjkaty otrzymane z podziatu $cian. Aby
skupi¢ si¢ na sednie rzeczy, nie wprowadzimy zadnych wyrafinowanych modeli o$wietlenia
(uzyjemy tylko modelu Lamberta) ani efektéw takich jak cienie. Zmiennej typu pokazanego
na listingu 32.2 uzyjemy do opakowania obu programéw rysujacych. Przechowamy w nim
tylko identyfikatory programow.

Przed przystgpieniem do rysowania bufory z reprezentacja siatki muszg by¢ przywigzane
do odpowiednich punktéw dowigzania w celu GL_SHADER_STORAGE_BUFFER; deklaracje
odpowiednich blokéw w tresci szaderdéw rysujacych sg takie jak na listingu 31.4.
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Listing 32.2. Opakowanie programéw rysujacych krawedzie i $ciany siatki
C

. typedef struct {

GLuint progid[2];
} MeshRenderPrograms;

Wspolrzedne otrzymane od etapu pobierania wierzchotkéw zostang zignorowane; dane
te s3 potrzebne do uruchomienia potoku przetwarzania grafiki, ale zadanie wybrania wias-
ciwego wierzcholka wykona szader na podstawie numeru instancji rysowanego prymitywu
i danych opisujacych siatke. W pewnym sensie szadery w tych programach przejmuja role
etapu pobierania wierzchotkéw wprowadzajacego do potoku atrybuty wierzchotkéw na pod-
stawie tablicy indekséw przywigzanej do celu GL_ELEMENT _ARRAY_BUFFER, ktory to mecha-
nizm jest niewystarczajacy w zastosowaniu do siatek reprezentowanych w sposéb opisany
w rozdziale 31.! Zatem procedura main szadera wierzchotkéw w obu programach zawiera
instrukcje bedace trescig makrodefinicji FetchVertex przedstawionej na listingu 32.3. Jej
parametrem jest indeks pierwszej wspdlrzednej polozenia w tablicy atrybutow wierzchotkow.
Instrukgje te przypisuja zmiennej gl_Position wspolrzedne jednorodne wierzchotka o nu-
merze obliczonym przez procedure main, nadajac wspotrzednym z i w wartosci domyslne 0
i1, jesli w tablicy mvc . mvc wspolrzedne te sg nieobecne.

Listing 32.3. Makrodefinicja FetchVertex
GLSL

D /* bloki magazynowe jak na listingu 31.4 */

. #define FetchVertex(I) \

switch ( pdim ) { \

. case 2: \

gl_Position = vecd ( mvc.vc[I], mvc.vc[(I)+1], 0.0, 1.0 ); \
break; \

. case 3: \

gl_Position = vecd ( mvc.vc[I], mvc.vc[(I)+1], mvc.vc[(I)+2], 1.0 ); \
break; \
default: \
gl _Position = vecd ( mvc.vc[I], mvc.vc[(I)+1], \
mvc.vc[(I)+2], mvc.ve[(I)+3] ); \
break; \
}

Zadaniem pierwszego programu rysowania siatek, sktadajacego sie z szaderéw pokaza-
nych na listingach 32.4-32.6, jest narysowanie krawedzi siatki w ustalonym kolorze. Program
bedzie wywotany przez procedure glDrawArraysInstanced, ktéra ma narysowac jeden
odcinek w liczbie instancji réwnej liczbie potkrawedzi siatki. Kazda krawedz wewnetrzna

"Mozna na podstawie reprezentacji siatki utworzy¢ odpowiednie tablice z indeksami (za pomoca dodatko-
wego szadera obliczeniowego), aby nastepnie rysowac siatki za pomocg procedury glDrawElements, ale chyba
szkoda miejsca w pamieci GPU na dodatkowe tablice. Niemniej, napisanie takiego szadera byloby dobrym
¢wiczeniem z programowania w jezyku GLSL.
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jest reprezentowana przez dwie pétkrawedzie, a chcieliby$my, aby byta narysowana tylko raz.
Dlatego rysowany bedzie odcinek odpowiadajacy tylko jednej potkrawedzi z pary; zadba o to
szader geometrii.

Listing 32.4. Szader wierzcholkéw pierwszego programu rysowania siatek
GLSL

: #version 450 core

: layout (location=0) out int instance;
: layout (location=1) out vec3 colour;

i .... /% tu tresé¢ listingu 32.3 */
: #define VO x  /* tak samo jak na listingu 31.9 x/

: #define V1 y

10:

void main ( void )
{
int i, j, k;
vecd vp;

instance = i = gl_InstancelD;
j = gl_VertexID == 0 7 mhe.mhe[i].VO : mhe.mhe[i].V1;
k = nsattr*j + pofs;
FetchVertex ( k );
colour = Colour; /* kolor z bloku meshsurf */
} /#*mainx/

Szader wierzchotkéw wyprowadza (w zmiennej instance) numer instancji, ktdry jest
numerem pétkrawedzi. Na podstawie wartosci zmiennej g1 _VertexID szader okresla, ktory
wierzchotek — poczatek, czy koniec potkrawedzi — ma przekazac¢ dalej i pobiera jego wspot-
rzedne z tablicy za pomocag makra FetchVertex. Przejsciem do ukladu wspolrzednych
kostki standardowej zajmie sie szader geometrii. Wartos¢ przypisana w linii 16 zmiennej i
jest numerem poétkrawedzi do narysowania. W linii 17 jest znajdowany numer wierzchotka
koncowego tej potkrawedzi, a w linii 18 jest obliczany indeks pierwszej wspolrzednej tego
wierzchotka.

Listing 32.5. Szader geometrii pierwszego programu rysowania siatek
GLSL

: #version 450 core

: layout (lines) in;
:layout(1ine_strip,max_vertices=2) out;

: layout (location=0) in int instance[];
: layout (location=1) in vec3 Colour[];



32.2. Rysowanie siatki 935

9: layout (location=0) out vec3 colour;

10:

11: layout (std430,binding=1) buffer meshhe { ivec4 mhe[]; } mhe;
12:

13: #define OTHE w /* tak samo jak na listingu 31.9 */

14:

15: uniform TransBlock {

16: mat4 mm, mmti, vm, pm, vpm;
17: vec4 eyepos;
18: } trb;

19:

20: void main ( void )

21: {

22:  int 1i;

23:

24: 1 = instancel[0];

25: if ( mhe.mhe[i].OTHE > i ) {

2: for (i =0; i<2; i++) {

27: gl_Position = trb.vpm * (trb.mm * gl_in[i].gl_Position);
28: colour = Colourl[i];

29: EmitVertex ();

30: ¥

31: EndPrimitive ();

32: }

33: } /*mainx/

Szader geometrii jest przedstawiony na listingu 32.5; sposob przeksztalcania wspotrzed-
nych wierzchotkéw (obu koncéw krawedzi) jest taki jak w wielu szaderach opisanych wczes-
niej. Jedyny zatem nowy szczego6l to warunek sprawdzany w linii 25: jesli numer drugiej
potkrawedzi z pary jest mniejszy niz numer pdétkrawedzi przetwarzanej przez dang instan-
cje szadera, to szader nie wyprowadzi odcinka do dalszego przetwarzania. W ten sposéb
s3 pomijane takze nieistniejgce (majgce numer -1) potkrawedzie z ,,par” reprezentujacych
krawedzie brzegowe siatki.

Listing 32.6. Szader fragmentdw pierwszego programu rysowania siatek
GLSL

1: #version 450 core

3: layout (location=0) in vec3 colour;
s: out vec4 out_Colour;

7: void main ( void )

s {

9: out_Colour = vecd ( colour, 1.0 );
10: } /*mainx/
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Listing 32.7. Procedura rysowania krawedzi siatki
C

: void SetMeshColour ( GPUmesh *gmesh, GLfloat Colour[3] )
: {

glBindBuffer ( SSB, gmesh->MSBUF );
glBufferSubData ( SSB, mbofs[8], 3*sizeof (GLfloat), Colour );
ExitIfGLError ( "SetMeshColour" );

: } /*SetMeshColour*/

: void DrawMeshEdges ( MeshRenderPrograms *prog,

GPUmesh *mesh, GLfloat colour[4] )
{

int 1i;

glUseProgram ( prog->progid[0] );
for (i =0; i < 4; i++ )
glBindBufferBase ( SSB, i, mesh->mbuf[i] );
SetMeshColour ( mesh, colour );
glBindVertexArray ( empty_vao );
glDrawArraysInstanced ( GL_LINES, O, 2, mesh->nhe );
glBindVertexArray ( 0 );
ExitIfGLError ( "DrawMeshEdges" );
} /#DrawMeshEdges*/

Szader fragmentdw pierwszego programu (listing 32.6) jest tak prosty, Ze nie ma o czym
pisaé. Procedura na CPU rysujaca krawedzie siatki za pomocg programu sktadajacego sie¢
z szaderdw opisanych wyzej jest pokazana na listingu 32.7. Procedura ta wybiera program,
przywigzuje bufory z reprezentacja siatki, przypisuje polu Colour bloku meshsurf repre-
zentujacg kolor warto$¢ parametru Colour, przywigzuje pusty obiekt tablicy wierzchotkéw
irysuje jeden odcinek w odpowiedniej liczbie egzemplarzy (tj. instancji).

Listing 32.8. Szader wierzchotkéw drugiego programu rysowania siatek

GLSL
: #version 450 core
: layout (location=0) out vec3 colour;
i .... /* tu tres§¢ listingu 32.3 */
: #define FHEMASK OxO1FFFFFF /* tak samo jak na listingu 31.3 %/

: #define mfac(I) mvf.mvf[nv+(I)]
. #define mfhei(I) mvf.mvf [nv+nfac+nhe+(I)]

#define VO x

void main ( void )
{

int 1i;
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i = mhe.mhe[mfhei((mfac(gl_InstanceID) & FHEMASK) + gl_VertexID)].VO;
i = nsattr*i + pofs;
FetchVertex ( i );
colour = Colour;
} /*mainx*/

Szadery pokazane na listingach 32.8 i 32.9 sg cze$ciami drugiego programu, ktérego za-
daniem jest narysowanie $cian siatki. Program dziala przy zalozeniu, ze wszystkie $ciany
siatki sg czworokatne, co ma miejsce, jesli siatka zostalta otrzymana jako wynik zageszczania
z nieparzystq liczba krokéw usredniania. Dla kazdej $ciany zostang narysowane dwa tréjkaty.
Dokladniej, program jest wywolywany przez procedure glDrawArraysInstanced, ktorej
parametry opisuja wachlarz ztozony z dwdch trdjkatow. Liczba instancji szadera jest rowna
liczbie §cian siatki. Zadaniem szadera wierzchotkéw jest wyprowadzenie wierzchotka o nu-
merze ustalonym na podstawie numeru instancji (czyli numeru $ciany) oraz numeru i wierz-
chotka w rysowanym wachlarzu. Numer ten, podany w zmiennej gl_VertexID (od 0 do 3),
jest poczatkiem i-tej potkrawedzi Sciany.

Na listingu 32.9 jest pokazany szader geometrii, ktdrego wejscie stanowi tablica z trzema
wierzchotkami tréjkata. Wspolrzedne tych wierzchotkéw sa podane w ukladzie modelu,
zatem szader geometrii dokonuje przejscia do ukladu $wiata — w linii 23 szader oblicza
wspoélrzedne jednorodne wierzchotka w ukladzie $wiata, a w linii 24 oblicza wspoélrzedne
kartezjanskie. Wektory wspoétrzednych kartezjanskich sg uzywane (w liniach 26, 27) do obli-
czenia wektora normalnego plaszczyzny trdjkata oraz wyprowadzane (w bloku wyjsciowym
FVertex) razem z wektorem normalnym do dalszych obliczen o$wietlenia przez szader
fragmentow.

Listing 32.9. Szader geometrii drugiego programu rysowania siatek
GLSL

: #version 450 core

: layout (triangles) in;
: layout (triangle_strip,max_vertices=3) out;

: layout (location=0) in vec3 Colour[];

7:

8:

9:

10:

11:

12:

out FVertex {
vec3 Position;
vec3 Colour;
flat vec3 Normal;
} Out;

13:

14:

15:

16:

17:

uniform TransBlock {
mat4 mm, mmti, vm, pm, vpm;
vec4 eyepos;
} trb;

18:
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19: void main ( void )

20

A

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39

-}

int i;
vecd pl3];
vec3 q[3], vi, v2, nv;

for (i =0; i< 3; i++ ) {
pli] = trb.mm * gl_in[i].gl_Position;
qli]l = plil.xyz/pli].w;
}
vl = q[1] - q[0]l; v2 = q[2] - q[0];
nv = normalize ( cross ( vi, v2 ) );
for (i =0; i< 3; i++ ) {
gl_Position = trb.vpm * plil;
Out.Colour = Colourl[il;
Out.Position = q[i];
Out.Normal = i == 0 ? nv : vec3(0.0);
EmitVertex ();

}
EndPrimitive ();
/*mainx/

Szader fragmentdw drugiego programu jest prawie identyczny z szaderem przedstawio-
nym na listingu 10.4, jedyne zmiany to dodanie kwalifikatora flat pola Normal w bloku
In oraz dodanie pola mmti do bloku zmiennych jednolitych TransBlock. Na listingu 32.10
jest pokazana procedura rysowania $cian siatki za pomocg opisanego wyzej programu sza-
deréw. Procedura ta deklaruje, ze zmienna wejsciowa Normal z kwalifikatorem flat jest
podana z pierwszym wierzcholkiem tréjkata przekazanego przez szader geometrii, a potem
przywiazuje bufory z reprezentacjg siatki, wybiera program szaderdw, przypisuje kolor $cian,
przywigzuje pusty obiekt tablicy wierzchotkéw i uruchamia potok przetwarzania grafiki.

Listing 32.10. Procedura rysowania $cian siatki
C

: void DrawMeshFacets ( MeshRenderPrograms *prog,

{

10:

11:

12:

13:

GPUmesh *mesh, GLfloat colour[3] )
int i;

glProvokingVertex ( GL_FIRST_VERTEX_CONVENTION );
for (i =0; i < 4; i++ )

glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, i, mesh->mbuf[i] );

SetMeshColour ( mesh, colour );
glUseProgram ( prog->progid[1] );
glBindVertexArray ( empty_vao );

glDrawArraysInstanced ( GL_TRIANGLE_FAN, O, 4, mesh->nfac );

glBindVertexArray ( 0 );
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ExitIfGLError ( "DrawMeshFacets" );
} /*DrawMeshFacets*/

Na poczatku dzialania aplikacji nalezy opisane wyzej programy przygotowac do dziata-
nia, wywolujac procedure LoadMeshRenderingPrograms z listingu 32.11 z parametrem —
wskaznikiem zadeklarowanej w aplikacji zmiennej, ktéra jest opakowaniem dla programow
rysujacych. Po lekturze wezesniejszych rozdzialoéw dzialanie wigkszosci instrukeji w tej pro-
cedurze jest oczywiste.

Listing 32.11. Przygotowanie i likwidacja programéw rysowania siatek
C
void LoadMeshRenderingPrograms ( MeshRenderPrograms *prog )
{
static const GLchar *filename[] =
{ "app3_0.vert.glsl", "app3_0.geom.glsl", "app3_0.frag.glsl",
"app3_1.vert.glsl", "app3_1.geom.glsl", "app3_1.frag.glsl"};
static const GLuint shtypel] =
{ GL_VERTEX_SHADER, GL_GEOMETRY_SHADER, GL_FRAGMENT_SHADER,
GL_VERTEX_SHADER, GL_GEOMETRY_SHADER, GL_FRAGMENT_SHADER };
GLuint shader_id[6];
int i;

for (i =0; i< 6; i++ )

shader_id[i] = CompileShaderFiles ( shtypel[il, 1, &filename[i] );
prog->progid[0] = LinkShaderProgram ( 3, &shader_id[0], "O" );
prog->progid[1] = LinkShaderProgram ( 3, &shader_id[3], "1" );
GetAccessToMeshSurfBlock ( prog->progid[1] );
GetAccessToTransBlockUniform ( prog->progid[0] );
AttachUniformTransBlockToBP ( prog->progid[1] );
GetAccessToLightBlockUniform ( prog->progid[1] );
for (i =0; i < 6; i++ )

glDeleteShader ( shader_id[i] );
ExitIfGLError ( "LoadMeshRenderingPrograms" ) ;

} /*LoadMeshRenderingPrograms*/

void DeleteMeshRenderingPrograms ( MeshRenderPrograms *prog )

{

int 1i;

glUseProgram ( 0 );
for (i =0; i < 2; i++ )
glDeleteProgram ( prog->progid[i] );
ExitIfGLError ( "DeleteMeshRenderingPrograms" );
} /*DeleteMeshRenderingPrograms*/

Siatki bedace wynikiem zageszczania z parzysta liczbg n krokéw usredniania moga miec
$ciany o innej niz 4 liczbie krawedzi i procedura DrawMeshFacets nie moze wykona¢ po-
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prawnego obrazu takiej siatki. Najprostszy sposdb poradzenia sobie z tym problemem polega
na wykonaniu jeszcze jednego kroku usredniania, ktérego wynikiem bedzie siatka z wszyst-
kimi §cianami czworokatnymi.

Uwaga: Jesli w siatce wystepuja krawedzie brzegowe (w siatce dloni takich krawedzi nie ma),
to lepiej jest poming¢ na obrazie niektére $ciany. Mianowicie dla nieparzystego n nalezy
poming¢ (n —1)/2 ,warstw” $cian przyleglych do brzegu. Na przyktad dla n = 3 pominiete
powinny by¢ $ciany, ktore maja pewien wierzcholek brzegowy, a dla n = 5 trzeba dodatkowo
poming¢ $ciany majace wspolny wierzcholek ze $ciang majaca wierzcholek brzegowy. Aby
narysowac siatke otrzymang przez zageszczanie z parzysta liczbg n, powinnismy wykona¢
wspomniane wyzej dodatkowe usrednianie, a potem odrzuci¢ n/2 — 1 ,warstw” $cian przy
brzegu siatki. Reguta ta wynika stad, ze powierzchnia graniczna (tj. granica nieskonczonego
ciggu siatek otrzymanych przez zageszczanie) jest lepiej przyblizana przez $ciany pozostate.

32.3. Cze$c¢ graficzna trzeciej aplikaciji

Podobnie jak w aplikacji pierwszej i drugiej, czes¢ okienkowa nie wywoluje bezposrednio
zadnych procedur OpenGL-a (tylko procedury z biblioteki GLX w celu utworzenia i zlik-
widowania kontekstu oraz obstugi podwdjnego buforowania). Przetwarzanie komunikatow
wejsciowych powoduje wywolywanie (niewielu) procedur, ktére stanowia interfejs czesci
graficznej; ta z kolei jest catkowicie niezalezna od $rodowiska, dzieki czemu mogtaby sta¢
sie na przyktad czedcig aplikacji systemu Windows bez zadnych zmian. Utworzone i obstu-
giwane przez cze¢$¢ okienkowa wihajstry (w tej wersji aplikacji tylko przetaczniki) stuzg do
wydawania polecen dla czgsci graficznej. Dane czgéci graficznej sa niewidoczne dla czgsci
okienkowej, z wyjgtkiem zmiennych, ktére musza by¢ widoczne dla obu czesci aplikacji, na
przyktad tych, ktérym wihajstry w menu maja przypisywacé wartosci?. Zmienne te s3 polami
zmiennej typu AppWidgets.

Plik nagtéwkowy interfejsu miedzy czesciami graficzng a okienkows jest przedstawiony
na listingu 32.12; makrodefinicje w liniach 3-9 s3 identyfikatorami wihajstréw (wihajstra ob-
razu, guzika zatrzymania i przetacznikéw), przy czym identyfikatory przetacznikéw sa jedno-
cze$nie identyfikatorami polecen dla czesci graficznej wydawanych przez te wihajstry. Proce-
dura InitMyWorld, wywolywana po utworzeniu okien, przekazuje wskaznik wspomniane;j
zmiennej typu AppWidgets; wihajstry sg tworzone po powrocie z tej procedury i sg ,,przy-
czepiane” do pol tej zmiennej.

Listing 32.12. Interfejs czesci okienkowej i czesci graficznej trzeciej aplikacji
C

*Zmiana stanu wihajstra moze spowodowa¢é zmiane stanu innych wihajstréw, o czym decyduje cze$é gra-
ficzna. Dlatego budowa struktury AppWidgets i jej pola sa widoczne dla obu czeéci aplikacji. Oczywiscie,
mozna uczyni¢ zmienne kazdej czgéci aplikacji niewidocznymi dla drugiej czgsci, odpowiednio rozbudowu-
jac procedury interfejsu (w tym przypadku procedura ProcessWorldRequest moglaby wykonywa¢ polecenie
ustawiania przetacznikéw w czeéci okienkowej), ale kod w C bylby sporo dtuzszy, a to jest ksigzka o OpenGL-u
i GLSL-u.
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: #define NPALMMESHES 4

: #define GLWIN_ID_VIEW 1
. #define BTN_ID_EXIT 2
: #define SW_ID_MESHO 3
. #define SW_ID_MESH1 4
: #define SW_ID_MESH2 5
: #define SW_ID_MESH3 6
: #define SW_ID_MESH4 7

10:

#define WMSG_ANIMATION_ON 1
#define WMSG_ANIMATION_OFF 2

typedef struct {
char sw[NPALMMESHES+1] ;
char animation;
} AppWidgets;

AppWidgets *InitMyWorld ( int argc, char *argv[], int width, int height );
void ResizeMyWorld ( int width, int height );

void RedrawMyWorld ( wvoid );

void RotateViewer ( double delta_xi, double delta_eta );

void DeleteMyWorld ( void );

char ProcessCharCommand ( char charcode );

char ProcessSwitchCommand ( int wdg_id );

char MoveOn ( void );

char ProcessWorldRequest ( int msg, void *data, void *reply );

Opisana dalej procedura obstugi komunikatéw wihajstrow w czesci okienkowej wywo-
tuje odpowiednie procedury czesci graficznej; reakcje na zmiane stanu przelacznikow wy-
konuje procedura ProcessSwitchCommand. Obszar okna z obrazem tez jest wihajstrem;
wprowadzone w pierwszej i drugiej aplikacji procedury ResizeMyWorld, RedrawMyWorld,
RotateViewer, ProcessCharCommand i MoveOn sg wywolywane przez procedury obstugi
komunikatéw tego wihajstra.

Procedura ProcessWorldRequest nalezy do czgsci okienkowej; jest ona wywolywana
z czg$ci graficznej w odpowiedzi na polecenia uruchomienia i zatrzymania animacji; identy-
fikatory tych polecen sa wprowadzone w liniach 11 i 12.

Listing 32.13 przedstawia deklaracje typow strukturalnych opakowujgcych dane czesci
graficznej aplikacji. Pierwsze pole struktury AppData zawiera przelaczniki, tj. zmienne, kto-
rym warto$ci nadajg wihajstry w czesci okienkowej. Struktura typu KLMesh zawiera tablice
wskaznikéw do reprezentacji siatek dloni; pierwsza siatka jest wprowadzana do pamigci GPU
przez procedure z listingu 32.1, a kazda nastepna jest otrzymana z poprzedniej przez zagesz-
czanie z trzema krokami usredniania. Oprécz tego sa podane kolory, w ktoérych maja by¢
rysowane krawedzie i $ciany siatki. Deklaracja typu Camera jest pokazana na listingu 15.13.



1

2:

3:

4:

© o N o o

10:

11:

12:

13:

14:

15:

16:

1

942 32. TRZECIA APLIKACJA

Listing 32.13. Struktury danych czeéci graficznej

C
. typedef struct {
GPUmesh *mesh[NPALMMESHES+1];
GLfloat ecolour[3], fcolour[3];
} KLMesh;
. typedef struct {
AppWidgets wdg;
KLMesh palm;
Camera camera;
TransBl trans;
LightBl light;
char lod, edges;
float speed;
float model_rot_axis[3];
double model_rot_angle;
MeshRenderPrograms mrprog;
} AppData;

Pola trans i light sg strukturami przechowujacymi macierze przeksztalcen i opisy zro-
det $wiatta.

Warto$¢ pola lod okredla, ktdra siatka ma by¢ wyswietlana — kolejne siatki maja co-
raz wiecej $cian, dzieki czemu coraz lepiej przyblizaja gtadka powierzchne, ale coraz wiecej
czasu zajmuje ich rysowanie. Pole edges jest przelacznikiem, ktérego wartos¢ true powo-
duje wyswietlanie krawedzi (zamiast wypelnionych $cian) zageszczonej siatki. Pola speed,
model_rot_axisimodel_rot_angle przechowuja predkos¢ katowa obracajacej si¢ siatki,
wektor kierunku osi i biezacy kat tego obrotu. W polu mrprog sa przechowywane idntyfika-
tory programow szaderéw uzywanych do rysowania.

Listing 32.14 przedstawia procedure inicjalizacji danych. W kolejnych instrukcjach
zmienna appdata jest wypelniana zerami, po czym nastepuje wywolanie procedur kom-
pilujacych i faczacych programy szaderéw, tworzenie pustego obiektu tablicy wierzchotkow,
tworzenie buforéw z blokami zmiennych jednolitych TransBlock i LightBlock, inicjaliza-
cja zegara, okreslanie osi i predkosci katowej ruchu obrotowego modelu, inicjalizacja macie-
rzy modelu, inicjalizacja rzutowania perspektywicznego i zrédet $wiatla, wybdr poczatkowo
wyswietlanych siatek (krawedzie siatki oryginalnej i $ciany siatki po dwoch zageszczeniach),
a potem do pamigci GPU siatka dloni jest wprowadzana i poddawana kolejnym zageszcze-
niom. Przekazanie adresu zmiennej wdg (bedacej polem zmiennej appdata) w instrukeji
return umozliwia czesci okienkowej ,doczepienie” wihajstrow (przetacznikéw) do odpo-
wiednich pdl tej zmienne;j.

Listing 32.14. Procedura InitMyWorld
C

: static AppData appdata;

2:
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3: AppWidgets *InitMyWorld ( int argc, char *argv[], int width, int height )
4: {
5: static const float model_rot_axis[3] = {0.0,1.0,0.0};

7. memset ( &appdata, 0, sizeof (AppData) );

s: LoadMeshRefinementPrograms ( true, false );

9: LoadMeshRenderingPrograms ( &appdata.mrprog );
10:  ConstructEmptyVAO QO;

11:  appdata.trans.trbuf = NewUniformTransBlock ();
12: appdata.light.lsbuf = NewUniformLightBlock Q);
13:  TimerInit ();

1a:  memcpy ( appdata.model_rot_axis, model_rot_axis, 3*sizeof (float) );
15: appdata.speed = 0.5%3.1415926;

16:  SetupModelMatrix ( &appdata );

17: InitCamera ( &appdata, width, height );

18: InitLights ( &appdata );

19: appdata.wdg.sw[0] = appdata.wdg.sw[2] = true;
20: appdata.lod = 2;
21: appdata.edges = appdata.wdg.animation = false;

22:  InitPalmMeshes ( &appdata );

23:  ExitIfGLError ( "InitMyObject" );
24¢: return &appdata.wdg;

25: } /*InitMyWorldx*/

Procedury LoadMeshRef inementProgram i LoadMeshRenderingPrograms z listin-
gow 3110 i 32.11 przygotowuja programy zageszczania i rysowania siatek. Do rysowania
jest potrzebny pusty obiekt tablicy wierzchotkéw tworzony w linii 10. Bufory w pamieci
GPU przechowujace macierze przeksztalcen i opisy zrodel $wiatta sa tworzone przez pro-
cedury z listingéw 10.7 i 10.9. Macierze widoku i rzutowania przygotowuje procedura
InitCamera z listingu 15.16, na ktérym jest tez pokazana wywolywana przez nig procedura
_ResizeMyWorld i procedura InitLights, wprowadzajaca o$wietlenie.

Listing 32.15. Procedury inicjalizacji czesci graficznej
C
1: void SetupModelMatrix ( AppData *ad )
2: {
3:  M4x4RotateVfv ( ad->trans.mm, ad->model_rot_axis, ad->model_rot_angle );
4: LoadMMatrix ( &ad->trans, NULL );
5: + /*SetupModelMatrix*/

7: void InitPalmMeshes ( AppData *ad )

8 {

9: static const GLfloat edges_colour[3] = {0.0,0.5,0.7};

10: static const GLfloat facets_colour[3] = {0.91,0.65,0.5};
11: KLMesh *palm;

12:  int i;



13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

1:

2:

944 32. TRZECIA APLIKACJA

palm = &ad->palm;
if ( (palm->mesh[0] = EnterPalmToGPU ()) ) {
for (i = 1; i <= NPALMMESHES; i++ ) {
if ( !(palm->mesh[i] = malloc ( sizeof (GPUmesh) )) )
ExitOnError ( "InitPalmMeshes 0" );
memset ( palm->mesh[i], O, sizeof (GPUmesh) );
if ( !'GPUmeshRefinement ( MESHDEG,
palm->mesh[i-1], palm->mesh[i] ) )
ExitOnError ( "InitPalmMeshes 1" );
printf ( "%d: nv = )d, nhe = %d, nfac = %d\n", i,
palm->mesh[i]->nv, palm->mesh[i]->nhe, palm->mesh([i]->nfac );
}
memcpy ( palm->ecolour, edges_colour, 3*sizeof (GLfloat) );
memcpy ( palm->fcolour, facets_colour, 3xsizeof (GLfloat) );
}
else
ExitOnError ( "InitPalmMeshes" );
} /*InitPalmMeshes*/

Rysowane przedmioty, tj. siatki dfoni, przygotowuje procedura InitPalmMeshes, ktdra
w linii 15 przesyta do pamigci GPU siatke opisana w podrozdziale 32.1, a nastepnie, w petli,
wywoluje (w linii 20) procedure zageszczania siatki opisang w poprzednim rozdziale. W ten
sposOb powstaja cztery siatki bedace coraz dokladniejszymi przyblizeniami powierzchni
gladkiej reprezentujacej dton. W kazdej chwili aplikacja bedzie wyswietla¢ co najwyzej jedna
z tych powierzchni. W liniach 26 i 27 s okreslane kolory krawedzi i $cian siatek.

Procedury ResizeMyWorld i RotateViewer s3 takie same jak w drugiej aplikacji (zo-
bacz listing 15.17).

Listing 32.16 przedstawia procedury rysowania sceny i sprzatania podczas zatrzymania
aplikacji. Procedura RedrawMyWorld wywoluje procedure DrawMyScene, ktora na pocza-
tek kasuje tlo, a potem jest wywotywana procedura z listingu 32.7. Petla w liniach 10-16 ma
za zadanie wyszukanie pierwszej zageszczonej siatki, ktorej przetacznik jest wiaczony, i na-
rysowanie jej, za pomocg procedury z listingu 32.10. Jesli uzytkownik wylaczy wszystkie te
przetaczniki, to na obrazie moze zobaczy¢ tylko siatke niezageszczong®.

Procedura DeleteMyWorld likwiduje programy szaderéw, reprezentacje siatek, bufory
z macierzami i $wiattami i pusty obiekt tablicy wierzchotkow, zostawiajac porzadek po czesci
graficznej aplikacji.

Listing 32.17 przedstawia pozostale procedury czesci graficznej wywolywane z czedci
okienkowej aplikacji. Procedura ProcessSwitchCommand jest wywolywana po kazdej

Listing 32.16. Procedury rysowania i sprzatania
C
void DrawMyScene ( AppData *ad, AppWidgets *wdg )
{

*lub tylko tlo, jedli jej rysowanie tez wytaczyt
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10:

11:

12:

13:

14:

15:

16:

-}

18:

19:

20:

{

22:

23

-}

24:

25:

26:

{

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

¥

int 1i;

glClearColor ( 1.0, 1.0, 1.0, 1.0 );
glClear ( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glEnable ( GL_DEPTH_TEST );
if ( wdg->sw[0] )
DrawMeshEdges ( &ad->mrprog, ad->palm.mesh[0], ad->palm.ecolour );
for ( i = 1; i <= NPALMMESHES; i++ )
if ( wdg->swlil ) {
if ( ad->edges )
DrawMeshEdges ( &ad->mrprog, ad->palm.mesh[i], ad->palm.fcolour );
else
DrawMeshFacets ( &ad->mrprog, ad->palm.mesh[i], ad->palm.fcolour );
}
/*DrawMyScenex*/

void RedrawMyWorld ( wvoid )

DrawMyScene ( &appdata, &appdata.wdg );
glFlush O;
/*RedrawMyWorld*/

void DeleteMyWorld ( void )

int i;

DeleteMeshRefinementPrograms ();
DeleteMeshRenderingPrograms ( &appdata.mrprog ) ;
for ( i = 0; i <= NPALMMESHES; i++ )
DeleteGPUmesh ( appdata.palm.mesh[i] );
glDeleteBuffers ( 1, &appdata.trans.trbuf );
glDeleteBuffers ( 1, &appdata.light.lsbuf );
DeleteEmptyVAOD ();
ExitIfGLError ( "DeleteMyWorld" );
/*DeleteMyWorldx*/

zmianie stanu ktoregos przefacznika w menu. Pierwszy przefacznik steruje wyswietlaniem
siatki niezageszczonej i dziata niezaleznie od pozostalych. Z pozostatych przetacznikéw mo-
ze by¢ wiaczony tylko jeden naraz, zatem wlaczenie dowolnego z nich powoduje wylaczenie
pozostalych.

Procedura ProcessCharCommand jest wywolywana po napisaniu dowolnego znaku na

klawiaturze, gdy kursor jest w obszarze okna z obrazem. Napisanie litery K zmienia war-

Listing 32.17. Procedury ProcessSwitchCommand, ProcessCharCommand i MoveOn
C

1: char ProcessSwitchCommand ( int wdg_id )

2

{
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switch ( wdg_id ) {
. case SW_ID_MESH1: case SW_ID_MESH2: case SW_ID_MESH3: case SW_ID_MESH4:
if ( appdata.wdg.sw[wdg_id-SW_ID_MESHO] ) {
memset ( &appdata.wdg.sw[1], false, NPALMMESHES );
appdata.wdg.sw[(int) (appdata.lod = wdg_id-SW_ID_MESHO)] = true;
}
return true;
case SW_ID_MESHO:
return true;
default:
return false;
}

} /*ProcessSwitchCommand*/

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

void ToggleAnimation ( AppData *ad )

{
if ( (ad->wdg.animation = !ad->wdg.animation) ) {
ProcessWorldRequest ( WMSG_ANIMATION_ON, NULL, NULL );
TimerTic ();
}
else

ProcessWorldRequest ( WMSG_ANIMATION_OFF, NULL, NULL );
} /*ToggleAnimation */

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

char ProcessCharCommand ( char charcode )
{
switch ( toupper ( charcode ) ) {
case > ’:
ToggleAnimation ( &appdata );
return true;
case ’K’:
appdata.edges = !appdata.edges;
return true;
default:
return false;
}

} /*ProcessCharCommandx*/

40:

41:

42:

43:

44:

45:

46:

47:

48:

'S

9

char MoveOn ( void )

{
if ( appdata.wdg.animation ) {
if ( (appdata.model_rot_angle += appdata.speed * TimerTocTic ()) >= PI )
appdata.model_rot_angle -= 2.0%PI;
SetupModelMatrix ( &appdata );
}

return appdata.wdg.animation;
. } /*MoveOnx/
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to$¢ zmiennej edges, czyli przetacznie miedzy rysowaniem trdjkatow ($cian siatki) wypel-
nionych a rysowaniem krawedzi siatki. Nacisniecie klawisza spacji jest poleceniem wiaczenia
albo wylaczenia animacji, ktdra polega na obracaniu przedmiotu wokoét ustalonej osi ze staly
predkoscig katowa. W obu przypadkach pomocnicza procedura ToggleAnimation wywo-
tuje procedure ProcessWorldRequest, ktdra, jesli animacja zostala wlaczona, powoduje
wywolywanie co chwila procedury Move0On; ta ostatnia na podstawie odczytu zegara oblicza
faze ruchu (tj. biezacy kat obrotu), konstruuje macierz modelu i przesyta ja do pamigci GPU.
Niezerowa warto$¢ powrotna opisanych tu procedur jest zawiadomieniem cze$ci okienkowej,
ze nalezy wykonac nowy obraz.

32.4. Okna trzeciej aplikacji

Graficzny interfejs uzytkownika jest tworzony przy uzyciu procedur opisanych w rozdzia-
le 30. Aplikacja tworzy jedno okno z dwoma podoknami, z ktérych pierwsze zawiera menu
z guzikiem i przetacznikami, a w drugim jest wyswietlany obraz dloni, tj. powierzchni zbudo-
wanej z tréjkatow odpowiednio zageszczonej siatki opisanej w podrozdziale 32.1. Listing 32.18
przedstawia procedure main oraz wywolywane przez nig procedury inicjalizacji i sprzata-
nia. Nazwy kolejno wywolywanych procedur powinny dostatecznie objasnia¢ wykonywane
przez nie zadania?, z jednym wyjatkiem. Procedura XInternAtom otrzymuje od systemu
X Window atom, ktory bedzie identyfikatorem komunikatéw uzywanych do zrealizowania
animacji. W zasadzie mozna do tego uzy¢ dowolnej liczby calkowitej, ale otrzymany atom
bedzie inny niz identyfikatory wszelkich wlasnosci (properties) okreSlonych przez system,
menedzera okien i aplikacje — chyba ze ktéras z nich zostala nazwana "aAnimate", co tez
nie wyrzadzi zadnych szkdd.

Ostatnie dwa parametry procedury InitApp3Windows w linii 14 okreslaja numer po-
trzebnej wersji OpenGL-a. Poniewaz jest to pierwsza opisana tu aplikacja biblioteki X11, ko-
lejne listingi przedstawiaja kompletny opis jej procedur (z pominieciem tych, ktére zostaly
wziete z poprzednich aplikacji bez zmian).

Listing 32.18. Procedura main i dwie inne procedury

C
. static Window window[3];
: static GLXContext glxcontext;
: static char terminate;
: static Atom alAnimate;
: static int windowO_width, windowO_height;
: static xwinmenu *wml, *wm2;
: static xwidget *mywdg ;

*Procedury, ktérych nazwy zaczynaja sie od litery X, naleza do biblioteki X11. Informacje na ich temat naj-
prosciej jest uzyskac za pomoca programu man.
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static AppWidgets *appwdg;

void Initialise ( int argc, char *xargv )
{
InitXServerConnection ( argc, argv, false );
InitApp3Windows ( argc, argv, APP3_GL_MAJOR, APP3_GL_MINOR );
aAnimate = XInternAtom ( xdisplay, "aAnimate", False );
appwdg = InitMyWorld ( argc, argv, WINO_WIDTH-MENU_WIDTH, WINO_HEIGHT );
wml = SetupApp3Menu () ;
wm2 = SetupApp3GLWindow ();
} /#Initialisex/

void Cleanup ( void )

{
DeleteMyWorld ( &myglwdata, &appdata );
DeleteWinMenu ( wmil );
DeleteWinMenu ( wm2 );
XDestroySubwindows ( xdisplay, window[0] );
XDestroyWindow ( xdisplay, windowl[0] );
XFreeGC ( xdisplay, xgc );
XCloseDisplay ( xdisplay );

} /*Cleanup*/

int main ( int argc, char **argv )
{
Initialise ( argc, argv );
MessageLoop ();
Cleanup ();
exit ( 0 );
} /*mainx*/

Listing 32.19 przedstawia procedure, ktora tworzy okna aplikacji. Dalej bedzie mowa
o oknie gléwnym, oknie menu i oknie obrazu. Podane przez system X Window identyfi-
katory tych okien zostang zapamietane odpowiednio w zmiennych window [0], window [1]
iwindow[2].

Okna menu i obrazu sg podoknami okna gtéwnego i w calosci wypelniajg jego obszar.
Zawarto$¢ okna menu ma by¢ rysowana przez procedury z biblioteki X11, z kolei zawartos¢
okna obrazu wyprodukuje OpenGL. Procedura pokazana na listingu 32.19 powstala przez
modyfikacje procedury InitMyGLXWindow z listingu 3.7; niezmienione instrukcje powinny
by¢ (i s3) jasne.

W aplikacji OpenGL-a przeznaczonej do dzialania w systemie X Window mozemy row-
niez uzy¢ wielokrotnego prébkowania w celu przeprowadzania antyaliasingu. W tym celu,
wywolujac procedure InitGLXContext, trzeba podac tablice potrzebnych atrybutéow wizu-
alu z dodanymi liniami 14 i 15 (poréwnaj tablice visattr z tablicg vattr na listingu 3.6).
Liczba prébek na piksel ma by¢ w tablicy podana po stalej symbolicznej GLX_SAMPLES.
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Listing 32.19. Tworzenie okien trzeciej aplikacji
C

1: #define WINO_WIDTH 480
2: #define WINO_HEIGHT 360
3: #define MENU_WIDTH 120

4:

5: void InitApp3Windows ( int argc, char **argv, int major, int minor )

6: {
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

45:

int vattr[] =

{ GLX_RGBA, True,
GLX_DOUBLEBUFFER, True,
GLX_RED_SIZE, 8,
GLX_GREEN_SIZE, 8,
GLX_BLUE_SIZE, 8,
GLX_DEPTH_SIZE, 24,
GLX_SAMPLE_BUFFERS, True,
GLX_SAMPLES, 8,
None };

static const int wx[3] = { 0, O, MENU_WIDTH };
static const int wh[3] { WINO_WIDTH, MENU_WIDTH,
WINO_WIDTH-MENU_WIDTH };

XSetWindowAttributes swa;

Colormap xcolormap;
XVisualInfo *xXvii;
Window upw;

int i;

InitGLXContext ( major, minor, vattr, &xvii, &glxcontext );
if ( !(xcolormap = XCreateColormap ( xdisplay, xrootwin,
xvii->visual, AllocNone )) )
ExitOnError ( "InitApp3Windows 1" );
swa.colormap = xcolormap;
swa.event_mask = ExposureMask | StructureNotifyMask| ButtonPressMask |
ButtonReleaseMask | PointerMotionMask | KeyPressMask;
for ( i = 0, upw = xrootwin; i < 3; i++, upw = window[0] ) {
window[i] = XCreateWindow ( xdisplay, upw, wx[i], O, wh[i], WINO_HEIGHT,
0, xvii->depth, InputOutput, xvii->visual,
CWColormap | CWEventMask, &swa );
XMapWindow ( xdisplay, window([i] );
}
XFreeColormap ( xdisplay, xcolormap );
XFree ( xvii );
XSetWMProtocols ( xdisplay, window[0], &DeleteWindow, 1 );
XStoreName ( xdisplay, window[0], "Trzecia aplikacja" );
xgc = XCreateGC ( xdisplay, window[1], 0, 0 );
InitRGBXColourmap ();
InitWinMenuPalette ();
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if ( !'glXMakeCurrent ( xdisplay, window[2], glxcontext ) )
ExitOnError ( "InitApp3Windows 2" );

GetGLProcAddresses ( major, minor );

PrintGLVersion ();

windowO_width = WINO_WIDTH;

windowO_height = WINO_HEIGHT;

: } /*InitApp3Windows*/

Przodkiem gléwnego okna aplikacji jest pulpit lub inne okno wskazane przez mene-
dzera okien; jego identyfikator jest otrzymywany za pomoca procedury RootWindow. Okno
gltéwne jest zgloszone jako przodek okna menu oraz okna aplikacji, a zatem s3 one pod-
oknami okna gléwnego. Relacje migdzy oknami sg ustalane przez drugi parametr procedury
XCreateWindow.

Listing 32.20 przedstawia procedury obstugi menu aplikacji. Po utworzeniu menu w li-
nii 42 jest tworzony guzik, a potem w petli przetaczniki. Adres zmiennej, ktorej przetacznik
ma nadawac warto$ci, jest polem struktury wskazywanej przez zmienng appwdg; wartos¢ tej
zmiennej zostala nadana przez instrukcje w linii 16 na listingu 32.18.

Listing 32.20. Tworzenie i obstuga menu
C
: char str_EXIT[] = "Exit"; /* napis na guziku */

: void WiniCallback ( struct xwidget *wdg, int msg, int key, int x, int y )
A
switch ( msg ) {
: case WDGMSG_BUTTON_PRESS:
switch ( wdg->id ) {
case BTN_ID_EXIT:
terminate = true; /* powoduje zakoficzenie dziatania */
break;
default:
break;
}

break;

15:

16:

17:

18:

19:

20:

21:

case WDGMSG_SWITCH_CHANGE:
if ( ProcessSwitchCommand ( wdg->id ) ) {
wm2->changed = true;
PostMenuExposeEvent ( wm2 );
¥

break;

22:

23:

24:

25:

26:

27:

case XWMSG_KEY_PRESS:
mywdg->input ( mywdg, msg, key, X, y )
if ( wm2->changed )
PostMenuExposeEvent ( wm2 );
break;
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default:
break;
}
} /*Wini1CallBack*/

xwinmenu* SetupApp3Menu ( void )
{

Xwinmenu *wm;

int i;

if ( !'(wm = NewWinMenu ( window[1], MENU_WIDTH, WINO_HEIGHT, 0, O,
NULL, NULL, WinlCallback )) )
ExitOnError ( "SetupApp3Menu" );
NewButton ( wm, BTN_ID_EXIT, 60, 18, 2, 2, str_EXIT );
for (i = 0; i < NPALMMESHES; i++ )
NewSwitch ( wm, SW_ID_MESHO+i, 16, 16, 2+20%i, 22, NULL,
&appwdg->meshsw[i] );
return wm;
} /*SetupApp3Menux*/

Procedura WiniCallback, wywolana po pstryknigciu guzika, w linii 9 nadaje zmien-
nej terminate warto$¢ powodujaca zakonczenie petli komunikatéw i zatrzymanie aplikacji.
Po pstryknieciu przetacznika procedura ta wywoluje procedure ProcessSwitchCommand
z czesci graficzne;j. Jej parametr jest identyfikatorem przetacznika, ktéry ma w tym momencie
nadang nowg warto$¢. Procedura ProcessSwitchCommand moze zmieni¢ wartosci innych
przetacznikow; gdy tak sie stanie, przekaze warto$¢ powrotna true. Instrukcje w liniach 18
i 19 spowoduja wykonanie w oknie menu uaktualnionego obrazu wszystkich wihajstrow.

W liniach 23-27 nastepuje przekazanie wszystkich komunikatéw o naci$nieciu klawisza,
nieobstuzonych przez wihajstry w menu pierwszego podokna, wihajstrowi wyswietlajagcemu
obraz sceny w drugim podoknie. Dzigki temu na przyktad naci$niecie spacji uruchamia lub
zatrzymuje obracanie obiektu niezaleznie od potozenia kursora w gléwnym oknie aplikacji.
Jesli obraz sceny ma zosta¢ zmieniony, to instrukcja w linii 26 powoduje wykonanie nowego
obrazu.

Listing 32.21 przedstawia procedure SetupApp3GLWindow, ktéra tworzy menu dla okna
z obrazem; menu to zawiera jeden wihajster, wyswietlajacy obraz i przyjmujacy polecenia
wydawane za pomocg klawiatury i myszy, oraz procedury reagujace na zdarzenia zwigzane
z tym oknem. Metody wihajstra s3 podane dale;j.

Struktura typu widget3d zawiera dane wihajstra obrazu; pole data0 wihajstra wskazuje
taka strukture, utworzong przez procedure konstrukeji wihajstra. Sg w niej pola do prze-

Listing 32.21. Procedury przetwarzania wejécia okna z obrazem
C

typedef struct {
int last_x, last_y;
char opti;
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} widget3d;

: void RedrawWin2 ( xwinmenu *wm )

{

widget3d *ww;

ww = (widget3d*)mywdg->data0;
if ( ww->opti > 0 ) {
ww->opti --;
PostExposeEvent ( wm->window, wm->r.width, wm->r.height );

}
else {
for ( wdg = wm->wlist.next; wdg; wdg = wdg->link.next )
wdg->redraw ( wdg );
glFlush O;
}

glXSwapBuffers ( xdisplay, wm->window );
} /*RedrawWin2x*/

void Win2Callback ( struct xwidget *wdg, int msg, int key, int x, int y )
{
widget3d *ww;

ww = (widget3d*)mywdg->data0;
switch ( msg ) {
case WDGMSG_RECONFIGURE:
mywdg->input ( mywdg, WDGMSG_RECONFIGURE, O, x, y );
ww->opti = 4;
PostMenuExposeEvent ( wdg->wm );
break;
case XWMSG_CLIENT_MESSAGE:
mywdg->input ( mywdg, msg, key, x, y );
break;
default:
break;
}
} /#Win2Callback*/

xwinmenu *SetupApp3GLWindow ( wvoid )
{

Xwinmenu *wm;

if ( !'(wm = NewWinMenu ( window[2], WINO_WIDTH-MENU_WIDTH, WINO_HEIGHT,
0, 0, NULL, RedrawWin2, Win2Callback )) )
ExitOnError ( "SetupApp3GLWindow 0" );
if ( !(mywdg = New3DWidget ( wm, GLWIN_ID_VIEW,
wm->r.width, wm->r.height )) )
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ExitOnError ( "SetupApp3GLWindow 1" );
return wm;
} /*SetupApp3GLWindow*/

chowywania poprzedniego potozenia kursora w oknie (na potrzeby obracania obserwatora
wokot obiektu) i zmienng opti, ktdrej rola jest wyjasniona w p. 3.5.2.

W liniach 46-47 jest tworzone menu, a w liniach 49-50 jedyny wihajster tego menu, wy-
swietlajacy obraz i umozliwiajacy ogladanie przedstawionych na nim obiektéw z réznych
stron. Wskaznik do tego wihajstra jest przypisywany zmiennej mywdg. Procedura Redraw-
Win2 wykonuje obraz. Procedura Win2Callback jest wywolywana po otrzymaniu przez
okno komunikatéw ConfigureNotify i ClientMessage; w pierwszym przypadku zawia-
damia wihajster o zmianie wymiardw i zada wykonania nowego obrazu, a w drugim przeka-
zuje wihajstrowi komunikat wystany w celu kontynuowania animacji.

Listing 32.22 przedstawia procedure tworzenia wihajstra z obrazem i jego metody. Pro-
cedura My3DWidgetRedraw wywoluje procedure z czgsci graficznej, ktéra wykonuje obraz.

Procedura My3DWidgetInput przetwarza komunikaty wejSciowe. Wihajster ma dwa
stany, nazwane WDGSTATE_DEFAULT i WDGSTATE_VIEW_TURNING; przelaczanie miedzy nimi
nastepuje po naci$nieciu i zwolnieniu lewego przycisku myszy, podobnie jak w aplikacjach
pierwszej i drugiej. W tym drugim stanie przesuwanie myszy powoduje wywolywanie pro-
cedury RotateViewer

W obu stanach wihajster tak samo reaguje na pisanie znakéw na klawiaturze (wywotujac
procedure ProcessCharCommand z czesci graficznej) i na komunikaty ClientMessage. Po
sprawdzeniu (w linii 64), ze komunikat Cl1ientMessage jest zwigzany z animacja, jest wywo-
tywana procedura MoveOn z czgsci graficznej, ktora odczytuje zegar i oblicza nowe polozenia
obiektéw. Instrukcje w liniach ee i 67 zawiadamiajg o konieczno$ci wykonania nowego ob-
razu, a instrukcja w linii 69 wysyta kolejny komunikat ClientMessage dla podtrzymania
ruchu.

Listing 32.22. Metody wihajstra z obrazem
C
: void My3DWidgetRedraw ( struct xwidget *wdg )
{
RedrawMyWorld ();
: } /*My3DWidgetRedrawx*/

char My3DWidgetInput ( struct xwidget *wdg, int msg, int key, int x, int y )
{

XClientMessageEvent *xclient;

widget3d WW;

ww = (widget3d*)wdg->datal;
switch ( wdg->state ) {
case WDGSTATE_DEFAULT:
switch ( msg ) {
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case XWMSG_BUTTON_PRESS:
if ( key == Buttonl ) {
wdg->last_x = x; wdg->last_y = y;
wdg->state = WDGSTATE_VIEW_TURNING;
GrabInput ( wdg );
return true;
}
break;
case XWMSG_KEY_PRESS:
goto process_key;
case WDGMSG_RECONFIGURE:
ResizeMyWorld ( wdg->r.width = x, wdg->r.height =y );
break;
case XWMSG_CLIENT_MESSAGE:
goto process_client_message;
case XWMSG_DELETE:
goto process_delete_message;
default:
break;
¥

break;

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57

59:

60:

61:

case WDGSTATE_VIEW_TURNING:
switch ( msg ) {
case XWMSG_MOUSE_MOTION:
if ( ((XMotionEvent*)wdg->wm->ev)->state & ButtoniMask ) {
RotateViewer ( (double) (x - ww->last_x), (double)(y - ww->last_y) );
ww->last_x = x; ww->last_y = y;
wdg->wm->changed = true;
b
else
goto release;
break;
case XWMSG_BUTTON_RELEASE:
if ( key == Buttonl ) {
release:
wdg->state = WDGSTATE_DEFAULT;
UngrabInput ( wdg );
return true;
b
break;
case XWMSG_KEY_PRESS:
: process_key:
if ( ProcessCharCommand ( key ) )
return wdg->wm->changed = true;
break;
case XWMSG_CLIENT_MESSAGE:
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62: process_client_message:

63: xclient = (XClientMessageEvent*)wdg->wm->ev;

64: if ( xclient->message_type == aAnimate && appwdg->animation ) {
65 if ( MoveOn () ) {

66: wm2->changed = true;

67: PostMenuExposeEvent ( wm2 );

68: }

69: PostClientMessageEvent ( window[2], aAnimate, 8, NULL );

70: }

71: break;

72:  case XWMSG_DELETE:
73: process_delete_message:

74: free ( wdg->datal );
75: return true;

76: default:

77: break;

78: }

79: break;

80:

s1: default:

82: break;

83: }

sa: return false;
ss: + /*My3DWidgetInput*/

s7: xwidget *New3DWidget ( struct xwinmenu *wm, int id, int w, int h )
ss: {

go: widget3d *ww;

90:

or: if ( !'(ww = malloc ( sizeof (widget3d) )) )

92: ExitOnError ( "New3DWidget" );

93: ww->opti = 0;

94: return NewWidget ( wm, sizeof (xwidget), id, w, h, 0, O,

95: My3DWidgetInput, My3DWidgetRedraw, ww, NULL );
96: + /*New3DWidget*/

Procedura New3DWidget jest konstruktorem wihajstra obrazu; rezerwuje ona pamie¢ na
dane dodatkowe i nadaje poczatkowa warto$¢ polu opti, a nastepnie wywoluje procedure
NewWidget, ktora tworzy wihajster, wiacza go do menu, przypisuje wskazniki metod input
i redraw tego wihajstra i przypisuje polu data0 adres bloku pamieci z danymi dodatko-
wymi. Blok ten jest zwalniany po otrzymaniu przez wihajster komunikatu XWMDG_DELETE,
wysylanego przez menu w trakcie jego likwidacji.

Listing 32.23 przedstawia procedure ProcessWorldRequest, wywolywang przez czes¢
graficzng, gdy polecnie wydane przez naci$niecie klawisza spacji ma uruchomi¢ albo za-
trzymac animacje. Wlaczenie animacji polega na wyslaniu pierwszego z serii komunikatu
ClientMessage do okna obrazu. Wylaczenie animacji nie wymaga zadnych dziatan; war-
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to$¢ false zmiennej appwdg->animation (nadana przez czes¢ graficzng) zatrzyma wysy-
lanie komunikatéw ClientMessage ,napedzajacych” animacje’.

Listing 32.23. Procedura ProcessWorldRequest
C

: char ProcessWorldRequest ( int msg, void *data, void *reply )

A

switch ( msg ) {

: case WMSG_ANIMATION_ON:

PostClientMessageEvent ( window[2], aAnimate, 8, NULL );
return true;

: case WMSG_ANIMATION_OFF:

return true;

. default:

return false;

}
} /*ProcessWorldRequest*/

Pozostate procedury czesci okienkowej przedstawia listing 32.24. Procedura Message-
Loop realizuje gléwna petle komunikatéw, w ktdrej dla kazdego komunikatu otrzymanego
od systemu X Window ustala adresata, tj. jedno z trzech okien aplikacji i wywoluje odpo-
wiednig procedure, aby przetworzyla ten komunikat. Procedura przetwarzania komunika-
tow okna gtéwnego reaguje na dwa zdarzenia: komunikat Conf igureNotify, otrzymany po
zmianie wymiaréw okna przez uzytkownika, powoduje obliczenie nowych wymiaréw pod-
okien, tj. okna menu i okna obrazu. Oba podokna majg wysoko$¢ taka jak okno gtéwne.
Okno menu ma stalg szeroko$¢ MENU_WIDTH pikseli i zajmuje obszar z lewej strony okna
gléwnego, a okno obrazu zajmuje pozostaly obszar okna gtéwnego. Wywolania procedury
XMoveResizeWindow w liniach 7-10 spowodujg wystanie komunikatéw ConfigureNotify
do podokien, a obstuga tych komunikatéw zajma si¢ metody obiektow menu.

Listing 32.24. Procedury WinOMessageProc i MessageLoop
C

: void WinOMessageProc ( XEvent *ev )

It

XClientMessageEvent *xclient;

switch ( ev->xany.type ) {

: case ConfigureNotify:

XMoveResizeWindow ( xdisplay, window[1], 0, O,
MENU_WIDTH, windowO_height = ev->xconfigure.height );
XMoveResizeWindow ( xdisplay, window[2], MENU_WIDTH, O,

> Gdyby czes¢ okienkowa byta zrealizowana na przyklad przy uzyciu biblioteki FreeGLUT, animacja mogtaby
by¢ wylaczana przez wykonanie instrukcji glutIdleFunc ( NULL ) ;. Interfejs migdzy czesciami okienkowa
a graficzng zawiera polecenie wylgczenia animacji po to, aby to umozliwi¢ bez uzalezniania czeéci graficznej od
biblioteki okienkowe;.
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10: (windowO_width = ev->xconfigure.width)-MENU_WIDTH, windowO_height );
11: break;

12: case ClientMessage:

13: xclient = (XClientMessageEvent*)ev;

14: if ( xclient->message_type == WMProtocols &&

15: (Atom)xclient->data.1[0] == DeleteWindow ) {
16: terminate = true;

17: break;

18: }

19: default:

20: break;

21: }

22: } /*WinOMessageProc*/

23:

24: void MessageLoop ( void )
25: {

26: XEvent ev;

27:

28: terminate = false;

20: do {

30: XNextEvent ( xdisplay, &ev );

3t: if ( ev.xany.window == window[0] )

32: WinOMessageProc ( &ev );

33: else if ( ev.xany.window == window[1] )
34: WinMenuInput ( wml, &ev );

35: else if ( ev.xany.window == window[2] )
36: WinMenuInput ( wm2, &ev );

37z} while ( !terminate );
3: } /*MessageLoop*/

Uzytkownik, za posrednictwem menedzera okien, moze wysta¢ do aplikacji polecenie za-
trzymania jej. Wtedy w komunikacie ClientMessage jest przekazany atom DeleteWindow;
zmienna terminate otrzymuje warto$¢ true i aplikacja konczy dziafanie.

32.5. Cwiczenia

1. Dodaj suwak umozliwiajacy zmienianie predkosci obracania dloni podczas animacji.

2.*Napisz szader obliczeniowy, ktory dla siatki przechowywanej w pamieci GPU wpisze do
tablicy w odpowiednim buforze pary indekséw wierzchotkéw koncowych krawedzi, aby
mozna bylo te krawedzie narysowac za pomoca procedury glDrawElements. W wersji
tatwiejszej szader ma wpisywac do tablicy dane dla wszystkich potkrawedzi, a w wersji
trudniejszej tylko dla potkrawedzi brzegowych i dla jednej potkrawedzi z pary reprezen-
tujacej krawedz wewnetrzng — trzeba zatem dla kazdej potkrawedzi wyznaczy¢ miejsce
w tablicy, w ktérym maja by¢ zapamigtane indeksy jej koncow, obliczajac odpowiedni
ciag sum prefiksowych (zobacz rozdz. 31).
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Rysunek 32.1. Siatki wyswietlane przez trzecia aplikacje

3.*Napisz szader obliczeniowy, ktéry do tablicy w pamieci GPU wpisze indeksy trojkatow
otrzymanych z podzialu $cian, aby umozliwi¢ jej narysowanie za pomocg procedury
glDrawElements. W wersji latwiejszej mozna przyjac, ze wszystkie $ciany sa czwo-
rokatne. W wersji trudniejszej nalezy dopusci¢ dowolne siatki, co wymaga obliczenia
wieloetapowego, z obliczaniem sum prefiksowych.

»

4.*Napisz i uruchom szader obliczeniowy, ktéry ,,0znaczy” $ciany siatki w ,warstwie brze-
gowej” (nadajac odpowiednia wartos$¢ bitowi okreslonemu przez maske TAGMASK na lis-
tingu 31.3).

5.*Napisz i uruchom program szaderéw, ktéry narysuje $ciany nie ,,0znaczone” na przykiad
przez szader bedacy rozwigzaniem poprzedniego ¢wiczenia.
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Dodamy szader obliczeniowy, ktérego zadaniem jest obliczenie, dla kazdego wierzchotka
siatki, wektora normalnego. Siatki otrzymane przez zageszczanie przyblizajg gladka po-
wierzchnie graniczng, ktorej obraz chcemy uzyskac. Obliczone wektory normalne beda przy-
bliza¢ wektory normalne powierzchni granicznej, a ich interpolacja doprowadzi do otrzyma-
nia obrazu cieniowanego, ktéry wyglada jak obraz gladkiej powierzchni. Do dzieta.

33.1. Obliczanie wektoréw normalnych

Wspolrzedne wierzchotkéw siatki s3 upakowane w tablicy liczb zmiennopozycyjnych, przy
czym dopuszczamy 2, 3 lub 4 wspoélrzedne wierzchotkéw — w pierwszym przypadku siatka
lezy w plaszczyznie x y i dla wszystkich wierzchotkéw mamy wektor normalny (0,0, 1), za-
tem wszelkie jego obliczenia sg zbedne, a w trzecim przypadku mamy wspéirzedne jedno-
rodne wierzchotkéw. Obliczone wektory normalne umiescimy w tej samej tablicy. W tym
celu utworzymy dodatkowy bufor z tablicg na wyniki; dla kazdego wierzchotka szader sko-
piuje wspolrzedne wierzcholka i dopisze do nich wspdtrzedne wektora normalnego. Ale to
wymaga ,porozsuwania” wierzchotkéw w tablicy, bo zamiast trzech lub czterech liczb mamy
ich dla kazdego wierzcholtka szes¢ lub siedem. Mozemy tez zarezerwowa¢ w tablicy miejsce
na dodatkowe atrybuty, takie jak kolor lub wspétrzedne tekstury'.

Szader obliczeniowy, ktorego zadaniem jest obliczenie wektora normalnego, zastgpi
tablice, w ktorej sg tylko wspolrzedne polozen wierzchotkéw, przez tablicg, w ktdrej sa
takze wspolrzedne wektoréw normalnych i ewentualnie miejsce na wspoétrzedne tekstury.
Rozmieszczenie atrybutéw wierzcholkow siatki danej i siatki wynikowej opiszemy za po-
mocg zmiennych jednolitych umieszczonych w bloku o nazwie MeshNV. Zmienne innsattr
i outnsattr opisujg liczbe wszystkich skalarnych atrybutéw wierzchotka siatki w tablicy
danej i wynikowej. Zmienna pdim okresla liczbe wspoétrzednych wierzchotka (2, 3 lub 4).

"To wymaga odpowiedniego rozbudowania struktur typu CPUmesh i GPUmesh oraz bloku magazynowego
meshsurf o pola opisujace polozenia tych atrybutéw w tablicy. Na przyklad pola przechowujace liczbe wspét-
rzednych tekstury i numer pierwszej z nich dla wierzchotka mozna nazwaé tdimi tofs.
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Zmienne inpofs i outpofs opisujg, ktory atrybut jest pierwsza wspolrzedng polozenia
wierzchotka w siatce danej i wynikowej. Zmienna outnvofs okresla miejsce, od ktérego sza-
der ma umiesci¢ w tablicy wynikowej obliczone wspoirzedne wektora normalnego. Jesli na
przyklad wierzchotki majg podane tylko 3 wspolrzedne swojego potozenia, to zmienne pdim
oraz innsattr majg warto$¢ 3, a inpofs ma wartos¢ 0. Jedli wtedy w tablicy z wynikami
maja by¢ tylko wspolrzedne polozenia i wspétrzedne wektora normalnego, to przypiszemy
outnsattr = 6, outpofs = Oioutnvofs = 3.

Do punktéw dowigzania 0, 1, 2 i 3 celu GL_SHADER_STORAGE_BUFFER przywigzemy od-
powiednio bufory, z ktorych pierwszy zawiera tablice wierzchotkéw i $cian oraz tablice z lis-
tami indekséw ich pétkrawedzi, drugi zawiera tablice potkrawedzi, trzeci tablice z danymi
wspolrzednymi wierzcholkdéw, a ostatni tablice na wynik. Makrodefinicje w liniach 18-24 na
listingu 33.1 utatwiajg dostep do tablic w tych buforach.

Listing 33.1. Szader obliczeniowy wektoréw normalnych wierzchotkéw siatki
GLSL

: #version 450 core

: .... /* tu makrodefinicje FHEMASK i DEGSHIFT jak na listingu 31.3 */
: .... /* oraz makrodefinicje VO, V1, FACN i OTHE jak na listingu 31.9 */

: layout (local_size_x=1) in;

: layout (std430,binding=0) buffer Inmvf { int mvf[]; } mvf;
: layout (std430,binding=1) buffer Inmhe { ivec4 mhe[]; } mhe;
layout (std430,binding=2) buffer Invc { float vc([]; } inmvc;
layout (std430,binding=3) buffer Outvc { float vc[]l; } outmvc;

12:

13:

14:

15:

16:

uniform MeshNV {
int innsattr, pdim, inpofs, inv, inhe, infac,
outnsattr, outpofs, outnvofs;

};

17:

18:

19:

20:

21:

22:

23:

24:

#define mv(I) mvf .mvf [I]

#define mfac(I) mvf.mvf[inv+(I)]

#define mvhei(I) mvf.mvf [inv+infac+(I)]
#define mfhei(I) mvf.mvf[inv+infac+inhe+(I)]
#define mhe(I) mhe .mhe [T]

#define imvc(I) dinmvc.vc[I]

#define omvc(I) outmvc.vc[I]

25:

26:

27:

28:

30

vec3 GetVertexPos3f ( int i )
{

i = innsattr*i + inpofs;

return vec3 ( imvc(i), imvc(i+1), imvc(i+2) );
: } /*GetVertexPos3f*/

31:
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32: void MeshVertexNormal3f ( int i )

33: {
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
B7:
58:
59:
60:
61:
62: }

63:

int d, fhe, j, m, f, fd, ffhe;
vec3 p0O, pl, p2, vl, v2, nv;

fhe = mv(i) & FHEMASK;
d = mv(i) >> DEGSHIFT;
pO = GetVertexPos3f ( i );
m = outnsattr*i + outpofs;
omve(m) = p0.x; omvc(m+l) = p0.y; omvc(m+2) = p0.z;
nv = vec3 ( 0.0 );
if ( mhe(mvhei(fhe+d-1)).0THE < 0 ) {

f = mhe (mvhei(fhe)) .FACN;

ffhe = mfac(f) & FHEMASK;

fd = mfac(f) >> DEGSHIFT;

for ( j =0; j < fd; j++ )

if ( mhe(mfhei(ffhe+j)) .Vl == 1i )
break;

vl = GetVertexPos3f ( mhe(mfhei(ffhe+j)).V0 ) - pO;
}
else

vl = GetVertexPos3f ( mhe(mvhei(fhe+d-1)).V1 ) - pO;
for ( j =0; j<d; j++) {

v2 = GetVertexPos3f ( mhe(mvhei(fhe+j)).V1 ) - pO;

nv += cross ( vl, v2 );

vl = v2;
}
nv = normalize ( nv );
m = outnsattr*i + outnvofs;
omvc(m) = nv.x; omvc(m+l) = nv.y; omvc(m+2) = nv.z;
/*MeshVertexNormal3f*/

64: void main ( void )

65: {

66:

switch ( pdim ) {

e7: case 3: MeshVertexNormal3f ( int(gl_GlobalInvocationID.x) );
es: case 4: Dbreak; /* procedura do napisania jako Cwiczenie */
69: default: break;

70:

71: }

}

/*mainx*/

break;

Pomocnicza procedura GetVertexPos3f ma pobrac trzy wspolrzedne (kartezjanskie)
polozenia i-tego wierzcholka. Zasadnicze obliczenie wykonuje procedura MeshVertex-
Normal3f, ktéra w linii 40 przepisuje wspolrzedne i-tego wierzchotka do tablicy wynikowej.
Algorytm obliczania wektora normalnego jest nastepujacy: i-ty wierzchotek jest koncem co
najmniej dwdch (jesli jest brzegowy) albo co najmniej trzech (jesli jest wewnetrzny) krawe-
dzi, ktére oby nie byly réwnolegte. W kazdej $cianie, ktéra ma ten wierzchotek, znajdowane
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sa dwie potkrawedzie, takie ze i-ty wierzcholek jest konicem pierwszej i poczatkiem dru-
giej z nich. Po odjeciu i-tego wierzcholka od pozostalych wierzchotkéw tych potkrawedzi
otrzymujemy dwa wektory, v; i v, ktorych iloczyn wektorowy jest wektorem normalnym
plaszczyzny zawierajacej krawedzie siatki reprezentowane przez te potkrawedzie. Wektory
normalne plaszczyzn dla kolejnych $cian sa sumowane (w celu usrednienia kierunkéw), po
czym suma jest poddawana normalizacji (tj. dzielona przez swoja dlugos¢) i oto mamy jed-
nostkowy wektor normalny odpowiadajacy i-temu wierzcholkowi. Wystarczy jego wspot-
rzedne wpisa¢ do tablicy wynikowej, co wykonuja instrukcje w linii 61.

Dla wierzchotkéw brzegowych i wewnetrznych trzeba wykona¢ troche inne instrukcje.
Warunek w linii 43 jest spelniony dla wierzchotka brzegowego. Dla kazdego wierzchotka
mamy tylko liste indekséw potkrawedzi, ktorych ten wierzchotek jest poczatkiem, nie ma
w niej wiec indeksu pdtkrawedzi brzegowej, ktorej ten wierzchotek jest koncem. Dlatego dla
wierzchotka brzegowego trzeba odnalez¢ konczaca si¢ w nim pétkrawedz brzegowa, prze-
szukujac (w petli w liniach 47-49) liste pétkrawedzi sciany pierwszej potkrawedzi wychodzgcej
z wierzchotka. W linii 50 jest obliczany wektor v; dla znalezionej potkrawedzi brzegowe;j
wchodzgcej do wierzchotka.

Jesli wierzcholek jest wewnetrzny, to obliczenie jest znacznie prostsze; wektor v; obli-
czony w linii 53 odpowiada ostatniej potkrawedzi wychodzacej z wierzchotka. W petli w li-
niach s4-58 obliczane sg wektory v, dla kolejnych pétkrawedzi wychodzacych z i-tego wierz-
chotka, po czym iloczyn wektorowy v; A v, jest dodawany do zmiennej nv w celu obliczenia
sumy. Wektor v, w nastepnym przebiegu petli staje si¢ wektorem v;.

Podobng par¢ procedur, o nazwach na przykltad GetVertexPos4f i MeshVertex-
Normal4f nalezy napisa¢ w celu umozliwienia obliczen dla siatek, ktérych wierzchotki maja
polozenia reprezentowane przez wspoéltrzedne jednorodne (linia 68). Nie napisatem tych pro-
cedur celowo, zostawiajac to jako ¢wiczenie dla Czytelnikéw. Potrzebne do odnajdywania
numeréw odpowiednich wierzchotkéw w siatce instukcje moga by¢ takie same, a wspot-
rzedne wektora normalnego plaszczyzny w R?, w ktdrej lezg punkty (wierzchotki siatki) re-
prezentowane przez wektory wspotrzednych jednorodnych P;, Pj, Py s3 pierwszymi trzema
wspdlrzednymi iloczynu wektorowego tych trzech wektorow w R*, P; A P A P;. Mozna do
jego obliczenia uzy¢ funkcji cross4 z listingu 15.1.

Inna mozliwo$¢, to zamiana wspdtrzednych jednorodnych na kartezjanskie. Mogloby
to da¢ oszczednos¢ miejsca w pamigci GPU zajmowanego przez wynikowa reprezentacje
i troche przyspieszy¢ rysowanie, ale trzeba pamieta¢é, ze wynik ewentualnego dalszego za-
geszczania siatki, ktorej wierzchotki majg rézne wspotrzedne wagowe bylby inny niz wynik
zageszczania siatki, ktorej wierzcholki majg w R? te same potozenia reprezentowane przez
wspolrzedne kartezjanskie (albo réwnowaznie przez wspoélrzedne jednorodne z t3 samg
wspolrzedng wagowa dla wszystkich wierzchotkéw).

Listing 33.2 przedstawia procedury, ktore przygotowuja do pracy i likwiduja program
z opisanym wczesniej szaderem obliczeniowym. Identyfikator programu, bufor bloku zmien-
nych jednolitych i tablica przesunig¢ zmiennych wzgledem poczatku bufora s pamigtane
w globalnych zmiennych statycznych, niewidocznych poza plikiem zrédtowym zawieraja-
cym te procedury i procedure wywolujaca szader z listingu 33.1.
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Listing 33.2. Procedury kompilacji i likwidacji programu obliczania wektoréw normalnych
C

: static GLuint nvprogid;
: static GLuint nvbuf, nvbbp;
. static GLint nvuvofs[9];

: void LoadMeshNormalVectorProgram ( void )

{
const GLchar *filenamel[] =
{ "mnv.comp.glsl" };
const GLchar *uvnames[] =
{ "MeshNV", "innsattr", "pdim", "inpofs",
"outnsattr", "outpofs", "outnvofs" };
GLuint shader_id;
GLint size;

inv", "inhe", "infac",

shader_id = CompileShaderFiles ( GL_COMPUTE_SHADER, 1, &filename[0] );
nvprogid = LinkShaderProgram ( 1, &shader_id, "meshes normal" );
GetAccessToUniformBlock ( nvprogid, 9, uvnames, &size, nvuvofs,
&nvbbp ) ;
glGenBuffers ( 1, &nvbuf );
glBindBufferBase ( GL_UNIFORM_BUFFER, nvbbp, nvbuf );
glBufferData ( GL_UNIFORM_BUFFER, size, NULL, GL_DYNAMIC_DRAW );
glDeleteShader ( shader_id );
ExitIfGLError ( "LoadMeshNormalVectorProgram" );
} /*LoadMeshNormalVectorProgram*/

void DeleteMeshNormalVectorProgram ( void )
{

glUseProgram ( 0 );

glDeleteProgram ( nvprogid );

glDeleteBuffers ( 1, &nvbuf );

ExitIfGLError ( "DeleteMeshNormalVectorProgram" );
} /#DeleteMeshNormalVectorProgram*/

Procedura LoadMeshNormalVectorProgram wykonuje rutynowe dzialania: kompiluje
szader i faczy program oraz odczytuje z niego przesuniecia pél w bloku zmiennych jedno-
litych MeshNV; informacje te sa zapamietywane w opakowaniu wskazywanym przez para-
metr. Ponadto procedura rezerwuje numer punktu dowigzania i tworzy bufor dla tego bloku
zmiennych jednolitych; numer punktu i identyfikator bufora s réwniez zapisywane w opa-
kowaniu.

Procedura wywolujgca program obliczajacy wektory normalne dla wierzchotkéw siatki
jest pokazana na listingu 33.3. W liniach 11-14 dokonywana jest rezerwacja bufora na nowsa
tablice atrybutéw wierzchotkow siatki. W liniach 18-26 zmiennym jednolitym w bloku Mesh-
NV sa nadawane odpowiednie wartoéci, po czym program szaderdéw przystepuje do pracy
— liczba uruchamianych watkéw jest liczba wierzchotkéw siatki. Po zakonczeniu obliczen
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nowy bufor ze wspotrzednymi polozen i wektoréw normalnych jest ,,instalowany” w repre-
zentacji siatki w miejscu bufora dotychczasowego, ktéry w linii 29 zostaje oddany do re-
cyklingu.

Listing 33.3. Procedura obliczania wektoréw normalnych
C

1: #define SETUVAR(n,type,x)

2:

3:

glBufferSubData ( GL_UNIFORM_BUFFER, uvofs[n], sizeof(type), &x );

4: void ComputeMeshNormalVectors ( GPUmesh #*mesh, int nsattr, GLint nvofs )

5: {
6:

7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:

34: }

GLuint vcbuf;

glBindBufferBase ( SSB, O, mesh->MVFBUF );

glBindBufferBase ( SSB, 1, mesh->MHEBUF );

glBindBufferBase ( SSB, 2, mesh->VCBUF );

glGenBuffers ( 1, &vcbuf );

glBindBufferBase ( SSB, 3, vcbuf );

glBufferData ( SSB, mesh->nv*nsattr*sizeof (GLfloat), NULL,
GL_DYNAMIC_DRAW );

ExitIfGLError ( "ComputeMeshNormalVectors 0" );

glUseProgram ( nvprogid );

glBindBufferBase ( GL_UNIFORM_BUFFER, nvbbp, nvbuf );

SETUVAR ( 0, GLint, mesh->nsattr );

SETUVAR ( 1, GLint, mesh->pdim );
SETUVAR ( 2, GLint, mesh->pofs );
SETUVAR ( 3, GLint, mesh->nv );
SETUVAR ( 4, GLint, mesh->nhe );
SETUVAR ( 5, GLint, mesh->nfac );
SETUVAR ( 6, GLint, nsattr );
SETUVAR ( 7, GLint, mesh->pofs );

mesh->nvofs = nvofs; SETUVAR ( 8, GLint, nvofs );
COMPUTE ( mesh->nv, 1, 1 )

ExitIfGLError ( "ComputeMeshNormalVectors 1" );
glDeleteBuffers ( 1, &mesh->VCBUF );

mesh->VCBUF = vcbuf;

mesh->nsattr = nsattr;

UploadMeshParams ( mesh )

ExitIfGLError ( "ComputeMeshNormalVectors" );
/*ComputeMeshNormalVectors*/

33.2. Rysowanie siatki

Opisane w poprzednim rozdziale szadery rysowania siatek trzeba dostosowa¢ do zmiany re-
prezentacji siatki z dodatkowymi atrybutami wierzchotkéw; chcemy zachowaé mozliwos¢
otrzymania takich samych obrazéw jak poprzednio, ale jesli sa podane wektory normalne
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wierzchotkéw, to chcemy ich uzywac podczas rysowania $cian siatki. Pierwszy program ry-
sowania siatki, ktérego zadaniem jest wyswietlenie krawedzi, nie wymaga zadnych zmian.

Niezbedna modyfikacja szadera wierzchotkéw programu rysowania podzielonych na
trojkaty $cian siatki jest rowniez niewielka; prawie cala tre§¢ szadera jest pokazana na lis-
tingu 33.4. Oprdcz polozenia wierzchotka (w zawsze obecnej zmiennej gl_Position) i ko-
loru szader wyprowadza wektor normalny w zmiennej Normal. Dla siatki plaskiej, lezacej
w plaszczyznie xy jest to zawsze wektor (0,0,1). Jesli liczba wspotrzednych wierzchotka
jest réwna 3 albo 4, to wyprowadzany jest wektor normalny wziety z tablicy, ale jesli war-
to$¢ zmiennej nvofs jest ujemna (co sygnalizuje nieobecno$¢ atrybutu — wektora normal-
nego), to wyprowadzony zostanie wektor zerowy. Naklada to na szader geometrii dodatkowy
obowigzek zbadania, czy wektor normalny jest zerowy, ktory w takim przypadku powinien
w miejscu wektora normalnego powierzchni wyprowadzi¢ wektor normalny plaszczyzny
przetwarzanego trdjkata (takiego rozwigzania uzyliSmy juz w drugiej aplikacji, zobacz lis-
ting 15.5).

Listing 33.4. Szader wierzchotkéw programu rysowania $cian siatki
C
.... /x dyrektywe #version i wczeSniej opisane makrodefinicje pomingtem */

: layout (location=0) out vec3 Normal;
: layout (location=1) out vec3 colour;

: .... /* bloki magazynowe jak na listingu 31.4 */

. #define mfac(I) mmvf.mvf [nv+(I)]

. #define mfhei(I) mmvf.mvf [nv+nfac+nhe+(I)]
. #define mhe(I) mmhe .mhe [T]

. #define mvc(I) mmvc.ve[I]

: void main ( void )
{

int i, j;

16:

17:

18:

19:

i = mhe(mfhei((mfac(gl_InstanceID) & FHEMASK) + gl_VertexID)).VO;

j = nsattr*i + pofs;

switch ( pdim ) {

: case 2:

gl_Position = vec4d ( mvc(j), mvc(j+1), 0.0, 1.0 );

Normal = vec3 ( 0.0, 0.0, 1.0 );

return;

: case 3:
gl_Position = vecd ( mvc(j), mvc(j+1), mvc(j+2), 1.0 );
break;

: default:

gl_Position = vecd ( mvc(j), mvc(j+1), mvc(j+2), mvc(j+3) );

break;
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30: }

s1:  if ( nvofs >= 0 ) {

32: Jj = nsattr*i + nvofs;

33: Normal = vec3 ( mvc(j), mvc(j+1), mvc(j+2) );
4.}

3s:  else

36: Normal = vec3 ( 0.0 );

37: colour = Colour;
38: } /*mainx*/

Szader geometrii (przetwarzajacy jeden trdjkat) jest pokazany na listingu 33.5, przed-
stawiajacym roznice miedzy tym szaderem a szaderem z listingu 32.9. Kolejne pola bloku
wyjsciowego Out reprezentujg polozenie wierzchotka w ukladzie wspolirzednych $wiata, ko-
lor, wektor normalny otrzymany od szadera wierzchotkéw i wektor normalny plaszczyzny
trojkata. W linii 29 nastepuje obliczanie i normalizacja wspoélrzednych w ukladzie $wiata
otrzymanego na wejsciu wektora normalnego (danego w ukladzie modelu). W linii 32 jest
obliczany wektor normalny plaszczyzny trojkata, ktory pozniej jest przekazywany na wyjscie
szadera w linii 37. Jesli otrzymany od szadera wierzchotkéw wektor normalny jest zerowy (tj.
ma dlugo$¢ znikomg, a nie réwng 1), to w jego miejscu jest rOwniez wyprowadzany wektor
normalny plaszczyzny tréjkata. W linii 42 moze by¢ zmodyfikowany zwrot tego wektora, aby
kat miedzy oboma wektorami normalnymi byl ostry.

Listing 33.5. Szader geometrii programu rysowania $cian siatki
GLSL

1: #version 450 core

2:

3: layout (triangles) in;

4: layout (triangle_strip,max_vertices=3) out;
5:

6: layout (location=0) in vec3 Normall[];

7: layout (location=1) in vec3 colour[];

8:

9: out FVertex {

10: vec3 Colour;

11: vec3 Position;

12: vec3 Normal, TNormal;
13: } Out;

14:
15: uniform TransBlock {

16: mat4 mm, mmti, vm, pm, Vpm;
17: vecd eyepos;
18: } trb;

19:
20: void main ( void )
21: {

22: int i;
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vecd pl3];
vec3 q[3], nvec[3], vl, v2, tnv;

for (i =0; i < 3; i++ ) {
pli] = trb.mm * gl_in[i].gl_Position;
qlil = plil.xyz/pl[i].w;
nvec[i] = normalize ( mat3(trb.mmti) * Normall[i] );

}
vl = q[1] - q[0]; v2 = ql[2] - ql0];
tnv = normalize ( cross ( v2, vl ) );
for (i =0; 1< 3; i++ ) {
gl_Position = trb.vpm * p[i];
Out.Position = q[i];
OQut.Colour = colourl[i];
Out.tnv = tnv;
if ( Normall[i], Normal[i] ) < 1.0e-10 )
Out.Normal = QOut.TNormal = tnv;
else {
OQut.Normal = nvec[i];
Out.TNormal = dot ( nvec[i], tnv ) > 0.0 ? tnv : -tnv;
}
EmitVertex ();
}
EndPrimitive ();
} /*mainx/

Do rysowania $cian siatki jest uzyty szader fragmentdw pokazany na listingu 12.8.
Mamy zatem dwa wektory normalne: jednostkowy wektor normalny plaszczyzny tréj-
kata (In.TNormal) i wektor normalny powierzchni gladkiej reprezentowanej przez siatke
(In.Normal), ktéry trzeba unormowac, bo jest on wynikiem interpolacji wektoréw jednost-
kowych o réznych kierunkach. Do rozstrzygniecia, czy obserwator jest po tej samej stronie
powierzchni co zrédlo $wiatla, trzeba uzy¢ wektora normalnego plaszczyzny tréjkata, a do
modelu o$wietlenia powierzchni (tj. do wzoru opisujacego ten model) trzeba podstawi¢ wek-
tor normalny powierzchni (zobacz s. 287).

Dostosowanie procedury LoadMeshRenderingShaders polega na zmienieniu nazw pli-
kow z tekstami Zrédtowymi szaderdw, z ktorych sktada si¢ program rysujacy $ciany siatki.
Aby moéc wybiera¢, czy w modelu o$wietlenia maja by¢ uzywane wektory normalne podane
jako atrybuty wierzcholkéw siatki (czego skutkiem jest powstanie obrazu powierzchni gtad-
kiej), czy wektory normalne tréjkatow, trzeba zmieni¢ procedure DrawMeshFacets w sposdb
pokazany na listingu 33.6 — dodatkowy parametr steruje wybieraniem wektoréw. Procedura
SetMeshNVS przypisuje jego warto$¢ polu MeshNormals bloku magazynowego meshsurf
opisujacego siatke. Wywolanie procedury glProvokingVertex usunglem, ale mozna je zo-
stawi¢ i nada¢ kwalifikator £1at polu TNormal bloku interfejsu FVertex, aby wyeliminowa¢
niepotrzebne obliczenia zwigzane z interpolacjg wektora normalnego plaszczyzny trojkata.
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Listing 33.6. Zmiany w procedurze rysowania $cian siatki
C

: void DrawMeshFacets ( MeshRenderPrograms *prog,

GPUmesh *mesh, GLfloat colour[3], char nvs )

o

int i;

for (i =0; i < 4; i++)
glBindBufferBase ( SSB, i, mesh->mbuf[i] );
SetMeshColour ( mesh, colour );
SetMeshNVS ( mesh, (GLint)nvs );
glUseProgram ( prog->progid[1] );
glBindVertexArray ( empty_vao );
glDrawArraysInstanced ( GL_TRIANGLE_FAN, O, 4, mesh->nfac );
glBindVertexArray ( 0 );
ExitIfGLError ( "DrawMeshFacets" );
} /*DrawMeshFacets*/

void SetMeshNVS ( GPUmesh *gmesh, GLint nvs )

{
glBindBuffer ( SSB, gmesh->MSBUF );
glBufferSubData ( SSB, mbofs[7], sizeof(GLint), &nvs );
ExitIfGLError ( "SetMeshNVS" );

33.3. Zmiany w aplikacji

Do procedury InitMyWorld pokazanej na listingu 32.14 trzeba doda¢ wywolanie procedury
LoadMeshNormalVectorShader z listingu 33.2, z kolei procedura sprzatajaca DeleteMy-
World ma wywola¢ procedure DeleteMeshNormalVectorProgram. Procedure przygoto-
wujacg siatki trzeba uzupelni¢ o instrukeje, ktéra oblicza wektory normalne dla wierzchot-
kow siatek (listing 33.7). Zwro¢my uwage, ze procedure ComputeMeshNormalVectors wy-
konujemy po otrzymaniu przez zageszczanie wszystkich siatek — w ten sposdb zageszczamy
siatke, ktorej wierzchotki maja tylko atrybut polozenia opisany przez tréjke liczb (wspol-
rzednych kartezjanskich), a obliczenie wektorow normalnych (ktére wprowadza dodatkowe
atrybuty) jest przeprowadzane, gdy reprezentacja siatki w pamigci GPU jest potrzebna juz
tylko do wykonywania obrazéw.

Pozostale zmiany, ktére aplikacje 3 zamienily w 3A, to dodanie pola mnv typu char do
struktury AppData, instrukcji (w procedurze ProcessCharCommand) nadajacych temu polu
wartoéci true i false w odpowiedzi na naciskanie klawisza z literg N i przekazanie wartosci
tego pola jako dodatkowego parametru w wywolaniu procedury DrawMeshFacets.
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Listing 33.7. Zmiany w procedurze InitPalmMeshes
C

1: void InitPalmMeshes ( AppData *ad )

2:{

10:
11:
12:
13:
14:
15:
16:
17:

18:

static const GLfloat edges_colour[3] = {0.0,0.5,0.7};
static const GLfloat facets_colour[3] = {0.91,0.65,0.5};
KLMesh *palm;

int i;

palm = &ad->palm;
if ( (palm->mesh[0] = EnterPalmToGPU ()) ) {
for (i = 1; i < NPALMMESHES; i++ ) {
. /* tu instrukcje bez zmian */
}
for ( i = 1; i < NPALMMESHES; i++ )
ComputeMeshNormalVectors ( palm->mesh[i] );

}
else

ExitOnError ( "InitPalmMeshes" );
/*InitPalmMeshes*/

Rysunek 33.1. Okno aplikacji trzeciej A

33.4. Cwiczenia

Wykonaj obliczenie wektoréw normalnych dla pewnej siatki, a nastepnie dokonaj zagesz-
czenia tej siatki prowadzacego do obliczenia wektoréw normalnych przez interpolacje
(tak jak obliczane sg polozenia wierzchotkdéw podczas zageszczania). Poréwnaj obrazy
otrzymane przy uzyciu tych wektoréw z obrazami wyswietlanymi przez aplikacje opisa-
ng w tym rozdziale.
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2. Rozszerz zestaw mozliwych atrybutow wierzchotkéw siatki o kolor, zmien aplikacje tak,
by radzita sobie z siatkami, w ktorych wektor normalny i kolor sa obecne lub nieobecne
i uzyj do wykonywania obrazéw atrybutéw dowolnie wybieranych sposréd atrybutéw
obecnych w danej reprezentacji siatki.



Aplikacja trzecia B

Utworzymy lancuch kinematyczny, z ktérego czlonami zwigzemy punkty kontrolne siatki
dfoni, umozliwiajac poruszanie palcami. Po zmianie dowolnego parametru artykulacji apli-
kacja przy uzyciu szadera obliczeniowego z listingu 23.1 obliczy wierzchotki odksztalcone;j
siatki, po czym zagesci te siatke i narysuje powierzchnie.

34.1. Lancuch kinematyczny

Graf lancucha kinematycznego dloni jest drzewem, ktérego ,galezie” reprezentuja palce.
Galezie na rysunku 34.1 od prawej do lewej reprezentuja kolejno kciuk, palec wskazujacy,
srodkowy, serdeczny i maly. Kazda galaz ma cztery krawedzie — pary kinematyczne odpo-
wiadajace poszczegdlnym stawom, przy czym pierwsze dwie pary wszystkich palcow oprocz
kciuka (np. pary J4 i J5 palca wskazujacego) odpowiadaja temu samemu stawowi; dzieki temu,
cho¢ wszystkie pary w lancuchu sg proste, pierwszy staw kazdego z tych palcow ma dwa
stopnie swobody.

Wszystkie pary kinematyczne w tym lancuchu sg obrotowe; razem z siatka na rysunku
s3 uwidocznione osie obrotéw realizowanych przez te pary, a przy kazdej osi jest podany
numer pary. Ponadto wierzcholki siatki zwigzane z poszczegdlnymi cztonami tancucha sg
oznaczone kolorami uzytymi takze do przedstawienia cztonéw — wierzchotkow grafu z lewej
strony. Zbioér wierzcholkdw zwigzanych z czlonami Ls, Lo, Li3 i Ly7 jest pusty.

Listing 34.1 przedstawia makrodefinicje i definicje typow strukturalnych potrzebne do
zbudowania tanicucha kinematycznego w aplikacji. Struktura typu KLMesh opisuje obiekt —
reprezentowang przez siatke powierzchnie bedacg modelem dloni. W nowym polu tribuf
tej struktury bedzie pamietany identyfikator bufora z tablica, w ktdrej dla kazdego wierz-
chotka siatki znajduje si¢ numer przeksztalcenia (indeks do tablicy macierzy przeksztalcen
opisujacych przejscie od ukladu wspoélrzednych czlonu tancucha do ukladu modelu), kto-
remu ma by¢ poddany ten wierzchotek, aby odksztalci¢ siatke.

Struktura typu KLAppData opisuje dane stanowigce cze$¢ opisu fancucha kinematycz-
nego i umozliwiajace narysowanie odksztalconego za jego pomoca obiektu. Jej pole wdg,
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Rysunek 34.1. Lanicuch kinematyczny dloni

bedace strukturg typu AppWidgets, zostalo rozszerzona o tablice artp, ktorej elementy sa
»podlgczone” do suwakéw w menu. Zmienne te, przyjmujace wartosci z przedziatu [0, 1], sa
uzywane do obliczenia parametréw artykulacji fancucha, tj. katéw ugiecia poszczegoélnych
stawow.

Tablica mesh zostala wydluzona o jedno miejsce. Pierwszy jej element bedzie wskazywat
strukture reprezentujaca siatke nieodksztalcong, a drugi siatke odksztalcona, tj. otrzymana
w wyniku artykulacji. Zageszczaniu bedzie poddawana siatka odksztalcona, otrzymane w ten
sposob siatki beda wskazywane przez pozostale elementy tablicy.

Do struktury typu AppData zostaly dodane pola 1inkage, 1ktrbuf i artprog. Pierwsze
z nich jest wskaznikiem struktury tancucha, ktérej pole usrdata bedzie wskazywac zmienna
typu AppData. Pole 1ktrbuf sluzy do przechowania identyfikatora bufora z macierzami
przeksztalcen, ktéorym bedg poddawane poszczegdlne wierzcholki siatki. Pole artprog jest
opakowaniem programu artykulacji fancucha kinematycznego, tego samego, ktéry byt uzyty
w aplikacji 2H (zobacz listingi 23.1, 23.2 i 23.3).

Listing 34.1. Makrodefinicje i struktura reprezentujaca scene
C

/* liczba krokdw uSredniania */

/* liczba zageszczonych siatek */

. #define NKLOBJ /* liczba obiektdw w tanicuchu */

: #define NKLINKS 21 /#* liczba czlondw */

: #define NKLREFS 17 /% liczba referencji */

: #define MESHDEG
: #define NPALMMESHES

[l S OV
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: #define NKLJOINTS 20 /# liczba par kinematycznych */
. #define NKLARTPARAMS 20 /* liczba parametrdw artykulacji */

. typedef struct {

char sw[NPALMMESHES+1];
float artp[NKLARTPARAMS];
char animation;

} AppWidgets;

typedef struct {
GPUmesh *mesh[NPALMMESHES+2] ;
GLfloat ecolour[3], fcolourl[3];
GLuint tribuf;
} KLMesh;

typedef struct {

AppWidgets wdg;
KLMesh palm;
k1_linkage *linkage;
Camera camera;
TransB1l trans;
LightBl light;
GLuint lktrbuf;
char lod, edges, mnv;
float speed;
float model _rot_axis[3];
double model_rot_angle;
MeshRenderPrograms mrprog;
KLArticulationProgram artprog;

} AppData;

Listing 34.2 przedstawia w skrdcie procedure ConstructPalmLinkage. Jej zadaniem
jest skonstruowanie tancucha kinematycznego opisujacego chwytna dlon. Wywotywane
przez nig procedury pomocnicze i metody obiektu — dloni sg przedstawione na kolejnych
listingach. Parametr procedury ConstructPalmLinkage jest adresem struktury opisujacej
scene.

Wywolana w liniach 22-23 procedura k1_NewLinkage rezerwuje pamiec na tancuch ki-
nematyczny o podanych limitach liczb tworzacych go elementéw. W linii 24 do tablicy zmien-
nych sterowanych przez suwaki sg wpisywane liczby (zapisane w tablicy palmartp0), ktdore
okreslg warto$ci poczatkowe parametréw artykulacji.

Czlony lancucha s wprowadzane w petli w liniach 25-26, po czym procedura k1_New-
Object wprowadza obiekt — siatke dloni, rejestrujac podane jako parametry metody tego
obiektu i wywolujac procedure KLInitPalmMesh, czyli konstruktor, ktory przesyla repre-
zentacje siatki do pamigci GPU i inicjalizuje dane potrzebne do jej przetwarzania (tj. zagesz-
czania i rysowania).
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Listing 34.2. Procedura ConstructPalmLinkage
C

1: k1_linkage *ConstructPalmLinkage ( AppData *ad )

2: {

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

45:

static int jtype[NKLJOINTS] =
{ KL_ART_ROT_Y, KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X,
KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X, KL_ART_ROT_X,
KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X, KL_ART_ROT_X,
KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X, KL_ART_ROT_X,
KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X, KL_ART_ROT_X };
static int jpnum[NKLARTPARAMS] =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
static float artpO[NKLARTPARAMS] =
{0.0,0.0,0.0,0.0,0.2,0.0,0.0,0.0,0.5,0.0,0.0,
0.0,0.5,0.0,0.0,0.0,0.8,0.0,0.0};
static float ppO[3] = {-0.2, -0.86, 0.5},
vp0O[3] = {0.0,1.0,0.0}, vp1[3] = {0.22,0.83,0.1};

k1l_linkage *1kg;

int 1nk [NKLINKS], jnt[NKLJDINTS];
GLfloat tral[16];
int ig j, k: 1;

if ( (ad->linkage = 1lkg = kl_NewLinkage ( NKLOBJ, NKLINKS, NKLREFS,
NKLJOINTS, NKLARTPARAMS, (void*)ad )) ) {
memcpy ( ad->artp, artpO, NKLARTPARAMSxsizeof (float) );
for (i = 0; i < NKLINKS; i++ )
1nk[i] = k1_NewLink ( lkg );
kl_NewObject ( lkg, O, 3, PALM_NV, NULL, (void*)&ad->palm,
KLInitPalmMesh, KLTransformVertices,
KLPostprocessMesh, KLRedrawMesh, KLDeletePalmMesh );
for (k= j=0; k <5; kt+)
for (i =0,1=-1; i< 4; i++, 1 = j++ )
jnt[j] = kl_NewJoint ( lkg, 1nk[1+1], Ink[j+1],
jtypeljl, jpnum[j]l );

H o~
I &

/* kciuk */
M4x4RotateP2VEf ( tra, ppO, vpO, vpl );
kl_SetJointFtr ( lkg, jnt[0], tra, true );
M4x4Translatef ( tra, 0.125, -0.842, 0.0 );
kl_SetJointFtr ( lkg, jnt[1], tra, true );
M4x4Translatef ( tra, 0.329, -0.275, 0.05 );
M4x4MRotateZf ( tra, -0.1%PI );
M4x4MRotateYf ( tra, -0.2%PI );
kl_SetJointFtr ( lkg, jnt[2], tra, true );
M4x4Translatef ( tra, 0.4, -0.05, 0.05 );
M4x4MRotateZf ( tra, -0.1*%PI );
M4x4MRotateYf( tra, -0.2%PI );



46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

58:

59:

60:

61:

62:

63:
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kl_SetJointFtr ( lkg, jnt[3], tra, true );
/* wskazujacy */
M4x4Translatef ( tra, 0.070, 0.05, 0.08 );

kl_SetJointFtr ( lkg, jnt[4], tra, true );
kl_SetJointFtr ( lkg, jnt[5], tra, true );
M4x4Translatef ( tra, 0.094, 0.324, 0.08 );
kl_SetJointFtr ( lkg, jnt[6], tra, true );
M4x4Translatef ( tra, 0.1, 0.591, 0.08 );

(

k1_SetJointFtr lkg, jnt[7], tra, true );
/* podobnie Srodkowy, serdeczny i maty */

glGenBuffers ( 1, &ad->lktrbuf );
glBindBuffer ( GL_SHADER_STORAGE_BUFFER, ad->lktrbuf );
glBufferData ( GL_SHADER_STORAGE_BUFFER, lkg->norefs*16*sizeof (GLfloat),
NULL, GL_DYNAMIC_DRAW );
}
return lkg;
} /*ConstructPalmLinkagex*/

W liniach 30-33 do taficucha sg dodawane pary kinematyczne; z uwagi na dosy¢ prostg
budowe grafu fancucha (wszystkie ,,galezie” majg w nim tyle samo par), zamiast ,wylicza¢”
kazda pare osobno, mozna to zrobi¢ w podwdjnej petli. Rodzaje kolejnych par (tj. okreslenia
osi obrotu dla kazdej pary) sg brane z tablicy jtype, z kolei w tablicy jpnum s3 podane nu-
mery parametrow artykulacji. W tym przypadku, poniewaz wszystkie pary s3 proste, numery
te s kolejnymi liczbami catkowitymi.

Po utworzeniu par kinematycznych trzeba jeszcze dla kazdej z nich okresli¢ macierze
stale, F; oraz B;. W kazdym przypadku jest B; = F;, dzieki czemu w polozeniu wyjécio-
wym (w ktérym katy obrotéw wszystkich par sg réwne 0) uklady wspolrzednych wszystkich
czlonéw pokrywaja sig¢ i siatka nie jest odksztalcona (zobacz podrozdz. 13.1). Przeksztalcenia
opisane przez te macierze maja na celu koncowe okreslenie osi obrotu pary, przez podanie
(dowolnego) punktu tej osi i ewentualne zmodyfikowanie jej kierunku. Dla wszystkich pal-
cow z wyjatkiem kciuka osie obrotéw sa réwnolegte do osi zi x, a odpowiednie macierze F; s3
macierzami przesunieé. Na przykiad dla palca wskazujacego osie obrotow par J4i J5 przecho-
dza przez punkt (0.07,0.05,0.08), o$ pary Je przechodzi przez punkt (0.094,0.324,0.08),
a para J; realizuje obr6t wokdt osi przechodzacej przez punkt (0.1,0.591,0.08). Macierze
Fy = Fs, Fg 1 F7 s konstruowane przez instrukcje w liniach 4s, 51 i 53.

Osie obrotéw niektdrych par kinematycznych kciuka nie sg réwnolegte do osi ukladéw
wspoélrzednych. Na przyklad kierunek osi obrotu pary ]y jest wyznaczony przez macierz Fy,
ktora opisuje obrot wokot przechodzacej przez punkt poy = (-0.2,-0.86,0.5) osi prostopad-
tej do wektoréw vy = (0,1,0) i v = (0.22,0.83,0.1), przy czym kat tego obrotu jest dobrany
tak, aby obraz wektora v mial kierunek i zwrot wektora v;. Uzyta w linii 35 do obliczenia tej
macierzy procedura M4x4RotateP2Vf jest zamieszczona na listingu 5.3. Macierz Fj repre-
zentuje tylko przesuniecie, z kolei macierz F, = TRy R; opisuje zlozenie trzech przeksztalcen:
przesuniecia T o wektor (0.329, -0.275,0.05), obrotu R; wokot osi z i obrotu R, wokot osi y.
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W liniach 57-60 jest tworzony bufor w pamieci GPU z tablicg, do ktdrej procedura KL-
TransformVertices, bedaca metoda obiektu — siatki, bedzie wpisywaé macierze prze-
ksztalcen obliczone przez procedure artykulacji tancucha.

Listing 34.3 przedstawia metody siatki. Konstruktor obiektu, czyli procedura KLInit-
PalmMesh, ma przygotowac wszystkie dane potrzebne do artykulacji i do rysowania obiektu.
Zatem, w linii 26 (oryginalna) siatka dloni jest przesytana do pamigci GPU. Petla w liniach
27-31 wprowadza referencje obiektu, wiazace odpowiednie podzbiory zbioru wierzchotkéw
z czlonami lancucha, oraz zapisuje (w roboczej tablicy cpi) dla kazdego wierzchotka nu-
mer referencji tego wierzchotka — jest to numer przeksztalcenia, ktéremu wierzchotek be-
dzie poddany w procesie artykulacji. Parametr procedury k1_NewObjRef okreslajacy liczbe
wierzchotkow tworzonej referencji jest rowny 0, poniewaz przekstalcanie wierzchotkéw wy-
kona szader obliczeniowy wywolany przez procedur¢ KLPostprocessMesh. W liniach 32-34
jest tworzony bufor, do ktérego przesylana jest zawartos¢ tablicy roboczej.

W liniach 36-40 jest rezerwowana pamig¢¢ na opisy siatki odksztalcone;j i siatek zagesz-
czonych. Poniewaz siatka oryginalna i siatka odksztalcona beda réznic si¢ tylko potozeniami
wierzchotkéw, w linii 41 dane opisujace siatke oryginalng sg kopiowane do struktury siatki
odksztalconej, po czym w liniach 42-45 jest rezerwowany nowy bufor, w ktérym beda prze-
chowywane wierzchotki siatki odksztalconej. W liniach 46 i 47 w strukturze opisujacej siatke
sa zapisywane kolory, jakimi maja by¢ rysowane krawedzie siatki odksztatconej i $ciany siatek
otrzymanych z jej zageszczania.

Listing 34.3. Metody obiektu — siatki dloni
C
static char KLInitPalmMesh ( kl_linkage *1lkg, kl_object *obj )
{

static const GLfloat edges_colour[3] = {0.0,0.5,0.7};

static const GLfloat facets_colour[3] = {0.91,0.65,0.5};

static GLint r0[144] =
{0,1,2,3,6,7,8,9,10,13,16,17,135,138,139,140,141,142,143,

4,11,134,136,137, 5,12,14,15,18,19,20,21, 22,23,24,25,26,27,28,29,

30,31,32,33,34,35,36,37, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,56,57,58,59,60,61, 62,63,64,65,66,67,68,69, 70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85, 86,87,88,89,90,91,92,93, 94,95,96,97,98,
99,100,101,102,103,104,105,106,107,108,109, 110,111,112,113,114,115,116,
117,118,119,120,121,122,123,124,125, 126,127,128,129,130,131,132,133};

static const int ri[17] = {19,5,8,8,8,8,8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8};

static comst int r2[17] = { 0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20};

KLMesh *md;

GPUmesh **palms;

GLuint *cpi;

int on, rn, nv, i, j, k;

on = obj - lkg->obj;
nv = obj->nvert;
if ( (cpi = malloc ( nvxsizeof (GLuint) )) ) {
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23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

48:

49:

50:

54:

55:

memset ( cpi, 0, nvxsizeof (GLuint) );
md = (KLMesh*)obj->usrdata;
palms = md->mesh;
palms[0] = EnterPalmToGPU ();
for ( j=k=0; j<17; k += r1[j++] ) {
rn = k1_NewObjRef ( 1lkg, r2[jl, on, O, NULL );
for (i =0; i < r1[jl; i++ )
cpilrO[k+i]] = rn;

}
md->tribuf = NewStorageBuffer ( nvxsizeof (GLuint),
ad->artprog.ctribp );

glBufferData ( SSB, nv*sizeof (GLuint), cpi, GL_STATIC_DRAW );
free ( cpi );
for (i = 1; i <= NPALMMESHES+1; i++ ) {

if ( !'(palms[i] = malloc ( sizeof (GPUmesh) )) )

ExitOnError ( "KLInitPalmMesh" );

memset ( palms([i], O, sizeof (GPUmesh) );
}
memcpy ( palms[1], palms[0], sizeof (GPUmesh) );
glGenBuffers ( 1, &palms[1]->mbuf[2] );
glBindBuffer ( SSB, palms[1]->mbuf[2] );
glBufferData ( SSB, PALM_NV*3*sizeof (GLfloat),

NULL, GL_DYNAMIC_DRAW );

memcpy ( md->ecolour, edges_colour, 3*sizeof (GLfloat) );
memcpy ( md->fcolour, facets_colour, 3*sizeof(GLfloat) );

1se
ExitOnError ( "KLInitPalmMesh" );

return true;

: } /*KLInitPalmMeshx*/

53:

{

56:

57:

58:

59:

60:

61:

62:
. } /*KLDeletePalmMeshx*/

64:

65:

66:

67:

{

69:

static void KLDeletePalmMesh ( kl_linkage *1lkg, kl_object *obj )

KLMesh *md;
int i;

d = (KLMesh*)obj->usrdata;

for (i = 0; i <= NPALMMESHES+1; i++ )

DeleteGPUmesh ( md->mesh[i] );

glDeleteBuffers ( 1, &md->tribuf );

static void KLTransformVertices ( kl_linkage *lkg, kl_object *obj,

int refn, GLfloat *tr, int nv, int *vn )

AppData *ad;
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70:

71:

72:

73:

74:

ad = (AppData*)lkg->usrdata;

glBindBuffer ( GL_UNIFORM_BUFFER, ad->lktrbuf );

glBufferSubData ( GL_UNIFORM_BUFFER, refn*16*sizeof (GLfloat),
16*sizeof (GLfloat), tr );

ExitIfGLError ( "KLTransformVertices" );

7s: } /*KLTransformVertices*/
76:
77: static void KLPostprocessMesh ( kl_linkage *1kg, kl_object *obj )

78

A

79:

80:

81:

82:

83:

84:

85:

86:

87:

88:

89:

90:

91:

92:

93:

94:

95:

96:

97:

98:

99:

100:

101:

102:

103:

104:

105:

106

-}

107:

108:

109:

{

110:

111:

112:

113:

114:

115:

116:

AppData *ad;

KLMesh *md;
KLArticulationProgram *prog;
GPUmesh **mesh;

int i;

ad = (AppData*)lkg->usrdata;
prog = &ad->artprog;
md = (KLMesh*)obj->usrdata;
mesh = md->mesh;
glUseProgram ( prog->progid );
glBindBufferBase ( SSB, prog->ctrbp, ad->lktrbuf );
glBindBufferBase ( SSB, prog->ctribp, md->tribuf );
glBindBufferBase ( SSB, prog->cpibp, mesh[0]->mbuf [2] );
glBindBufferBase ( SSB, prog->cpobp, mesh[1]->mbuf[2] );
glUniformli ( prog->dim_loc, obj->nvc );
glUniformli ( prog->trnum_loc, -1 );
glUniformli ( prog->ncp_loc, (GLint)obj->nvert );
COMPUTE ( obj->nvert, 1, 1)
if ( ad->lod >=1 ) {

for (i =1; i <= ad->lod; i++ ) {

if ( !'GPUmeshRefinement ( MESHDEG, mesh([i], mesh[i+1] ) )
ExitOnError ( "KLPostprocessMesh" );

¥

ComputeMeshNormalVectors ( &ad->mcnprog, mesh[ad->lod+1], 6, 3 );
}
ExitIfGLError ( "KLPostprocessMesh" ) ;
/*KLPostprocessMesh*/

static void KLRedrawMesh ( k1l_linkage *1kg, kl_object *obj )

AppData *ad;
KLMesh *md;

V)
Q.
Il

(AppDatax)lkg->usrdata;
md = (KLMesh*)obj->usrdata;
if ( ad->meshsw([0] )
DrawMeshEdges ( &ad->mrprog, md->mesh[1], md->ecolour );
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if ( ad->lod >= 1) {
if ( ad->edges )
DrawMeshEdges ( &ad->mrprog, md->mesh[ad->lod+1], md->fcolour );
else
DrawMeshFacets ( &ad->mrprog, md->mesh[ad->lod+1], md->fcolour,
ad->mnv ) ;
}
} /#KLRedrawMesh*/

Procedura KLDeletePalmMesh bedzie wywolywana podczas sprzatania — jej zadaniem
jest likwidacja reprezentacji siatek w pamieci GPU (i opisujacych je struktur w pamieci GPU)
oraz zwolnienie bufora z numerami przeksztalcen wierzchotkow.

Procedura KLTransformVertices, wywolywana przez procedure artykulacji tancucha,
zamiast przeksztatca¢ wierzcholki siatki, przesyla podang macierz przeksztalcenia do bufora
zarezerwowanego przez procedure ConstructPalmLinkage (listing 34.2, linie 57-60). Prze-
ksztalcaniem wierzchotkéw zajmuje si¢ procedura KLPostprocessMesh, ktéra (podobnie
jak procedura KLPostprocessBP z listingu 23.7) przywiazuje do odpowiednich punktéow
dowigzania bufor z macierzami przeksztalcen (linia 90), bufor z numerami przeksztalcen dla
poszczegdlnych wierzchotkéw (linia 91), bufor ze wspoétrzednymi wierzchotkéw siatki orygi-
nalnej (linia 92) i bufor na przeksztalcone wierzchotki (linia 93). W liniach 94-96 zmiennym
jednolitym dim, trnum i ncp zostajg nadane odpowiednie wartosci, po czym wykonywany
jest program artykulacji.

Po zakonczeniu jego dziatania (czyli po powrocie z procedury glMemoryBarrier wy-
wolanej przez makrodefinicje COMPUTE) nastepuje zageszczanie odksztalconej siatki. War-
to$¢ pola lod struktury *ad, jesli jest dodatnia, jest wybranym przez uzytkownika pozio-
mem szczegdlowosci obrazu, tj. liczba iteracji zageszczania. Sciany siatki bedacej wynikiem
ostatniego zageszczania majg by¢ narysowane; opisana w poprzednim rozdziale procedura
ComputeMeshNormalVectors oblicza wektory normalne, ktére bedg uzyte do ,,optycznego
wygladzenia” powierzchni na obrazie.

Ostatnia metoda, KLRedrawMesh, jest wywolywana przez procedur¢ k1_Redraw (lis-
ting 13.9). Procedura ta, zaleznie od stanu przetacznikéw w menu, rysuje krawedzie siatki
odksztalconej i krawedzie albo $ciany siatki zageszczonej okreslonej przez wartos¢ pola 1od.

Procedury na listingu 34.4 stuza do wprowadzenia jednego lub wszystkich paramet-
réw artykulacji. Kazdy staw w dloni ma pewien, w ogélnosci inny, zakres katow, a su-
waki (opisane w rozdziale 30) ,dostarczajg” liczby z przedziatu [0,1] (przechowywane
w tablicy ad->wdg.artp, ktorej elementy s3 ,,podlagczone” do poszczegdlnych suwakow).
Dlatego kazda z tych procedur odwzorowuje ten przedzial na odpowiednie przedzialy
dla poszczegdlnych stawéw (par kinematycznych), na podstawie liczb podanych w tablicy
palmartprange. Drugim parametrem procedury SetArticulationParameter jest nu-
mer (jednego) parametru artykulacji. Procedura ArticulatePalmLinkage po obliczeniu
warto$ci wszystkich parametréw artykulacji dokonuje artykulacji tancucha, wywotujac pro-
cedure k1_Articulate.
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Listing 34.4. Procedury obslugi parametréw artykulacji
C

: static float palmartprange [NKLARTPARAMS] [2] =

{{0.0,-0.5%P1},{0.0,-0.5},{0.0,0.4%PI},{0.0,0.4%PI},
{0.025%PI,-0.1%PI},{0.0,0.5%PI},{0.0,0.5%PI},{0.0,0.5%PI},
{0.025%PI,-0.025%PI},{0.0,0.5%PI},{0.0,0.5%PI},{0.0,0.5%PI},
{0.025%PI,-0.025%PI1},{0.0,0.5%PI},{0.0,0.5%PI},{0.0,0.5%PI},
{0.12%PI,-0.03*PI},{0.0,0.5%PI},{0.0,0.5%PI},{0.0,0.5%PI}};

: void SetArticulationParameter ( AppData *ad, int pnum )
ht

10:

float x, par;

x = ad->artp[pnum] ;
par = (1.0-x)*artprange [pnum] [0] + x*artprange [pnum] [1];
kl_SetArtParam ( ad->linkage, pnum, 1, &par );

} /#SetArticulationParameterx*/

void ArticulatePalmLinkage ( AppData *ad )

{
float X}
GLfloat par [NKLARTPARAMS];
int i;

for (i = 0; i < NKLARTPARAMS; i++ ) {
x = ad->artp[il;
par[i] = (1.0-x)*artprange[i] [0] + x*artprange[i] [1];
}
kl_SetArtParam ( ad->linkage, O, NKLARTPARAMS, par );
kl_Articulate ( ad->linkage );
} /*ArticulatePalmLinkage*/

34.2. Przygotowanie i rysowanie sceny

W procedurze InitMyWorld potrzebne sg tylko dwie zmiany (poréwnaj listing 34.5 z 32.14):
trzeba doda¢ wywolanie procedury LoadLinkageArticulationProgram, ktdra kompi-
luje program artykulacji tancucha kinematycznego i zastgpi¢ wywolanie procedury Init-
PalmMeshes wywolaniem procedury ConstructPalmLinkage, a po niej Articulate-
PalmLinkage. Aby poprawi¢ czytelno$¢ kodu, przeniostem wywotania wszystkich procedur
kompilujacych szadery do osobnej procedury LoadMyShaders.

Inaczej niz w aplikacjach 2H-2K, ktére wyswietlaja obiekty (czajnik, torus i lustro)
»Z pominieciem” procedury k1_Redraw, aplikacja 3B wywoluje te procedure, a ona w petli
wywoluje metody rysowania wszystkich obiektow (czyli jednego; metoda ta jest procedura
KLRedrawMesh z listingu 34.3). Przedtem trzeba tylko skasowac tlo i uaktywnic test widocz-
nosci.
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Listing 34.5. Procedury InitMyWorld i RedrawMyWorld

C

1: void LoadMyShaders ( AppData *ad )

2 {
3:
4:
5:
6:
7

8:

LoadMeshRefinementProgram ( true, false );
LoadMeshNormalVectorProgram () ;
LoadMeshRenderingPrograms ( &ad->mrprog );
LoadLinkageArticulationProgram ( &ad->artprog );
/*LoadMyShaders*/

9: AppWidgets *InitMyWorld ( int argc, char *argv[],

10: {
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33: }

34:

int width, int height )

static const float model_rot_axis[3] = {0.0,1.0,0.0%};

memset ( &appdata, O, sizeof (AppData) );
LoadMyShaders ( &appdata ) ;

ConstructEmptyVAOD (O);

appdata.trans.trbuf = NewUniformTransBlock ();
appdata.light.lsbuf = NewUniformLightBlock () ;
TimerInit Q);

memcpy ( appdata.model_rot_axis, model_rot_axis,

appdata.speed = 0.5%3.1415926;
SetupModelMatrix ( &appdata );
InitCamera ( &appdata, width, height );
InitLights ( &appdata );
appdata.mnv = true;
appdata.wdg.sw[0] = appdata.wdg.sw[2] = true;
appdata.lod = 2;
appdata.edges = appdata.wdg.animation = false;
if ( ConstructPalmLinkage ( &appdata ) )
ArticulatePalmLinkage ( &appdata );
else
ExitOnError ( "InitMyWorld" );
return &appdata.wdg;
/*InitMyWorldx*/

35: void DrawMyScene ( AppData *ad )

36: {
37:
38:
39:
40:
a1: }

42:

glClearColor ( 1.0, 1.0, 1.0, 1.0 );

3*sizeof (float) );

glClear ( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

glEnable ( GL_DEPTH_TEST );
kl_Redraw ( ad->1lkg );
/*DrawMyScene*/

43: void RedrawMyWorld ( wvoid )

44 {

45:

DrawMyScene ( &appdata );
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} /*RedrawMyWorld*/

Listing 34.6 przedstawia procedure dodang do interfejsu czesci graficznej i okienkowej;
jest ona wywolywana po zmianie polozenia suwaka. Procedura wywoluje procedure obli-
czajacg nowa warto$¢ parametru artykulacji i procedure dokonujacg artykulacji tancucha,
a potem przekazuje warto$¢ true, wskazujaca, ze nalezy wykonaé nowy obraz.

Listing 34.6. Procedura ProcessSlidebarCommand
C

. char ProcessSlidebarCommand ( int sln )

if ( sln >= SL_ID_ARTPO && sln < SL_ID_ARTPO+NKLARTPARAMS ) {
SetArticulationParameter ( &appdata, sln-SL_ID_ARTPO );
kl_Articulate ( appdata.linkage );
return true;

1se
return false;
} /*ProcessSlidebarCommand*/

Oczywiscie, do procedury DeleteMyWorld trzeba doda¢ instrukcje likwidujace prog-
ram szaderéw dokonujacy artykulacji oraz bufor z indeksami przeksztalcen i caty tancuch
kinematyczny.

34.3. Interfejs uzytkownika

Listing 34.7 przedstawia zmiany dokonane w procedurach tworzenia menu i obstugi komu-
nikatow wysylanych do aplikacji przez wihajstry. Wihajstrow tych jest wiecej, bo do guzika
zatrzymujacego program i przefacznikéw wybierajacych wyswietlang siatke doszty suwaki
umozliwiajace nadawanie wartos$ci parametrom artykulacji.

W linii 4 jest makrodefinicja wprowadzajaca identyfikator pierwszego z tych suwakow.
Suwakow jest 20 (tyle, ile parametrow artykulacji, zobacz listing 34.1).

Procedura inicjalizacji menu ma nowa nazwe i trzy nowe linie, 41-43, ktére opisuja pe-
tle tworzaca suwaki. Do poszczegdlnych suwakéw sg przywiazywane zmienne typu float
przechowywane w tablicy appwdg->artp. Komunikaty przysytane przez te suwaki sg ob-
stugiwane przez instrukcje w liniach 17-22.

Po otrzymaniu komunikatu od suwaka procedura WiniCallBack wywoluje procedure
ProcessSlidebarCommand, ktéra realizuje odpowiednig reakeje czesci graficznej na to zda-
rzenie. Zaré6wno po zmianie stanu przelacznika, jak i suwaka, wysytany jest komunikat po-
wodujacy wykonanie nowego obrazu.
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Listing 34.7. Procedury tworzenia menu i obstugi jego komunikatéw
C

: #define GLWIN_ID_VIEW 1

: #define BTN_ID_EXIT 2

: .... /* identyfikatory przetacznikdw bez zmian */
: #define SL_ID_ARTPO 8

: void WinlCallback ( struct xwidget *wdg, int msg, int key, int x, int y )
A
switch ( msg ) {
: case WDGMSG_BUTTON_PRESS:

/* zatrzymywanie programu po nacisnieciu guzika bez zmian */
break;

12:

13:

14:

15:

case WDGMSG_SWITCH_CHANGE:
ProcessSwitchCommand ( wdg->id );
goto redraw_win2;

16:

17:

18:

19:

20:

21:

22:

case WDGMSG_SLIDEBAR_CHANGE:
ProcessSlidebarCommand ( wdg->id );
redraw_win2:
wm2->changed = true;
PostMenuExposeEvent ( wm2 );
break;

23:

24:

25:

26:

27:

default:
break;

}
} /*Wini1CallBack*/

28:

29:

30:

31:

32:

xwinmenu *SetupApp3BMenu ( void )
{

Xwinmenu *wm;

int i;

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45

if ( !'(wm = NewWinMenu ( window[1], MENU_WIDTH, WINO_HEIGHT, 0, O,
NULL, NULL, WiniCallback )) )
ExitOnError ( "SetupApp3BMenu" );
NewButton ( wm, BTN_ID_EXIT, 60, 18, 2, 2, str_EXIT );
for (i = 0; i < NPALMMESHES; i++ )
NewSwitch ( wm, SW_ID_MESHO+i, 16, 16, 2+20%i, 22, NULL,
&appwdg->swli] );
for ( i = 0; i < NARTPARAMS; i++ )
NewSlidebarf ( wm, SL_ID_ARTPO+i, 116, 10, 2, 46+15%*i,
&appwdg->artp[i] );
return wm;
: } /*SetupApp3BMenux*/
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Rysunek 34.2. Okno aplikacji trzeciej B

34.4. Cwiczenia

1. Zastanow sie, jak skroci¢ procedure ConstructPalmLinkage, zastgpujac instrukcje
w liniach 34-55 instrukcjami wywolywanymi w petli. Po zastanowieniu wez si¢ do dziela.

2.*Zastanow si¢ nad mozliwoscig napisania procedury, ktéra skonstruuje kompletny tan-
cuch kinematyczny (z wieloma obiektami) na podstawie danych opisanych przez swoje
parametry, zastepujac procedury takie jak ConstructPalmLinkage lub Construct-
MyLinkage z aplikacji 2H i 2I. Niektdre parametry muszg by¢ wskaznikami procedur
(metod wirtualnych) wykonujacych obliczenia specyficzne dla obiektéw poszczegélnych
rodzajow.

Motywacja do tych ¢wiczen jest umozliwienie konstruowania réznych fancuchow kine-
matycznych na podstawie danych odczytanych przez aplikacje z plikow.



Aplikacja trzecia C

Aplikacja 3C pokaze pazurki (zrobione z ptatéw Béziera). Ponadto uzyjemy w niej wyprdébo-
wanego wczesniej modelu o$wietlenia Blinna-Phonga i sprawimy, by na obrazach pojawity
sie cienie.

35.1. Lancuch kinematyczny

Rozbudujemy tancuch kinematyczny z aplikacji 3B — dodamy do niego 5 nowych czlonéw
i par kinematycznych (ktére wydluza kazda z ,,gatezi” drzewa — grafu opisujacego tancuch).
Bedg teraz dwa obiekty: siatka dloni i zestaw pigciu ptatéw Béziera bedacych modelami
paznokci.

Na rysunku 35.1 jest pokazany graf lancucha i ptat Béziera bedacy modelem paznokcia.
Kazda ,galaz” tancucha jest wydtuzona o jedng krawedz i jeden wierzchotek (czyli o jedna
pare kinematyczna i jeden czlon). Plat ma stopien (5, 4), zatem w kazdym wierszu jego siatki
jest 6 punktow kontrolnych, a w kazdej kolumnie jest ich 5. Wszystkie punkty kontrol-
ne z pierwszych trzech wierszy oraz wszystkie z pierwszej i ostatniej kolumny sg zwigzane
z przedostatnim cztonem odpowiedniej galezi (np. czlonem Ly w przypadku kciuka), a po-
zostate punkty beda mialy polozenia ustalone w uktadzie wspoltrzednych ostatniego cztonu
(Lo dla kciuka).

Na listingu 35.1 s3 pokazane makrodefinicje opisujace nowe liczby elementéw fancucha
i typ struktury AppData, do ktdrej zostalo dodane pole nails, nowe zmienne shadows
i final, potrzebne podczas wykonywania obrazéw sceny, oraz pole brprog, ktore jest opi-
sanym dalej opakowaniem programéw szaderéw uzywanych do rysowania platéw Béziera,
tj. paznokci. Zamiast jednego obiektu sa dwa (siatka dfoni i paznokcie), a ze kazdy paznokie¢
jest zwigzany z dwoma czlonami fanicucha, liczba referencji obiektéw wzrosta o 10.

Pole nails jest struktura, w ktorej sa przechowywane wskazniki reprezentacji dwoch ze-
stawOw pieciu ptatow Béziera (oryginalnego i odksztatconego), identyfikatory buforéw z opi-
sem materiatu i z macierzami przeksztalcen artykulacji oraz kolor siatki kontrolne;j.
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Rysunek 35.1. Lancuch kinematyczny aplikacji 3C i model paznokcia

Listing 35.1. Nowe liczby elementdw taficucha i zmieniona struktura AppData

C

: #define MESHDEG 3
: #define NPALMMESHES 4
: #define NKLOBJ 2
: #define NKLINKS 26
: #define NKLREFS 27
: #define NKLJOINTS 25

: #define NKLARTPARAMS 21

. typedef struct {

GLuint tribuf, mtn;
} KLMesh;

. typedef struct {

} KLBezPatches;

. typedef struct {
AppWidgets
KLMesh

/%
/%
/*
/%
/%
/%
/%

wdg;
palm;

liczba
liczba
liczba
liczba
liczba
liczba
liczba

GPUmesh *mesh[NPALMMESHES+2] ;
GLfloat ecolour[3], fcolourl[3];

BezierPatchObjf *bpatches[2];
GLuint tribuf, mtn;

krokéw uSredniania */
zageszczonych siatek */
obiektéw w tancuchu */
cztondw */

referencji */

par kinematycznych */
parametrdw artykulacji */
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KLBezPatches nails;

kl_linkage *linkage;

Camera camera;

TransB1l trans;

LightBl light;

MatB1l mat;

GLuint lktrbuf;

char lod, edges, mnv, shadows, final;
float speed;

float model _rot_axis[3];
double model_rot_angle;
MeshRenderPrograms mrprog;
BPRenderPrograms brprog;

KLArticulationProgram artprog;

} AppData;

Listing 35.2 przedstawia procedure wprowadzajaca reprezentacje paznokci do pamieci

GPU. Makrodefinicje w liniach 1-5 okreslajg stopien plata, liczbe palcow, a takze liczby punk-

tow kontrolnych jednego plata (paznokcia) i wszystkich paznokci jednej dloni.

Listing 35.2. Procedura EnterFingernailsToGPU

C

: #define
: #define
: #define FINGER_NUM

: static GLfloat fingernail_cp[] [3]
{-0.65655,-0.54132,-0.62502}, {-0.65655,-0.40329,-0.48714},
.... /* z 30 punktdédw kontrolnych 27 tu pomingtem */

{ 0.68104, 0.28418,-0.52111}};

FINGERNAIL_UDEG 5 /* stopien ptata ze wzgledu na parametr u */
FINGERNAIL_VDEG 4 /* stopien ptata ze wzgledu na parametr v */
5 /x liczba palcow */
: #define FINGERNAIL_NCP ((FINGERNAIL_UDEG+1)* (FINGERNAIL_VDEG+1))
: #define FINGERNAIL_NV (FINGERNAIL_NCP*FINGER_NUM)

- {

void EnterFingernailsToGPU ( BezierPatchObjf #*nails[2], GLfloat colour[3] )

{

GLfloat

GLfloat *nailcp;
int i, j, k;
nsc[FINGER_NUM] = {0.09,0.09,0.095,0.085,0.075%};
GLfloat nrot[FINGER_NUM] [3]
{{-0.05*P1,0.85%PI,-0.07*PI},{-0.03*PI,PI,0.0},{-0.03*PI,PI,0.02%PI},

{-0.03%PI,PI,0.02*%PI},{-0.03%PI,PI,0.02*PI}};

GLfloat ntrv[FINGER_NUM] [3]
{{0.48,0.095,-0.088},{0.10

{-0.38,0.7,-0.12},{-0.61,

GLfloat tr[16];

5,0
.5

.75,-0.12},{-0.15,0.8,-0.12},
’_0-12}};

if ( !(nailcp = malloc ( FINGERNAIL_NV*3*sizeof (GLfloat) )) )
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ExitOnError ( "EnterFingernailsToGPU 0" );
for (i =k =0; i < FINGER_NUM; i++ ) {
M4x4Translatef ( tr, ntrv[i] [0], ntrv[i][1], ntrv[i][2] );
M4x4MRotateZf ( tr, nrot[i][2] );
M4x4MRotateYf ( tr, nrot[i][1] );
M4x4MRotateXf ( tr, nrot[i] [0] );
M4x4MScalef ( tr, nscl[i], nsc[i], nsc[i] );
for ( j = 0; j < FINGERNAIL_NCP; j++, k += 3 )
M4x4MultMP3f ( &nailcplk], tra, fingernail_cp[j] );
}
nails[0] = EnterBezierPatches ( FINGERNAIL_UDEG, FINGERNAIL_VDEG, 3,
FINGER_NUM, 1, FINGERNAIL_NV, nailcp,
(FINGERNAIL_UDEG+1)* (FINGERNAIL_VDEG+1)*3, O,
(FINGERNAIL_VDEG+1)*3, 3, colour );
free ( nailcp );
if ( (nails[1] = malloc ( sizeof (BezierPatchObjf) )) ) {
memcpy ( nails[1], nails[0], sizeof(BezierPatchObjf) );
glGenBuffers ( 1, &nails[1]->buf([1] );
glBindBuffer ( GL_SHADER_STORAGE_BUFFER, nails[1]->buf[1] );
glBufferData ( GL_SHADER_STORAGE_BUFFER,
FINGERNAIL_NV*3*gizeof (GLfloat), NULL, GL_DYNAMIC_DRAW );
ExitIfGLError ( "EnterFingernailsToGPU" );

}
else

ExitOnError ( "EnterFingernailsToGPU" );
} /*EnterFingernailsToGPUx/

Wszystkie paznokcie sg obrazami jednego ptata Béziera w odpowiednio dobranych (in-
dywidualnie dla kazdego palca) przeksztalceniach afinicznych. Punkty kontrolne tego plata
s3 podane w tablicy fingernail_cp. W linii 25 procedura EnterFingernailsToGPU re-
zerwuje bufor, w ktérym zapisze punkty kontrolne wszystkich paznokci, po czym w petli
w liniach 27-35 konstruuje odpowiednie przeksztalcenie dla kazdego palca i (w wewnetrznej
petli w liniach 33-34) poddaje mu punkty z tablicy fingernail_cp.

Przeksztalcenia sg konstruowane przez instrukcje w liniach 28-32; kazde z nich jest opi-
sane przez macierz A; = TiR;iR,;Ry;S; — iloczyn macierzy przesuniecia Tj, trzech macie-
rzy obrotéw (wokot osi z, y, x) i macierzy skalowania S;. Parametry tych przeksztalcen sg
zapisane w tablicach ntrv, nrot i nsc; moze warto zwroci¢ uwage, ze wielkosci poszcze-
golnych paznokci sg rozne, za co odpowiadajg wspolczynniki skalowania (réwnomiernego
dla wszystkich osi) w tablicy nsc.

Po zakonczeniu zewnetrznej petli tablica nailcp zawiera wspdlrzedne punktéw, ktore
procedura EnterBezierPatches (z listingu 15.8) razem z pozostalymi elementami opisu
platow przesyta do pamieci GPU. W linii 40 pamig¢ zajmowana przez niepotrzebna juz tablice
jest zwalniana, po czym w liniach 41-46 konstruowana jest struktura danych przeznaczona
do reprezentowania paznokci po artykulacji.

Listing 35.3 przedstawia zmiany w procedurze ConstructPalmLinkage. W liniach -7
s3 dodatkowe elementy opisujace rodzaj nowych par kinematycznych — wszystkie one reali-
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Listing 35.3. Zmiany w procedurze ConstructPalmLinkage

C
1: k1_linkage *ConstructPalmLinkage ( mypalmscene *scene )
2: {
3 static int jtype[NKLJOINTS] =
4 { KL_ART_ROT_Y, KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X,
5:
6: KL_ART_TRANS_Y, KL_ART_TRANS_Y, KL_ART_TRANS_Y, KL_ART_TRANS_Y,
7: KL_ART_TRANS_Y 1};
s: static int jpnum[NKLJOINTS] =
9: {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,20,20,20,20};
10: static float ppO[3] = { ... }, vpo[3] = { ... }, vpil3] = { ... };
11:  kl_linkage *1lkg;
12:  int 1nk [NKLINKS], jnt[NKLJOINTS];
13:  GLfloat tral[16];
1 int i, j, k, 1;
15:
16: if ( (lkg = k1l_NewLinkage ( NKLOBJ, NKLINKS, NKLREFS, NKLJOINTS,
17: NKLARTPARAMS, (void*)scene )) ) {
18: memcpy ( scene->palmartp, palmartpO, NKLARTPARAMSx*sizeof (float) );
19: for (i = 0; i < NKLINKS; i++ )
20: 1nk[i] = k1_NewLink ( lkg );
21: k1_NewObject ( lkg, O, 3, PALM_NV, NULL, (void#)&ad->palm,
22: KLInitPalmMesh, KLTransformVertices,

23: KLPostprocessMesh, KLRedrawMesh, KLDeletePalmMesh );

k1l_NewObject ( lkg, O, 3, FINGERNAIL_NV, NULL, (void*)&ad->nails,

24:

25: KLInitFingernails, KLTransformVertices, KLPostprocessFingernails,
26: KLRedrawBezPatches, KLDeleteFingernails );

27: for (k=3 =0; k<5; ktt) {

28: for (i=0,1=-1; i< 4; i++, 1 = j++ )

29: jnt[j] = kl_NewJoint ( lkg, lnk[1+1], 1nk[j+1],

30: jtypeljl, jpnum(jl );

31: }

32: for ( k = 0; k < 5; kt+, j++ )

33:

jnt[j] = k1l_NewJoint ( lkg, lnk[4*(k+1)], 1lnk[j+1],
jtypeljl, jpnum[jl );

34:

35: /* kciuk */

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

M4x4RotateP2VfE

k1l_SetJointFtr
M4x4RotateZf (
k1_SetJointFtr

glGenBuffers (
glBindBuffer (
glBufferData (

( tra, pp0, vpO, vpl );

( 1lkg, jnt[3], tra, true );
tra, -0.1%PI );
( 1kg, jnt[20], tra, true );

1, &ad->lktrbuf );

GL_SHADER_STORAGE_BUFFER, ad->lktrbuf );
GL_SHADER_STORAGE_BUFFER, 1kg—>norefs*16*sizeof(GLfloat),
NULL, GL_DYNAMIC_DRAW );
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}

return scene->lkg = lkg;
} /*ConstructPalmLinkagex*/

zujg przesuniecia wzdluz osi y. W linii 9 jest wydluzona tablica z numerami parametréow
artykulacji dla poszczegolnych par — wszystkie nowe pary maja jeden wspélny parametr
artykulacji, ktory okresla wielko$¢ przesuniecia. Poczatkowa warto$¢ tego parametru to 0.

Metody obiektu — siatki dloni — zostaly tylko rozszerzone o instrukcje wprowadzajace
opis materialu uzywanego do obliczen oswietlenia. Jego numer jest zapamietywany w polu
mtn struktury typu KLMesh. W liniach 24-26 jest dodane wywolanie procedury k1_New-
Object, ktorej celem jest utworzenie i dofaczenie do fancucha obiektu paznokci. Metody
tego obiektu sg przedstawione na listingu 35.4. Petla w liniach 27-28, wprowadzajaca pary
kinematyczne obecne w aplikacji 3B, tez nie ulegla zmianie, natomiast nowe pary, J29, . . . , J24
wprowadzane sg w petli dodanej w liniach 32-34.

Prawie kazda z nowych par kinematycznych realizuje przesuniecie wzdluz osi y przed-
ostatniego cztonu odpowiedniego palca, przy czym w polozeniu poczatkowym o$ ta ma kie-
runek osi y ukladu zwigzanego z czlonem Lo. W zwiazku z tym macierze stale Fy, ..., Fo4
tych par sa macierzg jednostkowa — taka macierz jest przyjmowana domysélnie dla kazdej
pary przez procedure k1_NewJoint i nie trzeba jej zmienia¢. W wyjatkowy sposéb trzeba
potraktowac¢ kciuk, ktorego paznokie¢ w potozeniu wyjsciowym jest obrécony inaczej niz
pozostale i przesuniecia punktéw kontrolnych jego siatki tez powinny mie¢ inny kierunek.
Odpowiednia macierz, F, jest konstruowana przez instrukcje w linii 39.

Procedura KLInitFingernails, ktora jest konstruktorem obiektu paznokci, w linii 8
oblicza numer obiektu!. W linii 10 nastepuje rezerwacja tablicy roboczej, w ktérej dla kazdego
punktu kontrolnego zostanie (w liniach 13-24) obliczony numer przeksztalcenia artykulacji
dla tego wierzchotka i z ktérej numery te (w liniach 25-26) zostang przestane do utworzonego
w linii 11 bufora w pamieci GPU. W linii 28 jest wywolana procedura z listingu 35.2. W li-
niach 29-30 zostaje utworzony opis materiatu, ktérego kolor bedzie ustalany bezposrednio
przed rysowaniem (zmiany parametréw artykulacji beda powodowa¢ zmiany tego koloru).
W linii 31 w opisie paznokci zostaje zapamietany kolor siatek kontrolnych platéw Béziera na
obrazie.

Procedura KLDeleteFingernails, czyli destruktor wywolywany podczas likwidacji
tancucha, zwalnia pamie¢ CPU i GPU zajmowang przez reprezentacje paznokci. Drugi ze-
staw platéw ma z pierwszym wspolny bufor z blokiem BezPatch, wiec jego likwidacja wy-
maga tylko zwolnienia bufora z blokiem CPoints i struktury w pamieci CPU (linie 43-44).

Metodg transform obiektu paznokci jest ta sama procedura KLTransformVertices
co dla powierzchni siatkowej (listing 34.3). Otrzymang jako parametr macierz przesyla ona
do bufora, ktérego identyfikator jest pamietany w polu lktrbuf struktury typu AppData
opakowujacej calg reprezentacje sceny do narysowania.

'Drugi obiekt wprowadzony do taricucha ma oczywiscie numer 1, ale lepiej jest obliczy¢ go w taki sposéb,
aby latwiej byto rozbudowac aplikacje dalej.
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Listing 35.4. Metody obiektu paznokci
C

1: static char KLInitFingernails ( kl_linkage *1kg, kl_object *obj )

2

3:

{

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35

-}

36:

37:

38:

{

39:

40:

41:

42:

43:

44:

45:

static const GLfloat cnetcolour([3] = { 0.0, 1.0, 0.0 };
KLBezPatches *pd;

int i, j, 1, m, on, rn;
GLuint *cpi;
on = obj - lkg->obj;

pd = (KLBezPatches*)obj->usrdata;
if ( (cpi = malloc (FINGERNAIL_NV*sizeof (GLuint))) ) {
glGenBuffers ( 1, &pd->tribuf );
glBindBuffer ( SSB, pd->tribuf );
for (1 =0; 1 < FINGER_NUM; 1++ ) { /* kolejno dla kazdego palca */
rn = k1_NewObjRef ( lkg, 4%(1+1), on, O, NULL );
for (i = 0; i <= FINGERNAIL_UDEG; i++ ) {
m=1i==0 || i == FINGERNAIL_UDEG ? FINGERNAIL_VDEG : 2;
for ( j =0; j<=m; j++)
cpi [1*FINGERNAIL_NCP + (FINGERNAIL_VDEG+1)*i + j]

rn;
}
rn = k1_NewObjRef ( 1lkg, 21+1, on, O, NULL );
for (i =1; i < FINGERNAIL_UDEG; i++ )
for ( j = 3; j <= FINGERNAIL_VDEG; j++ )
cpi[1#FINGERNAIL_NCP + (FINGERNAIL_VDEG+1)*i + j] = rnm;
}
glBufferData ( SSB, FINGERNAIL_NVksizeof (GLuint),
cpi, GL_STATIC_DRAW );
free ( cpi );
EnterFingernailsToGPU ( pd->bpatches, cnetcolour );
pd->mtn = SetupMaterial ( &ad->mat, -1, cnetcolour, cnetcolour,
1.0, 1.0, 1.0 );
}
else
ExitOnError ( "KLInitFingernails" );
return true;
/*KLInitFingernails*/

static void KLDeleteFingernails ( kl_linkage *1kg, kl_object *obj )

KLBezPatches *pd;

pd = (KLBezPatches*)obj->usrdata;
DeleteBezierPatches ( pd->bpatches[0] );
glDeleteBuffers ( 1, &pd->bpatches[1]->buf[1] );
free ( pd->bpatches[1] );

glDeleteBuffers ( 1, &pd->tribuf );
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a6: } /*KLDeleteFingernailsx*/
47:
ag: static void V4Interpolatef

49:

( GLfloat v[4],

50: {

51:  int i;

s2: float s;

53:

sa: for (i =0, s =1.0-t; i< 3; i++ )
55: v[i] = s*vO[i] + tx*vi[i];

s6: } /*V4Interpolatef*/

57:

ss: static void KLPostprocessFingernails ( kl_linkage *1lkg, kl_object *obj )

59: {

60: const GLfloat diffr0[4] = { 0.91, 0.65, 0.5, 1.0 };
61: const GLfloat specrO[4] = { 0.15, 0.1, 0.12, 1.0 };
62: const GLfloat diffri[4] = { 0.7, 0.1, 0.25, 1.0 };
63: const GLfloat specri[4] = { 0.4, 0.4, 0.4, 1.0 };
64: const GLfloat shn = 60.0, wa = 5.0, we = 5.0;

e5: AppData *ad;

66: KLArticulationProgram *prog;

s7: KLBezPatches *pd;

6s: BezierPatch(Objf **nails;

69: GLfloat diffr[4], specrl[4];

70: float t;

71:
72: ad = (AppDatax*)lkg->usrd
prog = &ad->artprog;

pd = (KLBezPatches*)obj-
nails = pd->bpatches;
glUseProgram ( ad->artpr
glBindBufferBase ( SSB,
glBindBufferBase ( SSB,
glBindBufferBase ( SSB,
glBindBufferBase ( SSB,
glUniformli ( prog->dim_

73:

74:

75:

76:

77

78:

79:

80:

81:

ata;
>usrdata;

og.progid );

prog->ctrbp, ad->lktrbuf );
prog->ctribp, pd->tribuf );
prog->cpibp, nails[0]->buf [1]
prog->cpobp, nails[1]->buf[1]
loc, obj->nvc );

82:
83:
84:
85:
86:
87:
88:
89:
90:
91:

92: }

glUniformli ( prog->trnum_loc, -1 );

glUniformli ( prog->ncp_loc, (GLint)obj->nvert );
glDispatchCompute ( obj->nvert, 1, 1 );

t = ad->artp[NKLARTPARAMS-1];

t=t>0.271: 5.0%t;

V4Interpolatef ( diffr, diffr0, diffrl, t );
V4Interpolatef ( specr, specr0O, specrl, t );
SetupMaterial ( &ad->mat, mt->mtn, diffr, specr, shn,
glMemoryBarrier ( GL_UNIFORM_BARRIER_BIT );
ExitIfGLError ( "KLPostprocessFingernails" );
/*KLPostprocessFingernails*/

const GLfloat vO0[4], const GLfloat v1[4], float t )

wa, we );
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93:

9a: typedef struct {

95: GLuint progid[3];

96: GLint LightingModelLoc;
97:  } BPRenderPrograms;

98:

99: static void KLRedrawBezPatches ( kl_linkage *1lkg, kl_object *obj )
100: {

101: static const int TessLevel[4] = {4,8,16,32};

102:  AppData *ad;

103: KLBezPatches *bezp;

104:

10s: ad = (AppDatax)lkg->usrdata;

106: bezp = (KLBezPatches*)obj->usrdata;

w7:  glPolygonMode ( GL_FRONT_AND_BACK, GL_FILL );

108: SetBezierPatchTessLevel ( bezp->bpatches[1], TessLevell[ad->lod-1] );
109: SetBezierPatchNVS ( bezp->bpatches[1], (GLint)ad->mnv );

1o:  if ( ad->edges )

111: glPolygonMode ( GL_FRONT_AND_BACK, GL_LINE );
112:  else

113: glPolygonMode ( GL_FRONT_AND_BACK, GL_FILL );
11a:  if ( ad->final ) {

115: glUseProgram ( ad->brprog.progid[1] );

116: ChooseMaterial ( &bezp->mat, bezp->mtn );

117: }

118:  else

119 glUseProgram ( ad->brprog.progid[2] );

120: DrawBezierPatches ( bezp->bpatches[1] );
121:  if ( ad->meshsw[0] ) {

122: glUseProgram ( ad->brprog.progid[0] );
123: DrawBezierNets ( bezp->bpatches[1] );
124: }

125: ExitIfGLError ( "KLRedrawBezPatches" );
126: } /*KLRedrawBezPatches*/

Procedura KLPostprocessFingernails dokonuje artykulacji paznokei przy uzyciu
szadera obliczeniowego z listingu 23.1, ktory dokonuje tez artykulacji siatki dfoni. Metody
artykulacji siatki i platow Béziera sg oczywiscie rdzne, ale w kazdej z nich do odpowied-
nich punktéw dowigzania (w celu GL_SHADER_STORAGE_BUFFER) sg przywigzywane bufory
z tablicami macierzy przeksztalcen, numeréw przeksztalcen poszczegélnych punktow, wierz-
chotkoéw, ktore trzeba przeksztalci¢, i miejsc, w ktorych przeksztalcone punkty maja by¢ za-
pisane, a potem uruchamiany jest program szaderow.

Artykulacja paznokci oprocz przeksztalcania punktéw kontrolnych okresla kolor. Obli-
czenie wykonywane w liniach s6-8g polega na interpolacji parametréw materialu za pomoca
procedury V4Interpolatef?. Opis materialu jest przesytany do pamieci GPU, gdzie bedzie

*bedgcej odpowiednikiem procedury mix w GLSL-u
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gotowy do uzycia podczas rysowania. Zauwazmy, ze te obliczenia nie kolidujg z dzialaniami
szadera uruchomionego w linii 84, zatem procedura glMemoryBarrier, ktéra czeka na za-
konczenie tych dzialan, moze by¢ wywotana na korncu postprocesingu.

Procedura KLRedrawBezPatches jest metoda rysowania ptatow Béziera, ktorej wywo-
tanie moze miec na celu znalezienie obszaru cienia lub wykonanie konicowego obrazu. Pole
brprog jest strukturg typu BPRenderPrograms, tj. opakowaniem trzech programoéw szade-
réw, ktorych identyfikatory sg pamigtane w tablicy progid. Pierwszy z nich (progid[0])
stuzy w obu przypadkach do rysowania siatki kontrolnej. Drugi program (progid[1]) stuzy
do znajdowania obszaru cienia, a trzeci (progid [2]) rysuje koncowy obraz. Kolor odcinkéw
siatki kontrolnej na obrazie jest brany z pola Colour w opisie ptatéw, a pole w linii 96 stuzy
do wyboru modelu oswietlenia (Lamberta lub Blinna-Phonga) uzywanego podczas rysowa-
nia platéw Béziera®. Procedury kompilujace programy rysowania ptatéw Béziera i siatek s3
opisane dalej.

Metoda rysowania obiektu paznokci, KLRedrawBezPatches, zaleznie od wartosci
zmiennej ad->1od okresla stopien rozdrobnienia ptatow Béziera dostosowany do stopnia za-
geszczenia wyswietlanej siatki, wywolujac procedure SetBezierPatchOptions. Zmienna
ta okresla poziom szczegolowosci wyswietlanej siatki, tj. liczbe iteracji rozdrabniania. Liczba
$cian podczas kazdego rozdrabniania siatki ro$nie czterokrotnie, zatem liczba trojkatow pla-
tow Béziera, na kazdym nastepnym poziomie szczegdtowosci, powinna by¢ dobrana zgod-
nie z t3 samg regula. Zatem, liczby podane w tablicy TessLevel powoduja, ze zaleznie od
poziomu kazdy plat Béziera (czyli kazdy paznokie¢) bedzie podzielony na to 2 - 42 = 32,
2-82=128,2-16% = 512 albo 2 - 32? = 2048 trojkaty.

Podczas znajdowania obszaru cienia procedura wykonuje instrukcje wlinii 119, a podczas
rysowania obrazu konicowego instrukcje w liniach 115-116; w obu przypadkach sa wybierane
rézne programy szaderdw, a dla konicowego obrazu jest takze przyczepiany bufor z opisem
materiatu. Jesli zmienna ad->meshsw[0] ma warto$¢ niezerows, to nastepuje jeszcze ryso-
wanie siatki kontrolnej.

35.2. Szadery rysujace i ich przygotowanie

Aplikacja wykonuje obrazy przy uzyciu sze$ciu programoéw szaderdw: trzech dla obiektu
siatki i trzech dla paznokci. Wszystkie szadery uzywane do wykonywania obrazu przez apli-
kacje 3C byly wyprobowane wczedniej, cho¢ do niektérych z nich trzeba bylo wprowadzi¢
drobne modyfikacje. Identyfikatory tych programéw razem z potozeniami zmiennych jed-
nolitych s3 pamigtane w tablicach progid w strukturach typu MeshRenderPrograms dla
siatek i BPRenderPrograms dla ptatéw Béziera.

Listing 35.5 przedstawia zmiany wprowadzone do szadera wierzcholkow z listingu 33.4,
w celu otrzymania cieni na koricowym obrazie siatki. W liniach 29-31 nastepuje oblicze-
nie wspdtrzednych wierzchotka w uktadach zwiazanych z wszystkimi wlaczonymi zrédtami

3Takie samo pole zostato dodane do struktury MeshRenderPrograms, tj. opakowania trzech programéw do
rysowania siatek.
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$wiatla. Do szadera geometrii trzeba doda¢ przekazywanie tych wspdtrzednych z wejscia na
wyijscie; uznalem, ze listing tego szadera jest zbedny.

Listing 35.5. Szader wierzchotkéw programu rysowania $cian siatki z cieniami
GLSL

: .... /* poczatek szadera bez zmian */

. out GVertex {

vec4 Normal;
vec4d ShadowPos[MAX_NLIGHTS];
} Out;

: .... /* bloki magazynowe z reprezentacjg siatki jak na listingu 31.4 */

uniform TransBlock { .... } trb; /* tak, jak na listingu 12.3 */
struct LSPar { .... }; /* tak, jak na listingu 22.3 x/
uniform LSBlock { .... } light; /* tak, jak na listingu 22.3 */

void main ( void )

{
vec4 pos, wpos;
uint i, j, 1, mask;

i = mhe(mfhei((mfac(gl_InstanceID) & FHEMASK) + gl_VertexID)) .VO;
j = nsattr*xi + pofs;
switch ( pdim ) {

/% odczytywanie polozenia wierzchotka bez zmian, */

/* ale przypisujemy je zmiennej pos */
}
gl_Position = pos;

/* obliczanie wektora normalnego bez zmian */
wpos = trb.mm * pos;
for ( 1 = 0, mask = 0x00000001; 1 < light.nls; 1++, mask <<= 1)
if ( (light.mask & mask) != 0 )
Out.ShadowPos[1] = light.ls[1].shadow_vpm * wpos;
} /*mainx*/

Nie zamiescilem tu réwniez listingu szadera fragmentéw wykonujacego konicowy ob-
raz platow Béziera i powierzchni siatkowej; szader ten powstal z przedstawionego na lis-
tingu 22.5 szadera aplikacji 2G przez usuniecie instrukeji zwigzanych z naktadaniem tekstury
na powierzchnie*. Bez zmian pozostawitem modele o$wietlenia (Lamberta i Blinna-Phonga)
i opisy $wiatel oraz wlasnosci materiatu uzywane do obliczania koloréw fragmentow.

*Powierzchnia reprezentowana przez siatke nieregularng zazwyczaj nie jest platem (tj. powierzchnia o pa-
rametryzacji, ktorej dziedzina jest obszarem plaskim), przez co wygenerowanie sensownych wspolrzednych
tekstury dwuwymiarowej dla jej wierzchotkdw, cho¢ wykonalne, jest zadaniem dosy¢ trudnym. Pozostawiam je
jako przedmiot dalszych studiow.
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Program do znajdowania obszaru cienia rzucanego przez powierzchnie siatkowa jest
znacznie uproszczony, bo nie ma w nim potrzeby przetwarzania wektora normalnego po-
wierzchni. Program ten sklada si¢ z dwoch szaderéw, wierzchotkéw i fragmentéw. Szader
wierzchotkow powstal przez uproszczenie szadera z listingu 33.4 — instrukcje odczytujace
z tablic wektor normalny zostaly usuniete. Poniewaz w tym programie szader geometrii jest
nieobecny, szader wierzchotkéw musi wykona¢ dodatkowe zadanie — dokona¢ przejscia do
ukladu kostki standardowej i przypisa¢ zmiennej gl_Position wspolrzedne wierzchotka
w tym ukladzie. Macierze przejscia od uktadu modelu do ukladu $wiata i dalej do ukladu
kostki standardowej sg brane z bloku zmiennych jednolitych TransBlock, przy czym zawsze,
gdy ten program jest wykonywany, uklad kostki standardowej jest zwigzany ze zrédlem
$wiatla.

Listing 35.6 przedstawia procedury, ktérych zadaniem jest przygotowanie do pracy prog-
raméw rysujacych. W celu poprawienia czytelnosci kodu aplikacji programy rysujace siatki
i platy Béziera sa przygotowywane przez osobne procedury, LinkMeshRenderingProgams
i LinkBPRenderingPrograms, ale programy te majg wiele szaderéw wspolnych. W zwiazku
ztym pomocnicza procedura LoadRenderingShaders dokonuje kompilacji wszystkich sza-
derdw, z ktorych skladaja sie te programy; trzeba ja wywolaé przed wspomnianymi proce-
durami, a po zlaczeniu programéw mozna sprzatna¢ szadery, aby nie zajmowaly miejsca.

Pomocnicza procedura LinkMyShaderProgram umozliwia skrécenie kodu aplikacji;
pierwszym jej parametrem jest tablica liczb catkowitych, z ktérych pierwsza jest liczbg sza-
deréw do polaczenia w program, a kolejne liczby sa indeksami do tablicy shader zawie-
rajacej identyfikatory skompilowanych szaderéw. W liniach 28-29 identyfikatory szaderéw,
ktore majg by¢ polaczone w program, sg przepisywane do pomocnicze;j tablicy, ktéra jest na-
stepnie przekazywana procedurze LinkShaderProgram z listingu 4.7. Ostatni parametr jest
napisem, ktory zostanie wyswietlony w razie wystgpienia btedu taczenia programu, w celu
ulatwienia znalezienia jego przyczyny.

Listing 35.6. Procedury kompilacji i faczenia programéw rysujacych
C

: void LoadRenderingShaders ( GLuint *shid )

~

static const GLchar *filename[] =
{ "app3CO.vert.glsl", "app3Cl.vert.glsl", "app3C2.vert.glsl",
"app3C3.vert.glsl", "app3C4.vert.glsl", "app2.tesc.glsl",
"app3C0.tese.glsl", "app3Cl.tese.glsl", "app3CO.geom.glsl",
"app3Cl.geom.glsl", "app3C2.geom.glsl", "app3CO.frag.glsl",
"app3Cl.frag.glsl" };
static const GLuint shtypel] =
{ GL_VERTEX_SHADER, GL_VERTEX_SHADER, GL_VERTEX_SHADER,
GL_VERTEX_SHADER, GL_VERTEX_SHADER, GL_TESS_CONTROL_SHADER,
GL_TESS_EVALUATION_SHADER, GL_TESS_EVALUATION_SHADER,
GL_GEOMETRY_SHADER, GL_GEOMETRY_SHADER, GL_GEOMETRY_SHADER,
GL_FRAGMENT_SHADER, GL_FRAGMENT_SHADER };
int i;
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16:

17 for (i =0; i < 13; i++ )

18: shid[i] = CompileShaderFiles ( shtypeli], 1, &filenamel[i] );

19: + /*LoadRenderingShaders*/

20:

21: static const GLchar *UVNames[] = { "LightingModel" };

22:

23: static GLuint LinkMyShaderProgram ( const int *shn, const GLuint *shaders,

24: const char *name )
25: {

26: GLuint sh[5], i;

27:

28: for (i =0; i < shn[0]; i++ )

20: sh[i] = shaders[shn[i+1]];

30: return LinkShaderProgram ( shn[0], sh, name );

s1: + /*LinkMyShaderProgram*/

32:

33: void LinkMeshRenderingPrograms ( MeshRenderPrograms *prog, GLuint *shid )
34: {

ss: static const int pOsh[] = {3,0,8,11};

s: static const int pish[] {3,1,9,12};

a7:  static const int p2sh[] {2,2,11};

38: int 1i;

39:

a0: prog->progid[0] = LinkMyShaderProgram ( pOsh, shid, "0" );
a1:  prog->progid[1] = LinkMyShaderProgram ( plsh, shid, "1" );
a2: prog->progid[2] = LinkMyShaderProgram ( p2sh, shid, "2" );
a3:  GetAccessToMeshSurfBlock ( prog->progid[1] );

aa: prog->LightingModellLoc =

a5: glGetUniformLocation ( prog->progid[1], UVNames[0] );
ss: GetAccessToTransBlockUniform ( prog->progid[0] );

ar:  GetAccessToLightMatUniformBlocks ( prog->progid[1] );

as: for (i =1; i < 3; i++ )

49: AttachUniformTransBlockToBP ( prog->progid[i] );

so: ExitIfGLError ( "LinkMeshRenderingShaders" );

s1: + /*LinkMeshRenderingPrograms#*/

52:

s3: void LinkBPRenderingPrograms ( BPRenderPrograms *prog, GLuint *shid )
sa: {

ss: static const int p3sh[] = {2,4,11};

se: static const int pé4shl[] {5,3,5,6,10,12};

s7: static const int p5sh[] {4,3,5,7,11%};

ss: static const GLchar *UVnames[] = { "colour" };

se: int 1i;

60:
61: prog->progid[0] = LinkMyShaderProgram ( p3sh, shid, "3" );
62: prog->progid[1] = LinkMyShaderProgram ( p4sh, shid, "4" );
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prog->progid[2] = LinkMyShaderProgram ( p5sh, shid, "5" );
GetAccessToBezPatchStorageBlocks ( prog->progid[1], false, false );
prog->LightingModelLoc =

glGetUniformLocation ( prog->progid[1], UVNames[0] );
GetAccessToTransBlockUniform ( prog->progid[0] );
for (i =1; i < 3; i++ )

AttachUniformTransBlockToBP ( prog->progid[i] );
GetAccessToLightMatUniformBlocks ( prog->progid[1] );
prog->ucolour_loc = glGetUniformLocation ( prog->progid[0], UVnames[0] );
ExitIfGLError ( "LoadBPRenderingPrograms" ) ;

: } /*LinkBPRenderingPrograms*/

Obie procedury przygotowania programéw rysujacych dla aplikacji wykonujg rutynowe
dzialania, tzn. facza programy ze skompilowanych szaderéw i odczytuja z nich polozenia
zmiennych jednolitych i informacje o przesunigciach pol w blokach zmiennych jednolitych
TransBlock, LSBlock i MatBlock. We wszystkich programach rysujacych bloki te maja
identycza budowe.

Listing 35.7 przedstawia procedury likwidujace programy uzywane do rysowania siatek
i platow Béziera. Wywolanie tych procedur trzeba dopisa¢ do procedury sprzatajacej po za-
trzymaniu aplikacji przez uzytkownika.

Listing 35.7. Procedury likwidacji programéw rysujacych
Cc
: void DeleteMeshRenderingPrograms ( MeshRenderPrograms *prog )
{

int i;

glUseProgram ( 0 );
for (i =0; i < 3; i++ )

glDeleteProgram ( prog->progid[i] );
ExitIfGLError ( "DeleteMeshRenderingPrograms" );
: } /#DeleteMeshRenderingPrograms*/

-
o

-
[

12:

13:

: void DeleteBPRenderingPrograms ( BPRenderPrograms *prog )
{

int 1i;

14:

15:

16:

17:

18:

19:

glUseProgram ( 0 );
for (i =0; i < 3; i++ )
glDeleteProgram ( prog->progid[i] );
ExitIfGLError ( "DeleteBPRenderingPrograms" ) ;
} /#DeleteBPRenderingPrograms*/

Listing 35.8 przedstawia nowg procedure rysowania $cian siatki. Procedura ta przy-
wigzuje bufory z reprezentacja siatki do odpowiednich punktéw dowigzania w celu GL_-
SHADER_STORAGE_BUFFER, a nastepnie zaleznie od wartosci parametru final procedura



10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

9:
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wybiera program szaderéw dla obrazu koncowego (rprog_id[1]) albo dla wyznaczania
obszaru cienia (rprog_id[2]). Przed wykonywaniem koncowego obrazu procedura wy-
biera material, przywigzuje pusty obiekt tablicy wierzchotkéw, po czym, wywolujac proce-
dure glDrawArraysInstanced, uruchamia potok przetwarzania grafiki.

Listing 35.8. Procedura rysowania $cian siatki
C

: void DrawMeshFacets ( MeshRenderPrograms *prog, GPUmesh *mesh,

MatBl #*mat, GLint mtn, char nvs, char final )

1

int 1i;

for (i =0; i < 4; i++ )
glBindBufferBase ( SSB, i, mesh->mbuf[i] );
if ( final ) {
glUseProgram ( prog->progid[1] );
SetMeshNVS ( mesh, (GLint)nvs );
ChooseMaterial ( mat, mtn );
}
else
glUseProgram ( prog->progid[2] );
glBindVertexArray ( empty_vao );
glDrawArraysInstanced ( GL_TRIANGLE_FAN, O, 4, mesh->nfac );
glBindVertexArray ( 0 );
ExitIfGLError ( "DrawMeshFacets" );
} /#DrawMeshFacets*/

Listing 35.9 przedstawia procedur¢ RedrawMyWorld i procedury wywolywane przez nig
w celu znalezienia obszaréw cienia i wykonania obrazu koncowego. Nadanie (na polece-
nie uzytkownika) warto$ci false polu shadows powoduje pomini¢cie znajdowania cieni,
jesli jednak majg one by¢ na obrazie, to procedura DrawSceneToShadows nadaje wartos¢
false polu final, powodujac wybranie (przez procedury rysujace siatke i platy Béziera)
odpowiednich programéw szaderéw. Dzialanie tej procedury i procedur OpenGL-a przez
nig wywotywanych jest opisane szczegétowo w rozdziale 22.

Listing 35.9. Procedury rysowania sceny
C

: void DrawMyScene ( AppData *ad )
+{

k1l_Redraw ( ad->linkage );

: } /*DrawMyScenex*/

: void DrawSceneToShadows ( AppData *ad )
{

8:

int 1;
GLuint mask;



1000 35. APLIKACJA TRZECIA C

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

31:

32:

33:

34:

35:

36:

37:

appdata.final = false;
glViewport ( O, O, SHADOW_MAP_SIZE, SHADOW_MAP_SIZE );
glEnable ( GL_POLYGON_OFFSET_FILL );
glPolygonOffset ( 2.0f, 4.0f );
for ( 1 = 0, mask = 0x00000001; 1 < ad->light.nls; 1++, mask <<= 1)
if ( ad->light.shmask & mask ) {
BindShadowTxtFBO ( &ad->trans, &ad->light, 1 );
glClear ( GL_DEPTH_BUFFER_BIT );
DrawMyScene ( ad );
}
glBindFramebuffer ( GL_FRAMEBUFFER, O );
glDisable ( GL_POLYGON_OFFSET_FILL );
for ( 1 = 0, mask = 0x00000001; 1 < ad->light.nls; 1++, mask <<= 1)
if ( ad->light.shmask & mask ) {
glActiveTexture ( GL_TEXTUREO+1 );
glBindTexture ( GL_TEXTURE_2D, ad->light.1s[1].shadow_txt );
}

: } /#DrawSceneToShadows*/

: void DrawSceneToWindow ( AppData *ad )

{
appdata.final = true;
glViewport ( 0, 0, ad->camera.win_width, ad->camera.win_height );
glClearColor ( 1.0, 1.0, 1.0, 1.0 );
glClear ( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
LoadVPMatrix ( &ad->trans );
DrawMyScene ( &appdata );

. } /*DrawSceneToWindow*/

39:

40:

41:

42:

43:

44:

45:

46:

47

void RedrawMyWorld ( void )

{
glEnable ( GL_DEPTH_TEST );
if ( appdata.shadows )

DrawSceneToShadows ( &appdata );

DrawSceneToWindow ( &appdata );
glFlush Q;

: } /*RedrawMyWorld*/

48:

IS

50:

51:

52:

53:

54:

55:

o

6

9:

void ToggleLightModel ( AppData *ad )
{
ad->lighting _model = !'ad->lighting_model;
glUseProgram ( ad->mrprog.progid[1] );
glUniformli ( ad->mrprog.LightingModelLoc, ad->lighting_model );
glUseProgram ( ad->brprog.progid[1] );
glUniformli ( ad->brprog.LightingModelLoc, ad->lighting_model );
: } /*ToggleLightModel*/




35.3. Pozostale zmiany w aplikacji 1001

Procedura ToggleLightModel na polecenie uzytkownika przetacza model oswietlenia.
Identyfikator biezacego modelu (liczba 0 albo 1) jest pamigtany w dodanym do struktury
AppDatapolulighting_model. Jego nowa warto$¢ musi by¢ nadana zmiennym jednolitym
LightingModel w obu programach rysujacych: dla siatek i dla ptatéw Béziera.

35.3. Pozostale zmiany w aplikacji

Pozostate zmiany w aplikacji s3 drobne i nieliczne. W czesci okienkowej trzeba utworzy¢
dodatkowy suwak, do sterowania dtugoscia paznokci, ale to wymaga tylko zmiany makro-
definicji NKLARTPARAMS (listing 35.1) opisujacej liczbe parametréw artykulacji, zatem (poza
drobna modyfikacja nazw procedur odzwierciedlajaca zmiane nazwy aplikacji) czes$¢ okien-
kowa pozostata niezmieniona.

Procedura ProcessCharCommand w czgéci graficznej reaguje na polecenia wydawane
przez napisanie liter B i U, ktore wybieraja model o§wietlenia (wywolujac procedure Toggle-

Rysunek 35.2. Sceny wyswietlane przez aplikacje trzecig C
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LightModel, listing 35.9) i przelaczajg obecnos¢ cieni na obrazie. Wreszcie, do procedury
sprzatajacej DeleteMyWorld sa dodane instrukcje likwidujace dodatkowe programy szade-
réw. Zamieszczenie listingéw tych procedur uznalem za zbedne.

35.4. Cwiczenia

1. Zréb druga (lewa) dton do kompletu i skonstruuj tancuch kinematyczny umozliwiajacy
niezalezng artykulacje palcow obu dtoni. Paznokcie obu dloni mogg mie¢ w kazdej chwili
te samg dlugosc¢.

W menu nie ma miejsca na wigksza liczbe suwakéw. Aby je pomiescié, najprosciej jest
utworzy¢ jeszcze jedno okno (podokno okna menu) o odpowiedniej wielko$ci i wyswiet-
la¢ jego czes¢ wybierang na przyklad przy uzyciu pionowego suwaka (a wiec trzeba by
dorobi¢ taki rodzaj wihajstra).

2. Powierzchnia zbudowana ze $cian siatki jest zamknieta — jest brzegiem bryly. Korzysta-
jac z wiadomosci podanych w podrozdziale 7.6, wiacz przed rysowaniem siatki pomijanie
$cian odwrdconych tylem do obserwatora (a przed rysowaniem paznokci je wylacz).

35.5. Uzupelnienia — okreslanie parametrow tekstury

Rozwazmy przyklad nalozonej na dlon tekstury. Szader fragmentéw potrzebuje wspotrzed-
nych tekstury, aby obliczy¢ jej warto$¢. Jesli te wspolrzedne okreslimy na podstawie wspot-
rzednych punktu powierzchni w przestrzeni (np. w ukladzie $wiata), to po odksztalceniu
i zageszczeniu siatki otrzymamy efekt taki jak na rysunku 35.3b: tekstura ,przeptynie” po
powierzchni, ktéra bedzie inaczej ,,pomalowana” niz przed odksztalceniem.

<)

Rysunek 35.3. Tekstura jednowymiarowa na powierzchni
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Aby zwigza¢ teksture z powierzchnig tak jak farbe, trzeba okresli¢ wspotrzedne tekstury
na podstawie wspdtrzednych punktéw powierzchni nieodksztalconej. W przykladzie poka-
zanym na rysunku 35.3 jest uzyta tekstura jednowymiarowa, ktdérej argument (wspétrzedna
tekstury) jest okreslony na podstawie wspdtrzednej y punktu powierzchni odksztatconej na
rysunku b i nieodksztalconej na rysunku c. W przedstawionym tu eksperymencie kazdy
wierzchotek siatki miat 7 wspoétrzednych (tj. atrybutéw skalarnych): trzy wspoélrzedne wierz-
chotka siatki odksztalconej w wyniku artykulacji, trzy wspétrzedne wektora normalnego
i jedng dodatkowsq liczbe, ktéra dla siatki niezageszczonej (wygenerowanej przez szader ar-
tykulacji) byla wspolrzedng y wierzcholka siatki oryginalnej, interpolowang (tak samo jak
wspolrzedne wierzchotkéw siatki) w kolejnych operacjach zageszczania.

Pozostawiajac Czytelnikowi do ,rozgryzienia” modyfikacje szaderéw wytwarzajacych
reprezentacje siatki do narysowania z wszystkimi potrzebnymi atrybutami wierzchotkéw,
przedstawie sposob przygotowania i uzycia tekstury jednowymiarowej. Tekstura uzyta w opi-
sanym tu eksperymencie zostala utworzona za pomocg instrukeji

glGenTextures ( 1, &mytxt );
glActiveTexture ( GL_TEXTUREO );
glBindTexture ( GL_TEXTURE_1D, mytxt );
glTexParameteri ( GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameteri ( GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri ( GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexImagelD ( GL_TEXTURE_1D, O, GL_RGBA, 64, O, GL_RGBA,

GL_FLOAT, mytexture );

W zmiennej mytxt jest zapamietany identyfikator tekstury, natomiast tablicamytexture
zawiera 64 liczby zmiennopozycyjne opisujace 16 tekseli; 8 w kolorze zéttym i 8 niebies-
kich. Argumentem tekstury jednowymiarowej jest jedna wspolrzedna, oznaczana literg s,
przy czym podany parametr GL_REPEAT wybiera okresowe rozszerzenie tekstury okreslonej
w przedziale [0,1) na cala 0§ rzeczywistg>. Nie zastosowalem tu mipmapingu, cho¢ to jest
mozliwe (i bytoby wskazane dla wigkszych tekstur).

Szader fragmentéw zawiera deklaracje

in FVertex {
vec3 Position;

float txtc;
} In;
layout (binding=0) uniform samplerlD mytxt;

a obliczenie tekstury wykonuje dodana do niego instrukcja

mm.dirref = texture ( mytxt, 5.0*%In.txtc );

W ten sposéb powstaty paski na obrazach.
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ktora zapamietuje kolor farby (tj. warto$¢ tekstury) w odpowiednich polach zmiennej mm opi-
sujacej material (zobacz listing 18.1) na potrzeby obliczen koloru o$wietlonej powierzchni.
Polu txtc bloku FVertex nadal warto$¢ szader wierzchotkéw, wybierajac odpowiednia
wspoélrzedng na podstawie wartosci zmiennej jednolitej (a nastepnie etap rasteryzacji ob-
liczyl warto$¢ tego pola dla kazdego fragmentu). Nie nalezy zapomniec o przywigzaniu teks-
tury do celu GL_TEXTURE_1D przed rysowaniem powierzchni i o posprzataniu, gdy aplikacja
konczy dzialanie.



Aplikacja trzecia D

Ostatnim tematem do przerabiania w tym kursie jest aplikacja 3D. Powstata ona z aplikacji 3C
przez dodanie bardziej zaawansowanej animacji; na podstawie zadanych wartosci paramet-
réw artykulacji w wybranych chwilach aplikacja umozliwia okreslenie funkeji interpolacyj-
nej, ktorej argumentem jest czas. Funkcje te mozna ,,odgrywac’, otrzymujac ruch obiektu.
Nie ma w tej aplikacji nowych elementéw OpenGL-a, ale za to jest bardziej rozbudowany
interfejs uzytkownika — konieczny element wigkszosci niebanalnych projektéw. Dla czesci
Czytelnikéw bedzie to przykiad, jak mozna zrealizowac taki interfejs, a dla innych, by¢ moze,
bedzie to przyklad, jak tego robi¢ nie nalezy. W ten sposéb kazdy znajdzie tu co$ dla siebie.

36.1. Dzialanie interfejsu uzytkownika

Inaczej niz poprzednio, widok okna aplikacji umiescitem na poczatku rozdziatu (rys. 36.1),
aby najpierw przedstawi¢ scenariusz dzialania interfejsu uzytkownika, a implementacje opi-
sa¢ dalej. Obszar gléwnego okna jest podzielony miedzy trzy podokna, z ktérych pierwsze
i trzecie zawieraja wihajstry rysowane przez procedury biblioteki X11, a okno drugie zawiera
wihajster z obrazem wygenerowanym przy uzyciu OpenGL-a. Wihajstry w pierwszym i dru-
gim podoknie s3 przeniesione bez zmian z aplikacji 3C. Wihajstry w podoknie trzecim (zaj-
mujacym dolng czes$¢ okna gtéwnego) stuza do konstruowania i odtwarzania animacji.

Guziki i przetaczniki z lewej strony s3 ,standardowymi” wihajstrami obslugiwanymi
przez procedury opisane w podrozdziale 30.4, przy czym jeden z guzikéw ma podmieniona
procedure rysowania, bo zamiast opisu tekstowego ma na nim widnie¢ ikona (tr6jkat lub
dwa prostokaty) wskazujaca na mozliwos¢ uruchomienia albo zatrzymania animacji. Prawa
cze$¢ podokna (ponizej obrazu sceny tréjwymiarowej) zajmuje wihajster realizujacy o$ czasu
aplikacji. Wihajster ten jest zaprojektowany specjalnie dla tej aplikacji i ma kilka trybow
dziafania.

Obraz wihajstra sklada sie z linii poziomej (bedacej wizualizacja osi czasu), zaznaczo-
nych wezléw, w ktérych s3 zadane wartosci parametréw artykulacji!, i dwoch pionowych

'W terminologii filméw animowanych chwilom tym odpowiadaja tzw. klatki kluczowe animacji.
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Rysunek 36.1. Okno aplikacji trzeciej D

kresek, z ktorych jedna uwidocznia wybrany wezet, a druga, opatrzona liczba, okresla chwile
wskazywang przez polozenie kursora lub biezacy czas odtwarzanej animacji.

Dwa przelaczniki opatrzone napisami edit i pan/zoom wlaczaja tryby edycji i zmiany
zakresu. W trybie edycji uzytkownik moze wskaza¢ kursorem wezel i nacisna¢ lewy przy-
cisk myszy, co spowoduje przejscie wihajstra do stanu, w ktérym przesuwanie myszy bedzie
powodowac odpowiednie zmiany wezta. Wyjscie z tego stanu nastepuje po zwolnieniu przy-
cisku. Uzytkownik moze tez nacisng¢ prawy przycisk, co spowoduje dodanie nowego wezla
w miejscu wskazanym przez kursor. Wihajster rowniez wtedy wchodzi w stan przesuwania
(nowego) wezla i pozostaje w tym stanie, dopoki prawy przycisk jest nacisniety.

Nacisnigcie lewego przycisku w trybie zmiany zakresu powoduje wejscie w stan przesu-
wania osi czasu — przesuwanie myszy w tym stanie powoduje przesuwanie w oknie poczatku
ukladu wspodtrzednych (czyli zera na osi czasu). Naci$niecie prawego przycisku wprowadza
wihajster w stan najezdzania lub odjezdzania, czyli zmiany skali osi czasu. Mozna w ten spo-
sob wybra¢ widoczny przedzial osi czasu, aby w nim porozmieszcza¢ wezly odpowiednio
do potrzeb.

W trybie edycji, w stanie przesuwania wezla, uzytkownik moze spowodowac usunigcie
tego wezla, naciskajac klawisz Del. Nie mozna w ten sposob pozostawi¢ mniej niz czterech
wezldw, poniewaz jest to minimalna liczba wymagana w uzywanych w tej aplikacji konstruk-
cjach interpolacyjnych krzywych sklejanych, opisanych w dodatku B.

Jesli uzytkownik nacisnat lewy przycisk, nie wskazujac (wystarczajaco dokladnie) wezta
w trybie edycji lub gdy wihajster osi czasu nie jest w Zadnym z opisanych wyzej trybéw, to wi-
hajster wchodzi w stan przesuwania chwili. W tym stanie aplikacja ma oblicza¢ wartosci para-
metrow artykulacji dla chwili odpowiadajacej polozeniu kursora i wyswietla¢ obraz obiektu
odpowiadajacego tej chwili. Przesuwajac mysz, uzytkownik moze oglada¢ ruch w dowolnym
tempie, w tym takze cofa¢ go.
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Trzy guziki z napisami <-, Set i -> stuza do zadawania warunkoéw interpolacyjnych. Gu-
ziki ze strzatkami umozliwiaja wybranie wezla. Po wybraniu go uzytkownik powinien nada¢
(za pomoca suwakéw w pierwszym podoknie) odpowiednie wartosci parametréw artyku-
lacji, a nastepnie pstrykna¢ guzik Set, co spowoduje zapamigtanie tych wartosci dla bieza-
cego wezta. Dla chwili odpowiadajacej temu wezlowi oprocz parametréw artykulacji zostanie
zapamigtany biezacy obrdt obserwatora wokot sceny.

Obok guzika uruchamiajacego i zatrzymujacego animacje znajduja si¢ trzy przetaczniki.
Stuzg one do niezaleznego wybierania trzech animowanych elementéw sceny: tancucha ki-
nematycznego, macierzy modelu i polozenia obserwatora wokoét sceny. Animacja fancucha
kinematycznego polega na obliczaniu, dla kolejnych chwil, wartosci parametréw artykulacji
i dokonywaniu artykulacji fancucha. Parametry te opisuje wektorowa sklejana krzywa inter-
polacyjna trzeciego stopnia. Macierz modelu jest macierzg obrotu, ktérego kat jest zmieniany
ze stalg szybkoscia, jednej 6smej obrotu na sekunde. Animacja polozenia obserwatora polega
na interpolacji kwaternionéw reprezentujacych obroty w chwilach odpowiadajacych wezlom
(zobacz podrozdz. A.4 i B.4).

36.2. Wihajster osi czasu

Wihajster osi czasu nalezy do czesci okienkowej aplikacji; przetwarza komunikaty otrzy-
mywane od systemu X Window i jest rysowany za pomocg procedur z biblioteki X11. Aby
przeniesienie aplikacji do innego systemu, na przyktad Windows, bylo latwiejsze, ciag punk-
tow na osi czasu oraz sposob jego zmieniania przez uzytkownika nie powinien zaleze¢ od
$rodowiska. Uniezaleznieniu czesci graficznej aplikacji, ktéra musi mie¢ dostep do danych
i pewnych metod wihajstra, stuzy wprowadzenie dwoch plikéw nagtéwkowych wihajstra,
z ktérych pierwszy (listing 36.1) zawiera dane widoczne dla czgéci graficznej (w tym makro-
definicje wprowadzajace nazwy i numery polecent wydawanych przez wihajster osi czasu),
a w drugim (listing 36.2) sa zdefiniowane stany wihajstra, jego struktura danych zwiazana ze
srodowiskiem i prototyp konstruktora (wywolywanego przez czes¢ okienkows).

Kolejne pola struktury KnotsWidgetf na listingu 36.1 przechowuja odpowiednio mini-
malng i maksymalng dopuszczalng oraz biezacg liczbe wezléw, numer wezla przesuwanego
w danej chwili oraz numer poprzedniego przesuwanego wezta, poprzednia i biezacg wspot-
rzedng polozenia kursora w oknie, wskaznik tablicy weztéw, odpowiadajace sobie zakresy
wspolrzednych ,,$wiata’, tj. osi czasu i okna, punkt osi czasu odpowiadajacy biezacemu po-
Yozeniu kursora i wreszcie objasnione dalej przefaczniki trybu dzialania wihajstra.

Struktura typu KnotsWidgetf bedzie widocznym dla czgsci okienkowej polem struktury
AppWidgets, ktéra jest opakowaniem wszystkich danych czesci graficznej. Struktura danych
wihajstra osi czasu, xKnotsWidgetf zawiera wskaznik tej struktury, a oprécz tego pole wdg
typu xwidget, ktére umozliwia funkcjonowanie wihajstra w menu opisanym w rozdziale 30,
i pole thebutton, ktdre jest (stosowanym w systemie X Window) identyfikatorem aktualnie
nacisnietego przycisku myszy?.

W jezyku C++ typ xKnotsWidgetf powinien by¢ podklasa klasy xwidget, ale napisanie takiej implemen-
tacji pozostawiam amatorom tego jezyka.
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Listing 36.1. Plik knotswidget.h

C
: #define WDGMSG_KNOT_CHANGE 20
: #define WDGMSG_KNOT_INSERT 21
: #define WDGMSG_KNOT_DELETE 22
: #define WDGMSG_KNOT_MCLICK 23
: #define WDGMSG_KNOT_MMOVE 24
: #define WDGMSG_KNOT_CHANGE_MAPPING 25
: #define WDGMSG_KNOT_ERROR 26

: typedef struct {

int minknots, maxknots, nknots, current, prevc;
int prevxi, curxi;
float *knots;
float xmin, xmax, ximin, ximax, Xxc;
char editswitch, panswitch, motion_off;
} KnotsWidgetf;

int KnotsWidgetXtoXi ( KnotsWidgetf *knw, float x );
float KnotsWidgetXitoX ( KnotsWidgetf *knw, int xi );
int FindKnotInterval ( int n, float *knots, float x );

Listing 36.2. Plik xknotswidget.h

C
: #define WDGSTATE_KW_MOVING_KNOT 10
: #define WDGSTATE_KW_MOVING_MOUSE 11
: #define WDGSTATE_KW_PANNING 12
: #define WDGSTATE_KW_ZOOMING 13

: typedef struct xKnotsWidgetf {

xwidget wdg;
int thebutton;
KnotsWidgetf *knw;

} xKnotsWidgetf;

xKnotsWidgetf *NewKnotsWidget ( xwinmenu *wm, KnotsWidgetf *knw,
int id, int w, int h, int x, int y,
int minknots, int maxknots,
int nknots, float *knots, float xmin, float xmax );

Dane ,,podlaczone” do wihajstra osi czasu reprezentujg rosnacy ciag (tzw. wezléw) liczb
i przedzial miedzy najmniejsza a najwieksza z nich, przy czym powigzanie liczb z tego prze-
dzialu z czasem jest pozostawione aplikacji. Liczby sg typu float; pojedyncza precyzja jest
wystarczajaca, poniewaz czas bedzie mierzony od poczatku animacji (ktéra ma trwa¢ od
kilku sekund do najwyzej kilku minut), a nie od poczatku dzialania aplikacji, czego imple-
mentacja wymagalaby uzycia podwdjnej precyzji (zobacz uwagi nas. 77).
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Liczby przechowywane Xmin, Xmax> &min 1 émax W polach xmin, xmax, ximin i ximax
okreslaja przejscia miedzy ukladami wspolrzednych wezlow i okna. Przejscia te sa opisane
wzorami

§max — &mi

&= &min + o = (x - xmin)a (36.1)
Xmax ~ Xmin
Xmax — Xmin

X = Xmin t ({ - fmin)- (36.2)
Enmx_'&nm

Listingi 36.3 i 36.4 przedstawiajg procedure przetwarzania komunikatéw wihajstra osi
czasu oraz (ze skrotami) wywolywane przez te procedure podprogramy pomocnicze. Ob-
liczenie wykonane przez procedure KnotsWidgetInput zalezy od jednego z pieciu stanéw
wihajstra, rodzaju zdarzenia i trybu. Przyjrzyjmy sie temu po kolei.

Listing 36.3. Procedura KnotsWidgetInput
C
static char KnotsWidgetInput ( struct xwidget *wdg,
int msg, int key, int x, int y )

KnotsWidgetf x*knw;
xKnotsWidgetf *xknw;
int dxi;
float dx;

xknw = (xKnotsWidgetf*)wdg;
knw = xknw->knw;
switch ( wdg->state ) {
case WDGSTATE_KW_MOVING_MOUSE:
switch ( msg ) {
case XWMSG_BUTTON_RELEASE:
if ( key == xknw->thebutton )
goto exit_active_state;
break;
case XWMSG_MOUSE_MOTION:
knw->xc = XitoX ( knw, knw->curxi = x );
wdg->wm->callback ( wdg, WDGMSG_KNOT_MMOVE, knw->current, x, y );
wdg->wm->changed = true;
break;
default:
break;
}

break;

W stanie podstawowym, jesli przefacznik editswitch ma warto$¢ true i kursor wska-
zuje pewien wezel na osi czasu, to po nacisnieciu lewego przycisku myszy wihajster przecho-
dzi w stan przesuwania wezla (linia 128), a w przeciwnym razie przechodzi w stan przesuwa-
nia myszy (linia 132 lub 14s).
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Instrukcje przetwarzania komunikatéw w stanie przesuwania myszy sa w liniach 12-26;
zwolnienie przycisku powoduje powr6t do stanu podstawowego, a przemieszczenie kursora
powoduje, w linii 20, przekazanie aplikacji polecenia WDGMSG_KNOT_MMOVE. Cze$¢ graficzna
aplikacji reaguje na to polecenie, dokonujac artykulacji tancucha kinematycznego dla chwili
odpowiadajacej nowemu potozeniu kursora i wyswietlajagc nowy obraz.

Listing 36.3. (cd.) Procedura KnotsWidgetInput

C
27: case WDGSTATE_KW_MOVING_KNQOT:
28: switch ( msg ) {
20: case XWMSG_BUTTON_RELEASE:
30: if ( key == xknw->thebutton )
31: goto exit_active_state;
32: break;
ss:  case XWMSG_MOUSE_MOTION:
34: knw->xc = XitoX ( knw, knw->curxi = x );
35: UpdateTheKnot ( knw, x );
36: wdg->wm->callback ( wdg, WDGMSG_KNOT_CHANGE, knw->current, X, y );
3r: wdg->wm->changed = true;
38: break;
s:  case XWMSG_KEY_PRESS:
40: switch ( key ) {
at: case 0x007f: /* ASCII Del, not defined in keysymdef.h */
42: goto delete_knot;
43: default:
44: break;
as: }
46: break;
a7:  case XWMSG_SPECIAL_KEY_PRESS:
a8 switch ( key ) {
49: case XK_KP_Delete:
s0: delete_knot:
51: if ( DeleteTheKnot ( knw ) ) {
52: wdg->wm->callback ( wdg, WDGMSG_KNOT_DELETE, knw->current, X, y );
53: goto exit_active_state;
54: }
55: break;
56: default:
57: break;
58: }
59: break;
60: }
61: break;

Wihajster moze przejs¢ w stan przesuwania wezla takze po nacisnieciu prawego przycisku
(linia 141); wtedy w miejscu wskazywanym przez kursor jest wstawiany nowy wezel (przez
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procedure InsertKnot, linia 138) i ten wezet staje si¢ biezacy. Instrukcje przetwarzajace ko-
munikaty wej$ciowe sa zapisane w liniach 27-61. Zwolnienie przycisku powoduje powr6t
do stanu podstawowego (linia 31). Przemieszczenie kursora powoduje przesuniecie wez-
ta przez procedur¢ UpdateTheKnot i wystanie aplikacji polecenia WDGMSG_KNOT_CHANGE
(linie 35, 36). Naci$nigcie klawisza Del lub Delete (ktdre moze spowodowac wyslanie kodu
ASCII Del lub komunikatu o naci$nieciu klawisza specjalnego) powoduje usunigcie bieza-
cego wezla (przez procedure DeleteKnot), zawiadomienie aplikacji (poleceniem WDGMSG_-
KNOT_DELETE) i powr6t wihajstra do stanu podstawowego. Procedura DeleteTheKnot nie
usuwa wezla, jesli miatoby to spowodowa¢ zmniejszenie liczby weztéw ponizej dopuszczal-
nego minimum.

Listing 36.3. (cd.) Procedura KnotsWidgetInput
C

case WDGSTATE_KW_PANNING:
switch ( msg ) {
case XWMSG_MOUSE_MOTION:
if ( (dxi = x - knw->prevxi) ) {
knw->prevxi = x;
dx = dxi*(knw->xmax-knw->xmin)/(knw->ximax-knw->ximin) ;
knw->xmin -= dx; knw->xmax -= dx;
wdg->wm->callback ( wdg, WDGMSG_KNOT_CHANGE_MAPPING, O, x, y );
wdg->wm->changed = true;
}
break;
case XWMSG_BUTTON_RELEASE:
if ( key == xknw->thebutton )
goto exit_active_state;
break;
default:
break;
}

break;

Pozostalym dwoém stanom aktywnym wihajstra dalem nazwy WDGSTATE_KW_PANNING
i WDGSTATE_KW_ZOOMING. Stany te umozliwiaja zmiane widocznego w obrazie wihajstra
przedzialu na osi czasu. Wihajster wchodzi w te stany odpowiednio po naci$nieciu lewego
i prawego przycisku myszy, gdy przefacznik panswitch ma warto$¢ true. Zwolnienie przy-
cisku powoduje powr6t do stanu podstawowego. Przesuniecie kursora w stanie WDGSTATE _-
KW_PANNING powoduje dodanie do obu konicéw widocznego przedzialu przyrostu odpowia-
dajacego przyrostowi wspoélrzednej & polozenia kursora (linia 68). Skutkiem przesuniecia
kursora w stanie WDGSTATE_KW_Z0OMING jest zmiana dlugosci przedzialu o czynnik obli-
czany w linii 86 na podstawie przyrostu wspdtrzednej & oraz biezgcej szerokosci obrazu wi-
hajstra. W obu przypadkach aplikacja jest zawiadamiana o zmianie odwzorowania wspét-
rzgdnych ekranowych na czas, przez wyslanie polecenia WDGMSG_KNOT_CHANGE_MAPPING.
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Listing 36.3. (cd.) Procedura KnotsWidgetInput

C
s1: case WDGSTATE_KW_ZOOMING:
82: switch ( msg ) {
83: case XWMSG_MOUSE_MOTION:
84: if ( (dxi = knw->prevxi - x) ) {
85: knw->prevxi = x;
86: dx = exp ( (float)dxi/(knw->ximax-knw->ximin) );
87: knw->xmax = knw->xmin + dx*(knw->xmax-knw->xmin) ;
88: wdg->wm->callback ( wdg, WDGMSG_KNOT_CHANGE_MAPPING, 1, x, y );
89: wdg->wm->changed = true;
90: }
o1: break;
92: case XWMSG_BUTTON_RELEASE:
93: if ( key == xknw->thebutton ) {
94: exit_active_state:
95: wdg->state = WDGSTATE_DEFAULT;
96: UngrabInput ( wdg );
o7: wdg->wm->changed = true;
98: }
99: break;
100: default:
101: break;
102: }
103: break;

Przejscie ze stanu podstawowego do kazdego z czterech standéw aktywnych wiaze si¢
z przejeciem komunikatéw przez wihajster (za pomocg procedury GrabInput, linia 152).
Podczas powrotu do stanu podstawowego jest wywolywana procedura UngrabInput (li-
nia 96). W stanie podstawowym wihajster reaguje na nacisniecie klawisza z litera R, przy-
wracajac wyswietlanie domyslnego przedziatu [0,10], i klawisza z literg F, ktére powoduje
wyswietlanie przedzialu miedzy pierwszym a ostatnim weztem.

Przesuwanie kursora w stanie podstawowym powoduje zmiany obrazu wihajstra, w kto-
rym zmienia si¢ pionowa linia i liczba opisujaca wskazywang chwile czasowg. Ale ta reakcja
na przesuwanie kursowa moze by¢ wylgczona przez aplikacje (przez przypisanie wartosci
true przefacznikowy motion_off), co jest pozadane podczas ,odgrywania” animacji.

Listing 36.3. (cd.) Procedura KnotsWidgetInput

C
104: default:
105: switch ( msg ) {
w0s: case XWMSG_MOUSE_MOTION:
107: if ( 'knw->motion_off ) {
108: knw->xc = XitoX ( knw, knw->curxi = x );
109: wdg->wm->changed = true;

110: T
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break;
case XWMSG_BUTTON_PRESS:
knw->xc = XitoX ( knw, knw->curxi = x );
xknw->thebutton = key;
if ( knw->panswitch ) {
if ( key == Buttonl )
wdg->state = WDGSTATE_KW_PANNING;
else if ( key == Button3 )
wdg->state = WDGSTATE_KW_ZOOMING;
else
break;
goto enter_active_state;
}
else if ( knw->editswitch ) {
if ( key == Buttonl ) {
wdg->wm->callback ( wdg, WDGMSG_KNOT_MCLICK, O, x,
if ( FindNearestKnot ( knw, x ) ) {
wdg->state = WDGSTATE_KW_MOVING_KNQOT;
goto enter_active_state;
}
else {
wdg->state = WDGSTATE_KW_MOVING_MOUSE;
goto enter_active_state;
}
}
else if ( key == Button3 ) {
wdg->wm->callback ( wdg, WDGMSG_KNOT_MCLICK, 1, x,
if ( InsertKnot ( knw, x ) ) {
wdg->wm->callback ( wdg, WDGMSG_KNOT_INSERT,
knw->current, x, y );
wdg->state = WDGSTATE_KW_MOVING_KNOT;
goto enter_active_state;
}
}
}
else {
if ( key == Buttonl ) {
wdg->state = WDGSTATE_KW_MOVING_MOUSE;
wdg->wm->callback ( wdg, WDGMSG_KNOT_MCLICK, 2, x,
enter_active_state:
knw->prevxi = x;
GrabInput ( wdg );
wdg->wm->changed = true;
}
}
break;
case XWMSG_KEY_PRESS:

vy )

vy )

vy )
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switch ( key ) {
case ’R’: case ’r’:
knw->xmin = 0.0; knw->xmax = 10.0;
wdg->wm->callback ( wdg, WDGMSG_KNOT_CHANGE_MAPPING, 1, x, y );
wdg->wm->changed = true;
break;
case ’F’: case ’f’:
if ( knw->knots[knw->nknots-1] != knw->knots[0] ) {
knw->xmin = knw->knots[0]; knw->xmax = knw->knots[knw->nknots-1];
wdg->wm->callback ( wdg, WDGMSG_KNOT_CHANGE_MAPPING, 1, x, y );
wdg->wm->changed = true;

}
break;
default:
return false;
}
break;
case WDGMSG_RECONFIGURE:
if ( key )
{ wdg->r.x = x; wdg->r.y =y; }
else

{ wdg->r.width = x; wdg->r.height = y; }
knw->ximin = wdg->r.x + 3; knw->ximax = wdg->r.x + wdg->r.width - 4;
wdg->wm->changed = true;

X
break;
X
return true;
} /#KnotsWidgetInput*/

W stanie podstawowym wihajster reaguje na komunikat WDGMSG_RECONFIGURE, ktory
zawiadamia o zmianie wymiaréw — zaleznie od wartosci (true albo false) parametru key,
parametry x i y okreslaja wspolrzedne gérnego lewego naroznika albo nowe wymiary wi-
hajstra.

Zobaczmy teraz podprogramy pomocnicze wihajstra pokazane na listingu 36.4. Funkcje
KnotsWidgetXtoXiiKnotsWidgetXitoX (listing 36.4) realizuja odpowiednio wzory (36.1)
i (36.2), przy czym w pierwszym przypadku wynik jest zaokraglany do najblizszej liczby cal-
kowitej. Lokalnie (w procedurze KnotsWidgetInput) funkcje te wystepuja pod krétszymi
nazwami XtoXi i XitoX.

Funkcja FindKnotInterval dla tablicy knots o dlugosci n +1, zawierajacej rosnacy ciag
liczb xo, . . ., Xy, iliczby x znajduje (metoda bisekgji) liczbe i, taka ze x; < x < x5, przy czym
jesli x < xp,to i =—1,ajeslix > x,,t0i=n.

Procedura FindNearestKnot znajduje wezel, ktorego obraz (wyswietlony przez wihajst-
er) znajduje si¢ najblizej kursora. Jesli r6znica wspotrzednych & kursora i obrazu wezta nie
jest wigksza niz prog tolerancji 5 pikseli, to procedura zapamigtuje numer tego wezla w polu
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Listing 36.4. Pomocnicze procedury wihajstra osi czasu

. int FindKnotInterval ( float n, float *knots, float x ) {

C
: int KnotsWidgetXtoXi ( xKnotsWidgetf *knw, float x ) { .... }
: float KnotsWidgetXitoX ( xKnotsWidgetf *knw, int xi ) { .... }

: #define XtoXi KnotsWidgetXtoXi
: #define XitoX KnotsWidgetXitoX

: static char FindNearestKnot ( xKnotsWidgetf *knw, int xi )

It

#define TOL 5

int i;
float x, *knots;

i = FindKnotInterval ( knw->nknots, knots = knw->knots,
x = XitoX ( knw, xi) );
if (i <0)
i=0;
if ( i < knw->nknots-1 )
if ( x-knots[i] > knots[i+1]-x )
i++;
if ( fabs ( x-knots[i] )*
(knw->ximax-knw->ximin) / (knw->xmax-knw->xmin) <= TOL ) {
knw->current = i;
return true;

3

return false;

#undef TOL

}

/*FindNearestKnot*/

static void ModifyTheKnot ( int nknots, float *knots, int i )

{

#define TOL 0.02

float x, x0, x1, h;

x = knots[i];

x0 =1 ==0 7 x : knots[i-1];
x1 = i == nknots-1 ? x : knots[i+1];
h = x1-x0;
if ( x < xO0+TOL#*h ) knots[i] = x0+TOL*h;
else if ( x > x1-TOL#h ) knots[i] = x1-TOL#h;
#undef TOL
} /#ModifyTheKnot*/

static void UpdateTheKnot ( xKnotsWidgetf *knw, int xi )

{

-}
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float x, px, *knots;
int n, c;
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knots = knw->knots;
x = XitoX ( knw, xi );
px = knots[c = knw->prevc = knw->current];
if (x <px) Ao
while ( ¢ > 0 && x < knots[c-1] ) {
knots[c] = knots[c-1];
c --;
}
}
else if ( x > px ) {
n = knw->nknots;
while ( ¢ < n-1 && x > knots[c+1] ) {
knots[c] = knots[c+1];
c ++;
}
}
knots [knw->current = c] = x;
ModifyTheKnot ( knw->nknots, knots, c );
: } /*UpdateTheKnot*/

. static char InsertKnot ( xKnotsWidgetf *knw, int xi )

{
float x, *knots;
int i,
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if ( knw->nknots >= knw->maxknots )
return false;

x = XitoX ( knw, xi ) );
if ( i < knw->nknots-1 )

knots [knw->prevc = knw->current = i+l1] = x;
ModifyTheKnot ( ++knw->nknots, knots, i+l );
return true;

. } /*InsertKnotx/

. static char DeleteTheKnot ( xKnotsWidgetf *knw )
q
float *knots;

if ( knw->nknots > knw->minknots &&

if ( knw->current < knw->nknots-1 ) {
knots = knw->knots;

i = FindKnotInterval ( knw->nknots, knots = knw->knots,

memmove ( &knots[i+2], &knots[i+1], (knw->nknots-1-i)*sizeof (float) );

knw->current >= 0 && knw->current < knw->nknots ) {
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memmove ( &knots[knw->current], &knots[knw->current+1],
(knw->nknots-1-knw->current)*sizeof (float) );
}
knw->nknots --;
return true;
}
return false;
} /#DeleteTheKnot*/

current i zawiadamia procedure KnotsWidgetInput, ze wezel zostal wkazany wystarcza-
jaco doktadnie, co umozIliwi wejscie w stan przesuwania wezla.

Procedura UpdateTheKnot oblicza liczbe x odpowiadajacg wspotrzednej & punktu
w oknie i wpisuje ja do tablicy wezléw z zachowaniem uporzadkowania ciggu liczb w tej tab-
licy. W tym celu, w liniach 53-56 albo 59-63 moze przesung¢ liczby w tablicy w odpowiednia
strong. Zadaniem procedury ModifyTheKnot, wywolywanej po wpisaniu wezta do tablicy,
jest niedopuszczenie do nalozenia si¢ wezlow, poniewaz cigg wezléw interpolacyjnych musi
by¢ $cisle rosngcy. Co wigcej, dlugosci sasiednich przedziatéw miedzy wezlami nie powinny
zbytnio si¢ r6zni¢. Dlatego procedura ModifyTheKnot dokonuje takiej modyfikacji, aby od-
legto$¢ wezla od jego sgsiadow nie byla mniejsza niz 0.02 dltugosci przedziatu miedzy tymi
sgsiadami.

Procedura InsertKnot wstawia wezel do ciggu, a DeleteTheKnot usuwa wezel, do-
konujac odpowiednich przesunie¢ w tablicy. Procedura InsertKnot dodatkowo wywotuje
procedure ModifyTheKnot, aby unikna¢ sytuacji, w ktorej wezly pokrywaja sie lub sg polo-
zone zbyt blisko siebie.

Listing 36.5 przedstawia nagléwek procedury rysowania wihajstra osi czasu i jego kon-
struktor, przy czym tre$¢ procedury rysowania pominatem; procedura ta kolejno wywo-
tuje procedury z biblioteki X11, ktore wyswietlaja wihajster (w tym obrazy wezlow) w trybie
natychmiastowym. Ewentualng ciekawo$¢ mozna zaspokoi¢, czytajac plik Zrédiowy.

Listing 36.5. Procedury KnotsWidgetRedraw i NewKnotsWidget
C

: static void KnotsWidgetRedraw ( struct xwidget *wdg ) { .... }

: xKnotsWidgetf *NewKnotsWidget ( xwinmenu *wm, KnotsWidgetf *knw,

int id, int w, int h, int x, int y,
int minknots, int maxknots, int nknots,
float *knots, float xmin, float xmax )

xKnotsWidgetf *wdg;

wdg = (xKnotsWidgetf*)NewWidget ( wm, sizeof (xKnotsWidgetf), id, w, h,
X, y, KnotsWidgetInput, KnotsWidgetRedraw, NULL, NULL )
wdg->knw = knw;
knw->minknots = minknots;
knw->maxknots = maxknots;



15:

16:

17:

18:

19:

20:

21:

22:

23:

1018 36. APLIKACJA TRZECIA D

knw->nknots = nknots;
knw->knots = knots;
knw->xmin = xmin;
knw->xmax = xmax;
knw->ximin = x+3;
knw->ximax = x+w-4;
knw->panswitch = knw->motion_off = false;
return wdg;
} /#NewKnotsWidgetx*/

Procedura NewKnotsWidget, czyli konstruktor wihajstra, za pomoca procedury New-
Widget tworzy i wlacza wihajster do menu przekazanego jako parametr. Parametr knw wska-
zuje strukture typu KnotsWidget, ktora jest widoczna dla czesci graficznej aplikacji i nieza-
lezna od srodowiska okienkowego czescig wihajstra osi czasu. Po zarezerwowaniu pamieci na
wihajster dzialajacy w menu, wartosci poczatkowe okreslone przez parametry, w tym adres
i dlugo$¢ tablicy z weztami, sg przypisywane polom tej struktury.

36.3. Procedury obslugi animacji

Listing 36.6 przedstawia zmiany struktur AppWidgets i AppData czgsci graficznej apli-
kacji 3C, w wyniku ktorych powstaly struktury aplikacji 3D. Do struktury AppWidgets,
widocznej w czeéci okienkowej, s3 dodane przefaczniki elementéw animacji oraz pole kw,
przechowujace dane wihajstra osi czasu. Struktura AppData ma nowe pola lastkeyframe
i lastbsknot, ktorych wartosci to numer M ostatniego wezta interpolacyjnego i numer N
ostatniego wezla krzywej sklejanej skonstruowanej w celu interpolowania parametréw arty-
kulacji. Pola keyknots, keyparams i gparams wskazuja tablice weztéw interpolacyjnych,
wyznaczajacych chwile klatek kluczowych, i tablice parametréw artykulacji tancucha kine-
matycznego i kwaternionéw opisujacych obroty obserwatora w tych chwilach. Pola bsknots,
bsparams i gbsparams wskazuja tablice weztéw krzywych sklejanych i punktéw kontrol-
nych tych krzywych, konstruowanych na podstawie danych przechowywanych we wczesniej
opisanych tablicach.

Pola animate_mm, animate_vp i animate_k1 struktury AppWidgets maja wartos$ci
nadawane przez przelaczniki w menu. Jesli pierwsze z nich ma wartos¢ true, to bedzie ani-
mowana macierz przeksztalcenia modelu (czyli ruch obrotowy sceny w ukladzie §wiata ze
stala predkoscia katowa). Wartos¢ true pola animate_vp oznacza zyczenie animowania
ruchu obserwatora woko! sceny, a jesli pole animate_k1 ma warto$¢ true, to bedzie ani-
mowany tancuch kinematyczny.

Procedury obstugi animagji aplikacji 3D s3 odpowiedzialne za przetwarzanie paramet-
row artykulacji fancucha kinematycznego i (reprezentowanych przez kwaterniony) obrotéw
obserwatora wokot sceny odpowiadajacych klatkom kluczowym, a takze za konstruowanie
sklejanych funkgji interpolacyjnych i obliczanie, dla podanego czasu, wartosci tych funk-
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Listing 36.6. Struktury danych aplikacji 3D

C
: #define MAXKEYFRAMES 100
. typedef struct {
char sw [NPALMMESHES+1] ;
float artp [NKLARTPARAMS] ;
char animate_mm, animate_vp, animate_kl;
KnotsWidgetf kw;
char animation;

} AppWidgets;

typedef struct {
. /* pola takie, jak w liniach 16-27 na listingu 35.1 */

int lastkeyframe, lastbsknot;

float *keyknots, *keyparams, *qparams,
*bsknots, *bsparams, *qgbsparams;

char bs_ok, gs_ok;

. /* opakowania programéw szaderdw */
/* identyczne jak w liniach 28-30 na listingu 35.1 */
} AppData;

cji, czyli parametréw artykulacji podczas animacji. Procedury te sg niezalezne zaréwno od
srodowiska okienkowego, jak i od sposobu tworzenia grafiki; ich gtéwnym zadaniem jest
przechowywanie danych i zorganizowanie odpowiednich obliczet numerycznych?.

Listing 36.7 przedstawia procedury wywolywane (za posrednictwem menu) w odpowie-
dzi na komunikaty przesylane przez wihajster osi czasu. Procedury UpdateKeyInterp-
Spline i UpdateKeyInterpQSpline, wywolywane po zmianie weztéw lub warunkéw
interpolacyjnych, konstruujg (przy uzyciu procedur opisanych w podrozdz. B.3 i B.4) re-
prezentacje krzywych interpolacyjnych: B-sklejanej i kwaternionowej. Zwro¢my uwage, ze
konstruowana krzywa B-sklejana lezy w przestrzeni o wymiarze rownym liczbie parametréw
artykulacji tancucha kinematycznego (NKLARTPARAMS, czyli 21). Taka liczbe wspdtrzednych
majg zarowno punkty tej krzywej (czyli wektory parametréow artykulacji), jak i punkty
kontrolne obliczane przez procedure ConstructCubicInterpBSplinef.

Instrukcje w liniach 12-15 majg na celu sprawienie, aby katy miedzy wektorami (kwater-
nionami) reprezentujacymi kolejne zadane polozenia w ruchu obrotowym nie przekraczaly
7/2; w tym celu zwroty pewnych wektoréw mogg by¢ zamienione na przeciwne. Dowolny
obrot w przestrzeni jest reprezentowany przez dwa kwaterniony o przeciwnych znakach. Do-
konany wybdr znakéw ma na celu okreslenie ruchu tak, aby obiekt miedzy kolejnymi zada-
nymi polozeniami obracat si¢ 0 mniejszy kat (zobacz rys. A.4 i uwage na s. 1053).

Procedura InitKeyFrames, wywolana na poczatku dziatania aplikacji, rezerwuje pa-
mie¢ i nadaje wartosci poczatkowe zmiennym opisujacym wezly i warunki interpolacyjne.

3Dlatego procedury te s3 umieszczone w osobnym pliku Zrédtowym, w ktérym podczas dostosowania apli-
kacji do standardu Vulkan lub DirectX nie trzeba byloby wprowadza¢ zadnych zmian.
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Listing 36.7. Procedury edycji klatek kluczowych

C
1: void UpdateKeyInterpSpline ( AppData *ad )
2: {
3:  ad->bs_ok = ConstructCubicInterpBSplinef ( &ad->lastbsknot,
4: ad->bsknots, ad->bsparams, ad->lastkeyframe,
5: ad->keyknots, NKLARTPARAMS, ad->keyparams ) ;

6: + /*UpdateKeyInterpSplinex*/

s: void UpdateKeyInterpQSpline ( AppData *ad )

o: {

10: int i, j, k;

11:

122 for (1 =1, k =4; i <= ad->lastkeyframe; i++, k += 4 )

13: if ( V4DotProductf ( &ad->qparams[k-4], &ad->gparams[k] ) < 0.0 )
14: for ( j =k; j < kt+4; j++ )

15: ad->qgparams[j] = -ad->qparams[j];

16: ad->qs_ok = ConstructQuaternionInterpSplinef ( &ad->lastbsknot,

17: ad->bsknots, ad->qbsparams, ad->lastkeyframe,

18: ad->keyknots, ad->qparams )

19: + /*UpdateKeyInterpQSpline*/

20:

21: char InitKeyFrames ( AppData *ad )

22: {

23:  int 1i;

24:

25:  ad->keyknots = malloc ( MAXKEYFRAMES*sizeof (float) );

26: ad->keyparams = malloc ( MAXKEYFRAMES*NKLARTPARAMS*sizeof (float) );
27:  ad->bsknots = malloc ( (MAXKEYFRAMES+6)x*sizeof (float) );

2s: ad->bsparams = malloc ( (MAXKEYFRAMES+2)*NKLARTPARAMS*sizeof (float) );
20: ad->gparams = malloc ( MAXKEYFRAMES*4xsizeof (float) );

30: ad->gbsparams = malloc ( (MAXKEYFRAMES+2)*4x*sizeof (float) );

si:  if ( ad->keyknots && ad->keyparams && ad->qparams &&

32: ad->bsknots && ad->bsparams && ad->qgbsparams ) {

33: ad->keyknots[0] = 0.0;

34: ad->keyknots[1] = 10.0/3.0;

35: ad->keyknots[2] = 20.0/3.0;

36: ad->keyknots[3] = 10.0;

37: ad->wdg.kw.nknots = (ad->lastkeyframe = 3) + 1;

38: ad->wdg.kw.knots = ad->keyknots;

39: for (i = 0; i <= ad->lastkeyframe; i++ )

40: memcpy ( &ad->keyparams [i*NKLARTPARAMS], ad->wdg.artp,
at: NKLARTPARAMS*sizeof (float) );

42: memset ( ad->qparams, 0, (ad->lastkeyframe+1)*4*sizeof (float) );
43: for (i = 0; i <= ad->lastkeyframe; i++ )

44: ad->qparams [4*i] = 1.0;

a5 UpdateKeyInterpSpline ( ad );
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UpdateKeyInterpQSpline ( ad );
ad->wdg.animate_mm = ad->wdg.animate_kl = true;
ad->wdg.animate_vp = false;
return true;

3

else {
CleanupKeyFrames ( ad );
return false;

}

/*InitKeyFrames*/

void CleanupKeyFrames ( AppData *ad )

/* zwolnij wszystkie 6 tablic */
/*CleanupKeyFrames*/

void FindKeyFrame ( AppData *ad, char right )

AppWidgets *aw;
KnotsWidgetf x*kw;

int C;
float v[3];
double a;

aw = &ad->wdg;
kw &aw->kw;
¢ = FindKnotInterval ( kw->nknots, ad->keyknots, kw->xc );
if (¢ <0)
c = 0;
else if ( ¢ >= kw->nknots )
¢ = kw->nknots-1;
if ( 'right && c > 0 && kw->xc == ad->keyknots[c] )
c --;
else if ( right && c < kw->nknots-1 )
c ++;

kw->current = c;

kw->curxi = KnotsWidgetXtoXi ( kw, kw->xc = ad->keyknots([c] );

memcpy ( aw->artp, &ad->keyparams[c*NKLARTPARAMS],
NKLARTPARAMS*sizeof (float) );

ArticulatePalmLinkage ( ad );

RotVQuatf ( v, &a, &ad->qparams[c*4] );

SetupViewMatrix ( ad, v, a );

/*FindKeyFramex*/

void SetKeyFrame ( AppData *ad )

AppWidgets  *aw;
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117:
. void InsertKeyFrame ( AppData *ad )
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{
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131:
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133:

134:

135:

136:

137:

138:

KnotsWidgetf *kw;

int [
aw = &ad->wdg;
kw = &aw->kw;

c = kw->current;
if ( (¢ = kw->current) >= 0 && c < kw->nknots ) {
memcpy ( &ad->keyparams [c*NKLARTPARAMS], aw->artp,
NKLARTPARAMS*sizeof (float) );
UpdateKeyInterpSpline ( ad );
QuatRotVf ( &ad->gparams[c*4],
ad->camera.viewer_rvec, ad->camera.viewer_rangle );
UpdateKeyInterpQSpline ( ad );

}
/*SetKeyFramex*/

void ClampArtParams ( float *params )

int i;

for (i = 0; i < NKLARTPARAMS; i++ )
if ( params[i] < 0.0 ) params[i] = 0.0;
else if ( params[i] > 1.0 ) params[i] = 1.0;
/*ClampArtParams*/

AppWidgets *aw;
KnotsWidgetf x*kw;

int C, n;
aw = &ad->wdg;
kw = &aw->kw;

ad->lastkeyframe = kw->nknots-1;
if ( (¢ = kw->current) < (n = kw->nknots)-1 ) {
memmove ( &ad->keyparams[(c+1)*NKLARTPARAMS],
&ad->keyparams [c*NKLARTPARAMS] ,
(n-c-1)*NKLARTPARAMS*sizeof (float) );
BSCdeBoorf ( 3, ad->lastbsknot, ad->bsknots, NKLARTPARAMS,
ad->bsparams, ad->keyknots[c], aw->artp );
ClampArtParams ( aw->artp );
memcpy ( &ad->keyparams [c*NKLARTPARAMS], aw->artp,
NKLARTPARAMS*sizeof (float) );
memmove ( &ad->qparams[(c+1)*4], &ad->qparams[c*4],
(n-c-1)*4xsizeof (float) );
if ( ad->gs_ok )
QuatSlerpdeBoorf ( 3, ad->lastbsknot, ad->bsknots, ad->qgbsparams,
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: void SwapKeyFrames ( AppData *ad, int i, int j )
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ad->keyknots[c], &ad->gparams[c*4] );

}
else {
memcpy ( &ad->keyparams [c*NKLARTPARAMS],
&ad->keyparams [(c-1) *NKLARTPARAMS] , NKLARTPARAMS*sizeof (float) );
memcpy ( &ad->qparams[c*4], &ad->qparams[(c-1)*4], 4xsizeof (float) );
}

UpdateKeyInterpSpline ( ad );
ArticulatePalmLinkage ( ad );
QuatRotVf ( &ad->qparams[c*4],
ad->camera.viewer_rvec, ad->camera.viewer_rangle )
UpdateKeyInterpQSpline ( ad );
/*InsertKeyFramex/

int k, 1, m;
float *kp, a;

for ( 1 = i*NKLARTPARAMS, m = j*NKLARTPARAMS, k = 0;
k < NKLARTPARAMS;
k ++ )
{ a = kp[1+k]; kpl[l+k] = kplm+k]; kplm+tk] = a; }
kp = ad->qparams;
for (1 =i*4, m = j*4, k = 0; k < 4; k++ )
{ a = kp[1+k]; kp[l+k] = kplmt+k]; kplm+k] = a; }
/*SwapKeyFrames*/

void ChangeKeyFrame ( AppData *ad )

AppWidgets  *aw;
KnotsWidgetf *kw;
int i, p, ¢;

aw = &ad->wdg;
kw &aw->kw;
if ( (p = kw->prevc) < (c = kw->current) ) {
for (i =p; i< c; i++)
SwapKeyFrames ( ad, i, i+l );

}
else if (p > c ) {
for (i=p; i>c; i--)
SwapKeyFrames ( ad, i, i-1 );
}
UpdateKeyInterpSpline ( ad );
UpdateKeyInterpQSpline ( ad );

186: } /*ChangeKeyFramex/
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void DeleteKeyFrame ( AppData *ad )
{

AppWidgets  *aw;

KnotsWidgetf x*kw;

int C, n;

aw = &ad->wdg;
kw = &aw->kw;
ad->lastkeyframe = kw->nknots-1;
if ( (¢ = kw->current) < (n = kw->nknots)-1 ) {
memmove ( &ad->keyparams [c*NKLARTPARAMS],
&ad->keyparams [ (c+1) *NKLARTPARAMS] ,
(n-c-1) *NKLARTPARAMS*sizeof (float) );
memmove ( &ad->qparams[c*4], &ad->qparams[(c+1)*4],
(n-c-1)*4xsizeof (float) );
}
UpdateKeyInterpSpline ( ad );
UpdateKeyInterpQSpline ( ad );
} /*DeleteKeyFramex/

Poczatkowo sa 4 wezly (to, ..., t3) dzielace na réwne czesci przedzial o diugoséci 10s. Dla
wszystkich tych wezléw, w liniach 39-41, warunki interpolacyjne maja nadawane wartos-
ci wezesniej (przez procedure konstruujacag fancuch kinematyczny) przepisane do tablicy
ad->wdg.artp z tablicy palmartp0 zadeklarowanej z procedurami obstugi taricucha kine-
matycznego dloni. Elementy tej tablicy sa liczbami z przedziatu [0, 1], podobnie jak warto$ci
nadawane przez suwaki w menu.

W liniach 42-44, dla wszystkich czterech weztéw, w tablicy gparams jest zapamietywana
jedynka kwaternionowa, ktora reprezentuje przeksztalcenie tozsamosciowe (tj. obrét obser-
watora do polozenia poczatkowego). W liniach 45 i 46 sg konstruowane obie krzywe inter-
polacyjne, ktére dla poczatkowych warunkéw interpolacyjnych beda funkcjami statymi.

Procedura CleanupKeyFrames zwalnia pami¢¢ zarezerwowang przez procedure Init-
KeyFrames na tablice i nalezy ja wywola¢ podczas sprzatania przed zatrzymaniem aplikacji.

Procedura FindKeyFrame (linie 62-88) jest wywolywana w odpowiedzi na pstrykniecie
guzika ze strzalka <- lub ->. Procedura ta znajduje pierwszy wezel na lewo albo na prawo od
liczby x pamietanej w polu xc wihajstra osi czasu. Wezel ten zostaje przypisany wihajstrowi
jako biezacy, a nastepnie jest dokonywana artykulacja tancucha kinematycznego, przy czym
parametry artykulacji sg brane z warunkoéw interpolacyjnych dla biezacego wezla. Réwniez
macierz przejscia do uktadu obserwatora jest (w linii 86) obliczana na podstawie kwaternionu
bedacego warunkiem interpolacyjnym obrotu obserwatora dla tego wezta.

Procedura SetKeyFrame (linie 90-107) jest wywolywana po pstryknieciu guzika Set
w menu. Jej zadaniem jest przypisanie nowych warunkow interpolacyjnych zwigzanych
z biezagcym wezlem — wektora parametréw artykulacji (w liniach 100-101) i kwaternionu
okreslajacego biezace polozenie obserwatora (w liniach 103-104). Obie krzywe interpolacyjne
s3 niezwlocznie rekonstruowane.
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Procedura InsertKeyFrame (linie 118-152) jest wywolywana po dodaniu nowego wezla
za pomocg wihajstra osi czasu. Jesli nowy wezel nie jest wiekszy niz dotychczasowy ostatni,
to wykonywane sg instrukcje w liniach 128-140. Dla nowego wezla, na podstawie dotych-
czasowych krzywych interpolacyjnych, jest obliczany wektor parametréw artykulacji, ktdre
nastepnie sg ograniczane (przez procedure ClampArtParams) do przedziatu [0,1] i (w li-
niach 134-135) wpisywane do tablicy warunkéw interpolacyjnych. W liniach 149-150 jest obli-
czany odpowiedni punkt na krzywej kwaternionowej, a jego wspdtrzedne sg zapamietywane
jako warunek interpolacyjny nowej krzywej, ktora zostanie skonstruowana dla wydtuzonego
ciagu wezlow.

Procedura ChangeKeyFrame jest wywolywana po przesunieciu wezta. Jesli nastgpila
zmiana kolejnosci wezldw, to odpowiadajgce tym wezlom warunki interpolacyjne s przesta-
wiane, czym zajmuje si¢ procedura SwapKeyFrames. Przestawia ona odpowiednie wektory
parametréw artykulacji fancucha i kwaterniony.

Procedura DeleteKeyFrame, wywolywana po usunieciu wezta, dokonuje odpowiednich
przemieszczen warunkow interpolacyjnych w tablicach, po czym konstruuje krzywe inter-
polacyjne na podstawie danych, ktore zostaly po tej operacji.

Listing 36.8 przedstawia procedury, ktdre realizujg artykulacje fancucha i przemieszcza-
nie obserwatora na potrzeby animacji. Drugim parametrem procedury ArticulateKLAtX
jest czas, tj. argument krzywej sklejanej, ktérej punkty sa wektorami zmiennych artykula-
cji. Po obliczeniu punktu (przez procedure BSCdeBoorf) jego wspoltrzedne sg obcinane do
przedziatu [0,1], po czym procedura ArticulatePalmLinkage odpowiednio zgina stawy
poszczegdlnych palcéw. Podobnie procedura ArticulateVPosAtX oblicza punkt krzywej
kwaternionowej, zamienia go na obrot (tj. oblicza wektor osi i kat obrotu) i wywoluje proce-
dure SetupViewMatrix w celu skonstruowania (i zapamigtania w pamieci GPU) macierzy
przejscia do uktadu obserwatora.

Listing 36.8. Procedury pomocnicze animacji
C
: void ArticulateKLAtX ( AppData *ad, float x )

-~

AppWidgets *aw;

aw = &ad->wdg;
if ( x <= ad->keyknots[0] || !'ad->bs_ok )
memcpy ( aw->artp, ad->keyparams, NKLARTPARAMS*sizeof (float) );
else if ( x >= ad->keyknots[ad->lastkeyframe] )
memcpy ( aw->artp, &ad->keyparams[(ad->lastkeyframe)*NKLARTPARAMS],
NKLARTPARAMS#*sizeof (float) );

else {
BSCdeBoorf ( 3, ad->lastbsknot, ad->bsknots, NKLARTPARAMS,
ad->bsparams, x, aw->artp );
ClampArtParams ( aw->artp );
}
ArticulatePalmLinkage ( ad );
.} /*ArticulateKLAtXx*/
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void ArticulateVPosAtX ( AppData *ad, float x )

{
float ql4l, vI[3];
double a;
if ( x <= ad->keyknots[0] || 'ad->gs_ok )

memcpy ( q, ad->qparams, 4*sizeof(float) );
else if ( x >= ad->keyknots[ad->lastkeyframe] )
memcpy ( q, &ad->qparams[4*ad->lastkeyframe], 4*sizeof(float) );
else
QuatSlerpdeBoorf ( 3, ad->lastbsknot, ad->bsknots,
ad->gbsparams, x, q );
RotVQuatf ( v, &a, q );
SetupViewMatrix ( ad, v, a );
} /*ArticulateVPosAtXx*/

void KnotWidgetPoint ( AppData *ad, int xi )
{

AppWidgets *aw;

float X;

aw = &ad->wdg;
x = KnotsWidgetXitoX ( &aw->kw, xi );
ArticulateKLAtX ( ad, x );
if ( aw->animate_vp )
ArticulateVPosAtX ( ad, x );
} /*#KnotWidgetPoint*/

Procedura KnotWidgetPoint jest wywolywana, gdy wihajster osi czasu jest w stanie
przesuwania chwili (XGESTATE_KW_MOVING_MOUSE) i uzytkownik wskazal nowy punkt na
osi czasu. Dla tego punktu jest obliczany argument funkgji sklejanych i wywotywane sg opi-
sane wczesniej procedury artykulacji.

36.4. Menu trzeciego podokna

Nowe wihajstry w menu trzeciego podokna maja kolejne numery, opatrzone nazwami (zob.
listing 36.9) widocznymi w obu czesciach aplikacji, okienkowej i graficznej, w ktorej sa iden-
tyfikatorami obstugiwanych polecen.

Listing 36.10 przedstawia procedury zwigzane z menu trzeciego podokna. Procedura
SetupApp3dWin3Menu (linie 87-117) tworzy menu i jego wihajstry. W liniach 96-98 powstaje
wihajster osi czasu; wczesniej byla wywolana procedura InitKeyFrames, ktéra zarezerwo-
wata m.in. tablice wezldw, obecnie ,,przyczepiang” do tworzonego wihajstra. Guzik tworzony
przez instrukcje w linii 104 stuzy do wlaczania i wylaczania animacji. W linii 105 jest mu
przypisywana nowa procedura rysowania. Przelaczniki tworzone w liniach 106-115 beda



10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

36.4. Menu trzeciego podokna 1027

Listing 36.9. Nazwy i numery nowych wihajstréw

C
: #define KNOTWD_ID 29 /* SL_ID_ARTPO + NKLARTPARAMS */
: #define BTN_ID_PLAY 30
: #define BTN_ID_LEFT 31
: #define BTN_ID_SET 32
: #define BTN_ID_RIGHT 33

: #define SW_ID_EDIT_KNOTS 34
: #define SW_ID_KNW_PANZOOM 35
: #define SW_ID_ANIMATE_KL 36
: #define SW_ID_ANIMATE_MM 37
: #define SW_ID_ANIMATE_VP 38

nadawac wartosci polom editswitch i panswitch okreslajacym tryb dziatania wihajstra
osi czasu, dlatego musza by¢ utworzone po utworzeniu tego wihajstra.

Tlo i ramka guzika wlaczania i wylaczania animacji sg rysowane tak samo jak dla zwyk-
tego guzika, z kolei obrazek wyswietlany zamiast napisu na tym guziku wykonuja instrukcje
w liniach e9-84. Guzik jest w stanie podstawowym (WDGSTATE_DEFAULT), gdy animacja jest
wylaczona, i w stanie innym niz podstawowy, gdy jest wlaczona; stan przypisuje temu guzi-
kowi procedura ToggleAnimation.

Listing 36.10. Procedury tworzenia i obstugi menu

C
. char str_SET[] = "Set";
. char str_LEFT[] = "<y
: char str_RIGHT[] = ">,
: char str_PANZOOM[] = "pan/zoom";
. char str_EDITI[] = "edit";

: void Win3Reshape ( xwinmenu *wm, short w, short h )

{

myknotwdg->wdg. input ( &myknotwdg->wdg, WDGMSG_RECONFIGURE, O,
w-MENU1_WIDTH, MENU3_HEIGHT-1 );
PostExposeEvent ( wm->window, w, h );
} /#Win3Reshapex*/

void Win3Callback ( struct xwidget *wdg, int msg, int key, int x, int y )
{
switch ( msg ) {
case WDGMSG_RECONFIGURE:
Win3Reshape ( wdg->wm, x, y );
break;

case WDGMSG_BUTTON_PRESS:
wm3->changed |= ProcessButtonCommand ( wdg->id );
break;
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case WDGMSG_SWITCH_CHANGE:

ProcessSwitchCommand ( wdg->id );
break;

case WDGMSG_KNOT_MCLICK:

if (key == 0 || key == 2 ) {
ProcessKnotWidgetCommand ( wdg->id, msg, x );
goto let_redraw_it;

}

break;

case WDGMSG_KNOT_MMOVE :
case WDGMSG_KNOT_CHANGE :
case WDGMSG_KNOT_INSERT:
case WDGMSG_KNOT_DELETE:

ProcessKnotWidgetCommand ( wdg->id, msg, x );

let_redraw_it:

wml->changed = wm2->changed = wm3->changed = true;
PostMenuExposeEvent ( wml );

PostMenuExposeEvent ( wm2 );

break;

case XWMSG_KEY_PRESS:

mywdg->input ( mywdg, msg, key, x, y );
if ( wm2->changed )

PostMenuExposeEvent ( wm2 );
break;

default:

}

break;

}
/*Win3Callback*/

void MyButtonRedraw ( struct xwidget *wdg )

{

XRectangle rect[2];
XPoint tr[3];

XSetForeground ( xdisplay, xgc, XWP_BUTTON_COLOUR );
XFillRectangle ( xdisplay, wdg->wm->pixmap, xgc,
wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1 );
XSetForeground ( xdisplay, xgc, XWP_TEXT_COLOUR );
XDrawRectangle ( xdisplay, wdg->wm->pixmap, xgc,
wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1 );
if ( wdg->state == WDGSTATE_DEFAULT ) {
tr[0].x = tr[1].x = wdg->r.x+wdg->r.width/2-4;

36. APLIKACJA TRZECIA D
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tr[2] .x = wdg->r.x+wdg->r.width/2+4;

tr[0].y = wdg->r.y+4; tr[l].y = wdg->r.y+wdg->r.height-4;

tr[2].y = wdg->r.y+wdg->r.height/2;

XFillPolygon ( xdisplay, wdg->wm->pixmap, xgc, tr, 3,
Convex, CoordModeOrigin );

}
else {
rect[0] .width = rect[1].width = 3;
rect[0] .height = rect[1] .height = wdg->r.height-8;
rect[0].y = rect[1].y = wdg->r.y+4;
rect[0].x = wdg->r.x+wdg->r.width/2-4;
rect[1] .x = wdg->r.x+wdg->r.width/2+3;
XFillRectangles ( xdisplay, wdg->wm->pixmap, xgc, rect, 2 );
}
/*MyButtonRedrawx/

xwinmenu *SetupApp3dWin3Menu ( void )

KnotsWidgetf x*kw;
xwinmenu *wm ;

if ( !'(wm = NewWinMenu ( window[3], WINO_WIDTH, MENU3_HEIGHT,
0, WINO_HEIGHT-MENU3_HEIGHT, NULL, NULL, Win3Callback)) )
ExitOnError ( "SetupApp3dWin3Menu" );
kw = &appwdg->kw;
myknotwdg = NewKnotsWidget ( wm, kw, KNOTWD_ID, WINO_WIDTH-MENU1_WIDTH,
MENU3_HEIGHT-4, MENU1_WIDTH, 4, 4, MAXKEYFRAMES, kw->nknots,
kw->knots, kw->knots[0], kw->knots[kw->nknots-1] );

kw->editswitch = true;

kw->panswitch = kw->motion_off = false;

NewButton ( wm, BTN_ID_LEFT, 16, 18, 0, O, str_LEFT );

NewButton ( wm, BTN_ID_SET, 22, 18, 19, 0, str_SET );

NewButton ( wm, BTN_ID_RIGHT, 16, 18, 44, 0, str_RIGHT );

playbtn = NewButton ( wm, BTN_ID_PLAY, 60, 18, 0, 20, NULL );

playbtn->redraw = MyButtonRedraw;

NewSwitch ( wm, SW_ID_ANIMATE_KL, 16, 16, 63, 20, NULL,
&appwdg->animate_k1 );

NewSwitch ( wm, SW_ID_ANIMATE_MM, 16, 16, 82, 20, NULL,
&appwdg->animate_mm ) ;

NewSwitch ( wm, SW_ID_ANIMATE_VP, 16, 16, 101, 20, NULL,
&appwdg->animate_vp );

NewSwitch ( wm, SW_ID_EDIT_KNOTS, 16, 16, 0, 40, str_EDIT,
&kw->editswitch );

NewSwitch ( wm, SW_ID_KNW_PANZOOM, 16, 16, 44, 40, str_PANZOOM,
&kw->panswitch );

return wm;

/*SetupApp3dWin3Menux*/
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Wihajstry w menu trzeciego podokna wywotuja procedure Win3Callback (linie 14-56),
ktorej dziatanie chyba nie wymaga wyjasnien.

36.5. Cze$c¢ graficzna aplikacji

Procedury pokazane na listingach 36.11-36.14 naleza do cze$ci graficznej i zajmuja si¢ wyko-
nywaniem polecen otrzymywanych od czgsci okienkowej, w tym edycjg warunkéw interpo-
lacyjnych i realizacjg animacji. Wlgczaniem i wylgczaniem animacji zajmuje si¢ procedura
ToggleAnimation (listing 32.17), wywolywana po naci$nieciu klawisza spacji i po pstryk-
nieciu odpowiedniego guzika w menu. Wywolywana przez nig procedura ProcessWorld-
Request w czedci okienkowej zajmuje sie zapewnieniem, ze bedzie wywotywana procedura
Move0n, ale tez zmiang wygladu guzika wiaczajacego i wylaczajacego animacje.

Procedura ProcessSwitchCommand w dodatku do przetacznikéw wybierajacych ryso-
wane siatki obstuguje przetaczniki wybierajace tryb dziatania wihajstra osi czasu (zaleznie
od niego, po naci$nigciu przycisku wihajster umozliwia przesuwanie weztéw albo zmienianie
przedzialu czasowego) oraz przelaczniki wyboru elementéw animacji. Z trzech elementéw
co najmniej jeden powinien by¢ wlaczony, aby aplikacja reagowala na polecenie uruchamia-
nia animacji, dlatego wylaczenie ostatniego przelacznika powoduje wlaczenie jednego z po-
zostatych dwoch. Ale, takie reakcje aplikacji mogg by¢ dla uzytkownika niezrozumiate, wiec
zawsze trzeba si¢ zastanowic, czy warto je programowac.

Listing 36.11. Procedura ProcessSwitchCommand
C

: char ProcessSwitchCommand ( int wdg_id )

{
switch ( wdg_id ) {

: case SW_ID_MESHO:

return true;

: case SW_ID_MESH1: case SW_ID_MESH2: case SW_ID_MESH3: case SW_ID_MESH4:

if ( appdata.wdg.sw[wdg_id-SW_ID_MESHO] ) {
memset ( &appdata.wdg.sw[1], false, NPALMMESHES );
appdata.wdg.sw[(int) (appdata.lod = wdg_id-SW_ID_MESHO)] = true;
kl_Articulate ( appdata.linkage );
}
else
appdata.lod = -1;
return true;
case SW_ID_ANIMATE_KL:
if ( l'appdata.wdg.animate_kl && !appdata.wdg.animate_vp )
appdata.wdg.animate_mm = true;
return true;
case SW_ID_ANIMATE_MM:
if ( !'appdata.wdg.animate_mm && !appdata.wdg.animate_vp )
appdata.wdg.animate_kl = true;
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return true;
case SW_ID_ANIMATE_VP:
if ( !'appdata.wdg.animate_vp && !appdata.wdg.animate_k1 )
appdata.wdg.animate_mm = true;
return true;
case SW_ID_EDIT_KNOTS:
if ( appdata.wdg.kw.editswitch )
appdata.wdg.kw.panswitch = false;
return true;
case SW_ID_KNW_PANZOQOM:
if ( appdata.wdg.kw.panswitch )
appdata.wdg.kw.editswitch = false;
return true;
default:
return false;
+

} /*ProcessSwitchCommand*/

Procedura ProcessSlidebarCommand, wywolywana po przesunieciu suwaka, jest iden-
tyczna jak w aplikacji 3B (listing 34.6). Listing 36.12 przedstawia procedure wywolywang po
pstryknieciu guzika — zaleznie od jego identyfikatora (czyli identyfikatora polecenia wyda-
wanego przez ten guzik) procedura wlacza lub wyltacza animacje, odnajduje wezet, ktory ma
stac si¢ biezacym dla wihajstra osi czasu albo zapamigtuje potozenia suwakéw wyznaczajace
parametry artykulacji dla biezacego wezla.

Listing 36.12. Procedura ProcessButtonCommand
Cc

: char ProcessButtonCommand ( int wdg_id )

A

switch ( wdg_id ) {

: case BTN_ID_PLAY:

ToggleAnimation ( &appdata );
return appdata.wdg.animation;

: case BTN_ID_LEFT:

if ( appdata.wdg.animation )
ToggleAnimation ( &appdata );
FindKeyFrame ( &appdata, false );
return true;
case BTN_ID_RIGHT:
if ( appdata.wdg.animation )
ToggleAnimation ( &appdata );
FindKeyFrame ( &appdata, true );
return true;
case BTN_ID_SET:
SetKeyFrame ( &appdata );
return false;
default:
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return false;

}

} /*ProcessButtonCommandx*/

Procedura ProcessCharCommand, wykonujaca polecenia wydawane za pomocg klawia-
tury, gdy kursor jest w obszarze obrazu, jest identyczna jak w aplikacji 3C. Jej listing pomijam,
natomiast na listingu 36.13 przedstawiam procedure wykonujacg polecenia wydawane przez
wihajster osi czasu. Jej zadaniem jest wywolanie odpowiedniej procedury z listingu 36.7.

Listing 36.13. Procedura ProcessKnotWidgetCommand
C
char ProcessKnotWidgetCommand ( int wdg_id, int msg, int x )
{
switch ( msg ) {

case WDGMSG_KNOT_MCLICK:

KnotWidgetPoint ( &appdata, x );

return true;

: case WDGMSG_KNOT_MMOVE:

if ( l'appdata.wdg.animation )
KnotWidgetPoint ( &appdata, x );

return true;

case WDGMSG_KNOT_CHANGE:
ChangeKeyFrame ( &appdata );
return true;

case WDGMSG_KNOT_INSERT:
InsertKeyFrame ( &appdata );
return true;

case WDGMSG_KNOT_DELETE:
DeleteKeyFrame ( &appdata );
return true;

default:
return false;

}
} /#ProcessKnotWidgetCommand*/

Procedura MoveOn (listing 36.14) ,,posuwa do przodu” wybrane elementy animacji: w li-
niach s-10 oblicza nowa macierz przeksztalcenia modelu wykonujacego ruch obrotowy ze
stala predkosciag. W liniach 12-14 procedura dodaje do czasu pamietanego w polu xc wi-
hajstra osi czasu przyrost zmierzony przez stoper i jesli ten czas przekracza ostatni wezet,
to ,wraca na poczatek’, tj. do pierwszego wezla, dzigki czemu ruch jest okresowy. Zaleznie
od stanu przelacznikéw procedura dokonuje artykulacji fancucha kinematycznego i oblicza
nowe polozenie obserwatora w ruchu obrotowym na podstawie krzywej kwaternionowe;j.
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Listing 36.14. Procedura MoveOn
C

. char MoveOn ( void )
- A{
double dt;

if ( appdata.wdg.animation ) {
dt = TimerTocTic ();
if ( appdata.wdg.animate_mm ) {
if ( (appdata.model_rot_angle += appdata.speed * dt) >= PI )
appdata.model_rot_angle -= 2.0%PI;
SetupModelMatrix ( &appdata );
}
appdata.wdg.kw.xc += dt;
if ( appdata.wdg.kw.xc > appdata.keyknots[appdata.wdg.kw.nknots-1] )
appdata.wdg.kw.xc = appdata.keyknots[0];
if ( appdata.wdg.animate_k1l )
ArticulateKLAtX ( &appdata, appdata.wdg.kw.xc );
if ( appdata.wdg.animate_vp )
ArticulateVPosAtX ( &appdata, appdata.wdg.kw.xc );
}
return appdata.wdg.animation;
.} /*MoveOn*/

Na listingu 36.15 jest pokazana zmiana w procedurze inicjalizacji danych czgsci graficznej
aplikacji; dodane zostalo wywotanie procedury InitKeyFrames po skonstruowaniu tancu-
cha kinematycznego. Menu i wihajstry w oknach sg tworzone po powrocie z tej procedury,
ktora polu appdata.wdg.kw.knots przypisata adres tablicy wezlow (listing 36.7, linia 38)
— w ten sposob tablica ta jest udostepniana czgsci okienkowej, co umozliwia utworzenie
wihajstra osi czasu, ktory bedzie manipulowat wezlami w tej tablicy.

Listing 36.15. Zmiany w procedurze InitMyWorld
C
. AppWidgets *InitMyWorld ( int argc, char *argv[], int width, int height )
A

. /* instrukcje z linii 3-22, listing 34.5 x/

if ( ConstructPalmLinkage ( &appdata ) ) {

ArticulatePalmlLinkage ( &appdata );

if ( InitKeyFrames ( &appdata ) )

return &appdata.wdg;

}
ExitOnError ( "InitMyWorld" );
return NULL;
: ¥ /*InitMyWorld*/
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36.6. Pozostate zmiany w aplikacji

Listing 36.16 przedstawia procedure wywolywang po otrzymaniu przez okno gléwne komu-
nikatu o zmianie wymiaréw (wywolanie tej procedury zastepuje instrukcje w liniach 7-10
na listingu 32.24); obszar okna gléwnego jest teraz podzielony miedzy trzy podokna, kto-
rych wymiary trzeba obliczy¢ i wysta¢ do nich komunikat o zmianie wymiaréw. Procedury
obstugi tych komunikatéw w oknach zajma si¢ odpowiednim nadawaniem wymiaréw i roz-
mieszczaniem wihajstrow.

Listing 36.16. Procedura WinOConfigureNotify
C

: #define WINO_WIDTH 560 /* wymiary poczatkowe okna gidwnego */
: #define WINO_HEIGHT 420
: #define MENU1_WIDTH 120
: #define MENU3_HEIGHT 60

: Window window[4];
: void WinOConfigureNotify ( int width, int height )

A

10:

windowO_width width;

windowO_height = height;

XMoveResizeWindow ( xdisplay, window[1], 0, O,
MENU1_WIDTH, height-MENU3_HEIGHT )

XMoveResizeWindow ( xdisplay, window[2], MENU1_WIDTH, O,
width-MENU1_WIDTH, height-MENU3_HEIGHT );

XMoveResizeWindow ( xdisplay, window[3], O, height-MENU3_HEIGHT,
width, MENU3_HEIGHT );

} /*WinOConfigureNotify*/

Pozostate zmiany to dodanie instrukeji, ktore na poczatku dziatania aplikacji tworzg trze-
cie podokno i wywoluja opisang wcze$niej procedure SetupApp3dWin3Menu, dodanie do
procedury MessageLoop przesylania komunikatéw do tego podokna oraz dodanie instruk-
cji wykonujacych dodatkowe sprzatanie podczas zatrzymania aplikacji.

36.7. *Uzupelnienia — uZycie macierzy zageszczania siatek

Zastgpienie procedury zageszczania, ktéra wykonuje petne obliczenie niezmieniajgcej sie to-
pologii siatki i wspdtrzednych wierzcholkow, przez procedure obliczajaca tylko wspotrzedne
przy uzyciu macierzy zageszczania (zobacz podrozdz. 31.11) wymaga niewielu zmian w ko-
dzie aplikacji. Do struktury typu KLMesh trzeba doda¢ opakowania macierzy zageszcza-
nia — tablice o dlugo$ci NPALMMESHES struktur typu MeshRefineMatrix pokazanych na
listingu 31.36 (tablica ta otrzymala nazwe refm). Zamiast procedur z listingu 31.10, kom-
pilujacych i sprzatajacych pelny program zageszczania siatek, trzeba wywota¢ procedury
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LoadMeshRef inementMatrixProgramiDeleteMeshRefinementMatrixProgram, kom-
pilujace i sprzatajace program znajdujacy macierze zageszczania. Dodatkowo trzeba dola-
czy¢ do aplikacji i wywola¢ procedury, ktére na poczatku przygotowuja do pracy, a na koncu
likwidujg programy mnozenia na GPU macierzy rzadkich i macierzy rzadkiej przez wektor.
Programy te zawierajg szadery opisane w p. G.4.3i G.4.1.

Listing 36.17 przedstawia zmienione instrukcje metod obiektu dloni. Konstruktor, tj.
procedura KLInitPalmMesh, w petli wywoluje przedstawiona na listingu 31.41 procedure
GPUmeshRefinementMatrix, ktéra znajduje topologie kolejnych zageszczonych siatek i od-
powiednie macierze zageszczania. Dodatkowym zadaniem destruktora obiektu, tj. pro-
cedury KLDeletePalmMesh, jest zwolnienie pamieci GPU zajmowanej przez te macierze.
Procedura KLPostprocessMesh dokonuje artykulacji siatki niezageszczonej tak samo jak
dotad. Nastepnie zamiast procedury GPUmeshRefinement wywoluje szybsza procedure
GPUMatrixRefineMesh, tyle razy, ilu kolejnych zageszczan wynik ma by¢ narysowany.
Przed wywolaniem tej procedury, w linii 31, zmiennej opisujacej liczbe skalarnych atrybutéw
wierzcholka siatki jest przypisywana wartos¢ 3, bo tyle ich maja wierzchotki siatki oryginal-
nej i tyle samo beda poczatkowo mie¢ wierzcholki siatek zageszczonych (poniewaz liczba
atrybutéw w tym miejscu moze tylko si¢ zmniejszy¢, nie trzeba rezerwowa¢ nowego bufora
na wspolrzedne wierzchotkéw). Ta, ktéra ma by¢ narysowana, zostaje potem przetworzona
przez procedure ComputeMeshNormalVectors, ktora rozszerza zestaw atrybutéw o wspot-
rzedne wektora normalnego.

Listing 36.17. Zmiany w konstruktorze, destruktorze i metodzie postprocesingu obiektu dloni
C
: static char KLInitPalmMesh ( k1l_linkage *1kg, kl_object *obj )
o

. /* linie 3-45 z listingu 34.3 bez zmian */
for (i = 1; i <= NPALMMESHES; i++ ) {
if ( !'GPUmeshRefinementMatrix ( 3, palms[i], palms[i+1],
&md->refm[i-1] ) )
ExitOnError ( "KLInitPalmMesh 1" );
}
md->mtn = SetupMaterial ( &ad->mat, -1, diffr, specr, shn, wa, we );
. /* dalsze instrukcje bez zmian */
: } /*KLInitPalmMeshx*/

12:

13:

14:

15:

16:

static void KLDeletePalmMesh ( kl_linkage *1kg, kl_object *obj )
{

KLMesh *md;

int i;

17:

18:

19:

20:

21:

22:

md = (KLMesh*)obj->usrdata;

for (1 = 0; i <= NPALMMESHES+1; i++ )
DeleteGPUmesh ( md->mesh[i] );

for (i = 0; i < NPALMMESHES; i++ )
GPUDeleteMeshRefinementMatrix ( &md->refm[i] );
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glDeleteBuffers ( 1, &md->tribuf );
} /*KLDeletePalmMesh*/

static void KLPostprocessMesh ( kl_linkage *1lkg, kl_object *obj )
{
. /% linie 79-98 na listingu 34.3 bez zmian */
if ( ad->lod >= 1) {
for (i =1; i <= ad->1lod; i++ ) {
mesh[i+1]->nsattr = mesh[i+1]->pdim = 3;
GPUMatrixRefineMesh ( &md->refm[i-1] );
}
ComputeMeshNormalVectors ( mesh[ad->lod+1], 6, 3 );
}
ExitIfGLError ( "KLPostprocessMesh" );
} /*KLPostprocessMesh*/

36.8. *Cwiczenia

W tym miejscu kurs, cho¢ nie taki krétki, zakonczy! sie i ufam, ze Czytelnik, ktory go prze-
szedl, jest dobrze przygotowany do prawdziwej nauki programowania grafiki. Polega ona
na samodzielnym formulowaniu problemoéw, studiowaniu zrédet, wymyslaniu ¢wiczen i roz-
wigzywaniu ich. Wszystkim Czytelnikom zycze¢ udanych projektéw, podziwu innych oséb
i konicowe;j satysfakcji.
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JuriaN Tuwim: Kwiaty polskie

A.l. Zalamanie swiatla

Wyprowadzimy wzdr (9.1), na podstawie ktérego dostepna w GLSL-u funkcja refract ob-
licza wektor kierunku zatamania $wiatla na granicy przezroczystych osrodkéw. Wspotczyn-
nik zalamania $wiatla jest ilorazem predkosci §wiatta w prozni i w danym os$rodku — jest to
zawsze liczba wigksza lub rowna 1.

m o

:1172: - -y P
Rysunek A.l. Geometria zalamania $wiatla

Przyjmiemy oznaczenia z rysunku A.1; symbol n oznacza jednostkowy wektor normalny
powierzchni rozgraniczajacej osrodki (np. powietrze i szklo lub wodg), a I oznacza jednost-
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kowy wektor kierunku padania $wiatla na te powierzchnie'. Symbolem r oznaczymy wektor
kierunku, w jakim $wiatlo porusza sie po przejsciu granicy osrodkow, a literami « i 8 odpo-
wiednio katy miedzy wektorami I i r a wektorem —n.

Literg 5 oznaczymy iloraz wspétczynnikéw zalamania $wiatla osrodka, z ktérego swiatto
pada na granice osrodkow i osrodka po drugiej stronie (jesli zatem swiatlo wpada do osrodka
gestszego, to 1 < 1). Znane ze szkoly prawo zalamania $wiatla glosi, ze

sinfi

sina 1

Mozemy na tej podstawie obliczy¢

sinff = ysina oraz cosﬁ:\/l—sinzﬁ:\/I—ﬂzsinzcx:\/1—112(1—c032cx).
Mamy tez cos « = (—n, I). Niech

1

sin

t:

(I-(n,1)n);

jest to jednostkowy wektor styczny do granicy osrodkéw, ktoéry umozliwia obliczenie wektora
jednostkowego

r=—ncosf+tsinf=-ncosp+tysina = —n\/1-n2(1-(n,1)2) + n(l - (n,1)n)
=l = (V1- 72 (1~ (n,1)2) + n{n,1))n.

Symbol k we wzorze (9.1) oznacza cos® § — jest to wyrazenie pod pierwiastkiem w wy-
prowadzeniu powyzej. Jesli Swiatto pada na granice z wnetrza osrodka gestszego (o wigkszym
wspotczynniku zalamania §wiatta), to moze zdarzy¢ sie, ze k < 0. W takim przypadku $wiat-
to nie przechodzi przez granice osrodkdéw — nastepuje tzw. catkowite odbicie wewnetrzne
$wiatla. Wartoscia funkcji refract jest wtedy wektor zerowy.

Nalezy pamietaé, ze wspolczynniki zalamania $wiatla (i ich ilorazy) zaleza od dlugosci
fali $wietlnej i podczas tworzenia obrazéw o bardzo wysokiej jakosci scen, w ktérych wyste-
puje pryzmat, moze by¢ potrzebne wykonanie osobnego obrazu dla kilku (wiecej niz trzech)
dtugosci fali, a potem polaczenie tych obrazéw w jeden.

A.2. Konstrukcje obrotéw do ustalonego polozenia

Rozwiazemy nastepujace zadanie: majac dane dwie trojki punktow, po, p1i p2 oraz qo, 411 q2,
z ktérych zadna nie lezy na jednej prostej, nalezy skonstruowac przeksztalcenie afiniczne —
obrdt z przesunieciem — ktore punkt pg przeksztalci na qg, pétprosta pop: (o poczatku po,
przechodzacg przez p;) na polprosta qoq: i wreszcie zawierajacg punkt p, pdlplaszczyzne,

"Tu wektor I jest zorientowany przeciwnie do wektoréw obliczanych przez szadery uzywane przez opisane
w ksiazce aplikacje i do wektoréw rozwazanych w podrozdziale 28.1.
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u3f

Rysunek A.2. Konstrukcja obrotu z przesunieciem do zadanego potozenia

ktorej brzegiem jest prosta pop;, na zawierajaca punkt g, polplaszczyzne, ktorej brzegiem
jest prosta qoq:. Wszystkie punkty reprezentujemy za pomoca wspoltrzednych kartezjanskich
w ustalonym ukladzie (np. $wiata). Rozwigzanie tego zadania moze sie przydac, gdy trzeba
rozmie$ci¢ obiekty w zadany sposdb, na przyklad ustawi¢ samochdd na nieréwnym terenie.

Zaczniemy od skonstruowania macierzy R opisujacej cze$¢ liniowa tego przeksztalcenia;
jest to macierz poszukiwanego obrotu. Niech

a=p1—po, ar=p>—po oraz bi=qi—qo, br=4q>-qo.

Na podstawie tych wektoréw skonstruujemy kolejne (rys. A.2):

1 . 1
Uy =—ra;, U=4ax-— u1<u1,az), Uy = +——Uy, U3=UNUY,
la 2y
1 . 1 .
vi=-——b, Vy=by- V1<V1, bz), V2= 72—V, V3=VIAV,
|1 |72

Macierze U = [uy,uz,u3] 1 V = [v1,v2,v3] sg ortogonalne i reprezentuja pewne obro-
ty w przestrzeni R3; obrot reprezentowany przez macierz U przeprowadza wektory e; =
(1,0,0), e; = (0,1,0) i e3 = (0,0,1) na wektory uy, u, i u3, a zatem obrot reprezentowany
przez macierz ul=uT przeprowadza wektory u;, u, i u3 na ey, e, i es. Z kolei macierz V re-
prezentuje obrot przeprowadzajacy wektory ey, e, i e3 na v, v, i v3. Obrét przeprowadzajacy
wektory uy, u; i u3 na vy, v, i v3 jest wiec reprezentowany przez macierz R = VUT. Zna-
lezienie wektora przesuniecia t konstruowanego przeksztalcenia afinicznego jest juz tatwe:
ma by¢ Rpg + t = qo, a zatem ¢ = g9 — Rpo.

Procedura M4x4RotationFromPointsf na listingu A.1 wykonuje wedlug powyzszych
wzordw obliczenie, ktérego wynikiem jest macierz 4 x 4 bedaca jednorodng reprezentacija
poszukiwanego przeksztalcenia. Pomocnicza procedura M4x4Aux0Ortf na podstawie danych
trojek punktow konstruuje macierze U i V. W linii 23 jest znajdowana transpozycja macie-
rzy U; w tym celu wystarczy przestawic trzy pary wpdtczynnikéw. W liniach 2628 obliczane
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sa kolumny macierzy R — iloczyny macierzy V i kolejnych kolumn macierzy UT. Instrukcje
w liniach 29-30 obliczaja wektor przesunigcia t.

Listing A.1. Procedura wyznaczania macierzy obrotu z przesunig¢ciem
C

: void M4x4AuxOrtf ( GLfloat u[16], float pO[3], float p1[3], float p2[3] )

{
float sp;

memset ( u, 0, 16*sizeof (GLfloat) );
ul[0] = p1[0]-p0[0]; wl[1] = p1[1]-pO[1]; wul2]
V3Normalisef ( &u[0] );
ul4] = p2[0]-p0[0]; wul5] = p2[1]1-p0[1]; wul6]
sp = V3DotProductf ( &u[0], &ul4] );
ul4] -= sp*ul0]; ul[5] -= sp*ulil]; ul6] -= sp*ul2];
V3Normalisef ( &u[4] );
V3CrossProductf ( &ul[8], &ul[0], &ul4] );

} /*M4x4AuxOrtf*/

pi[2]-p0O[2];

p2[2]-p0[2];

void M4x4RotationFromPointsf ( GLfloat a[16],
float pO[3], float p1[3], float p2[3],
float qO[3], float q1[3], float qg2[3] )

{
#define SWAP(x,y) { s =x; x=y; y=s; }
GLfloat ul[16], v[16], s;

M4x4AuxOrtf ( u, pO, pl, p2 );
SWAP ( ul1], ul[4] ) SWAP ( ul[2], ul8] ) SWAP ( ul[6], ul9] )
M4x4AuxOrtf ( v, 90, ql, 92 );
memset ( a, 0, 16*sizeof (GLfloat) );
M4x4MultMV3f ( &al0], v, &u[0] );
M4x4MultMV3f ( &al4], v, &ul4] );
M4x4MultMV3f ( &al8], v, &ul8] );
M4x4MultMV3f ( &u[0], a, pO );
a[12] = q0[0]-u[0]; a[13] = qO[11-ul1]; al14] = q0[2]-ul2];
a[15] = 1.0;
#undef SWAP
} /*M4x4RotationFromPointsfx*/

Zobaczmy jeszcze jedna konstrukcje obrotu z przesunigciem, ktéra moze si¢ przydac
w aplikacjach OpenGL-a: przeksztalcenie to okresla przejscie od ukladu wspdtrzednych
$wiata do uktadu umieszczonego w punkcie e obserwatora, ktory ,,patrzy” na punkt ¢ znaj-
dujacy si¢ na ujemnej pétosi z (ukladu obserwatora, rys. A.3). Do jednoznacznego okreslenia
tego ukladu potrzebny jest jeszcze jeden punkt lub wektor; podamy wektor u okreslajacy kie-
runek ,,do géry”. Wektory e — ¢ i u musza mie¢ rézne kierunki. Konstrukcja? zaczyna sie od

>W bibliotece GLU jest procedura gluLookAt realizujaca rownowazng konstrukeje, ale ta procedura jest
przeznaczona dla aplikacji starego OpenGL-a.
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Rysunek A.3. Okreslenie ukladu obserwatora patrzacego na dany punkt

znalezienia wersordw osi ukladu obserwatora: wektor z’ (wersor osi z) jest unormowang (tj.
podzielong przez dtugos¢) réznicg e — c. Wersor y' osi y otrzymamy, normujgc rzut wek-
tora u na plaszczyzne prostopadty do wektora 2/, czyli biorgc u’ = u—(2', u)z’, y' = u'/ ||,
a wersor osi x jest rtowny x” = y' A z’. Macierz ortogonalna [x', y', z’] opisuje czes¢ liniowa
przejscia od ukladu obserwatora do ukladu $wiata, zatem do przejscia w drugg strone jest
potrzebna transpozycja tej macierzy. Wektor przesunigcia trzeba dobra¢ tak, aby punkt e
byt poczatkiem ukladu obserwatora. Procedura realizujaca te konstrukeje jest pokazana na
listingu A.2.

Listing A.2. Procedura M4x4LookAtf
C
1: void M4x4LookAtf ( GLfloat a[16], float eyel[3], float c[3], float upl[3] )
A

2
float x[31, y[31, z[3], d;
int  1i;

V3Subtractf ( z, eye, c );

V3Normalisef ( z );

d = V3DotProductf ( z, up );

for (i =0; i< 3; i++ )
y[il = upl[il - d*z[il;

© ® N o o s W

10:

11:

12:

V3Normalisef ( y );
V3CrossProductf ( x, y, z );

13:  al0] = x[0]; al1] = y[0]; al2] = z[0]; al3] = 0.0;
1: al4] = x[11; al5] = y[11; al6] = z[1]; al7] = 0.0;
1s: al8] = x[2]; al9] = y[2]; al10] = z[2]; al11] = 0.0;
16: a[12] = -V3DotProductf ( x, eye );
17z al[13] = -V3DotProductf ( y, eye );
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20:
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al14] -V3DotProductf ( z, eye );
a[15] = 1.0;
} /*M4x4LookAtfx*/

A.3. Rozkladanie przeksztalcen afinicznych

W wielu ksigzkach mozna przeczytaé, ze dowolne przeksztalcenie afiniczne przestrzeni tréj-
wymiarowej® jest ztozeniem opisanych w rozdziale 5 przeksztalcer elementarnych: przesu-
nie¢, obrotow i skalowan. Znacznie rzadziej mozna znalez¢ informacje, jak znalez¢ takie
przeksztalcenia elementarne, aby ich ztozenie bylo przeksztalceniem danym, czyli jak znalez¢
macierze przesuniecia, obrotow i skalowania, ktorych iloczyn jest dang macierza 4 x4, bedaca
jednorodna reprezentacja tego przeksztalcenia. Znalezienie odpowiedniego przesuniecia jest
tatwe, skupimy si¢ zatem na przedstawieniu opisujacej czg$¢ liniowa przeksztatcenia macie-
rzy A jako iloczynu macierzy obrotéw i skalowania.

Warto$¢ wlasna macierzy A jest to liczba A spelniajgca rownos¢ Ax = Ax razem z pewnym
niezerowym wektorem x, zwanym wektorem wlasnym. Pomnozenie wektora wlasnego x
przez macierz A daje zatem ten sam wynik, co pomnozenie go przez liczbe A.

Macierz n x n ma n wartoéci wtasnych, ktore moga sie naklada¢*. Wartosci wlasne moga
by¢ liczbami rzeczywistymi lub zespolonymi, ale jesli macierz jest rzeczywista, to jej zespo-
lone wartosci wlasne wystepuja w parach sprzezonych, a zwigzane z nimi wektory wlasne
maja przynajmniej niektére wspoétrzedne zespolone (a wigc w przestrzeni R” ich nie znaj-
dziemy). Iloczyn wszystkich wartosci wtasnych macierzy jest jej wyznacznikiem.

Jesli macierz A jest symetryczna, tj. A = AT, to istnieje ortogonalna macierz X i diago-
nalna macierz A, takie ze A = XAX™Y; wspélczynniki na diagonali macierzy A s3 wartos-
ciami wlasnymi macierzy A. Kolumny macierzy X s3 jednostkowymi wektorami wlasnymi
macierzy A, przy czym mozemy przyjaé, ze wyznacznik macierzy X jest dodatni (réwny +1).
Dla n = 3 taka macierz X reprezentuje pewien obrét przestrzeni R® (o czym nizej) i jedno-
cze$nie reprezentuje zmiane ukladu wspétrzednych. Przeksztalcenie reprezentowane przez
symetryczng macierz A jest zatem zlozeniem trzech przeksztalcen: reprezentowanego przez
macierz X ! obrotu, skalowania osi x, y i z (wartoéci wtasne macierzy A s3 wspo6tczynnikami
tego skalowania) i przeksztalcenia odwrotnego do wczesniej wykonanego obrotu. Macierz
symetryczna jest wiec macierzg skalowania (w ogoélnosci nieréwnomiernego) wzdtuz wza-
jemnie prostopadtych osi pewnego ukladu wspétrzednych.

Rozwazmy teraz macierze ortogonalne Q o wymiarach 3 x 3. Wszystkie ich wartosci
wlasne maja wartos$¢ bezwzgledna 1, przy czym sa dwie mozliwosci: albo wszystkie trzy war-
tosci wlasne sg rzeczywiste (réwne 1 albo 1), albo jedna warto$¢ wlasna jest rzeczywista,

*a wiasciwie, przestrzeni n-wymiarowej dla dowolnego n > 2

*Méwi sie o tzw. krotnosciach algebraicznych wartoéci whasnych; suma tych krotnosci jest réwna #, jesli
zatem pewna warto$¢ wlasna ma krotno$¢ wieksza niz 1, to macierz ma mniej niz n réznych wartosci wlasnych.

>Jeéli macierz A nie jest symetryczna, to macierz X spetniajaca rownoé¢ A = XA X' z macierza diagonalng A
nie istnieje albo nie jest ortogonalna. Nie rozwijam tego tematu, ale zachecam Czytelnikéw do zajrzenia do
notatek z wyktadu lub do podrecznika algebry liniowe;j.
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+1, a pozostale dwie sg sprzezonymi ze sobg liczbami zespolonymi, (¢, s) i (¢, —s), ktérych
iloczyn ¢* + s* = 1. W pierwszym przypadku macierz jest symetryczna. Opisane przez nia
przeksztalcenie jest skalowaniem trzech wzajemnie prostopadtych osi (o kierunkach wekto-
réw wlasnych) o czynniki +1. Jesli macierz Q ma warto$¢ wlasng 1 o krotnosci 3, to jest to
macierz jednostkowa. Jesli warto$¢ wlasna —1 ma krotno$¢ 1, to macierz Q opisuje odbicie
symetryczne wzgledem plaszczyzny, jesli 2, to jest to macierz odbicia symetrycznego wzgle-
dem prostej (jest to takze obrdt o kat m wokot tej prostej), a jesli 3, to Q = I, a zatem dla
dowolnego wektora w jest Qw = —w. Reprezentowane przez macierz —I przeksztalcenie jest
odbiciem symetrycznym wzgledem punktu (wektora 0).

Macierz ortogonalna Q, ktéra ma zespolone warto$ci wlasne, reprezentuje obroét albo
ztozenie obrotu z odbiciem. Jesli jej rzeczywista warto$¢ wilasna jest rowna 1, to macierz Q
reprezentuje obrot, ktérego 0§ ma kierunek wektora wlasnego zwigzanego z ta wartoscia
wlasng®. Czesci rzeczywista ¢ i urojona s zespolonej wartoéci wlasnej to kosinus i sinus
kata ¢ tego obrotu. Jesli macierz Q ma warto$¢ wlasng —1i dwie zespolone wartosci wlasne, to
przeksztalcenie reprezentowane przez t¢ macierz jest ztozeniem dwoch przeksztalcen: obrotu
o kat ¢ wokot osi o kierunku wektora wlasnego zwigzanego z warto$cia wlasng —1 i odbicia
symetrycznego wzgledem plaszczyzny prostopadtej do tej osi.

Znajac dowolng rzeczywista warto$¢ wlasng A macierzy A, mozemy znalez¢ zwigzane
z nig wektory wlasne; s3 nimi wszystkie (oprocz zerowego) wektory prostopadie do wierszy
macierzy A — Al Ich znalezienie jest szczegdlnie tatwe w przypadku macierzy ortogonalnej
3 x 3, bo jej warto$cig wlasng jest zawsze liczba rzeczywista 1 lub —1.

Dowolna macierz 3 x 3 ma pewng warto$¢ wlasng rzeczywista, ktdrej znalezienie wymaga
rozwigzania réwnania trzeciego stopnia det(A—AI) = 0. Znane od XVI wieku wzory Cardana
s3 niezbyt praktyczng metodg rozwigzywania takich réwnan, dlatego lepiej jest uzy¢ ktorejs
z uniwersalnych metod numerycznych rozwigzywania réwnan nieliniowych. Rzeczywiste
wartosci wlasne macierzy A o wspotczynnikach a;j naleza do przedziatu [a, b], ktéry mozna
znalez¢ w taki sposdb: niech {i, j,k} = {1,2,3} i niech r; = |a;j| + |a;|. Mozna przyjac
a = min;eqo3y(aii = 7i), b = maxjeqp3y(aii + 1), i jedli funkcja f(A) = det(A - AI)
w punktach a i b ma wartosci rézne od zera, to majg one przeciwne znaki, co umozliwia
uzycie metody bisekcji’. Wartosci wlasne macierzy A o wymiarach 3 x 3 speltniajg réwnosci
M+ Ay + A3 = ay + ax + asz oraz Lj A3 = det A. Na tej podstawie, znajgc jedng wartosé
wlasng, A;, mozna (jesli A; # 0) otrzymac réwnanie kwadratowe

AZ + (/\1 —ayn—axy — a33)/1 + detA//\l =0,

ktorego rozwigzaniami sg pozostale dwie warto$ci wlasne macierzy A. Opracowanie szcze-
go6low i implementacje algorytmu znajdowania wartosci i wektoréw wtasnych macierzy 3 x 3
pozostawiam jako ¢wiczenie.

Na podstawie znanego twierdzenia algebry liniowej, dla dowolnej (takze prostokatnej)
macierzy A o wspétczynnikach rzeczywistych istnieje jej rozklad wzgledem wartosci szcze-
golnych (singular value decomposition, SVD), tj. macierze ortogonalne U i V oraz diagonalna

*Wektor v jest zwigzanym z wartoécia wlasna 1 wektorem wlasnym macierzy R,,, okreslonej wzorem (5.18).
’Inne metody, na przyktad metoda siecznych, moga dziala¢ szybciej (i warto je wyprobowad), ale nie gwa-
rantuja znalezienia rozwigzania dla kazdej macierzy.
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macierz X o nieujemnych wspotczynnikach®, takie ze A = UXVT. Zobaczmy zwigzek tych
macierzy z postawionym problemem.

Wyznacznik kazdej macierzy ortogonalnej jest réwny +1 albo —1. Macierz ortogonalna
3 x 3 0 dodatnim wyznaczniku jest macierzg obrotu w przestrzeni R>. Zatem rozklad SVD,
w ktérym macierze U i V maja wyznacznik +1, jest potrzebnym rozkladem macierzy A, bo
macierz diagonalna X jest macierza skalowania. Jesli obie macierze U i V maja wyznaczniki
ujemne, to mozemy je zastapi¢ przez —U i — V. Jesli za$ tylko jedna z nich, na przyklad U ma
wyznacznik -1, to zamiast U i ¥ mozemy przyja¢ macierze UD i DX, otrzymane przy uzyciu
macierzy diagonalnej D, ktéra ma na diagonali wspolczynniki 1, 11 —1. Zmienimy w ten
sposdb zwrot ostatniej kolumny macierzy U i znak ostatniego wspolczynnika (skalowania
osi z) na diagonali macierzy X.

Latwiej niz rozklad SVD mozna znalez¢ tzw. rozklad biegunowy macierzy kwadratowej,
tj. macierz ortogonalng Q i symetryczng S, takie ze A = QS. Przeksztalcajac rozklad SVD,
mozemy napisa¢ A = UXVT = UVTVXIVT. Tloczyn UVT macierzy ortogonalnych jest
macierzg ortogonalng, a macierz VXV 7 jest symetryczna. Mozemy zatem przyja¢ Q = UV T
orazS=VIVT,

Jesli macierz A jest nieosobliwa, to jej rozklad biegunowy mozna znalez¢ przy uzyciu
nastepujacego algorytmu Highama: po przyjeciu macierzy Ay = A obliczamy w kolejnych
iteracjach macierze

1
Ay = 5(A,c_1 + AL, k=12,...

W kazdej iteracji trzeba obliczy¢ macierz A, ', tj. transpozycje odwrotnosci macierzy Ay_;.°
Otrzymany ciagg macierzy zbiega do macierzy ortogonalnej Q, przy czym zbiezno$¢ jest dos¢
szybka i w wielu przypadkach wystarczy wykonac¢ tylko kilka iteracji. Mozemy nastepnie
znalez¢ macierz symetryczng S = QT A.

Wartosci i wektory wlasne macierzy S mozna znalez¢ metodg wspomniang wczesniej.
Wektory wlasne sg kolumnami macierzy V; znajac ja, mozna obliczy¢ macierz U = QV.
W typowych zastosowaniach w grafice komputerowej dokladnos¢ algorytmu opartego na
tym opisie powinna by¢ wystarczajaca'®.

Jednym z etapdw rejestrowania ruchu (motion capture, zobacz [34]) jest okredlenie poto-
zenia i zorientowania w przestrzeni uzywanych w tej technice kamer. W tym celu na pod-

8Wspotczynniki na diagonali macierzy X sa nazywane warto$ciami szczegélnymi macierzy A.

° Aby rozwigzaé uktad réwnan liniowych Ax = b, nie trzeba zna¢ macierzy A™'; wystarczy znaé rozklad
macierzy A na czynniki trojkatne. Co wiecej, algorytm polegajacy na znalezieniu macierzy A~ i pomnozeniu
przez nig wektora b jest bardziej kosztowny i mniej doktadny niz rozwiazanie uktadéw z macierzami tréjkatnymi
(np. znalezionymi przez procedure M4x4LUDecompf, zobacz podrozdz. 5.7). Algorytm Highama jest jednym
z nielicznych algorytméw numerycznych, w ktorych jawne wyznaczanie odwrotnosci macierzy jest konieczne.

'"Przypomne, ze w obliczeniach przy uzyciu arytmetyki zmiennopozycyjnej wystepuja btedy zaokraglen, kt6-
rych skutkiem sg niedoktadne wyniki. Opisane tu rozktady macierzy o wymiarach wigkszych niz 3x3, potrzebne
w réznych zastosowaniach, trzeba wyznaczaé bardziej wyrafinowanymi metodami.
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stawie zarejestrowanych przez te kamery obrazéw, na ktorych sa widoczne rozmieszczone
w przestrzeni znaczniki, ukladane sa rownania, ktérych rozwigzanie prowadzi do znalezienia
macierzy opisujacych rozmieszczenie (przesuniecia i obroty) poszczegélnych kamer. Skut-
kiem ograniczonej dokladnosci obrazéw i popetnionych w obliczeniach btedéw zaokraglen
jest otrzymanie przeksztalcenia, ktérego czes¢ liniowa jest opisana przez nieortogonalng ma-
cierz A. Wlasnie w tym zastosowaniu algorytm Highama moze pomoéc: bedaca czynnikiem
rozktadu biegunowego macierz Q ,najlepiej ze wszystkich macierzy ortogonalnych” przy-
bliza macierz A" Z istnienia rozktadu biegunowego wynika, ze macierz A opisuje zlozenie
skalowania z izometrig (obrotem). Zastgpienie jej przez czynnik Q eliminuje niepozadane
skalowanie, kompensujac wspomniane bledy.

Rozkladanie macierzy na czynniki reprezentujace przeksztalcenia elementarne moze si¢
przyda¢ w animacji. Przypu$¢my, ze ruch pewnego obiektu jest otrzymany przez animo-
wanie macierzy przeksztalcenia modelu; mamy dane macierze M;, z ktérych kazda opisuje
przeksztalcenie nadajace obiektowi polozenie w chwili ¢;. Znalezienie przeksztalcen nadaja-
cych polozenia posrednie wymaga interpolacji potozen danych, ale dokonanie interpolacji
poszczegdlnych wspotczynnikéw macierzy w przypadku, gdy zadane przeksztalcenia opisuja
obroty z przesunieciami, prowadzi do otrzymania przeksztalcen nieizometrycznych. Obiekt
sztywny w tak otrzymanym ruchu zmienialby ksztalt, wigc trzeba postepowac inacze;.

Dla uproszczenia rozwazmy dane macierze My i M; o wymiarach 4 x 4, opisujace po-
tozenia obiektu w chwilach 0 i 1. Macierz M; nadajaca obiektowi potozenie odpowiednie
w chwili  mozemy otrzymac po rozlozeniu macierzy danych: niech macierz T; opisuje prze-
suniecie, Q; obrdt, a S; skalowanie, takie ze M; = T;Q;S;. Obie macierze Q; s3 ortogonalne,
a S; symetryczne. Mozemy przyja¢ macierze Ty = (1— )Ty + tTy oraz S; = (1 - t)So + tS1,
poniewaz pierwsza z nich opisuje (interpolowane) przesunigcie, a druga, symetryczna dla
kazdego t, opisuje skalowanie obiektu wzdtuz pewnych wzajemnie prostopadlych osi (zalez-
nych od t); jesli przeksztalcenie ma by¢ izometrig (w animacji bryly sztywnej), to macierze
So> S11 St s3 macierzg jednostkowa.

Aby dokona¢ interpolacji obrotéw, mozemy znalez¢é wektory osi i katy obrotéw repre-
zentowanych przez macierze ortogonalne Qo i Q;, utworzy¢ reprezentujace te obroty kwater-
niony, dokonac interpolacji tukowej kwaterniondéw i skonstruowac macierz Q; na podstawie
reprezentacji kwaternionowej obrotu w chwili t. Podrozdzial A.4 zawiera doktadny opis tej
reprezentacji. Majac macierze Ty, Q; i S¢, mozemy za macierz M; przyjac ich iloczyn.

A.4. Kwaterniony i obroty

Kwaterniony s3 wektorami w przestrzeni R* z okreslonymi dziataniami dodawania (zwyk-
tego) i mnozenia, ktérego definicja jest nizej. Kwaternion g = (a, x, y, z) mozemy przedsta-
wi¢ w postaci g = (a, b), w ktorej wyrdzniamy czes¢ skalarng a € R (pierwszg wspoirzedng)
i cze$¢ wektorowa b = (x, y,z) € R?. Korzystajac z tego zapisu, mozna definicje mnozenia

""Miarg bledu przyblizenia jest w tym przypadku tzw. norma druga indukowana macierzy, | - |,. Jesli
W oznacza macierz ortogonalng 3 x 3, to liczba | A — W, jest najmniejsza, gdy W = Q.
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kwaterniondéw przedstawi¢ wzorem
(al, bl) . (az, bz) = (a1a2 - <b1, bz), Gllbz + b1a2 + bl A bz) (Al)

Wzdr ten przypomina definicje mnozenia liczb zespolonych (E1); najbardziej widoczna roz-
nica to skladnik b; A b; (iloczyn wektorowy wektoréw b; i by) w czesci wektorowej iloczynu.
Z powodu tego skladnika, ktory zmienia zwrot po przestawieniu argumentdéw, mnozenie
kwaternionéw jest nieprzemienne.

Aby ulatwi¢ zbadanie wlasnosci mnozenia, kwaternionowi q = (a, x, y,z) = (a, b) przy-
porzadkujemy macierz

a‘—x -y -z a‘ b7
| *| ¢ = V|-
Q= y| z a -x | | b| alz+brls
z|-y x a

Oczywiscie, kazdej macierzy utworzonej z czterech liczb zgodnie z tym schematem odpo-
wiada pewien kwaternion, ktory jest jej pierwsza kolumna. Wykonujac stosowne rachunki,
mozemy sprawdzié, ze sumie kwaternionéw ¢ i g, odpowiada suma przyporzadkowanych
im macierzy, Q; + Q, a ponadto g; - g2 = Q142, skad dalej wynika, Ze iloczyn macierzy Q;Q>
odpowiada iloczynowi kwaterniondéw ¢q; - g2. Mnozenie macierzy jest faczne i rozdzielne
wzgledem dodawania, zatem takze mnozenie kwaternionéw ma te whasnoécil?.

Z punktu widzenia algebry zbiér kwaternionéw z opisanymi wyzej dziataniami jest cia-
fem nieprzemiennym. Tradycyjnie oznacza si¢ je symbolem H, dla uczczenia sir Williama
R. Hamiltona, ktéry 16 pazdziernika 1843 r. odkryt je w Dublinie [43]". Hamilton wymyslit
wtedy opisany tu sposéb mnozenia czworek liczb rzeczywistych. Razem ze zwyklym doda-
waniem wektoréw w R* spetnia on wszystkie warunki potrzebne do otrzymania ciata, z wy-
jatkiem przemiennosci. Kwintesencja tego mnozenia sg cztery, a wlasciwie dziesie¢ rownosci

iP=j=K=ij-k=-1,

zapisanych przy uzyciu symboli i = (0,1,0,0),j = (0,0,1,0), k = (0,0,0,1) oraz -1 =
(-1,0,0,0).

Kwaternion sprzezony z q = (a, b) to kwaternion (a, —b), ktéry oznaczamy symbolem g;
warto$¢ bezwzgledna kwaternionu g = (a, b) = (a, x, y, z) jest liczba rzeczywista

|q|:\/a2+(b,b):\/a2+x2+y2+zz.

Warto$¢ bezwzgledna kwaternionu jest wiec euklidesowg dlugoscia wektora (a, x, y,z) ijest
spetniona réwnoé¢ |gq| = [g|. Kwaternion zerowy, (0, 0), jestjedynym kwaternionem, ktérego
warto$¢ bezwzgledna jest réwna 0.

2 Zwr6émy uwage, ze tacznosé mnozenia kwaternionéw nie jest sprzeczna z faktem, ze iloczyn wektorowy
w R?, uzyty w definicji tego mnozenia, nie jest dzialaniem Iacznym.
PBylem w tamtym miejscu; kwaterniony caty czas tam s3, ale mozna je tez dostrzec wszedzie indziej.
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Zobaczmy, jak to wyglada w notacji macierzowej. Jesli kwaternion g jest zwigzany z ma-
cierza Q, to sprzezonemu z nim kwaternionowi g odpowiada macierz transponowana Q7.
Mozemy sprawdzi¢, ze iloczynowi q - § odpowiada macierz QQT = |g|*I;. Macierz Q jest
wiec iloczynem pewnej macierzy ortogonalnej i liczby |g|. Wyznacznik macierzy Q jest nie-
ujemny: det Q = (a®+x2+y?+2%)* = |q|*, a stad (i z twierdzenia Cauchyego, s. 107) wynika,
ze dla dowolnych kwaternionéw ¢, g2 zachodzi réwnosé¢

91~ 92| = |q1llq2]-

Ponadto z réwnoéci (Q;Q;)7 = QZT QIT dla dowolnych macierzy Qi, Qa, ktérych iloczyn ist-
nieje (zobacz podrozdz. 5.1), wynika réwnoé¢ g1 - q2 = q, - q, dla dowolnych kwaternionéw
q1, 92.

Kwaternion niemy ma czes$¢ wektorowa réwng 0 (odpowiada mu macierz diagonalna
aly). Zauwazmy, ze mnozenie kwaternionéw niemych daje w wyniku kwaternion niemy,
o czesci skalarnej réwnej iloczynowi czesci skalarnych czynnikéw; mozna wiec utozsamic¢
kwaterniony nieme z liczbami rzeczywistymi i wtedy dodawanie oraz mnozenie kwaternio-
néw i liczb daja takie same wyniki'*. Zauwazmy jeszcze dwie rzeczy: jesli dowolny argument
mnozenia jest kwaternionem niemym, to kolejnos¢ tych argumentéw mozna zmieni¢, a po-
nadto wzdr opisujacy warto$¢ bezwzgledna dowolnego kwaternionu mozemy teraz zapisaé
w postaci |q| = \/q-q (bo pod pierwiastkiem jest kwaternion niemy utozsamiony z liczbg
rzeczywista nieujemng).

Jedynka kwaternionowa to kwaternion (1, 0). Odpowiada jej macierz jednostkowa 4 x 4.
Jedynka jest elementem neutralnym mnozenia, tj. (1,0) - g = g - (1,0) = g dla kazdego g
i jest to jedyny kwaternion o tej wlasnosci. Dla skrétu kwaternion zerowy i jedynke mozna
zapisywa¢ symbolami 0 i 1, pamigtajac, ze to kwaterniony.

Kwaternion odwrotny do g to g, takize g-g™' = g* - g = (1,0). Dla kazdego niezero-
wego kwaternionu istnieje (jeden) kwaternion odwrotny, opisany wzorem

L1

T r?
ktory przypomina wzor na odwrotnos¢ liczby zespolonej. W notacji macierzowej kwaternio-
nowi g! odpowiada macierz Q! = ﬁ Q7. ZTacznosci mnozenia kwaternionéw wynika, ze
jesli kwaterniony ¢ i g, nie s3 zerowe, to

(q-q2) ' =a3" a1

Majac pojecie odwrotnoséci, mozna okresli¢ dzielenie kwaternionéw, a wlasciwie dwa
dzielenia, okreslone wzorami

Q/2=q-9" 1 @\a=49"q

"Odnotujmy jako ciekawostke, ze dodawanie i mnozenie kwaternionéw, ktérych czesci wektorowe maja
ten sam kierunek, jest zgodne z dzialaniami na liczbach zespolonych. W szczegdlnosci jesli v jest dowolnym
wektorem jednostkowym w R* oraz (a1, b1)(az,b;) = (a,b) € C, to (a1, byiv) - (az, b2v) = (a,bv) € H.
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Rzecz w tym, ze na ogot q;-q;" # q5' - q1 (réwno$é zachodzi wtedy, gdy czesci wektorowe obu
kwaternionéw sa liniowo zalezne). Dlatego nie bedziemy pisa¢ kwaternionowych wyrazen
z pozioma kreska utamkows, chyba ze mianownik (lub licznik) jest liczbg rzeczywista (albo
kwaternionem niemym).

Kwaternion, ktérego czes$¢ skalarna jest réwna 0, nazywamy kwaternionem czystym,
a kwaternion jednostkowy to taki, ktérego warto$¢ bezwzgledna jest réwna 1. Poniewaz
warto$¢ bezwzgledna iloczynu kwaternionéw jest iloczynem ich wartosci bezwzglednych,
iloczyn kwaternionéw jednostkowych jest kwaternionem jednostkowym. Co wiecej, od-
wrotnoscig kwaternionu jednostkowego jest jego kwaternion sprzezony. Kwaternionom jed-
nostkowym odpowiadajg macierze ortogonalne 4 x 4.

Dowolny kwaternion mozna przedstawi¢ w postaci trygonometrycznej: dla kazdego
kwaternionu g istnieje wektor jednostkowy v i liczba «a, takie ze

q = |q|(cosa,vsina). (A.2)

Czynnik (cosa,vsina) jest kwaternionem jednostkowym. Dla kwaternionéw niemych
liczba « jest calkowitg wielokrotnosciag liczby 7, a kierunek wektora v jest nieokreslony.
Dla kazdego kwaternionu q i kazdej liczby naturalnej n zachodzi réwnos¢

q" =|q|"(cosna, vsinna).
Dzigki temu mozemy okresli¢ potegowanie kwaternionéw wzorem

q' =1q|*(cos ta, vsin ta), (A.3)

w ktérym moze wystapi¢ dowolny wykladnik rzeczywisty t.°

Obroty w przestrzeni R® sg reprezentowane przez kwaterniony jednostkowe. Wezmy
dowolny wektor jednostkowy v € R? i liczbe ¢. Obrotowi o kat ¢ wokot prostej o kierunku
wektora v przyporzadkujemy kwaternion g = (cos £,vsin £). Jest on oczywiécie jednost-
kowy. Wektorowi w € R, ktéry zamierzamy obrécié, przyporzadkujemy kwaternion czysty
w = (0, w). Udowodnimy, Ze kwaternion

u:q.w.q_l (A.4)

jest czysty, tj. u = (0, u), a jego cze$¢ wektorowa jest obrazem wektora w w rozpatrywanym
obrocie.
4

o . _ (p .
Oznaczmy s = sin 7 i ¢ = cos 7. Liczymy

gow a7 = (59) - (0w (6 -5v) = (s{vswhcw + 59 A w) - (6, -5v)
= (—cs(v,w) + cs(w,v) + s(v Aw,v),

S, W+ W+ sV AW —cswAY —sS(VAW) A v).

'>Ale aby to dziatanie bylo dobrze okreslone (tj. mialo jednoznaczny wynik) dla kazdego ¢ € R, liczbe
nalezy wybieraé z przedziatu (-, 7). Wtedy jesli i, a0 € (—m, 1), to zachodzg réwnosci ¢ - ¢'> = g"'*"
i(g")?=q".Jedliqg=(a,0)ia<0 (czylia =), toq"jest okreslone tylko dla catkowitych wyktadnikéw t.
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Zgodnie z zapowiedzia, czg¢$¢ skalarna powyzszego iloczynu jest rowna 0: dwa pierwsze
skladniki opisujacego ja wyrazenia majg przeciwne znaki, a w trzecim skladniku mamy
iloczyn skalarny wektoréw v A w i v, ktére s3 wzajemnie prostopadle. Obliczmy zatem czes¢
wektorows,

u=s>(v,wWw+clwrcsv Aw—cswAv—s* (v Aw) Av.
Zauwazmy, zZe s2=1- cz; stad mamy
S, whv + w = (v, w)v + E(w - (v, w)v).

W otrzymanych wzorach wystepuja wektory (v, w)v =a,vAw=cicAv=w—(v,w)v=b

(zobacz rys. 5.6'°). Stad na podstawie znanych tozsamosci trygonometrycznych 2cs = sin ¢

i ¢ - 5% = cos ¢ otrzymujemy

u=v(v,w)+cosp(w—(v,w)v) +sinpv Aw,

czyli wzér (5.17), co konczy dowdd. O

Rysunek A.4. Dwa obroty bedace tym samym obrotem

Zauwazmy, ze reprezentacja kwaternionowa obrotu nie jest jednoznaczna: kwaternion
—q reprezentuje ten sam obrdt co . Mamy bowiem

-q = (—cosg,—vsing) = (cos 2712— (P,—vsin 2712— (P),

'8 Rachunek dowodzacy, ze (v A w) Av = w — (v, w)v jest taki: przypominamy sobie, Ze v A w = —w A v oraz
(v,v) = 1i obliczamy iloczyny kwaternionéw

((0,9)- (0,%)) - (0,-w) = (~{%,+),0) - (0, ~w) = (0, (v, W)w) = (0, w),
(0,v) - ((O,V) (0,-w)) = (0,v)- ({(v,w),-v A w) =(0,v{v,w)—vA(vA w))

Mnozenie kwaterniondéw jest laczne, wiec w obu przypadkach wynik jest ten sam. Pozostaje zbada¢ wyrazenia
opisujace jego czes¢ wektorowa.
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czyli reprezentacje obrotu o kat 2w — ¢ w druga strone, tj. wokdt osi zorientowanej przeciwnie
(rys. A.4). Ponadto jedynka kwaternionowa (a takze kwaternion (-1, 0)) reprezentuje prze-
ksztalcenie tozsamosciowe, czyli obrét o kat ¢ = 0 wokot osi, ktdrej kierunek nie jest (i nie
musi by¢) okreslony.

Powolujac si¢ na Iaczno$¢ mnozenia kwaterniondéw, mozemy napisaé

a2 (q-(0w)-a7') 45 = (q2-q0) - (O,w) - (a1 - q3")
= (q2-q1) - (0,w) - (q2-q1) "

Stad ztozenie kolejno wykonanych obrotéw reprezentowanych przez kwaterniony ¢; i g2
jest obrotem reprezentowanym przez iloczyn tych kwaternionéw. Powyzszy rachunek od-
powiada sytuacji, gdy oba obroty sg okreslone w ukladzie nieruchomym (np. $wiata) i wtedy
ich zlozenie jest reprezentowane przez iloczyn g3 - q;. Obliczajac czg$¢ skalarng i wektorowa
tego iloczynu, otrzymamy wzory podane na poczatku rozdzialu 8. Jesli natomiast oba obroty
sa okres$lone w ukladzie wspotrzednych zwiazanym z obiektem (tj. obracajacym sie razem
z nim), to nalezy ustawi¢ czynniki w odwrotnej kolejnosci: q; - g2 (zobacz s. 113).

Bezpos$rednie stosowanie wzoru (A.4) nie jest zbyt tanie; trzeba wykona¢ przy tym 24
mnozenia liczb rzeczywistych, podczas gdy pomnozenie wektora wspolrzednych jednorod-
nych punktu przez macierz 4 x 4, reprezentujaca obrot lub dowolne inne przeksztalcenie afi-
niczne lub rzutowe, wymaga wykonania tylko 16 mnozen. Majac kwaternion jednostkowy
q = (a,x,y,z), mozemy latwo skonstruowa¢ macierz reprezentowanego przezen obrotu.
Niech w = (0, 7,s, t). Na podstawie wzoru (A.4) mozemy obliczy¢

[a —x -y -z 0 -r —-s -t a
1 x a -z r 0 -t s -X
q . W . q = _y _ _
y z a —x s t 0 -r y
z -y x a t -s r 0 -z

(a® +x* - y* = 22)r+2(xy — az)s + 2(xz + ay)t
2(xy+az)r+ (a®+y* —x* - 2%)s + 2(yz — ax)t
| 2(xz—ay)r+2(yz+ax)s+ (a®+z% - x* - y*)t

Stad otrzymamy macierz obrotu reprezentowanego przez kwaternion g:

1-2(y*+2%)  2(xy-az) 2(xz+ay)
R=| 2(xy+az) 1-2(x*+2%) 2(yz-ax) |. (A.5)
2(xz—ay) 2(yz+ax) 1-2(x%+y?)

Przejscie od kwaternionowej do macierzowej reprezentacji obrotu jest wiec wykonalne bez
obliczania warto$ci jakichkolwiek funkgcji przestepnych.

Dysponujac kwaternionami, mamy mozliwo$¢ stosunkowo fatwego dokonania interpola-
cji potozen katowych bryty w ruchu kulistym!”, zadanych w wybranych chwilach. W tym celu

Y Czyli w ruchu obrotowym wokét osi o zmieniajacym sie kierunku, w kazdej chwili przechodzacej przez
pewien ustalony punkt.
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trzeba skonstruowac krzywa, ktérej punktami sg kwaterniony jednostkowe, tj. krzywa poto-
zong na sferze jednostkowej w R*. Krzywa ta ma przechodzi¢ przez podane punkty (kwater-
niony odpowiadajace kolejno zadanym pofozeniom katowym bryly w ruchu), okreslajac jed-
noznacznie polozenia katowe bryly w innych chwilach. Elementarnym krokiem konstrukeji
takich krzywych przechodzacych przez wiele zadanych punktéw (w tym przykladowej kon-
strukeji przedstawionej w podrozdz. B.4) jest konstrukcja najkrétszej krzywej o zadanych
koncach polozonej na sferze jednostkowe;j.

Przypus¢my, ze dwa kwaterniony, qo i g1, reprezentuja pewne obroty, ktére wyznaczajg
polozenia katowe dowolnego obiektu w chwilach 0 i 1. Chcieliby$my interpolowac te obroty,
tj. dla dowolnego t € [0,1] znalez¢ obrét (czyli odpowiedni kwaternion jednostkowy g¢),
ktéry wyznacza polozenie ,,posrednie” obiektu.

Obrét odpowiadajacy chwili t moglibysmy okresli¢ przy uzyciu jednego z kwaternionéw
okreslonych wzorami §; = qg ' - q! albo §; = g} - q5 ' Podstawiajac ¢ = 0 do kazdego z tych
wzoréw, otrzymaliby$my kwaternion go, a podstawiajac ¢t = 1, dostaliby$my kwaternion g;.
Niestety, brak przemienno$ci mnozenia kwaternionéw powoduje, ze jesli czesci wektorowe
kwaternionéw qo i q; maja rézne kierunki, to dla 0 < ¢ < 1jest §; # g, a wiec kazdy z tych
wzordw opisuje parametryzacje innej krzywej na sferze jednostkowej (i zadna z nich nie jest
najkrotsza). Aby odwrdci¢ ruch w czasie, nalezaloby zamieni¢ kwaterniony g i qi, co do-
prowadzitoby do otrzymania innych potozen posrednich'®. Ponadto, dokonujac interpolacji
w obréconym ukladzie wspotrzednych, otrzymaliby$my inny ruch obrotowy. Dlatego me-
toda interpolacji polozen katowych oparta na kazdym z podanych wyzej wzoréw nie jest
poprawna.

,,,,q},,,, q1

Rysunek A.5. Interpolacja lukowa

Poprawna metoda polega na dokonaniu interpolacji lukowej kwaternionéw. Na ry-
sunku A.5 jest pokazany przekrdj przez sfere jednostkowa w R* plaszczyzng zawierajaca
kwaterniony jednostkowe qo i q;, takie ze qo # q1 i q0 # —qui; przekrdj ten jest oczywis-

18Zamieniajqc kwaterniony qo i g1, nalezatoby zatem zastgpi¢ uzyty do interpolacji wzdr tym drugim wzorem,
ale jak tu dokonac¢ pierwszego wyboru?
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cie okregiem jednostkowym. Kwaterniony g i q; jednoznacznie okreslajg najkrétszy tuk na
sferze jednostkowej, ktérego sa koricami. Dla chwili t € [0,1] chcemy skonstruowaé obrot
reprezentowany przez kwaternion g;, ktéry dzieli ten tuk w proporcji t : 1—-t. Funkcja, ktorej
argumentami s kwaterniony g, q; i liczba t i ktorej wartoscig jest ten kwaternion gy, jest
znana pod nazwg Slerp (Spherical linear interpolation)®.

Wzér opisujacy interpolacje tukowa przy uzyciu potegowania otrzymamy, rozpatrujac
przyporzadkowane kwaternionom macierze. Macierz odpowiadajgca dowolnemu kwater-
nionowi jednostkowemu jest ortogonalna, a zatem reprezentuje pewng izometrie przestrze-
ni R%. Luk, ktérego konicami sg punkty qo i g1, przeksztalcimy przy uzyciu takiej izometrii,
aby obrazem g byta jedynka kwaternionowa, do czego uzyjemy odwrotnosci macierzy Qg
przyporzadkowanej kwaternionowi go. Dla kazdego ¢ obrazem punktu g; na tym tuku jest
punkt §; = q5" - ¢ = Qg'qs, a w szczegdlnosci koniec tuku, tj. punkt gy, przejdzie na punkt
41=q5" - @1 = Qy'q1. Na podstawie wzoru (A.3) kwaternion g, dzielacy tuk o koricach 1i g
w proporcji t : 1 — £, jest réwny §;. Stad dostajemy wzor

qr = Qodr = q0- (90" - q1)". (A.6)

W podobny sposéb mozemy otrzymac wzor
qr=aq1 (4" )" (A7)

tatwo mozemy tez sprawdzié, ze (qo - (95" - 91)") - (q1- (a1 qo)l’t)_1 = (1,0), a zatem oba
powyzsze wzory sg rownowazne i kazdy z nich opisuje funkcje Slerp. Rozpatrujac ruch ob-
rotowy w ukladzie wspétrzednych, w ktérym zorientowanie poczatkowe jest opisane przez
jedynke, a koncowe przez kwaternion §;, mozemy zauwazy¢, ze jesli podczas animowania
obiektu zmieniamy parametr ¢ ze stalg szybkoscia, dokonujemy interpolacji tukowej kwater-
nionoéw i okreslamy na tej podstawie chwilowe przeksztalcenia obiektu, to obiekt ten obraca
sie wokol pewnej ustalonej osi ze stalg predkoscia katowa.

- 41+ qo

Rysunek A.6. Znajdowanie kata miedzy kwaternionami jednostkowymi

Zobaczmy inny, algebraicznie rGwnowazny sposéb dokonywania interpolacji tukowe;j.
Miare kata ¥ miedzy kwaternionami qg a g; mozemy znalez¢, traktujac je jak wektory w R*
i obliczajac ich iloczyn skalarny, réwny cos y. Jesli jednak kat v jest bliski zera, to obliczenie

¥ Nazwe te wprowadzil Ken Shoemake w 1985 r.
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siny = /1 - cos? y moze wskutek bledéw zaokraglen da¢ bardzo niedoktadny wynik. Me-
toda doktadniejsza opiera si¢ na réwnosciach |q; — qo| = 2sin ¥, |g1 + go| = 2 cos ¥ (rys. A.6),
z ktérych wynikajg wzory®

1

. _ 1 _ 2 2 _
siny = 21q1 = qoll1 + qols cow—;(lqﬁqol ~|q1-qo*), v =2arctg

Iql—qol'
a1 + qol

Dalsze rachunki sg takie: niech g, oznacza lezacy na rozwazanym okregu kwaternion, ktory
jest wektorem prostopadlym do g (rys. A.5). Wtedy

q1=qoCosy + gz siny,
gt = qocosty + gz sinty.

Wyznaczajac g, na podstawie pierwszego rdwnania i wstawiajac do drugiego, po uporzad-
kowaniu otrzymamy wzor

qosin(1—t)y + g sin ty
siny '

Slerp(qo, q15t) = 41 = (A.8)

Stosowanie wzoru (A.8) zamiast (A.6) lub (A.7) i (A.3) tez wymaga uzycia funkgji trygo-
nometrycznych. Mozna tego unikna¢ w szczeg6lnym przypadku, gdy chcemy znalez¢ punkt
w polowie tuku. Mozemy wtedy uzy¢ wzoru

qo+q
lq0 + q1

Slerp(qo, q131/2) = q1j2 =

Luk faczacy kwaterniony q i g1 mozemy dzieli¢ rekurencyjnie na polowy, ¢wiartki itd., wy-
konujac tylko dodawania, mnozenia i dzielenia liczb rzeczywistych oraz obliczajac pierwias-
tek kwadratowy.

Uwaga: Chcac interpolowa¢ potozenia katowe obiektu reprezentowane przez kwaterniony
qo 1 q1, mozemy dzieli¢ w odpowiednich proporcjach tuk o konicach g i g; lub tuk o koncach
qo i —q1. Zwykle wybieramy tuk krotszy, tj. jesli kosinus kata y miedzy qo a g jest ujemny,
to wybieramy drugi z tych dwoch tukéw. Ruchy okreslone przez oba tuki sa obracaniem
w przeciwne strony. Wybor dluzszego tuku oznacza, ze obiekt obroci sie o kat wiekszy niz 7.

Listing A.3 przedstawia gar$¢ procedur, ktére moga by¢ uzyte do opisanych wyzej obli-
czen z kwaternionami. Procedura QuatMultf mnozy dwa kwaterniony. Funkcje QuatAbsf
i QuatArgf obliczajg warto$¢ bezwzgledna i argument (czyli liczbe o wystepujaca w postaci
trygonometrycznej kwaternionu (A.2)). Procedury QuatLDivf i QuatRDivf wykonujg oba
dzielenia kwaternionéw, lewostronne i prawostronne.

Procedura M4x4QuatRotationf na podstawie wzoru (A.5) konstruuje macierz 4 x 4,
ktorej blok 3 x 3 reprezentuje obrot okreslony przez dany kwaternion jednostkowy. Proce-
dury QuatRotVf i RotVQuatf dokonuja konwersji reprezentacji obrotéw; pierwsza znajduje

207 uwagi na btedy zaokraglen lepiej jest oblicza¢ kosinus v jako iloczyn skalarny w R*: cos v = (qo, q1).
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Listing A.3. Procedury obliczen z kwaternionami
C

: ¥ /*QuatMultf*/

1: void QuatMultf ( float q[4], const float q1[4], const float q2[4] )
2: {

32 ql[0] = q1[01%q2[0] - qi1[1]1*q2[1] - qi1[2]*q2[2] - q1[3]1*q2[3];

2. ql1] = q1[1]1*q2[0] + q1[01*q2[1] - q1[3]1%q2[2] + q1[2]*q2[3];

s: ql[2] = q1[2]*q2[0] + q1[3]1*q2[1] + q1[0]*q2[2] - q1[11%*q2[3];

6: ql[3] = q1[3]1%q2[0] - q1[2]*q2[1] + q1[1]1*q2[2] + q1[0]*q2[3];

7

8:

: float QuatAbsf ( float ql4] )
+{

return sqrt ( V4DotProductf ( q, q ) );
: ¥ /*QuatAbsfx*/

-
o

-
[

-
N

-
w

: double QuatArgf ( float ql4] )
:q{

return atan2 ( sqrt ( V3DotProductf ( &ql[1l, &q[1l) ), ql0] );
: } /*QuatArgf*/

-
IS

-
3

-
o

-
=)

-
®

: void QuatLDivf ( float q[4], const float q2[4], const float qi[4] )
: {
float q2i[4], s;

-
©

N
=}

N
~

N
N

s = V4DotProductf ( g2, 92 );
if (s> 0.0) {
g2i[0] = g2[0]/s; q2i[1] = -q2[1]/s;
q2i[2] = -q2[2]1/s; q2il[3] = -q2[3]/s;
QuatMultf ( q, 92i, ql );
}
: } /*QuatLDivfx/

N
w

N
=

N
a

N
o

N
3

N
®

N
©

w
o

: void QuatRDivf ( float q[4], const float ql1[4], const float q2[4] )
+{
float q2i[4], s;

w
s

w
N

w
@

w
hS

s = V4DotProductf ( g2, q2 );

if (s >0.0) {
q2i[0] = q2[0]/s; q2il[1] = -q2[1]/s;
g2i[2] = -q2[2]/s; q2il[3] = -q2[3]/s;
QuatMultf ( q, ql, g2i );

}

. } /*QuatRDivfx/

w
o

w
3

w
J

w
<

w
©

W
o

S
=

IS
)

: void M4x4QuatRotationf ( GLfloat a[16], float q[4] )
44 {

45: double xx, yy, zz, xa, Xy, Xz, ya, yz, za;

IS
w
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46:

47:

48:

49:

50:

51:

52:

53:

54:

55

-}

56:

57:

58:

59:

{

60:

61:

62:

63:

64:

65:

66:

67:

68:

69:

70:

71:

72:

73:

74:

75:

76:

77

78:

79:

80:

81:

82:

83:

84:

85:

86:

87:

88:

89:

90:

{

91:

92:

xx = 2.0xq[1]1*q[1]; yy
xa = 2.0xq[1]xq[0]; xy

2.0%q[2]*q[2]; =zz
2.0%q[1]1*q[2]; =xz
ya = 2.0xq[2]1*q[0]; yz = 2.0%q[2]*q[3]; =za

2.0%q[31*q[3];
2.0xq[11*q[3];
2.0%q[3]*q[0];

memset ( a, 0, 16*sizeof (GLfloat) );
al0] = 1.0-(yy+zz); all]l = xy-za; al[2] = xz-ya;

al4] = xy-za; al[5]
al[8] = xatya; al9] = yz-xa;
al[15] = 1.0;
/*M4x4QuatRotationf*/

#define TOL 1.0e-6

float d;

d = V3DotProductf ( v, v );
if (d > TOL*TOL ) {

1.0-(xx+zz); al6] = yz+txa;

al10] = 1.0-(xx+yy);

void QuatRotVf ( float q[4], const float v[3], double phi )

d = sin ( 0.5%phi )/sqrt ( d );

ql[0] = cos ( 0.5%phi );
ql1]

void QuatAnglef ( double *psi,

float qO0[4],

float al4], p, r;

dxv[0]; ql2] = dxv[1]; ql3] = dxv[2];

V3DotProductf ( &ql[1], &q[1] )) < TOL*TOL ||

0.0; *phi = 0.0; }

}
else
{ ql0] = 1.0, ql[1] = q[2] =
} /*QuatRotVEx*/
void RotVQuatf ( float v[3], double *phi, const float q[4] )
{
float s, d;
if ( (s =
(d = q[0]*q[0] + s) < TOL*TOL )
{v[0o] =1.0, v[1] = v[2] =
else {
s = sqrt (s );
*phi = 2.0*atan2 ( s, q[0] );
d =1.0/(sqrt ( d )*s);
v[0] = dxq[1]; v[1] = d*q[2]; v[2] = d*xql[3];
}
#undef TOL
} /*RotVQuatfx*/

float *spsi, float *cpsi,
float q1[4] )
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93: V4Addf ( a, q0, ql );

94: p = sqrt ( V4DotProductf ( a, a ) );

9s:  V4Subtractf ( a, q0, ql );

9: r = sqrt ( V4DotProductf ( a, a ) );

o7 if ( psi ) *psi = 2.0*atan2 ( r, p );

9s: if ( spsi ) *spsi = 0.5*p*r;

99: if ( cpsi ) *cpsi = V4DotProductf ( q0, ql );

100: } /*QuatAnglef*/

101:

102: void QuatArcInterpf ( float qt[4], float qO[4], float q1[4],
103: double psi, float spsi, float t )
104: {

105: float stp, sltp;

106:

1o7:  stp = sin ( t*psi ); sitp = sin ( (1.0-t)*psi );

108:  qt[0] = (sltp*q0[0] + stpxql[0]) / spsi;
10s:  qt[1] = (sltp*q0[1] + stp*ql[1]) / spsi;
1o:  qt[2] = (sltpxq0[2] + stpxql[2]) / spsi;

111: - qt[3] = (s1tp*qO0[3] + stp*xqll[3]) / spsi;

112: } /*QuatArcInterp*/

113:

114: void QuatSlerpf ( float qt[4], float qO0[4], float q1[4], float t )
115: {

116: float psi, spsi;

117:

1s:  QuatAnglef ( &psi, &spsi, NULL, qO, ql );

1e:  if ( spsi > 0.0 )

120: QuatArcInterpf ( qt, 90, ql, psi, spsi, t );
121: else
122: memcpy ( qt, qO, 4*sizeof(float) );

123: } /*QuatSlerpf*/

kwaternion jednostkowy g reprezentujacy obrét o kat ¢ wokdt osi o kierunku wektora v,
a druga, majac dany kwaternion g (niekoniecznie jednostkowy), znajduje odpowiedni wek-
tor v i kat ¢.

Procedura QuatAnglef oblicza kat ¢ miedzy danymi dwoma kwaternionami jednost-
kowymi oraz jego sinus i kosinus. Procedura QuatArcInterpf dokonuje interpolacji tu-
kowej kwaternionéw jednostkowych, przy czym jej parametry zawieraja informacje redun-
dantna: kat v i jego sinus. Przed wielokrotnym wywolywaniem procedury interpolacji dla
réznych argumentéw ¢ mozna je obliczy¢ (przy uzyciu QuatAnglef) tylko raz. Procedura
QuatSlerpf realizuje funkcje Slerp. Jesli jednak siny = 0, to albo g¢ = ¢q; (ituk jest zdegene-
rowany do punktu), albo q; = —qo (i wtedy podane konce nie wyznaczajg fuku jednoznacznie,
kazdy potokrag, ktorego konce to qg i —qo, jest najkrotszym tukiem miedzy nimi). W kazdym
z tych przypadkow procedura podaje wynik g; = qo.

Opowies¢ o kwaternionach i obrotach ma ciag dalszy w podrozdziale B.4.



Krzywe i powierzchnie B-sklejane

W wielu zastosowaniach wygodniejsze od krzywych i platéw Béziera sa bedace ich uogoélnie-
niem krzywe i powierzchnie B-sklejane. Nie ma tu miejsca na szczegélowy opis ich wlasnosci
ani na szerszy przeglad algorytmow ich przetwarzania. Przedstawiajac tylko minimum infor-
macji umozliwiajacych konstruowanie krzywych interpolacyjnych i napisanie szaderéw stu-
zacych do rysowania powierzchni, zachecam Czytelnikéw do eksperymentowania i zbierania
doswiadczen. Majac je, mozna siegna¢ do literatury (polecam moja ksigzke [41], oczywiscie
sa tez inne), aby krzywe i powierzchnie B-sklejane lepiej poznac i tym piekniej rysowac.

B.1.  Okreslenie funkcji, krzywych i platéw B-sklejanych

Podstawg reprezentacji krzywych i platéw B-sklejanych sg tak zwane unormowane funkcje
B-sklejane, okreslone przez niemalejacy ciag weztow uy, ..., un. Funkcje te mozna zdefi-
niowac za pomocg wzoru Mansfielda-de Boora-Coxa:

1 dlate [Lli, u,-+1),

. . i=0,...,N—-1, (B.1)
0 w przeciwnym razie,

NY(t) {

NT(1) = 2B Nmtgy ¢ M T nvy S0, =0, N—n—1 (B2)
Ujrn — U Uirn+l — Uil

Funkcja N7 jest jednoznacznie okreslona przez wezly u;, ..., ui n41 i przyjmuje niezerowe
(dodatnie) wartoéci tylko w przedziale [u;, tj4n41), CO 0znacza, ze jesli u; = jin41, to jest
to funkcja zerowa. Dlatego ciagi weztéw bedace podstawa okreslenia funkeji B-sklejanych
uzywanych do reprezentowania krzywych lub powierzchni stopnia n powinny spetnia¢ wa-
runek u; < uj iy dlai=0,...,N—-n—-1TJeSliu; = ujy, lubu;y1 = Ujrn41, to we wzorze (B.2)
mamy ulamek z mianownikiem réwnym 0, ale jest on pomnozony przez funkcje zerowg
N1 albo N’ !, wskutek czego odpowiedni sktadnik w tym wzorze jest réwny 0. Funkcja
N jest w kazdym z przedziatow [u;, uis1), ..., [Uisn> Uirn+1) Wielomianem stopnia n. Jesli
Ui < U € Ujyps1 OTAZ Uy < U =+ = Ujypo1 < Uksr> t0 W Wezle uy funkcja ta jest ciggla
razem z pochodnymirzedul,...,n —r. Jesli ujs1 = - = Ujsn < Ujsns1, to NI (441) = L.
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d, d,
do
— d3
Up Uy Us Ug u7 Uy t d,
U ug
us Ug
ds
ds

Rysunek B.1. Krzywa B-sklejana stopnia 3, jej wezly i punkty kontrolne

Krzywa B-sklejana stopnia # jest okreslona przez ciag weztléw! uy, ..., uy oraz punkty
kontrolne dy, . .., dn_,—1, Wzorem

N-n-
s(ty= > 1d,-N?(t), te[un, Un-n). (B.3)
i=0

Ciag wezléw musi by¢ dostatecznie dlugi, tj. musi by¢ N > 2n (i u, < un—,), aby dziedzina
parametryzacji s byla przedziatem o dlugosci wigkszej niz 0.

JeSliug = =uy =0iuy = =uy, =1L todlai =0,...,n funkcja N}’ w przedziale
[0,1) jest wielomianem Bernsteina B stopnia #n (zobacz wzor (15.1)) i krzywa B-sklejana
okreslona z takimi wezlami jest krzywg Béziera.

Tensorowy plat powierzchni B-sklejanej stopnia (7, m) jest okreslony wzorem

N-n-1M-m-1
s(uv)= D > diNI(W)N'(v), uelun,un-n) V€[V, Varom)- (B.4)
iz j=0

We wzorze tym wystepujg punkty kontrolne ptata d;; i dwie rodziny funkcji B-sklejanych,
stopni 7 i m; stopnie te moga by¢ rozne, ale niezaleznie od stopni uzyte do okreslenia funkcji
ciggi weztow, uo, . .., un oraz vo, ..., vy, moga by¢ rézne (a wtedy rodziny funkeji Ni' i N7
sg rdzne, nawet jesli n = m).

Suma funkcji B-sklejanych N{, ..., N§_, _, wkazdym punkcie przedziatu [u,, un_, ) jest
réwna 1, skad wynika, ze aby poddac krzywa lub ptat B-sklejany dowolnemu przeksztatceniu
afinicznemu, wystarczy zastosowac to przeksztalcenie do wszystkich punktéw kontrolnych,
podobnie jak w przypadku krzywych i platéw Béziera. Wartosci funkcji B-sklejanych sg nie-
ujemne, dzigki czemu reprezentacja B-sklejana (tak jak reprezentacja Béziera) ma wlasnos¢
otoczki wypuklej — krzywa lub powierzchnia jest w calosci potozona w otoczce wypuktej
zbioru swoich punktéw kontrolnych. Zaleta krzywych i ptatéw B-sklejanych jest znacznie
wigksza tatwos¢ ich ksztaltowania: nawet wielka liczba punktéw kontrolnych nie wymusza
wysokiego stopnia wielomianéw, a ponadto zmiana kazdego punktu ma lokalny wplyw na

"Wezty uo i un, potrzebne do okreslenia funkcji N i Nj_,_;, nie wplywaja na wartoéci tych funkgji
w przedziale [u,, un—» ), a zatem nie maja wptywu na krzywa s i mozna je wybra¢ dowolnie.
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vi n=3 m=4
V7,V8, V9, V10
V6
Vs
V1, V2, V3, V4 -—
[Z5% Uy Us Ug uy u
uz ug
us Ug

Rysunek B.2. Plat powierzchni B-sklejanej stopnia (3, 4), jego wezty i punkty kontrolne

ksztalt krzywej lub powierzchni — zmieni sig¢ tylko jej fragment. Bardzo wazna wlasnoscia
jest mozliwo$¢ wstawiania weztow; mozna dzieki niej uksztaltowa¢ zgrubnie krzywa lub po-
wierzchnie z niewieloma punktami kontrolnymi, a nast¢pnie wstawi¢ dodatkowe wezty, aby
otrzymac reprezentacje tej samej krzywej lub powierzchni o wigkszej liczbie punktow kon-
trolnych, co umozliwi cyzelowanie detali. Ale po szczegéty tych i innych wtasnosci odsytam
do literatury.

B.2. Algorytmy de Boora

Przedstawiona na listingu B.1 procedura oblicza wartosci funkcji B-sklejanych stopnia n,
okreslonych przez dany cigg weztdéw uy, ..., uy. Scislej bioragc, na podstawie wzoréw (B.1)
i (B.2) procedura ta oblicza wartosci wielomianéw stopnia n opisujacych funkcje B-sklejane
N{_,s..., Ni, ktére w przedziale [uy, uj,1) przyjmujg niezerowe wartosci.

Parametr bf v procedury EvaluateBSplinesf jest tablicg o dtugosci n+1, w ktdrej ma si¢
znalez¢ wynik, czyli wartosci tych funkcji w punkcie t, podanym w parametrze t. Parametr n
okresla stopien n funkcji, parametr knots jest tablicg z wezlami, a parametr k okresla prze-
dzial [uy, ug,1) zawierajacy punkt ¢, przy czym powinno by¢ t € [uy, un_, |; nalezy zatem
zapewni¢, ze k € {n, ..., N —n—1}. Dla ustalonego ciggu wezléw i danej liczby t odpowied-
nig liczbe k mozna znalez¢ réznymi sposobami. Jesli wezty sa réwnoodlegte, tj. u; = ug + ih
dla ustalonego h > O oraz i =1,..., N, to k = | (t — ug)/h|. Jesli wezly nie s3 rownoodlegte,
to wlasciwy przedzial mozna wyszuka¢ metodg bisekcji. W pewnych sytuacjach przedziat
jest ,,znany z goéry’, na przyklad w konstrukeji krzywych interpolacyjnych, gdy potrzebne sa
warto$ci funkeji w okreslajacych je weztach (zobacz podrozdz. B.3).

Przeksztalcajac wzory (B.1), (B.2), mozna otrzymac algorytm znajdowania punktu s(t)
krzywej okreslonej wzorem (B.3) dla ustalonego ¢. Algorytm ten umozliwia rysowanie krzy-
wych i platéw B-sklejanych, ale w tym celu potrzebna jest jego implementacja w jezyku GLSL.
Razem z punktem s(t) trzeba oblicza¢ wektor styczny (o kierunku pochodnej parametryza-
cji s w punkcie t), co umozliwi obliczanie wektora normalnego plata.
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Listing B.1. Procedura obliczania warto$ci funkcji B-sklejanych
C

: void EvaluateBSplinesf ( float *bfv, int n, int k, const float *knots,

float t )
{
int i, j, 1;
float alpha, beta;

1l = k-n;
bfv[n] = 1.0;
for (j=1; j <=nmn; j++ ) {
beta = (knots[k+1]-t)/(knots [k+1]-knots[k-j+1]);
bfv[n-j] = beta*bfv[n-j+1];
for (i = k-j+1; i < k; i++ ) {
alpha = 1.0-beta;
beta = (knots[i+j+1]-t)/(knots[i+j+1]-knots[i+1]);
bfv[i-1] = alphax*bfv[i-1] + betax*bfv[i+1-1];
}
bfv[n] *= 1.0-beta;
}

: } /*EvaluateBSplinesf*/

Niech ¢ € [ug, ugs1) © [Un, un-n) i niech d,(c(i)n =di_ps... ,d,EO) = dj. Algorytm de Bo-
ora znajdowania punktu krzywej B-sklejanej polega na skonstruowaniu punktéw

di(j) - (1- “z(j))dgl) n (xl(j)di(jfl)’
NON t—u; i=k-n+j,....k, j=1,...,n. (B.5)
l ”i+n+1—j_ui’
Ostatni obliczony punkt, d](("), jest punktem s(t).

Mozna wykazal, ze jeSli n > 0 i punkt t € [ug, ugy;) nie jest weztem lub jest weztem
o krotnosci mniejszej iz n (w takim wezle pochodna parametryzacji s moze by¢ nieciagla),
to

n

S(t) = (d" ) —am ).

Uk+1 — Uk k

Listing B.2 przedstawia deklaracje blokéw magazynowych zawierajacych reprezentacje
plata B-sklejanego i procedury BSCdeBoor3f i BSPdeBoor3f. Sg one czedcig szadera roz-
drabniania podobnego do szadera przedstawionego na listingu 15.4.

W bloku BSPatch znajduja sie podstawowe dane opisujace plat. Pole dim zawiera liczbe d
wspolrzednych punktu, 2, 3 lub 4. W polach n i m s3 podane stopnie plata, a w polach NiM
numery ostatnich wezléw w ciagach uy, ..., uy oraz vy,...,vy. Wartoscia pola stride
jest odstep miedzy poczatkami kolejnych kolumn siatki kontrolnej ptata w tablicy punktow
kontrolnych. W polu Colour mozna podaé kolor do uzycia na obrazie plata®. Warto$¢ pola

?Szader fragmentéw moze uzy¢ tego koloru lub skorzystaé z opisu materialu podanego w innym miejscu.
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BSPNormals okresla wyboér wektora normalnego do uzycia w modelu os$wietlenia, a pole
tesslevel zawiera parametr — stopien rozdrobnienia plata, ktéry szader sterowania roz-
drabnianiem powinien wpisa¢ do tablic gl _TessLevelOuter i gl_TessLevelInner’.

Tablica uv w bloku BSKnots zawiera wezly, tj. N + M + 2 liczby ug, ..., un,vo,..., VM
(w tej kolejnosci), a wspolrzedne punktéw kontrolnych sg podane w tablicy cp w bloku
BSCPoints — ma w niej by¢ N — n kolumn, z ktérych kazda sklada si¢ z M — m punktow,
Jesli miedzy kolumnami nie ma przerw, to wartoécig pola stride ma by¢ liczba d(M — m).

Procedura BSCdeBoor3f oblicza punkty d ](Cﬁl) id ]((n_l) dla krzywej B-sklejanej w przes-
trzeni trojwymiarowej. Parametr n okresla stopien krzywej. Wartoscig parametru t jest
liczba t. Parametr k jest indeksem do tablicy weztéw — jesli k < N, to t € [uy, ugy1), a w prze-
ciwnym razie t € [v;, v41), %dzie [ jest warto$cig parametru k pomniejszong o N +1. W tab-
licy d sa podane punkty d,g_n, cees d,((n); okreslaja one pewien luk wielomianowy krzywej s.
Obliczone punkty sa przypisywane parametrom wyjsciowym pO i pl, a parametr a stuzy
do przekazania liczby cxk" . Na ich podstawie procedura BSPdeBoor3f, wykonujac ostatni
krok algorytmu de Boora, oblicza punkt s(t) = (1- oc,(cn))d,(ﬁl_l) + (xl(cn)d,(("_l), oraz wektor
d,(c"_l) -d kfl_l), majgcy ten sam kierunek i zwrot co wektor s’(t), ale na 0gét inng dtugos¢,
nieistotng dla obliczenia wektora normalnego plata tensorowego*.

Procedura BSPdeBoor3f znajduje punkt s(u, v) plata B-sklejanego stopnia (n, m) ijego
wektor normalny w tym punkcie. Parametry wejsciowe tej procedury to: parametr u plata,
numer wezta uy, takiego ze u € [ug, ug,;), parametr v plata i powiekszony o N + 1 numer
wezla v, takiego ze v € [v}, v;,1). Parametry wyjsciowe pos i nv wyprowadzaja wspotrzedne
jednorodne obliczonego punktu ptata i wektora normalnego.

W petli w liniach 32-37 procedura wybiera odpowiednie fragmenty kolumn siatki kon-
trolnej, po czym wywoluje procedure BSCdeBoor3f. Punkty obliczone przez t¢ procedure
s3 wpisywane do tablic q0 i q1. Otrzymane w ten sposob punkty w kazdej z tych tablic sa
dalej przetwarzane jak punkty kontrolne krzywych B-sklejanych stopnia #; wynikiem ob-
liczenn wykonywanych przez procedure wywotang w liniach 38 i 39 s3 punkty poo, poi> Pio
i pn (zobacz rys. B.3). Punkty te i liczby «,, i a,, (ktére w ostatnim, pominietym kroku algo-
rytmu de Boora s parametrami interpolacji punktéw otrzymanych w kroku przedostatnim)
umozliwiaja obliczenie wektoréow

ru=(1-a,)(pwo - poo) + “v(Pu -po), fty= (1- ay)(por —Poo) + “u(Pll - Pw)

n=r,Ar,
i punktu

s(u,v)=(1- (xu)((l - ay)Poo + cxvplo) + cxu((l —ay)por + ocvpu).

*Dla ptatéw B-sklejanych zasadne wydaje si¢ wprowadzenie co najmniej dwéch parametréw rozdrabniania
dziedziny, osobno wzdluz kazdej osi, a jeszcze lepszym rozwigzaniem byloby adaptacyjne obliczanie parametréw
rozdrabniania przez szader na podstawie ksztaltu siatki kontrolnej i wielkoéci obrazu ptlata.

*Dlugosé¢ wektora s’ (t) jest istotna, jesli na powierzchnie B-sklejang ma by¢ natozona tekstura odksztalcen
okreslona w sposob opisany w rozdziale 21.
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Listing B.2. Procedury BSCdeBoor3f i BSPdeBoor3f
GLSL

: #define MAX_DEG 6

: layout (std430,binding=0) buffer BSKnots { float uv([]; };
: layout (std430,binding=1) buffer BSCPoints { float cp[l; I};

: layout (std430,binding=2) buffer BSPatch {

int dim, n, N, m, M, stride;
vec3 Colour;
bool BSPNormals;
int tesslevel;
} bsp;

11:

12:

13:

14:

15:

{

int i, j;

16:

17:

18:

19:

20:

21:

22:

for

J=1; 3 <m; j+t)
(i=0;i<=n-j; i+t+ )

]
R o~

a = (t-uv[k])/(uv[k+1]-uv[k]);
p0 = d[0]; p1l = dl1];
} /*BSCdeBoor3fx*/

23:

24:

25:

26:

27:

28:

29:

30:

{

float au, av;
int i, j, k, 1;

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

i++, k += bsp.stride ) {

}

ru = (b = mix ( p10, pll, av )) - (a
rv = mix ( p01-p00, pl1l-p10, au );
pos = vecd (mix ( a, b, au ), 1.0 );
nv = vec4 ( cross ( ru, rv ), 0.0 );
: } /*BSPdeBoor3fx*/

for ( i = 0, k = (kk-bsp.n)*bsp.stride;

void BSCdeBoor3f ( int n, int k, vec3 d[MAX_DEG+1], float t,
out vec3 pO, out vec3 pl, out float a )

d[i] = mix ( d[i], d[i+1], (t-uvlk-n+i+jl)/(uvk+1+i]-uv[k-n+i+jl) );

void BSPdeBoor3f ( float u, int kk, float v, int 11,
out vecd4 pos, out vecd nv )

vec3 p[MAX_DEG+1], qO[MAX_DEG+1], ql1[MAX_DEG+1],
p00, pO1, p10, pll, a, b, ru, rv;

i <= bsp.n;

for ( j = 0, 1 = k+3*x(11-bsp.N-1-bsp.m); j <= bsp.m; j++, 1 += 3 )
pljl = vec3 ( cplll, cpll+1], cpl[1l+2] );
BSCdeBoor3f ( bsp.m, 11, p, v, q0[i], q1[il, av );

BSCdeBoor3f ( bsp.n, kk, q0, u, p00, pl0, au );
BSCdeBoor3f ( bsp.n, kk, ql, u, pOl, pll, au );

mix ( p00, pO1l, av ));
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a) A n=3m=4
V7, V8> V9, V10

V6

Vs

v

V1, V2, V3, V4

Rysunek B.3. Punkty do konicowego obliczenia punktu ptata i wektora normalnego

Listing B.3 przedstawia procedure main szadera rozdrabniania dla programu rysowania
platow B-sklejanych. Zaleznie od warto$ci pola dim w bloku BSPatch ma ona wywota¢ pro-
cedure BSPdeBoor3f z listingu B.2 lub jedng z procedur BSPdeBoor2f albo BSPdeBoor4f,
ktorych napisanie pozostawilem jako ¢wiczenie. Przedtem jednak potrzebne sg pewne przy-
gotowania, niezalezne od liczby wspolrzednych punktow.

Szader rozdrabniania otrzymuje wspdtrzedne punktu w dziedzinie plata w zmiennej
wbudowanej gl _TessCoord. Ale dziedzina ta (dla algorytmu rozdrabniania wbudowanego
w potok przetwarzania grafiki) jest kwadratem jednostkowym, podczas gdy plat B-sklejany
ma dziedzing [uy, Un—n] X [V, VM—m], ktéra moze by¢ dowolnym prostokatem (dotacza-
jac dwa ,brakujace” odcinki brzegu, dostajemy prostokat domkniety). Dlatego pierwszym
krokiem do zrobienia jest odwzorowanie punktu podanego przez etap rozdrabniania w dzie-
dzing plata B-sklejanego. Otrzymamy w ten sposob parametry plata u i v.

Kolejng czynnoscig jest wyszukanie w obu ciggach weztéw wlasciwych miejsc, czyli zna-
lezienie liczb k i I, takich ze u € [ug, ug,y) iv € [v), vi41), przy czym jesli u = uy_y, to trzeba
przyjack = N-n—1,ajesliv = vpr_p, to maby¢ I = M — m — 1. Tym zajmuje sie procedura
FindKnotInterval, ktérej parametry kO i kN wybieraja ciag wezléw do przeszukania —
Ug, ..., un,jeslik0 = 0,kN = N, albo vg, ..., vy, jeslikO = N + 1, kN = N + M + 1. Parametr
n zaweza przedzial poszukiwan liczby ¢ do [u,, un—_y] albo [V, Var—m|. Procedura realizuje
algorytm wyszukiwania binarnego.
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Listing B.3. Procedura main szadera rozdrabniania
GLSL

: #version 450 core

: layout (quads,equal_spacing,cw) in;

. out GVertex { .... } Out;

. uniform TransBlock { .... } trb;

: int FindKnotInterval ( int kO, int kN, int n, float t )

{
int i, j, k;

12:

13:

14:

15:

16:

17:

18:

for (i = kO+n, j = kN-n; j-i > 1; ) {
k =1+ (j-1)/2;
if (t >= uvlk] ) i = k; else j = k;
}
return i;
} /#FindKnotIntervalx/

19:

20:

21:

22:

23:

24:

void main ( void )

{
float u, v;
int k, 1, mO, mi;
vec4 pos, nv;

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35

36:

37:

38:

39:

40:

41:

42:

43:

44:

45

u = uv[bsp.n] + gl_TessCoord.x*(uv[bsp.N-bsp.n] - uv[bsp.n]);
m0 = bsp.N+1; ml = bsp.N+1+bsp.M;
v = uv[mO+bsp.m] + gl_TessCoord.y*(uv[ml-bsp.m] - uv[mO+bsp.m]);
k = FindKnotInterval ( O, bsp.N, bsp.n, u );
1 = FindKnotInterval ( mO, ml, bsp.m, v );
switch ( bsp.dim ) {
case 2: BSPdeBoor2f ( u, k, v, 1, pos, nv ); break;
case 3: BSPdeBoor3f ( u, k, v, 1, pos, nv ); break;
case 4: BSPdeBoor4f ( u, k, v, 1, pos, nv ); break;
: default: pos = nv = vecd ( 0.0 );
}
pos = trb.mm * pos;
gl_Position = trb.vpm * pos;
Out.Position = pos.xyz;
if ( 'bsp.BSPNormals || dot ( nv, nv ) < 1.0e-10 )
Out.Normal = vec3 ( 0.0 );
else
Out.Normal = normalize ( (trb.mmti*nv).xyz );
Out.Colour = bsp.Colour;
: } /*mainx/
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Uwaga: Szader opisany w pierwszym wydaniu mial zadeklarowane osobne bloki magazy-
nowe dla obu ciagéw weztéw. W konsekwencji do wyszukiwania przedziatlu w kazdym z tych
ciggdw potrzebna byla inna procedura, poniewaz w jezyku GLSL nie ma wskaznikéw — tabli-
ce bedace parametrami muszg miec¢ znang dlugos¢ i sa w calosci kopiowane (a wiec réwniez
nie powinny by¢ diugie). Umieszczenie obu ciggéw w jednej tablicy umozliwilo skrocenie
kodu i uniknigcie kopiowania wezléw do tablic przekazywanych nastepnie jako parametry
procedurom BSPdeBoor3f i BSCdeBoor3f.

Piszac procedure main, przyjatem, ze blok zmiennych jednolitych z macierzami prze-
ksztalcen (TransBlock) i blok wyjsciowy interfejsu (GVertex, o lokalnej nazwie Out), przez
ktéry wyniki rozdrabniania trafia do szadera geometrii, sg identyczne jak na listingu 15.4;
oczywiscie, trzeba to zmieni¢, jesli na platy ma by¢ nalozona tekstura lub na koicowym obra-
zie majg by¢ cienie. Przedstawiony tu szader rozdrabniania dokonuje przejscia do ukladu
kostki standardowej, ale oblicza i wyprowadza takze punkt i wektor normalny w ukladzie
wspolrzednych swiata. Pole (typu bool) BSPNormals bloku BSPatch pelni role analogiczng
do pola BezNormals bloku BezPatch w drugiej aplikacji.

Listing B.4 przedstawia procedury w jezyku C umozliwiajace umieszczenie w pamieci
GPU i rysowanie platow B-sklejanych. Pierwsza procedura musi by¢ wywotana po skom-
pilowaniu i zfaczeniu dowolnego programu szaderéw zawierajacego deklaracje blokéw ma-
gazynowych pokazanych na listingu B.2 (np. dowolngo programu rysujacego takie platy).
Procedura odczytuje z programu numery punktéw dowigzania blokéw i przesunigcia pol
w bloku BSPatch.

Procedura EnterBSplinePatch rezerwuje bufory i przesyla do nich reprezentacje plata,
nadajac warto$ci domyslne polom BSPNormals i tesslevel. Nie zamiescitem listingu pro-
cedur nadajacych tym parametrom warto$ci w trakcie dziatania aplikacji, uznajac, ze nie
ma w nich niczego wymagajacego szczegétowych objasnien. Obiekt tablicy wierzchotkéw,
tworzony i zapisywany w liniach 79-84, stuzy do rysowania punktéw kontrolnych przez pro-
cedure DrawBSplineCPoints,

Przed wywolaniem procedury rysujacej ptat, DrawBSplinePatch, albo punkty kontrol-
ne, DrawBSplineCPoints, trzeba wybra¢ odpowiedni program szaderéw za pomocg pro-
cedury glUseProgram.

Listing B.4. Procedury obstugi platéw B-sklejanych
C

: #define MAX_BSPATCH_DEG 6

: typedef struct BSPatchObjf {
GLint wudeg, lknu, vdeg, lknv, dim, stride;
GLuint buf[3];
GLuint vao;

} BSPatchObjf;

: #define NBSPLINEPATCHOFFS 9
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11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:
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static GLuint bspbbp = GL_INVALID_INDEX, bsknbbp = GL_INVALID_INDEX,
bscpbbp = GL_INVALID_INDEX;
static GLint Dbspbsize, bspbofs[NBSPLINEPATCHOFFS];

static const GLchar *BSKNNames[] = { "BSKnots" };
static const GLchar *BSCPNames[] = { "BSCPoints" };
static const GLchar *BSPNames[] =
{ "BSPatch", "BSPatch.dim", "BSPatch.n", "BSPatch.N", "BSPatch.m",
"BSPatch.M", "BSPatch.stride", "BSPatch.Colour", "BSPatch.BSPNormals",
"BSPatch.tesslevel" };

void GetAccessToBSPatchStorageBlocks ( GLuint program_id )
{

GLint size, ofs;

if ( bspbbp == GL_INVALID_INDEX )
GetAccessToStorageBlock ( program_id, NBSPLINEPATCHOFFS, &BSPNames[0],
&bspbsize, bspbofs, &bspbbp );
if ( bsknbbp == GL_INVALID_INDEX )
GetAccessToStorageBlock ( program_id, O, &BSKNNames[O],
&size, &ofs, &bsknbbp );
if ( bscpbbp == GL_INVALID_INDEX )
GetAccessToStorageBlock ( program_id, 0, &BSCPNames[O],
&size, &ofs, &bscpbbp );
} /*GetAccessToBSPatchStorageBlocks*/

#define SSB GL_SHADER_STORAGE_BUFFER

BSPatchObjf *EnterBSplinePatch (
GLint udeg, GLint lknu, const GLfloat *knotsu,
GLint vdeg, GLint lknv, const GLfloat *knotsv,
GLint dim, GLint stride, const GLfloat *cp,
const GLfloat *colour )

BSPatchObjf *bsp;
GLint one = GL_TRUE, ten = 10;

if (dim < 2 || dim > 4 || udeg < 1 || udeg > MAX_BSPATCH_DEG | |
vdeg < 1 || vdeg > MAX_BSPATCH_DEG || lknu <= 2*udeg ||
lknv <= 2*vdeg )
return NULL;
bsp = malloc ( sizeof (BSPatchObjf) );
if (bsp ) {
memset ( bsp, 0, sizeof (BSPatchObjf) );
bsp->udeg = udeg; bsp->lknu = lknu;
bsp->vdeg = vdeg; bsp->lknv = lknv;



57:

58:

59:

60:

61:

62:

63:

64:

65:

66:

67:

68:

69:

70:

71:

72:

73:

74:
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bsp->dim = dim;

glBufferSubData
glBufferSubData
glBufferSubData
glBufferSubData
glBufferSubData
glBufferSubData
glBufferSubData
glBufferSubData
glBufferSubData

75:

76:

77

78:

79:

80:

81:

82:

83:

84:

85:
86:
87:

95:
96:
97:
98:
99:
100:

101:

: } /#DrawBSplinePatchx*/

102

3

return bsp;

(
(
(
(
(
(
(
(

(

bsp->stride = stride;

SSB,
SSB,
SSB,
SSB,
SSB,
SSB,
SSB,
SSB,
SSB,

glGenBuffers ( 3, bsp->buf );
glBindBuffer ( SSB, bsp->buf[2] );
glBufferData ( SSB, bspbsize, NULL, GL_DYNAMIC_DRAW );
sizeof (GLint), &dim );
sizeof (GLint), &udeg );
sizeof (GLint), &lknu );
sizeof (GLint), &vdeg );
sizeof (GLint), &lknv );
sizeof (GLint), &stride );

bspbofs[0],
bspbofs[1],
bspbofs[2],
bspbofs[3],
bspbofs[4],
bspbofs([5],
bspbofs([6],
bspbofs[7],
bspbofs[8],

glBindBuffer ( SSB, bsp->buf[0] );
glBufferData ( SSB, (lknu+lknv+2)*sizeof (GLfloat), NULL,
GL_DYNAMIC_DRAW );
glBufferSubData ( SSB, 0, (lknu+1)*sizeof(GLfloat), knotsu );
glBufferSubData ( SSB, (lknu+1)*sizeof (GLfloat),

3*sizeof (GLfloat), colour );

sizeof (GLint), &one );
sizeof (GLint), &ten );

(lknv+1) *sizeof (GLfloat), knotsv );

: } /*EnterBSplinePatch*/

glBindBuffer ( SSB, bsp->buf[1] );
glBufferData ( SSB, stride*(lknu-udeg)*sizeof (GLfloat), cp,

GL_DYNAMIC_DRAW );
glGenVertexArrays ( 1, &bsp->vao );
glBindVertexArray ( bsp->vao );
glBindBuffer ( GL_ARRAY_BUFFER, bsp->buf[1] );
glEnableVertexAttribArray ( 0 );
glVertexAttribPointer ( O, dim, GL_FLOAT, GL_FALSE,

dim*sizeof (GLfloat), (GLvoid*)0 );

glBindVertexArray ( 0 );
ExitIfGLError ( "EnterBSplinePatch" );

: void DrawBSplinePatch ( BSPatchObjf *bsp )

A
if Cbsp ) {

}

glBindBufferBase ( SSB, bsknbbp, bsp->buf[0] );
glBindBufferBase ( SSB, bscpbbp, bsp->buf[1] );
glBindBufferBase ( SSB, bspbbp, bsp->buf[2] );
glBindVertexArray ( empty_vao );
glPatchParameteri ( GL_PATCH_VERTICES, 1 );
glDrawArrays ( GL_PATCHES, 0, 1 );
ExitIfGLError ( "DrawBSplinePatch" );
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: void DrawBSplineCPoints ( BSPatchObjf *bsp )

{

if (bsp ) {
glBindBufferBase ( SSB, bsknbbp, bsp->buf[0] );
glBindBufferBase ( SSB, bscpbbp, bsp->buf[1] );
glBindBufferBase ( SSB, bspbbp, bsp->buf[2] );
glBindVertexArray ( bsp->vao );
glPointSize ( 5.0 );
glDrawArrays ( GL_POINTS, O,

(bsp->1knu-bsp->udeg) * (bsp->1knv-bsp->vdeg) );

glBindVertexArray ( 0 );
ExitIfGLError ( "DrawBSplineCPoints" );

}

: + /*DrawBSplineCPoints*/

Jili=

Rysunek B.4. Obraz ptata B-sklejanego w oknie aplikacji OpenGL-a

W pierwszym wydaniu ksigzki zaproponowalem ¢wiczenie — napisanie i uruchomienie
aplikacji rysujacej plat B-sklejany przy uzyciu opisanych tu algorytméw. W tym wydaniu
proponuj¢ ¢wiczenie polegajace na oprogramowaniu mozliwosci reprezentowania w pamieci
GPU i jednoczesnego rysowania wielu ptatow B-sklejanych, podobnie jak ptatow Béziera
w drugiej aplikacji. Powinno by¢ przy tym mozliwe wprowadzenie dodatkowej tablicy in-
deksow punktéw kontrolnych, aby dany punkt maégl by¢ wspélny dla wielu ptatow, co ulat-
witoby m.in. sklejanie brzegéw takich ptatéw. Dodatkowa atrakcja moze by¢ umozliwienie
definiowania poszczegdlnych platéw z roznymi ciggami weztow (umieszczonymi w tej samej
tablicy jeden za drugim). Blok magazynowy BSPatch w tym przypadku powinien zawiera¢
tablice struktur opisujacych poszczegdlne platy.
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B.3. B-sklejane krzywe interpolacyjne

Oproécz cieniowania s3 dwa gléwne zastosowania interpolacji w grafice. Po pierwsze, majac
dane punkty na plaszczyznie lub w przestrzeni, mozemy skonstruowac gtadka krzywa prze-
chodzaca przez te punkty (i ewentualnie uzy¢ tej konstrukcji do otrzymania powierzchni,
na ktdrej lezy siatka danych punktéw). Po drugie, majac warto$ci parametréw artykulacji
w pewnych chwilach, mozemy znalez¢ funkcje, ktérych argumentem jest czas, przyjmujace
w tych chwilach zadane wartosci. Funkcje te umozliwig takie animowanie taficucha kine-
matycznego, aby przywiazane do niego obiekty, poruszajac si¢, przechodzily przez zadane
polozenia.

W wielu takich zastosowaniach uzyteczne okazuja si¢ funkcje sklejane trzeciego stopnia
(tzw. kubiczne), tj. funkcje opisane w sasiadujacych przedziatach przez wielomiany trzeciego
stopnia. Uzywane w praktyce reprezentacje takich funkgji sa rézne, ale zawsze mozna je
reprezentowac za pomocg odpowiednio dobranych funkcji B-sklejanych, zatem przedstawie
przykladowa konstrukcje kubicznych B-sklejanych krzywych interpolacyjnych.

Niech ¢y, ..., tp oznacza rosnacy ciag liczb zwanych weztami interpolacyjnymi. Mamy
tez dane liczby po, ..., pp (lub punkty po, ..., pm) i chcemy znalez¢ takg funkeje sklejana s,
aby byto s(#;) = p; (lub takg parametryzacje sklejang s, aby byto s(¢;) = p;)dlai =0,..., M.

Aby okresli¢ kubiczne funkcje B-sklejane, trzeba wybra¢ cigg weztéw uo, . .., un; przy-
czyng czestej konfuzji jest nazwanie wezlami dwdch réznych pojec. Liczby u,...,un sa
wezlami funkcji sklejanych, czyli konicami przedzialow, w ktérych funkcje te s3 wielomiana-
mi®. Natomiast wezly interpolacyjne s punktami, w ktérych sa zadawane wartosci funkcji.
Aby otrzymac¢ zadanie dobrze okreslone, przyjmiemy, ze ty = u3 i tpr = un_3; poszukiwana
funkcja s(t) = Y No*d;N3(t) bedzie zatem okreslona w przedziale [to, tar] = [u3, un-3]-
Trzeba znalez¢ wspdtczynniki dy, . . ., dy—_4 spelniajace réwnania

S(t,‘)zpi, i=0,...,M.

Przyjmiemy N = M + 61iu;,3 = t;dlai =0,..., M, co oznacza, ze wezly interpolacyjne
beda rowniez weztami funkcji sklejanych®. W wezle u;.3 = t; tylko funkcje N3, N3, i N3,
przyjmuja niezerowe wartosci, ktére mozemy obliczy¢ za pomocg procedury z listingu B.1.

Stad réwnania interpolacji maja postac
N (ti)di + Niyy(ti)disa + Ni (i) disa = pi.

W kazdym z nich wystepuja tylko trzy niewiadome, co ogromnie ulatwia rozwigzywanie.
Dla uproszczenia warto tez przyjac u; = up = U3 oraz un-_3 = Uy_, = Un—1, poniewaz wtedy
N3(to) = 1, Nj(to) = N3(fo) = 0 oraz Ny_(tm) = N3_s(tm) = 0, Nay_,(tm) = 1, skad
natychmiast wynika, ze dy = po i dy_4 = pum-

Mamy zatem wartosci funkcji zadane w M +1 = N -5 punktach, podczas gdy kubicznych
funkcji B-sklejanych okreslonych przez ciag uo,...,un jest N — 3, czyli o dwie wiecej. To

W tych punktach wielomiany sg ,,sklejone”.
®Tym wigksza bywa wspomniana konfuzja. W ogélnosci wezly interpolacyjne nie musza by¢ weztami funkcji
sklejanych.
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oznacza koniecznos$¢ podania jeszcze dwdch warunkow (dwdch dodatkowych réwnan), aby
powstal uklad o jednoznacznym rozwigzaniu. Zazwyczaj warunki te narzucaja pewne wias-
nosci funkgji s w poblizu koncéw przedziatu [usz, un_3] i dlatego s3 nazywane warunkami
brzegowymi.

Warunki brzegowe opisane nizej to réwnosci s/ (tp) = 01 s”(tp) = 0; spelniajaca je
funkcja s jest nazywana naturalng kubiczng funkcjg sklejang. Scislej biorac, pochodne dru-
giego rzedu funkcji B-sklejanych N3, N7 i N3 w wezle u; = up = u3 = to, a takze funkgji
N?\,_6, N13\1—5 i Nf\,_4 w wezle un_3 = un_2 = un-1 = ty s3 nieokreslone. Ale wielomiany
opisujace w przedziatach [u3, uy) i [un-4, un-3) te funkcje, a takze funkcje s, ktérg chcemy
otrzymac, majg wszystkie pochodne. Dlatego warunki brzegowe natozymy na wielomiany
opisujace funkgje s. Jesli symbolem P; ; oznaczymy wielomian opisujacy funkcje N7 w prze-
dziale [uy, ug,1), to rozwazane tu warunki brzegowe maja postaé

Py'5(to)do + Py5(to)d1 + Py5(to)d2 = 0, (B.6)
Py sn-a(tm)dn-6 + Py s5n_4(tm)dn-s+Py_gn 4(tm)dn-4 = 0. (B.7)

Na podstawie wzoru (ktérego wyprowadzenie mozna znalez¢ w [41])

n n
N}'(t) = ———N{"7'(t) - —————N/\(t) (B.8)
Ujrn — Uj Ujrn+1 — Ui+l

i wzoréw (B.1) i (B.2), w wyniku do$¢ zmudnych rachunkéw’, mozna obliczy¢

6
P (t0) = i
0.(fo) (us — u1)(us — u2)
—6(ug — Uy + Us — up)

P (t) = ’
13000) = ) G — ) (15— 02)
6
P (t) = :
2.3(fo) (ug — uz)(us — uz)

6
(uN—Z - MN—S)(“N—z - HN—4) ’
—6(UN—2 — UN_5 + UN_1 — UN-4)

(MN—z - MN—S)(UN—z - “N—4)(“N—1 - MN—4) ’
6

(HN—z - UN—4)(HN—1 - uN—4) '

Py gn-a(tm) =

Py sn-a(tm) =

p I,\§—4,N—4( tm) =

Mamy zatem uklad M + 3 réwnan liniowych z M + 3 niewiadomymi, przy czym w pierw-
szym i ostatnim réwnaniu wystepuje tylko jedna niewiadoma (mamy dy = po i dn-4 = pm)s
a jesli warunki brzegowe przyjmiemy za drugie i przedostatnie réwnanie, to w kazdym réw-
naniu oprdcz pierwszego i ostatniego beda tylko trzy kolejne niewiadome, d;, d;.11d;2. Ma-
cierz uktadu réwnan, ktéra ma niezerowe wspdtczynniki tylko na diagonali i na miejscach

7Przyznam sie: uzylem pakietu do obliczet symbolicznych i nie zamierzam mie¢ wyrzutow.
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sasiadujacych z nia, to tak zwana macierz tréjdiagonalna. Uklad réwnan z taka macierza
n x n mozna rozwigza¢ kosztem rzedu n.8

Na listingu B.5 zamie$citem dwie procedury, z ktérych pierwsza znajduje tréjkatne czyn-
niki (dolny L i gérny U) rozkltadu macierzy tréjdiagonalnej A, a $cislej, macierzy PA, po-
wstalej z A przez przestawianie wierszy, jeli jest taka potrzeba®. Liczba n wierszy i kolumn
macierzy (ktéra musi by¢ wieksza niz 2) jest warto$cig parametru n. Wspotczynniki macie-
rzy s3 dane w trzech tablicach. Tablica b zawiera wspdtczynniki na diagonali, a w tablicach a
i c trzeba poda¢ odpowiednio ich sasiadow z lewej i prawej strony (elementy a[0] i c [n-1]
s3 nieuzywane). Pomocnicza tablica d (o diugosci n — 2) jest potrzebna dlatego, ze wskutek
przestawiania wierszy powstaje macierz tréjkatna U, ktéra w kazdym wierszu oprocz dwoch
ostatnich moze mie¢ dwa niezerowe wspoétczynniki na prawo od diagonali.

Dane w tablicach wspolczynniki macierzy A zostaja zastapione przez wspotczynniki ma-
cierzy L i U. W tablicy a procedura M3diagLUDecompf zapamietuje wspotczynniki pod
diagonalg macierzy L (ktdrej wspolczynniki na diagonali sa réwne 1), a w tablicach b, c i d
sg zapisywane wspotczynniki macierzy U na jej diagonali i obok. W tablicy p jest umiesz-
czana reprezentacja macierzy permutacji P; na miejscu i-tym w tej tablicy zostaje wstawiona
jedynka, jesli i-ty wiersz zostal przestawiony z i + pierwszym (tylko takie przestawienia sa
wykonywane), albo zero, jesli przestawienia nie byto.

Procedura M3diagLUSolvef, korzystajac z czynnikéw rozktadu macierzy A znalezio-
nych przez procedure M3diagLUDecompf, rozwigzuje uklad réwnan liniowych AX = B; ma-
cierz B ma w ogdlnosci m kolumn i tyle samo kolumn ma rozwigzanie X. Wspdtczynniki tych
macierzy sg zapisane w jednowymiarowej tablicy e (o dtugosci mn), wierszami. W miejscu
danych wspolczynnikéw macierzy B procedura pozostawia obliczone rozwigzanie.

Opisanych wyzej procedur uzyjemy do konstruowania interpolacyjnych kubicznych
funkcji lub krzywych sklejanych. Konstrukcje przeprowadza procedura ConstructCubic-
InterpBSplinef pokazana na listingu B.6. Jej parametr N jest wskaznikiem zmiennej, ktd-
rej ma by¢ przypisany numer N ostatniego wezla w ciagu uy, ..., un, ktory zostanie wpi-
sany do tablicy knots. W tablicy cpoints znajda si¢ obliczone wspdtczynniki dy, . . ., dn-4
lub wspoétrzedne punktéw kontrolnych dy, . . ., dy_4; liczba wspolrzednych kazdego punktu
(czyli wymiar przestrzeni, w ktdrej znajduja si¢ te punkty i krzywa) jest wartoscig parametru
dim (jesli ma on wartos$¢ 1, to konstruujemy funkcje skalarng). Parametr M okresla liczbe
weztow interpolacyjnych (jest ich M + 1, przy czym musi byé M > 2), ktére nalezy poda¢
w tablicy ikn, a w tablicy p maja by¢ podane wartosci funkgji s lub wspolrzedne punktow,
przez ktére ma przechodzi¢ krzywa s.

W linii 9 procedura rezerwuje miejsce na wspétczynniki macierzy ukladu réwnan i tab-
lice pomocnicze do pomieszczenia czynnikéw jej rozkladu. W liniach 13-15 powstaje ciag
weztow funkcji sklejanej, ktory jest kopia ciagu weztéw interpolacyjnych z dofozonymi na
poczatku i koncu trzema dodatkowymi ,egzemplarzami” pierwszgo i ostatniego wezta.

®1 nie nalezy uzywaé do tego uniwersalnych procedur rozwiazujacych uktad réwnan liniowych kosztem
rzedu n’.

9Algory‘[m realizowany przez te procedure to oczywiscie metoda eliminacji Gaussa z wyborem elementu
gltéwnego, zaimplementowana wcze$niej (dla macierzy o innej postaci) w procedurze M4x4LUDecompf.
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Listing B.5. Procedury rozwigzywania uktadow réwnan z macierza tréjdiagonalna

C
1: char M3diagLUDecompf ( int n, float *a, float *b, float *c, float *d,
2: char *p )
3:
4: int i;
s: float 1;

6: #define SWAP(x,y) { 1 =x; x=y; y=1; }
T

s: memset ( d, 0, (n-2)*sizeof(float) );

9: for (i =20; i< n-2; i++ ) {

10: if ( (p[i] = fabs(a[i+1]) > fabs(b[i])) ) {

11: SWAP ( ali+1], b[i]l ) SWAP ( bli+1], c[il )

12: dli] = cli+1]; c[i+1] = 0.0;

13: }

1a: if ( b[i] == 0.0 ) return false; /* przerwij, jesli macierz osobliwa */
15: ali+1] =1 = a[i+1]/b[i];

16: bl[i+1] -= 1xc[il; c[i+1] -= 1*d[i];

17: }

18:  if ( (p[n-2] = fabs(al[n-1]) > fabs(b[n-21)) )

19: { SWAP ( a[n-1], b[n-2] ) SWAP ( b[n-1], c[n-2] ) }

20: if ( b[n-2] == 0.0 ) return false;

21:  al[n-1] = 1 = a[n-11/b[n-2];

22:  b[n-1] -= 1*c[n-2];

23:  return b[n-1] != 0.0; /* jeSli wszystko 0K, to przekaz true */
24: } /*M3diaglUDecompf*/

25:

26: void M3diagLUSolvef ( int n, float *a, float *b, float *c, float *d,

27: char *p, int m, float *e )
28: {

29:  int i, j, k;

30: float 1, s, t;

31:

32: for (i =k=0; i<mn-1; i++, k +=m ) {

33: if ( pl[i]l ) /* przestaw wiersze prawej strony */

34: for ( j =0; j <m; j++ ) SWAP ( el[k+j]l, elk+m+j] )

35: for (1 = ali+1], j =0; j <m; j++ ) elk+m+j] -= 1lxel[k+j];
36: }

s: for (1 ="b[n-1], j =0, k = (n-1)*m; j < m; j++ )

38: elk+j]l /= 1;

3: for (1 =">b[n-2], s =c[n-2], j =0, k= (n-2)*m; j <m; j++ )
a0 e[k+j] = (elk+j] - s*elk+m+j])/1;

a1: for (i =n-3, k= (n-3)*m; i > 0; i--, k -=m )

42; for (1 =0blil, s = c[i]l, t = d[il, j = 0; j <m; j++ )

43: e[k+j] = (elk+j] - s*elk+m+j] - t*elk+m+m+j])/1;

aa: #fundef SWAP
as: } /*M3diagLUSolvef*/
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Listing B.6. Procedura konstrukcji sklejanych funkgji i krzywych interpolacyjnych
C

1: char ConstructCubicInterpBSplinef ( int *N, float *knots, float *cp,

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

40:

41: }

int M, float *ikn, int dim, float *p )

int i, 1lkn;
float *a, *b, *c, *d, bfv[4], t0, ti;
char *permut;

#N = 1kn = M+6;
if ( !'(a = malloc ( (4*(1kn-3)-3)*sizeof (float)+(1lkn-4)*sizeof (char) )) )
return false;
b = &a[lkn-3]; c = &b[1kn-3]; d = &c[lkn-4]; permut = (char*)&d[lkn-5];
/* utworz ciag wezidw funkcji sklejanej */
knots[0] = knots[1] = knots[2] = ikn[0];
memcpy ( &knots[3], ikn, (M+1)*sizeof(float) );
knots[1lkn-2] = knots[lkn-1] = knots[lkn] = ikn[M];
/* utwdérz macierz uktadu */
b[0] = 1.0; c[0] = 0.0;
t0 = knots[4]-knots[1]; t1 = knots[5]-knots[2];
al1] = t1; bl[1] = -(t0+t1); c[1] = t0;
for (i =2; i<=M; i++ ) {
EvaluateBSplinesf ( bfv, 3, i+2, knots, knots[i+2] );
ali] = bfv([0]; ©Dbli]l = bfv[1]l; cl[i] = bfv[2];
}
t0 = knots[lkn-2]-knots[1lkn-5]; t1 = knots[lkn-1]-knots[1lkn-4];
al[lkn-3] = t1; b[lkn-3] = -(t0+t1); c[1kn-3] = tO0;
a[lkn-2] = 0.0; b[lkn-2] = 1.0;
/* utwoérz prawa strone */
memcpy ( cp, p, dim*sizeof(float) );
memset ( &cpldim], O, dim*sizeof (float) );
memcpy ( &cpldim+dim], &pl[dim], (M-1)*dim*sizeof (float) );
memset ( &cp[(M+1)*dim], O, dim*sizeof(float) );
memcpy ( &cpl[(M+2)*dim], &pl[dim*M], dim*sizeof(float) );
/* rozwiaz uktad rdwnan */
if ( !'M3diagLUDecompf ( M+3, a, b, c, d, permut ) ) {
free ( a );
return false;

}

M3diagLUSolvef ( M+3, a, b, ¢, d, permut, dim, cp );
free ( a );

return true;

/*ConstructCubicInterpBSplinef*/

W liniach 17-26 obliczane sg wspoélczynniki trojdiagonalnej macierzy ukladu réwnan.

Wspolczynniki we wszystkich wierszach oprécz pierwszych i ostatnich dwoch sa war-
to$ciami funkcji B-sklejanych obliczanymi przez procedure EvaluateBSplinesf z lis-
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tingu B.1. W pierwszym i ostatnim réwnaniu wystepuja wspolczynniki 0 i 1, natomiast row-
nanie drugie i przedostatnie to warunki brzegowe (B.6) i (B.7). Ich strony pomnozylem przez
(g —uy)(ug—uz)(us —u2) /61 (un—2 — un—s5)(UN—2 — uN—4) (tiN-1 — UN-4)/6, cO uprodcito
wzory zaprogramowane w liniach 18-19 i 24-25.

W liniach 28-32 powstaje macierz bedaca prawg strong uktadu réwnan; jej drugi i przed-
ostatni wiersz zawieraja zera (pochodna drugiego rzedu odpowiednich wielomianéw ma by¢
zerem), a pozostale wiersze sg wektorami wspdlrzednych punktéw danych. Po roztozeniu
macierzy na czynniki tréjkatne jest wywolywana procedura M3diagLUSolvef, ktdra do tab-
licy zawierajacej poczatkowo macierz prawej strony wpisuje rozwigzanie — punkty kontrolne
interpolacyjnej krzywej sklejane;j.

Do obliczania punktow krzywej, dla danych warto$ci parametru, najprosciej jest uzywac
algorytmu de Boora, ktérego implementacja w jezyku GLSL jest pokazana na listingu B.2.
Jesli wspdlrzedne punktow krzywej sa parametrami artykulacji potrzebnymi do animowania
tanicucha kinematycznego, to obliczanie tych punktéw powinna wykonywa¢ CPU. Napisanie
odpowiedniej procedury w jezyku C jest prostym ¢wiczeniem, ktére polecam.

W bardziej zaawansowanej animacji oprocz wartosci funkcji moze by¢ potrzebne zada-
wanie warto$ci pochodnych w wezlach interpolacyjnych. Aby takie zadanie interpolacji byto
dobrze okreslone, wezty funkeji sklejanej, w ktorych sa podane dwa warunki (wartos¢ i po-
chodna), musza by¢ podwdjne. Kubiczne funkcje B-sklejane w weztach podwdjnych maja
ciagla pochodng, ale pochodna drugiego rzedu jest nieciagla. Godne polecenia (i wykona-
nia) jest nieco trudniejsze ¢wiczenie polegajace na napisaniu odpowiednich procedur umoz-
liwiajacych konstruowanie takich funkgji sklejanych i wyprobowaniu ich w aplikacji.

B.4. Sklejane krzywe kwaternionowe

Animacje ruchu kulistego mozna przeprowadzi¢ przez zadanie polozen katowych obiektu
w pewnych chwilach i dokonanie interpolacji miedzy tymi polozeniami. Polozenia katowe
wygodnie jest reprezentowac za pomocg kwaternionéw, zgodnie z opisem w podrozdzia-
le A.4. Za pomoca funkgji Slerp fatwo jest otrzymac¢ animacje, w ktorej obiekt obraca si¢
wokot ustalonej osi ze stala predkoscia katowa od zadanego polozenia poczatkowego do kon-
cowego, ale wiekszym wyzwaniem jest otrzymanie takiego ruchu, w ktérym obiekt przejdzie
przez wiele zadanych polozen, poruszajac si¢ tak, aby o$ obrotu i predkos¢ katowa zmienialy
sie ptynnie.

Mamy zatem dany rosnacy ciag liczb to,..., ) i ciag kwaternionéw jednostkowych
qo> - - - » qm okreslajacych obroty obiektu do polozen zadanych w chwilach to, ..., ty. Za-
daniem jest znalezienie funkcji g: [to, tp] — H, takiej ze q(t;) = q; dlai = 0,..., M, przy
czym dla kazdego ¢ € [#, tp] kwaternion g(t) ma by¢ jednostkowy, a funkcja g ma mie¢ co
najmniej ciagglta pochodng — predko$¢ katowa w chwili ¢ jest rowna 2|g’(t)).

Zobaczmy dwa z wielu mozliwych sposobdéw rozwigzania tego zadania. Pierwszy spo-
s6b polega na znalezieniu w przestrzeni R* ,,zwyklej” sklejanej krzywej interpolacyjnej s.
Reprezentacje B-sklejang takiej krzywej (klasy C%) mozemy skonstruowaé za pomocg opi-
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sanej w poprzednim punkcie procedury ConstructCubicInterpBSplinef. Oczywiscie
zarowno punkty kontrolne tej krzywej, jak i punkty s(¢) inne niz qo, . . . , gy nie muszg by¢
(i na ogol nie sa) wektorami o dtugosci 1 (czyli nie sg kwaternionami jednostkowymi). Ale
po obliczeniu punktu s(¢) mozemy przyja¢ q(t) = ms(t), otrzymujgc kwaternion jed-
nostkowy reprezentujgcy odpowiedni obrét dla chwili £

Opisany wyzej sposob jest stosunkowo prosty, niezawodny™ i w wielu przypadkach wy-
starczajacy; jesli katy miedzy kolejnymi danymi kwaternionami sa mate (czyli kolejne zadane
polozenia katowe nie s zbyt odlegle od siebie), to punkty krzywej s majg dlugosci bliskie 1,
a to oznacza, ze predko$¢ katowa ruchu obrotowego jest w kazdej chwili ¢ bliska 2|s’(#)].
Jesli jednak istnieje kwaternion g4, taki ze g; = go - g ° dlai = 1,..., M, to obiekt moze
przyjac kolejno wszystkie zadane polozenia, obracajac si¢ ze stalg predkoscia. Tymczasem
interpolacja tych kwaternionéw przy uzyciu rozpatrywanego tu sposobu spowoduje ruch ze
zmieniajacy sie predkoscia katowa — obiekt miedzy zadanymi polozeniami bedzie zwalnial
i przyspieszat'?,

Drugi sposéb polega na skonstruowaniu krzywej, ktorej wszystkie punkty sa wektorami
jednostkowymi w R* (czyli s3 kwaternionami jednostkowymi). Rozmaite opisywane w lite-
raturze konstrukcje takich krzywych sa oparte na modyfikacjach algorytmoéw znajdowania
punktow krzywych Béziera i B-sklejanych. Zmodyfikujemy algorytm zdefiniowany wzo-
rem (B.5). Majac liczbe t € [uy, ug,1) oraz punkty dl(c(i)n, .. ,d]((o) bedace wektorami jed-
nostkowymi w R*, obliczymy kolejne punkty przy uzyciu funkcji Slerp:

di(j) = Slerp (df{;l),dfj_l);(xgj))
() t—u; i=k-n+j,....k, j=1,...,n. (B.9)
o)) = ————,

Uitn+1-j — Ui

Wszystkie otrzymane w ten sposdb punkty, w tym ostatni, s3 wektorami o dtugosci 1, mo-
zemy zatem przyjac q(t) = d,gn) . Tak okre$lona krzywa umozIliwia odtworzenie ruchu ze stalg
predkoscig katowa wokot ustalonej osi, ale problem polega na obliczeniu punktéw kontrol-
nych krzywej interpolacyjnej — trzeba w tym celu rozwigza¢ uklad réwnan nieliniowych.

Na listingu B.7 jest przedstawiona pewna propozycja algorytmu konstruowania sklejanej
krzywej interpolacyjnej, ktérej punkty s3 kwaternionami jednostkowymi. Krzywa jest repre-
zentowana podobnie jak kubiczna krzywa B-sklejana, tj. za pomoca ciagu weztow uy, ..., un
i punktow kontrolnych d, . . ., dn_4, ktére s3 wektorami jednostkowymi. Procedura Quat-
SlerpdeBoorf realizuje zmodyfikowany algorytm de Boora opisany wzorem (B.9). Proce-
dura ta stuzy do obliczania punktéw krzywej w trakcie animacji, ale jest tez pomocniczym
podprogramem potrzebnym do obliczenia punktéw kontrolnych krzywej.

W liniach 7-10 procedura wyszukuje przedziat [uy, uy,;), do ktorego nalezy parametr ¢,
po czym w liniach 12-17 realizuje wtasciwe obliczenie. Gdyby nie bylo btedéw zaokraglen, to
wszystkie otrzymane punkty bylyby wektorami jednostkowymi. Wywolanie w linii 19 pro-

"W zasadzie dzielenie przez |s(t)| nie jest konieczne, bo wzér (0,u) = q - (0,w) - g~ realizuje obrét dla
dowolnego kwaternionu g # 0, ale do wzoru (A.5) trzeba podstawi¢ wspoéirzedne kwaternionu jednostkowego.

Sposob ten moze zawies¢ tylko z powodu btednych danych lub braku wolnej pamieci RAM.

2Ten efekt moze by¢ tak stabo zauwazalny, Ze az nieistotny, ale on jest.
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Listing B.7. Procedury QuatSlerpdeBoorf i ConstructQuaternionInterpSplinef

C
1: void QuatSlerpdeBoorf ( int n, int lkn, float *knots, float *cp, float t,
2: float *p )
3. {

4: ﬁ i, j, k;
s: float d[(MAX_DEG+1)*4], alpha;

7 for (k =n, j = 1lkn-n; j-k > 1; ) { /* bisekcja */
=k +

8: i (j-k)/2;
9: if ( t >= knots[i] ) k = i; else j = i;
10: }

11: memcpy ( d, &cpl(k-n)*4], (n+1)*4*sizeof(float) );
12z for ( j = 1; j <=mn; j++)

13: for (i = k-n+j; i <= k; i++ ) {

14: alpha = (t-knots[il])/(knots[i-j+n+1]-knots[i]);

15: QuatSlerpf ( &d[(i-k-j+n)=*4],

16: &d[(i-k-j+n)*4], &d[(i-k-j+n+1)*4], alpha );
17: }

18:  memcpy ( p, d, 4*xsizeof(float) );
19: V4Normalisef ( p ); /* kompensowanie bteddw zaokraglen */
20: } /*QuatSlerpdeBoorf*/

22: static void ModifyQuatCPf ( int N, float *knots, int i, float *qcp,

23: float *qt )

2a: {

25: float qf[4], qd[4];

26:

27 QuatSlerpdeBoorf ( N, knots, qcp, knots[i+3], qf );

2s:  QuatRDivf ( qd, &qt[4*il, qf );

20:  QuatMultf ( gf, qd, &qcpl[4*x(i+1)] );

s0: memcpy ( &qcpl[4*(i+1)], qf, 4*sizeof(float) );

s1: + /*ModifyQuatCPfx/

32:

33: char ConstructQuaternionInterpSplinef ( int *N, float *knots, float *qcp,
34: int M, float *ikn, float *qt )
35: {

36: #define TOL 1.0e-5

37:  int i, 1lkn;

ss: float qf[4], qd[4], dist, 1ldist, d;

39:

a0: if ( !ConstructCubicInterpBSplinef ( N, knots, qcp, M, ikn, 4, qt ) )
a1: return false;

a2: for (i =0, lkn = *N; i < 1lkn-3; i++ )

43: V4Normalisef ( &qcpl[4*i] );

aa:  for ( 1ldist = 4.0; ; 1dist = dist ) {

45: for ( dist = 0.0, 1 = 1; i < M; i++ ) {



46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

58:

59:

60:

61:

62:

63:

64:

65:
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QuatSlerpdeBoorf ( 3, lkn, knots, qcp, ikn[i], qf );
V4aSubtractf ( qd, &qtl[4xil, qf );
if ( (4 = V4DotProductf ( qd, qd )) > dist )
dist = d;
}
if ( dist >= 1dist )
return false;
if ( dist <= TOL*TOL )
break;
ModifyQuatCPf ( lkn, knots, 1, qcp, qt );
d = knots[4]-knots[1]; d /= (d+knots[5]-knots[2] );
QuatSlerpf ( &qcpl4], &qcpl0], &qcpl8], 4 );
for (i =2; i < M; i++ )
ModifyQuatCPf ( lkn, knots, i, qcp, qt );
d = knots[lkn-2]-knots[1kn-5]; d /= (d+knots[lkn-1]-knots[lkn-4]);
QuatSlerpf ( &qcpl[4*x(M+1)], &qcpl[4*M], &qcpl4*(M+2)], d );
}
return true;
#undef TOL
} /*ConstructQuaternionInterpSplinef*/

cedury normalizacji'’® ma na celu zmniejszenie skutkéw tych bledéw (w arytmetyce zmien-
nopozycyjnej nie da si¢ ich catkowicie wyeliminowac).

Procedura ConstructQuaternionInterpSplinef konstruuje reprezentacje krzywej
na podstawie danych wezléw interpolacyjnych to, ..., ty i odpowiadajacych im kwaternio-
néw jednostkowych qo,...,qm. Pierwszym krokiem konstrukeji jest znalezienie ,,zwyk-
tej” kubicznej interpolacyjnej krzywej B-sklejanej za pomoca opisanej wczesniej procedury
ConstructCubicInterpBSplinef. W liniach 42-43 punkty kontrolne tej krzywej sg zamie-
niane na wektory (kwaterniony) jednostkowe. W ten sposob powstaje poczatkowe przyblize-
nie poszukiwanej krzywej; jej punkty odpowiadajace wezlom 1, .. ., tp-; s3 przyblizeniami
punktéw danych gy, . . ., a1 (ale juz jest q(to) = qo 1 q(tm) = qm)-

Zmiennej *N procedura przypisuje numer N = M + 6 ostatniego wezta krzywej sklejanej,
ciag weztow tej krzywej jest wpisywany do tablicy knots, a w tablicy qcp zostaja obliczone
punkty kontrolne krzywej — kazdy z nich jest kwaternionem, czyli kolejng czwodrka liczb
w tej tablicy. Liczba punktéw kontrolnych jest réwna M + 3.

Petla w liniach 44-62 realizuje proces iteracyjnego ,,poprawiania” punktéw kontrolnych.
Proces ten zostaje przerwany, gdy maksymalna odleglos¢ punktu g(t;) od g; nie przekracza
progu tolerancji TOL; ustalenie go na 10> wydaje sie wystarczajace w animacji i nie przekra-
cza mozliwosci arytmetyki pojedynczej precyzji. Odleglosci s obliczane w petli w liniach
45-50, po czym obliczenia sg przerywane, jesli maksymalna odleglo$¢ miesci sie w tolerancji
albo jesli maksymalna odleglo$¢ wzrosta, co oznacza brak zbieznosci procesu poprawiania.

Zasadnicze obliczenie (,poprawienie” jednego punktu) wykonuje procedura Modify-
QuatCP£. W linii 27 oblicza ona punkt q(t;) krzywej reprezentowanej przez biezgce punkty

Pbedace prawdopodobnie przejawem mojej nadmiernej gorliwoéci
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kontrolne, a kolejne instrukcje obliczaja kwaternion g; - q(;) ™" - d;1, ktéry natychmiast za-
stapi w tablicy dotychczasowy punkt kontrolny d;,;. Skutkiem jest przemieszczenie punktu
q(t;) w stron¢ punktu q;. Powoduje to takze zmiane punktéw q(t;_1) i q(#i+1) (z wyjatkiem
q(to) i q(tar)), ale ich przemieszczenia (zazwyczaj) s3 mniejsze.

Po poprawieniu punktéw d, i dy_¢ nastepuje jeszcze modyfikacja punktéw d; i dy_s (li-
nie 56-57 i 60-61). Ma ona na celu spelnienie warunkéow brzegowych. Pochodna drugiego
rzedu ,,zwyklej” naturalnej krzywej sklejanej w weztach us = ty i un_3 = tar, bedacych kon-
cami dziedziny, jest wektorem zerowym'*. Dla krzywej potozonej na sferze { q € H:|g| =1}
analogiczny warunek jest taki, ze wektory q"(to) i q"'(t») maja odpowiednio kierunki g
i qum, dzigki czemu sg prostopadle do wszystkich wektoréw stycznych do sfery w punktach
qoiqm (wtymdo q'(ty) i q'(¢pm)). Takie warunki brzegowe zapewniajg odtworzenie ruchu
obrotowego woko! ustalonej osi ze stalg predkoscig katowg — o ile tylko warunki interpola-
cyjne umozliwiajg taki ruch.

Trzeba pamigtac, ze zadanie interpolacji moze nie mie¢ rozwigzania w zbiorze krzywych
okreslonych wzorem (B.9), gdy kolejne punkty w ciagu qo, . . . , m sa od siebie bardzo odlegte
lub gdy wezly to, . .., tp s3 rozmieszczone zbyt nieréwnomiernie (tj. gdy dlugosci przedzia-
Yow [tio1, ti] i [ti, tiv1] znacznie sie réznig). Dlatego zaden algorytm nie moze dac gwarancji
znalezienia rozwigzania'®. Szybko$¢ zbieznoéci procesu iteracyjnego zaimplementowanego
w opisanej tu procedurze nie jest duza — w moich eksperymentach, dla ,dobrych” danych,
blad interpolacji malal w kazdej iteracji (przebiegu zewnetrznej petli) w przybliZeniu o po-
fowe i do znalezienia rozwigzania trzeba bylo kilkunastu iteracji. Istnieja metody szybciej
zbiezne i warto je wyprobowac, ale moim zamiarem bylo znalezienie algorytmu wystarcza-
jaco skutecznego i jak najprostszego do zaprogramowania, co uczynitem.

' Czyli jest prostopadta do wszystkich wektoréw.

"*Jedli rozwiazanie nie istnieje, to kazdy algorytm numerycznego rozwigzywania réwnan nieliniowych gwa-
rantuje, Ze rozwigzania nie znajdzie. Ale jeéli ono istnieje, to zaden algorytm nie daje gwarancji znalezienia
go. Wiele zalezy od przyblizenia poczatkowego, a znalezienie takiego, ktore prowadzi do sukcesu, bywa bardzo
trudne.



Kolory, barwy i ich wspolrzedne

C.1. Widzenie trojbarwne

Podstawy wspolczesnej kolorymetrii stworzyl w 1853 r. Hermann Grassmann, ktéry m.in.
wprowadzit opis barw za pomoca przedstawionych dalej poje¢ intensywnosci (tj. jasnosci),
odcienia, nasycenia, dominujacej dlugosci fali $wietlnej i barw dopelniajacych i sformutowat
prawa addytywnego mieszania barw. Prawa Grassmanna w szczegélnosci opisuja fakt, ze
wiele réznych bodzcéw $wietlnych (tj. §wiatet o r6znych widmach) pobudza receptory w oku
w identyczny sposob, co umozliwia oddanie gamy barw dostatecznie szerokiej dla wigkszosci
zastosowan praktycznych przez mieszanie trzech barw podstawowych.

W siatkdwce ludzkiego oka sg dwa rodzaje receptoréw: czopki i preciki. Preciki sg bar-
dziej czule (i w stabym oswietleniu przejmuja role gtéwnego zrdédia sygnatow dla zmystu
wzroku, jest to tzw. widzenie nocne, lub skotopowe), ale istnienie tylko jednego rodzaju
precikow nie umozliwia rozrézniania przez nie koloréw. Natomiast czopki trzech rodzajow
wykazujg rézng czulo$¢ dla fal o ustalonej diugosci, wskutek czego odpowiednio jasne $wiat-
to o okreslonym widmie (tj. funkcji opisujacej gestos¢ mocy promieniowania w zaleznosci od
dtugosci fali) powoduje wysylanie z oczu do mézgu trzech (skalarnych) sygnaléw w odpo-
wiedzi na pobudzenie czopkéw poszczegdlnych rodzajow (ma wtedy miejsce tzw. widzenie
dzienne albo fotopowe, jest tez stan podredni, tj. widzenie o zmierzchu, gdy ,czynne” s3
i czopki i preciki). To dlatego do reprezentowania barw i w szczegdlnosci wyswietlania ob-
razéw na ekranach komputeréw i telewizoréw wystarczajg ludziom trzy liczby na piksel.

Rysunek C.1 przedstawia wykresy czuloéci czopkdéw, przy czym trzeba pamietac, ze do-
ktadne pomiary wartosci funkcji przedstawionych na tych wykresach sg trudne do prze-
prowadzenia, a ponadto u réznych oséb funkcje czutosci moga si¢ troche rézni¢. Niemniej,
z praw Grassmanna wynika, ze poziom bodzca, ktéry pobudza receptor jest catka z iloczynu
widma $wiatla padajacego na ten receptor i funkcji czulosci receptora w przedziale diugosci
fal $wiatla widzialnego'.

"Trzeba pamietad, ze ten model widzenia barwnego jest uproszczony; zaklada sie, ze funkcja czuloéci recep-
tora nie zalezy od miejsca receptora na siatkéwce i nie zmienia si¢ w czasie.
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Rysunek C.1. Funkcje czulosci czopkdw na $wiatlo o okreslonej dlugosci fali

Do badania widzenia barwnego? stuzy kolorymetr klinowy. Urzadzenie takie zawiera
komore, ktorej $ciany sa czarne i w ktdrej jest umieszczony klin o dwdch bialych $cianach.
Komora ma dwa okienka, przez ktére wpada $wiatto badane i swiatlo wzorcowe; $wiatto
wpadajgce przez kazde z okienek oswietla tylko jedng $ciane klina. Zrédtem $wiatta wzorco-
wego sg zardwka z filtrem przepuszczajacym dlugie fale (tj. $wiatlo czerwone, o dlugosci fali
A > 700 nm) oraz lampy rteciowe emitujace fale krétsze (swiatlo zielone, A = 546.1 nm, i nie-
bieskie, A = 435.8 nm). Osoba badana, ogladajac przez wziernik $ciany klina, ma za zadanie
tak ustawi¢ przyslony zrodet $wiatla wzorcowego, aby (zdaniem tej osoby) obie $ciany byly
os$wietlone identycznie. Wspoélrzedne $wiatta badanego, okreslone przez uklad odniesienia
swiatel wzorcowych, odczytuje si¢ z podzialek na przystonach. Wspoétrzedne te sg nieujemne,
ale domieszanie $wiatta wzorcowego do $wiatla badanego umozliwia takze pomiary wspot-
rzednych ujemnych — s nimi liczby odczytane z podziatek przyston $wiatla wzorcowego
domieszanego do $wiatla badanego, ze znakiem minus.

Sall
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|
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Rysunek C.2. Skladowe tréjchromatyczne

Na podstawie eksperymentéw zostaly znalezione trzy funkcje dtugosci fali, 7, g i b, zwane
sktadowymi tréjchromatycznymi (rys. C.2). Umozliwiaja one obliczenie wspdtrzednych
swiatta o okreslonym widmie f w ukladzie wspdtrzednych wyznaczonym przez opisane
wyzej $wiatta wzorcowe. W tym celu nalezy scalkowa¢ iloczyny widma z kazda z tych

2Stowa ,kolor” uzywam tu do okreélenia wasnoséci $wiatta opisanych przez jego widmo, natomiast ,barwa”
odnosi si¢ do wrazenia wzrokowego spowodowanego przez to §wiatlo.
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funkcji. Teoretycznie mozna dalej przejs¢ do ukladu wspélrzednych okreslonego przez
triade elementéw $wiecacych monitora i, jesli wspdtrzedne w tym ukladzie s nieujemne,
odtworzy¢ barwe §wiatla o widmie f na ekranie. Jesli jednak obraz zawiera punkty o barwach
niemozliwych do odtworzenia, to trzeba go tak przetworzy¢, aby znieksztalcenia barw byly
niezauwazalne, o czym bedzie mowa dalej.

C.2. Diagram CIE

W roku 1931 Miedzynarodowa Komisja Os$wietleniowa (CIE — Commission Internationale
de I’Eclairage) opracowata pewien uklad wspétrzednych zwany CIE XYZ, obecnie przy-
jety jako standard, na podstawie ktérego sa okreslane wszystkie inne uklady wspoéirzednych
w przestrzeni barw. Wszystkie barwy $wiatta realizowalnego fizycznie majg w tym ukladzie
wspoélrzedne nieujemne. Nalezy podkresli¢, ze ,,§wiatto” odpowiadajace elementom ukladu
odniesienia nie istnieje, tzn. nie istniejg funkcje nieujemne opisujace widmo $wiatla dla tych
elementow.

Punkty odpowiadajace barwom $wiatta widzialnego tworzg pewna bryle wypukla i stoz-
kowa, tzn. taka, ze iloczyn wektora wspdtrzednych kazdego punktu tej bryly i dowolnej liczby
nieujemnej rowniez reprezentuje barwe $wiatta widzialnego (czyli odpowiadajacy mu punkt
tez nalezy do tej bryly). Ograniczajac calkowita moc $wiatla do pewnej stalej, otrzymamy
bryle pokazang na rysunku C.3a. Na rysunku C.3b jest pokazana czg¢$¢ wspdlna tej bryly
z plaszczyzng X + Y + Z = 1. Mozna zauwazy¢, ze kazdy przekrdj bryly barw plaszczyzna
o réwnaniu X + Y + Z = const > 0 jest figurg podobng do pozostatych przekrojow, przy
czym stala po prawej stronie tego rownania okresla moc $wiatta. Dzieki temu mozemy (i be-
dziemy dalej) traktowac wspétrzedne XY Z o sumie réwnej 1 jak wspolrzedne barycentryczne
w uktadzie okreslonym przez wierzchotki tréjkata na rysunku, ktéry przedstawia kazdy taki
przekroj.

Rysunek C.3b przedstawia tzw. diagram chromatycznosci CIE. Brzeg obszaru §wiatta wi-
dzialnego sklada sie z dwdch czesci, zwanych krzywa teczy i linig purpury. Punkty krzywej
teczy reprezentuja $wiatlo $cisle monochromatyczne, o jednej dlugosci fali. Na rysunku obok
pewnych punktéw krzywej teczy s3 podane odpowiednie dtugosci fali. Natomiast punkty li-
nii purpury (ktoéra jest odcinkiem) reprezentuja mieszaniny (w réznych proporcjach) §wiatla
o skrajnych dlugosciach fali: najkrétszej (A = 380 nm) i najdluzszej (A > 700 nm).

Widoczna wewnatrz obszaru krzywa bieli sklada si¢ z punktéw reprezentujacych barwy
$wiatla emitowanego przez ciato doskonale czarne® rozgrzane do réznych temperatur. W za-
sadzie kazdy punkt tej krzywej reprezentuje barwe, ktérg mozna uzna¢ za $wiatlo biale,
cho¢ wldkno zaréwki o temperaturze ok. 3000 K daje $wiatto zottawe, czyli ,cieple’, za$
gwiazdy Syriusz A i B (o temperaturach powierzchni ok. 10000K i 25000 K) uznajemy za
ciala niebieskie. Wiele monitoréw umozliwia wybranie barwy swiatla bialego przez ustawie-
nie odpowiadajacej mu ,temperatury’, najczesciej migedzy 6000 K (temperatura powierzchni
Stonca) a 7500 K (temperatura powierzchni gwiazdy Procjon B). Polega to na ustaleniu mocy

*Fizycy wiedza, co to takiego.
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Rysunek C.3. a) bryta barw widzialnych w ukiadzie CIE XYZ, b) diagram CIE

$wiatla emitowanego przez poszczegdlne elementy (luminofory w lampie kineskopowej lub
diody $wietlne w nowoczes$niejszych wyswietlaczach) triad pikseli, ktére maja przypisane
maksymalne wartosci sktadowych r, g, b. Tak wybrane punkty bieli znajduja si¢ w poblizu
$rodka ciezkosci tréjkata, w ktéry wpisany jest obszar barw widzialnych*.

Nasyceniem barwy (saturation) nazywamy wzgledna odleglos¢ s punktu reprezentuja-
cego te barwe na diagramie CIE od przyjetego punktu bieli; jest ono réwne 1 dla punktéow
na brzegu obszaru barw (czyli punktéw na krzywej teczy lub na linii purpury), a nasycenie
barwy bieli jest rowne 0. Nasycenie barwy reprezentowanej przez punkt p mozemy obli-
czy¢, dzielagc odleglos¢ punktu p od punktu bieli W przez dlugos¢ przechodzacego przez
punkt p odcinka, ktérego jednym koncem jest punkt bieli, a drugi koniec lezy na brzegu
obszaru barw widzialnych. Na rysunku C.4a s3 zaznaczone dwa punkty o tym samym nasy-
ceniu s = 0.66. Punkty o tym samym nasyceniu polozone po przeciwnych stronach punktu
bieli reprezentuja barwy dopelniajace. Mieszajac w pewnych proporcjach $wiatta o barwach
dopelniajacych, mozemy otrzymac swiatto biate. Zauwazmy, ze obszar barw widzialnych

*Punkt ten nie lezy na krzywej bieli, cho¢ jest blisko niej.
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a) b)

Adobe RGB
sRGB
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Rysunek C.4. a) barwy dopelniajace, b) trojkaty barw ukladéw sRGB, Adobe RGB i monitora

jest niesymetryczny, przez co na ogo! punkt bieli nie jest srodkiem odcinka, ktérego konce
odpowiadajg barwom dopelniajacym. Nie jest to wiec mieszanie ,,pdt na pot”

Dominujaca dlugos¢ fali swiatta mozemy odczyta¢ z diagramu CIE, znajdujac taki
punkt g na krzywej teczy, ze punkt reprezentujacy barwe tego swiatta lezy na odcinku tacza-
cym punkty q i W. Barwe o nasyceniu s reprezentowang przez punkt p mozemy otrzymac,
mieszajac $wiatlo biale ze Swiatlem monochromatycznym o dominujacej dtugosci fali w pro-
porcjil —s : 5. Jesli jednak pdtprosta o poczatku W przechodzaca przez punkt p przecina
lini¢ purpury, to dominujaca dtugos¢ fali dla takiego swiatla nie istnieje.

Triady elementéw $wiecgcych pikseli wyznaczajg trojkat w obszarze $wiatta widzialnego
na diagramie CIE. Wszystkim barwom mozliwym do wyswietlenia odpowiadaja punkty tego
trojkata®, poniewaz moc $wiatla emitowanego przez kazdy element triady jest nieujemna®.
Mozna zatem postawi¢ problem: co zrobi¢, jesli pewne punkty na obrazie maja kolory,
ktorych nie da sie odtworzy¢?

Podstawa do opracowania sposobdw radzenia sobie z tym problemem, tj. modyfikowania
obrazu tak, aby ,,pozby¢ si¢” koloréw niemozliwych do odtworzenia na ekranie’, s3 opisane
wyzej pojecia. Aby modyfikacje byly niezauwazalne, trzeba wzig¢ pod uwage, na co ludzki
zmyst wzroku jest najbardziej wyczulony, a na co mniej. Zatem, najmniej zauwazalne sg

Rozwazamy tu §wiatto o ustalonej mocy. W rzeczywistosci wszystkie barwy mozliwe do wy$wietlenia na
ekranie s reprezentowane przez punkty réwnoleglosciennej kostki zawartej w bryle pokazanej na rysunku C.3a.

®W monitorach i telewizorach réznych typéw punkty odpowiadajace barwom poszczegolnych elementéw
triady sa nieco inne, ale w praktyce sg one wystarczajaco bliskie punktow przyjetych w standardach stosowanych
do reprezentowania obrazdw, aby znieksztalcenia barw byly niedostrzegalne — takze wtedy, gdy ustawienia
monitora (w tym wybér punktu bieli) nie odpowiadajg standardowi.

7Ten sam problem wystepuje podczas przygotowywania obrazéw do druku, choé¢ tam ma miejsce tzw. sub-
traktywne mieszanie barw, realizowane przez tlumienie pewnych skladowych $wiatla biatego przez pigmenty,
zobacz podrozdzial C.5.
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niewielkie zmiany jasnosci calego obrazu i przesuniecia punktu bieli — patrzac na wydru-
kowany obraz (lub fotografie) w $wietle stonecznym i w $wietle Zaréwki, widzimy ,,to samo”.
Dos$¢ stabo zauwazalne s3 zmiany nasycenia barwy (catego obszaru o stalym kolorze na ob-
razie), a nieco bardziej zmiany odcienia, wyznaczonego przez dominujaca dlugos¢ fali lub
proporcje koloréw czerwonego i niebieskiego dla purpury. Najbardziej widoczne sg wszel-
kie nieciaglo$ci barwy obszaréw sasiadujacych na obrazie. Podczas ogladania serii obrazéw
(w animacji) wyraznie dostrzegalne s3 tez skokowe zmiany koloréw w czasie.

Jesli kolory pewnych pikseli sg poza obszarem barw odtwarzalnych, to zastapienie ujem-
nej skladowej r, g lub b przez zero moze da¢ niezadowalajacy efekt. Znacznie lepszym po-
mystem jest desaturacja, czyli zmieszanie danego koloru ze §wiattem bialym, co nie zmienia
dominujgcej dtugosci fali ani odcienia purpury. Ale skutek zrobienia tego tylko dla pikseli,
ktorych kolory ,wystajg” poza dozwolony obszar, tez moze by¢ niezadowalajacy, w zwiazku
z czym lepiej jest skorygowaé wszystkie piksele na obrazie. Stopien desaturacji moze by¢
pewna funkcjg odcienia, dobrang indywidualnie do obrazu. W animacji podobna korekte
trzeba zrobi¢ dla calej sekwencji klatek. Podsumowujac, nie ma jednego prostego algorytmu
korygowania koloréw, dajacego zawsze §wietne wyniki. Z drugiej strony, wiele oséb (zajmu-
jacych sie grafika po amatorsku) sie tym nie przejmuje i tworzy piekne obrazy.

C.3. Uklady wspolrzednych RGB i korekcja gamma

Obecnie w grafice najczesciej sa uzywane dwa standardowe uktady wspoétrzednych RGB,
ktorych punkty odniesienia odpowiadaja barwom czerwonej, zielonej i niebieskiej. Punk-
ty odniesienia ukladu sRGB, opracowanego w roku 1996 wspdlnie przez firmy Hewlett—
Packard i Microsoft, majg w ukladzie CIE XYZ wspotrzedne Rs = (0.64,0.33,0.03), Gs =
(0.3,0.6,0.1) i By = (0.15,0.06,0.79). Trojkat o tych wierzchotkach jest blizszy tréjka-
tow odpowiadajacych typowym monitorom niz trdéjkat o wierzchotkach R, = R;, G, =
(0.21,0.71,0.18), B, = Bs, przy uzyciu ktérych jest okreslony uktad Adobe RGB firmy Adobe
Systems Inc., rok 1998, czesciej niz w grafice stosowany w fotografii cyfrowej, obrébce ob-
razéw i poligrafii. Trojkaty dla obu ukladéw sg pokazane na rysunku C.4b. W obu tych
ukladach przyjety jest punkt bieli W = (0.3127,0.3290, 0.3583). Swiatlo o takiej barwie, zbli-
zonej do barwy $wiatta dziennego®, jest emitowane przez ciato doskonale czarne rozgrzane
do temperatury ok. 6500 K, stad punkt ten jest oznaczany symbolem Dgs.

Przejscie od wspotrzednych CIE XYZ do sRGB sklada si¢ z trzech krokow. Pierwszy krok
jest przeksztalceniem liniowym, tj. zmiang ukladu wspotrzednych kartezjanskich, opisana
wzorem

r 32406 -1.5372 -0.4986 |[ X
g |=| —0.9689 1.8758 0.0415 Y
b 0.0557 -0.2040 1.0570 Z

8Swiatlo dochodzace w dane miejsce bezposrednio od Storica, o temperaturze ok. 6000 K, jest zmieszane
z dochodzacym ze wszystkich stron $wiatlem stonecznym rozproszonym w atmosferze. Poniewaz za$ atmosfera
najsilniej rozprasza fale krétkie, czyli $wiatlo niebieskie, temperatura barwy $wiatla dziennego jest wyzsza niz
temperatura powierzchni Stonca.
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Pozostate kroki sg przeksztalceniami nieliniowymi. Krok drugi polega na obcigciu kazdej
sktadowej do przedziatu [0,1].

Ludzki zmyst wzroku jest wyspecjalizowany w rozréznianiu wzglednych przyrostow jas-
nosci $wiatla, tzn. podobnie sg postrzegane zmiany na przyktad o 3% mocy $wiatla jasnego
i ciemniejszego. Gdyby zatem sktadowe r, g i b byly reprezentowane za pomoca liczb o$mio-
bitowych proporcjonalnie do poziomu sktadowych?, to doktadnos¢ wzgledna reprezentacji
barw ciemniejszych bylaby za mala — szczegoly przedmiotéw stabo oswietlonych bylyby
widoczne na obrazie za malo doktadnie'®. Ponadto moc L $wiatta emitowanego przez piksel
w lampie kineskopowej zalezy w sposdb nieliniowy od napiecia V' przylozonego do elektrod
modulujacych strumien elektronéw. W dobrym przyblizeniu zalezno$¢ ta jest opisana przez
funkcje potegowa L(V) = cV?, z wykltadnikiem y € [1.8,2.8] i pewng stalg c. Podobne
odwzorowanie liczb opisujacych skladowe koloru na moc $wiatla emitowanego przez piksel
realizujg nowoczesniejsze wyswietlacze LED lub LCD. Latwo si¢ o tym przekona¢, rysujac
obok siebie dwa prostokaty, jeden wypelniony stalym kolorem, na przyktad szarym, z pik-
selami o sktadowych r, g, b majacych stalg wartos¢, i drugi, w ktérym biate i czarne piksele
s ulozone w szachownice. Oba prostokaty ogladane z pewnej odlegtosci bedg tak samo jas-
ne, gdy warto$¢ przypisana skladowym szarych pikseli jest bliska trzem czwartym wartosci
maksymalnej (przypisanej pikselom bialym).

Z tych powodéw odwzorowanie poziomu kazdej sktadowej w ukladzie sRGB jest nie-
liniowe; zgodnie z opisang wyzej zaleznoscig, obliczony poziom na przyklad skladowej r €
[0,1] nalezy zamieni¢ naliczbe R = r'/7_ Liczbe te mozna nastepnie pomnozy¢ przez 2551 za-
okragli¢ do najblizszej liczby calkowitej, otrzymujac liczbe os§miobitowa. Aby w obliczeniach
numerycznych uniknaé probleméw zwigzanych z tym, ze pochodna funkgji f(x) = x"? dla
x bliskiego zera jest nieograniczona, w rzeczywistosci stosowany jest nieco inny wzdr:

R(x) = 12.92x dla x < 0.0031308,
" | 1.055xY2%-0.055 w przeciwnym razie.

Opisane tu przeksztalcenie, wprowadzone w zwigzku z monitorami kineskopowymi, ale
poprawiajace wzgledng dokladnos$¢ reprezentacji ciemnych barw przy uzyciu niewielkiej
liczby bitéw na piksel, jest nazywane korekcja gamma.

Ide¢ korekeji gamma ilustruje rysunek C.5. Wykres z lewej strony przedstawia funkcje R.
Punkty oznaczone kropkami przy osi poziomej s3 rozmieszczone w jednakowych odstepach.
Wartosci funkcji R w tych punktach nie s3 réwnoodlegle, ale jesli zaleznos¢ mocy L $wiat-
ta emitowanego przez piksel od liczby wpisanej do bufora obrazu'! jest proporcjonalna do
odwrotnosci funkcji R (monitory spelniajg ten warunek w dobrym przyblizeniu), to moc
$wiatla emitowanego przez odpowiednig skladowg piksela jest proporcjonalna do liczby opi-
sujacej te skladowa przed dokonaniem korekgji.

% czyli w taki sposob, Ze maksymalny poziom skladowej jest reprezentowany przez liczbe 255, a liczbom 85
i170 odpowiadajg 1/3 1 2/3 tego poziomu

1 Zauwazmy, ze duza zmiana wzgledna jednej sktadowej powoduje duza zmiane odcienia, a na to wzrok jest
wyczulony.

Na wykresie z prawej strony zmienna niezalezna jest zwigzana z osig pionowa.
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Rysunek C.5. Korekcja gamma

Listing C.1. Procedura korekcji gamma sRGB
GLSL

. #define GAMMA (x) \
(x < 0.0031308 ? 12.92 * x : 1.055 * pow ( x, 1.0/2.4 ) - 0.055)

. vec3 sRGBGamma ( vec3 colour )
: {

return vec3 ( GAMMA(colour.r), GAMMA(colour.g), GAMMA(colour.b) );
. } /*sRGBGammax/

Listing C.1 przedstawia procedure realizujaca korekcje gamma przy uzyciu opisanej wyzej
funkeji R. Zamiast niej mozna uzy¢ funkeji potegowej przyjetej w opisanym nizej ukladzie
wspoélrzednych Adobe RGB; jest ona prostsza do implementacji, a réznica obrazéw otrzyma-
nych tymi sposobami jest niezauwazalna: maksymalna réznica funkcji opisujgcych korekeje
w standardach sRGB i Adobe RGB w przedziale [0,1] jest mniejsza niz 0.034, a odwrotnosci
tych funkcji r6znia sie o mniej niz 0.0087.

Jesli na powierzchni¢ obiektu ma by¢ nalozona tekstura zapisana w ukfadzie sRGB, to
w aplikacji OpenGL-a nalezy dokona¢ odpowiedniej konwersji, bo w obliczeniach oswietle-
nia s3 potrzebne wspodtrzedne kartezjanskie (tj. liniowo zwigzane z mocg $wiatla) w przes-
trzeni barw. Konwersj¢ mozna przeprowadza¢ za pomoca ewaluatora tekstury. Jesli trzeci
parametr procedury glTexImage2D, okreslajacy wewnetrzny format przesytanej do pamieci
GPU tablicy tekseli, ma warto$¢ GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA lub GL_SRGB8_-
ALPHAS, to zaklada sig, ze sktadowe R, G, B kazdego teksela nalezy podda¢ przeksztalceniu
bedacemu funkcjg odwrotna do funkeji R(r) opisanej podanym wyzej wzorem.

Mozna réwniez wygenerowac obraz z pikselami ,,od razu” reprezentowanymi w ukladzie
sRGB (np. w celu zapisania go w pliku). W tym celu trzeba utworzy¢ pozaekranowy bu-
for ramki i podtaczy¢ do niego zalacznik — teksture o wewnetrznym formacie GL_SRGBS_-
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ALPHAS8, w ktdrej ma by¢ utworzony obraz, a przed rysowaniem wlaczy¢ korekcje gamma,
wywolujac procedure glEnable z parametrem GL_FRAMEBUFFER_SRGB.

Podobnie wyglada przejscie od ukladu CIE XYZ do Adobe RGB, przy czym w pierw-
szym kroku jest uzywana nieco inna macierz, a w korekcji gamma jest stosowana funkcja
potegowa f(x) = x"/? z wyktadnikiem y = 563/256 ~ 2.2. Skladowe otrzymane po korekgji
gamma mozna nastepnie pomnozy¢ przez 255 lub 65535 i zaokragli¢, otrzymujac w wyniku
ich reprezentacje o$mio- lub szesnastobitowe.

Cho¢ uktad Adobe RGB obejmuje wigksza cz¢$¢ bryly barw (tj. wiecej punktow ma w tym
ukladzie wspolrzedne nieujemne), co jest zalets, jednak nie jest zbyt rozpowszechniony.
Pierwszy tego powdd to spore oddalenie punktu G, od punktu odpowiadajacego barwie zie-
lonej wigkszosci kolorowych monitoréw, a zatem wszystkich barw reprezentowalnych w tym
ukladzie i tak nie da si¢ odtworzy¢ na ekranie, wyswietlenie za§ obrazu bez odpowiednie;j
konwersji powoduje znieksztalcenie barw (zmniejszenie nasycenia barw zielonych i zamiany
bieli na barwe lekko purpurowa). Drugim powodem jest fakt, ze rozszerzenie obszaru repre-
zentowalnego ma swoja cen¢: mniejsza dokladnos¢ reprezentacji barw niz w uktadzie sSRGB,
odczuwalnag, jesli skladowe s3 kodowane za pomoca liczb o§miobitowych.

Istnieje wiele innych ukladéw wspoétrzednych RGB, przyjetych jako standardy telewi-
zyjne, a takze majacych specjalne zastosowania. Informacje na ich temat najprosciej jest
znalez¢ w Internecie.

C.4. Uklady z luminancja i chrominancja

Wprowadzenie kolorowej telewizji w latach piecdziesigtych XX wieku wymagalo zachowa-
nia poprawnego dziatania odbiornikéw czarno-biatych, odbierajacych sygnal, ktéry dotad
przenosit tylko informacje o luminancji poszczegolnych punktéow wyswietlanych obrazéw.
Sygnal ten zostal wigc uzupetniony o dwa dodatkowe sygnaty tzw. chrominancji, umozliwia-
jace odtworzenie barw, tj. otrzymanie sygnalow sterujacych elementami r, g, b triad pikseli
kolorowych kineskopéw. Po obu stronach Atlantyku byly przyjete inne standardy telewizji
kolorowej, ale ksigzka ta nie jest wlasciwym miejscem na ich szczegétowe opisy. Warto jed-
nak wiedzie¢, ze w uktadach wspétrzednych YIQ i YUV, stosowanych w dawnej telewizji'?,
pasma uzywane do przesylania sygnatéw chrominancji IQ lub UV byly znacznie wezsze niz
pasmo dla sygnatu luminancji Y. Rzecz w tym, Ze znieksztalcenia chrominancji sa znacz-
nie mniej dostrzegalne dla ludzi niz zaburzenia luminancji. Ma to znaczenie takze obecnie,
na przyklad w algorytmie kompresji JPEG, ktory dokonuje przejscia do uktadu nazwanego
Y'CpCp, ze wspolrzedna luminancji'® Y’ i dwiema wspélrzednymi chrominancji, a nastep-
nie dokonuje kompresji stratnej poszczegolnych sktadowych — dopuszczajac wigksze znie-
ksztalcenia (i uzyskujac dzieki temu wigkszy stopient kompresji) sktadowych chrominancji
Cp i Cg.

przekazujacej obrazy za pomoca sygnatu analogowego i fal radiowych
PWspblrzedna Y’, o angielskiej nazwie luma, jest zwigzana z luminancja w sposob nieliniowy wskutek
uwzglednienia korekcji gamma.
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Przejécie miedzy uktadami R'G’B" (bardzo zblizonym do sRGB) i YUV okreslonymi
w standardzie telewizyjnym BT.709, jest opisane wzorami

Y’ [ 0.2126 0.7152 0.0722 R’

U |=| -0.09991 -0.33609 0.436 G |,
| V| | 0615 -0.55861 -0.05639 B’
[ R"] [1 o 1.28033 Y’

G' |=| 1 -0.21482 -0.38059 U
| B | |1 212798 0O 1%

Analogiczna macierz okreslona w starszym standardzie BT.601 ma w pierwszym wierszu
liczby 0.299, 0.587, 0.114, uzyte w aplikacji 2K do zamieniania obrazéw kolorowych na jed-
nobarwne, ktére dalej zostaja wyswietlone w kolorach czerwonym i zielonym jako anaglify
(podrozdz. 26.2). Mozemy tez zauwazy¢, ze w macierzy przejscia w druga strone (w obu
standardach) jedynki w pierwszej kolumnie sprawiaja, ze skutkiem zaniku (czyli zastapienia
przez 0) sygnaléw chrominancji jest przypisanie wspdtrzednej Y’ wszystkim trzem sktado-
wym R'G’'B’ — otrzymany obraz jest czarno-szaro-biaty.

Okreslony w roku 1976 uklad wspoélrzednych CIELab, czgsto spotykany w systemach
zarzadzania barwa, w zalozeniu mial zapewni¢ mozliwo$¢ mierzenia subiektywnej réznicy
barw za pomocg (euklidesowej) dtugosci réznicy reprezentujacych je wektoréw'®. Przejscie
miedzy ukladami CIE XYZ a CIELab jest funkcja nieliniowa, opisang wzorami

L=1163/Y /Yy 16, a=500(/X/Xo-/Y/Ys), b=200(/Y/Yo-~/Z/Zo),

ze stalymi Xy = 94.81, Yy = 100, Z; = 107.3. Wspdlrzedna L, ktéra wyraza jasnos¢ barwy,
jest nazywana luminancjg, ale nie jest to fizyczna luminancja zdefiniowana w fotometrii.
Wspolrzedne a i b razem okreslajg odcien i nasycenie barwy.

C.5. Uklady z subtraktywnym mieszaniem barw

Papier, na ktérym jest co$ wydrukowane, sam $wiatla nie emituje, a tylko je odbija. Swiatto
przechodzi przez warstwy pigmentéw w farbach drukarskich lub tonerach, ktére dziatajg jak
filtry pochlaniajgce. Wspdtrzedne CMY (Cyan — turkusowy, Magenta — purpurowy, Yellow
— 120lty) opisuja stopien pochlaniania $wiatla przez pigmenty w barwach dopelniajacych
barwy czerwong, zielona i niebieska. Jesli zatem C = M = Y = 0 i ogladamy kartke w swietle
bialym, to widzimy odbite od niej $wiatlo biale. Jesli C = 0, M = Y =1, to w $wietle odbitym
najmniej sttumione pozostang fale dtugie (czyli $wiatto czerwone), ajesliC=M =Y =1, to
pigmenty pochlaniajg $wiatlo o wszystkich dlugosciach i dany punkt na papierze jest czarny.

W praktyce kolorowe pigmenty nie s3 idealnymi filtrami, a oprocz tego czes¢ swiatta od-
bija si¢ od nich, nie przechodzac przez pozostale pigmenty™, co uniemozliwia otrzymanie

*co udalo si¢ w znacznym stopniu
®Dlatego w drukowaniu kolejno$¢, w jakiej s3 nanoszone farby o poszczeg6lnych kolorach, jest istotna.
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catkowitej czerni we wspomniany wyzej sposob. Czern mozna uzyskac¢ za pomocg czwartej,
czarnej farby (lub tonera). Wtedy opis koloru jest wektorem czterech wspétrzednych, nazwa-
nych CMYK; litera K jest wzigta ze stowa blacK. Majac wspoélrzedne R, G, B koloru piksela
(z przedziatu [0, 1]), mozna obliczy¢ wspétrzedne C' = 1-R, M’ = 1-G, Y’ = 1- B, anastepnie
przyja¢ K = amax{C’,M', Y'}, z pewng stala a € (0,1] i obliczy¢ C=C' - K, M = M' - K,
Y = Y’ - K; jest to najprostszy sposob przygotowania obrazu do druku. W rzeczywistos$-
ci proces ten jest znacznie bardziej skomplikowany. Drukarki ,fotograficzne” drukuja ob-
razy przy uzyciu wiekszej liczby kolorowych atramentdw (np. szeéciu), a algorytmy zamiany
koloréw na iloéci atramentu nanoszone na poszczegélne punkty na papierze, uwzglednia-
jace wzajemne oddzialywanie pigmentéw, sg bardzo skomplikowane (i tajne). W poligrafii
proces przygotowania kolorowych obrazéw do druku wysokiej jakosci obejmuje weryfikacje
wydrukéw prébnych i wprowadzanie korekt przez zajmujacych sie tym ekspertéw.

C.6. Uklady HSV i HSL

Opisane wyzej uklady wspodtrzednych (z wyjatkiem CIELab) sg blisko zwigzane z techno-
logia wyswietlania lub drukowania kolorowych obrazéw, ale wygoda programisty nie jest
tozsama z wygoda uzytkownikow programu. Artyscie grafikowi wygodniej jest postugiwac
sie wspolrzednymi opisujacymi jasnos$¢, odcien i nasycenie barwy.

Nazwy wspolrzednych w uktadzie HSV pochodzg od stéw Hue (odcien), Saturation (na-
sycenie) i Value (warto$¢). Przejscie od uktadu RGB'® do HSV opisuja nastepujace wzory:

V =max{R,G,B}, a=V-min{R,G,B},
0 jeslia =0,
60(G-B)/a jesli V =R,
120+ 60(B-R)/a jedli V =G,
240+ 60(R-G)/a jedli V = B,
s [0 jestiv=o,

| a/V jedliv=o0.

Wspétrzedna H jest tradycyjnie mierzona w stopniach! i przyjmuje wartosci z przedziatu
[-60°,300°). Wartoéci wspotrzednej S naleza do przedziatu [0,1], przy czym jesli S = 0,
to barwa jest szara, a odcien jest nieokreslony, cho¢ na podstawie podanego wyzej wzoru
przyjmuje si¢ H = 0. Wspolrzedna V = 0 odpowiada czerni, V =1 oznacza za$§ maksymalny
poziom barwy o danym odcieniu i nasyceniu — zatem te samg wspoirzedng V ma swiatlo
biate (R = G = B = 1) i $wiatlo niebieskie (R = G = 0, B = 1), ktdre dla ludzkich oczu jest
znacznie ciemniejsze.

Uktad wspotrzednych HSL (Hue, Saturation, Lightness) uwzglednia fakt, ze $wiatlo biate
jest jadniejsze niz kazda z jego sktadowych. W tym ukladzie §wiatlo biale (R = G = B=1) ma

'*Tu zazwyczaj jest uklad RGB okreslony przez monitor komputera, na ktérym dziata program.
W programach ja bym uzywat radianéw.
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wspoélrzedng L = 2, czystym barwom sktadowym (np. R = 1, G = B = 0) oraz ich barwom
dopetlniajacym (np. R = 0, G = B = 1) odpowiada natomiast wspolrzedna L = 1, przy czym
wspolrzedng L = 1 ma tez barwa szarar = g = b = 0.5. W przejsciu od uktadu RGB do HSL
nalezy znalez¢ liczby V' i a i wspélrzedng H tak jak w przejsciu do ukladu HSV, a nastepnie
obliczy¢

L=2V —a,
. a/L jesliL <1,
| a/(2-L1L) jesliL>1.

a) b)

Rysunek C.6. Bryly barw: a) w ukladzie HSV, b) w ukladzie HSL

Bryly barw w ukladach HSV i HSL sg walcami, cho¢ czesto bywaja przedstawiane jako
stozek obrotowy albo dwa takie stozki zestawione podstawami (rys. C.6). Dolna podstawa
walca lub wierzcholek dolnego stozka w obu przypadkach reprezentuje czern. W ukladzie
HSL gérna podstawa walca lub wierzcholek gérnego stozka odpowiada bieli. Wspdtrzedna S
ma warto$¢ 0 na osi walcow lub stozkéw i 1 na ich powierzchniach bocznych.



Dzojstik w aplikacjach X Window

Wprawdzie specyfikacja [11] systemu X Window X11R7 definiuje sposéb komunikacji mie-
dzy aplikacja a dzojstikiem (ktoéry nadaje komunikaty takie jak klawiatura, tj. KeyPress
iKeyRelease), ale jest z nig kfopot. Skonfigurowanie urzadzenia wymaga uprawnien admi-
nistratora i sporych umiejetnosci'. Jesli aplikacja ma by¢ rozpowszechniana, to nie mozemy
tego wymagac od uzytkownikdéw. Dlatego biblioteki FreeGLUT i GLFW maja wlasne sposoby
komunikowania si¢ z nietypowymi urzadzeniami wej$ciowymi, w tym z dzojstikami. Spo-
soby te realizuja procedury, ktére wywotywane w regularnych odstepach czasu ,,odpytujg”
dzojstik o jego stan (tj. o stan przyciskow i katy obrotu drazka wokot wszystkich osi).

Jadra systeméw operacyjnych maja wbudowane sterowniki dzojstikow, dzigki ktérym
aplikacje moga odczytywa¢ odpowiednie informacje. W tym dodatku przedstawiam pro-
cedury wspolpracujace ze sterownikiem systemu Linux. Napisalem je na podstawie lektury
kodu Zrédiowego biblioteki FreeGLUT. Sg tu dwa zestawy procedur. Pierwszy zestaw moze
by¢ uzywany podobnie, jak procedury z bibliotek FreeGLUT i GLFW — w regularnych odste-
pach czasu trzeba ,,pyta¢” dzojstik o jego stan i odpowiednio reagowac na zmiany tego stanu.
Drugi zestaw procedur dziala w ten sposob, ze po otwarciu komunikacji z dzojstikiem apli-
kacja bedzie otrzymywac przekazane przez system X Window komunikaty o kazdej zmianie
stanu dzojstika, dzieki czemu nie musi co chwila do niego ,,zagladac”

D.1. Aktywne sprawdzanie

Makrodefinicje wliniach 1-3 na listingu D.1 okreslaja maksymalna liczbe obstugiwanych jed-
noczesnie dzojstikow, maksymalng liczbe osi dzojstka i maksymalng dtugos¢ napisu, ktory
jest nazwg urzadzenia nadang przez producenta. Kolejne szes¢ makrodefinicji wprowadza
nazwy zdarzen generowanych przez dzojstik, odpowiednio nic, inicjalizacja osi, inicjalizacja
przycisku, zmiana kata obrotu drazka wokot osi, naci$niecie lub zwolnienie przycisku i odta-
czenie (wyjecie wtyczki) dzojstika.

'Mi si¢ nie udalo: postepujac (chyba) zgodnie ze specyfikacja, zepsulem w swoim komputerze poprawne
dzialanie myszy i klawiatury, a gdy je naprawitem, wszelka my$l o dalszych prébach byta mi obca.
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Listing D.1. Nagtéwki procedur do aktywnego sprawdzania stanu dzojstikoéw

C

: #define MAX_JOY 8

: #define MAX_JOY_AXES 16

: #define MAX_JOY_NAMELENGTH 128

: #define JOY_EVENT_NONE O

: #define JOY_INIT_AXIS 1

: #define JOY_INIT_BUTTON 2

: #define JOY_EVENT_AXIS 3

: #define JOY_EVENT_BUTTON 4

#define JOY_EVENT_OFF 5

typedef struct JoyState {
int event; /* rodzaj zdarzenia */
int number ; /* numer osi lub przycisku */
unsigned int btnmask; /* stan wszystkich przyciskoéw */
float axpos [MAX_JOY_AXES]; /* katy obrotdw wokdtr osi */

} JoyState;

Procedury obstugi dzojstika sa przedstawione na listingu D.2. Na poczatku dzialania apli-
kacja powinna wywola¢ procedure InitJoysticks. Rozpoczecie komunikacji wykonuje
procedura OpenJoystick; jej pierwszy parametr jest numerem dzojstika, z ktérym aplikacja
chce nawigzacé wspotprace. Dzojstik moze by¢ podtaczony w trakcie pracy komputera; system
operacyjny, gdy to zauwazy, nada mu kolejny numer, 0, 1 itd. i utworzy plik dajacy aplikacjom
dostep do urzadzenia. Jesli dzojstik jest podtaczony (tj. jego wtyczka tkwi w gniazdku USB),
to warto$¢ powrotna procedury jest niezerowa. Ostatnie trzy parametry wskazujg tablice, do
ktorej trafi nazwa, oraz zmienne, ktérym beda przypisane liczby przyciskdw i osi urzadzenia.
Na pozegnanie dzojstika aplikacja powinna wywota¢ procedure CloseJoystick.

Stan dzojstika odczytuje procedura ReadJoystick, ktorej wartos¢ powrotna jest nieze-
rowa, jesli nastepuje inicjalizacja lub jesli od ostatniego wywotania uzytkownik spowodo-
wal dzojstikiem jakie$ zdarzenie. Doktadna informacja jest przekazywana w strukturze typu
JoyState wskazywanej przez parametr jst. Warto$¢ pola event wskazuje rodzaj ostat-
niego zdarzenia (w uzyciu s3 makrodefinicje w liniach s-10 na listingu D.1). Po nawigzaniu
komunikacji z dzojstikiem sterownik przekazuje dla kazdej osi i dla kazdego przycisku jeden
komunikat opisujacy poczatkowy kat lub informujacy, czy przycisk jest w tym momencie
naci$niety. Dalsze komunikaty opisuja zmiany standw poczatkowych.

Pole number struktury JoyState zawiera numer przycisku albo osi. Poszczegolne bity
pola btnmask opisuja stan wszystkich przyciskow (1 — przycisniety, 0 — zwolniony), a w tab-
licy axpos sg przechowywane biezace katy obrotéw drazka wokot wszystkich osi. Sa to liczby
z przedziatlu [-1,1], przy czym konce przedziatu odpowiadajg minimalnym i maksymalnym
katom obrotu dla kazdej osi.

Mozemy teraz zajrze¢ do srodka przedstawionych wyzej procedur. Zmienna js jest tab-
licg, ktdrej elementy — struktury typu MyJoystick — opisuja poszczegélne urzadzenia.
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Listing D.2. Procedury odczytujace stan dzojstika
C

: #include <string.h>

: #include <unistd.h>

: #include <stdio.h>

: #include <fcntl.h>

: #include <errno.h>

: #include <linux/joystick.h>

: #include "ajoystick.h"

#if defined(JS_VERSION) && JS_VERSION >= 0x010000
#define JOY_AXIS_RANGE  32767.0

typedef struct {

int fd;

char fname[16];

char jname [MAX_JOY_NAMELENGTH] ;
int buttons, axes;

struct js_event ev;

JoyState jst;

} MyJoystick;
static MyJoystick js[MAX_JOY];

void InitJoysticks ( void )
{

int i;

for (i = 0; i < MAX_JOY; i++ )
js[il.fd = -1;
} /*InitJoysticks*/

char OpenJoystick ( int jsn, char *jname, int *buttons, int *axes )
{
unsigned char u;

if ( jsn < 0 || jsn >= MAX_JOY )
return false; /* biedny parametr */

sprintf ( js[jsn].fname, "/dev/input/js%d", jsn );

if ( (js[jsnl.fd = open ( js[jsnl.fname, O_RDONLY | O_NONBLOCK )) < 0 )
return false; /* nie ma takiego urzadzenia */

ioctl ( js[jsn].fd, JSIOCGBUTTONS, &u );

js[jsn] .buttons = u;

ioctl ( js[jsn].fd, JSIOCGAXES, &u );

js[jsn] .axes = u;

ioctl ( js[jsn].fd, JSIOCGNAME( sizeof(js[jsn].jname) ), js[jsn].jname );
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return true;
: } /*0OpenJoystick*/

51:

52:

53:

54:

55:

56:

57:

58:

59:

char CloseJoystick ( int jsn )

{

if ( jsljsn]l.fd >= 0 ) {
close ( js[jsn].fd );
jsljsnl.fd = -1;

return true;

H

}

return false;
: } /*CloseJoystick*/

61:

62:

63:

64:

65:

{
ssize_t nbytes;
int n;

66:

67:

68:

69:

70:

71:

72:

73:

74:

75:

76:

77

78:

79:

80:

81:

82:

83:

84:

85:

86:

87:

88:

89:

90:

91:

92:

if ( js[jsnl.fd < 0 ) return false;
jst->event JOY_EVENT_NONE;
errno 0;
nbytes = read ( js[jsnl].fd, &js[jsnl
if ( nbytes < 0 ) {
if ( errno
CloseJoystick ( jsn );
jst->event = js[jsn].jst.event
return true;
}
else
return true;

}

case JS_EVENT_AXIS:
if ( (n

jst->event = js[jsn].jst.event
js[jsn].ev.type & JS_EVENT_INIT
jst->number = js[jsn].jst.number =
return true;
case JS_EVENT_BUTTON:
if ( !'js[jsn].ev.value )

else

switch ( js[jsn].ev.type & “JS_EVENT_

strncpy ( jname, js[jsn].jname, MAX_JOY_NAMELENGTH );

if ( jname )
if ( buttons ) *buttons = js[jsn].buttons;
if ( axes ) *axes = js[jsn].axes;

char ReadJoystick ( int jsn, JoyState *jst )

.ev, sizeof(struct js_event) );

ENODEV || errno == EBADF ) {

JOY_EVENT_OFF;

INIT ) {

js[jsn].ev.number) < js[jsn].axes )
jst->axpos[n] = js[jsn].jst.axpos[n]
(float) js[jsn] .ev.value/JOY_AXIS_RANGE;

? JOY_INIT_AXIS :
n;

JOY_EVENT_AXIS;

jst->btnmask = js[jsn].jst.btnmask &= ~(1 << js[jsn].ev.number);
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jst->btnmask = js[jsn].jst.btnmask |= 1 << js[jsn].ev.number;
jst->event = js[jsn].jst.event =
js[jsn]l.ev.type & JS_EVENT_INIT ? JOY_INIT_BUTTON : JOY_EVENT_BUTTON;
jst->number = js[jsn].jst.number = js[jsn].ev.number;
return true;
default:
return false;

b
} /*ReadJoystick*/
#else
#error "No suitable joystick driver"
#endif

Dla podlaczonych dzojstikéw system Linux tworzy pliki o nazwach /dev/input/jso,
/dev/input/jsl itd. Wejscie z dzojstika aplikacja bedzie czyta¢ z takiego pliku. Musi
ona do tego uzywac procedur skfadajacych si¢ na najbardziej ,,niskopoziomowy” interfejs
wejscia/wyjécia w systemie Linux?.

Otwarty (do czytania przez aplikacje) plik jest identyfikowany przez tzw. deskryptor
pliku — nieujemna liczbe calkowita pamigtang w polu fd struktury MyJoystick. Proce-
dura OpenJoystick w linii 38 tworzy nazwe pliku dzojstika, a w linii 39 otwiera plik przy
uzyciu procedury open, ktorej warto$¢ powrotna jest deskryptorem pliku. Drugi parametr
tej procedury okresla, ze plik jest otwierany tylko do czytania i ma to by¢ operacja niebloku-
jaca — wrazie braku danych do odczytania w pliku procedura czytajaca ma nie czeka¢ na ich
pojawienie sie.

Trzy wywolania procedury ioctl wliniach 41, 43 i 45 zadajg dzojstikowi pytania o liczby
jego przyciskow i osi i 0 nazwe. W liniach 46-48 informacje te sg przekazywane aplikacji,
jesli jest nimi zainteresowana, tj. jesli przekazala niepuste wskazniki miejsc, w ktorych te
informacje majg by¢ zapisane.

Dzialanie procedur InitJoysticks i CloseJoystick chyba nie wymaga objasnien.
Zobaczmy zatem, jak dziala procedura ReadJoystick. W linii 7o procedura prébuje prze-
czyta¢ ustalong liczbe bajtow, z ktdrych sklada sie przekazany przez sterownik opis jednego
zdarzenia wygenerowanego przez dzojstik. Operacja czytania moze si¢ nie powies¢ i wtedy
zmienna errno zadeklarowana w systemowym pliku nagtéwkowym errno.h otrzymuje
niezerowg warto$¢ okreslajaca rodzaj bledu. Bledy EBADF (niepoprawny plik) i ENODEV
(urzadzenie nieobecne) sg traktowane jak zawiadomienie, Ze czytanie stalo si¢ niemozliwe
(czego prawdopodobng przyczyng jest odlaczenie dzojstika).

Jesli nie udalo si¢ przeczyta¢ opisu zdarzenia, ale wystapil btad inny niz wymienione
wyzej (EAGAIN — sprobuj ponownie), to nastepuje powr6t z procedury — nic z dzojstikiem
sie nie wydarzylo i procedura nie czeka, az si¢ wydarzy. Dane przeczytane do zdefiniowa-

*Interfejs, ktérego elementami sg wskazniki do struktur typu FILE i procedury fopen, fclose, fread,
furite, fscanf i fprintf, jest ,wysokopoziomowy” — taki sam we wszystkich systemach operacyjnych.
W systemie Linux interfejs ten ukrywa deskryptory plikéw i procedury open, close i read, ktdrych tu mu-
simy uzywa¢, bo potrzebujemy ,,rozmawia¢” z urzadzeniem, a operacja czytania ma by¢ nieblokujaca.
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nej w systemowym pliku nagléwkowym linux/joystick.h struktury js_event opisuja
zdarzenie, ktore nastapito. Jesli jest to obrot drazka, to w liniach 83-g4 jest obliczany obecny
kat jego obrotu (sterownik podaje liczbe catkowitg z przedziatu [-32767,32767]). Jesli zda-
rzenie dotyczy przycisku, to w linii 91 lub 93 odpowiadajacy przyciskowi bit w polu btnmask
otrzymuje aktualng wartos¢.

Aplikacja, wywolujac procedure ReadJoystick, moze otrzymaé wiadomos¢ o odlacze-
niu dzojstika, ale nie otrzyma wiadomosci o jego podiaczeniu. Aby wznowi¢ wspoétprace
z dzojstikiem po jego ponownym podigczeniu, aplikacja musi znéw wywotaé procedure
OpenJoystick (sama musi jako$ zdecydowac, kiedy to zrobic).

D.2. Komunikacja za posrednictwem systemu X Window

Opisane w podrozdziale D.1 procedury dzialajg z pomini¢ciem systemu X Window. Teraz
przedstawie rozwiazanie, w ktérym o zdarzeniach spowodowanych przez dzojstiki aplikacja
dowiaduje sig, otrzymujac komunikaty od tego systemu. Zwalnia ja to od aktywnego spraw-
dzania stanu dzojstikow.

Beda tu w uzyciu makrodefinicje z listingu D.1, a ponadto aplikacja moze uzywac przed-
stawionej tam struktury JoyState do przechowywania informacji o stanie dzojstika lub
dzojstikéw — jesli zadeklaruje tablice takich struktur i bedzie w niej skrupulatnie zapisywac
informacje z komunikatéw. Informacje s przekazywane w komunikatach ClientMessage,
przy czym pole mesage_type struktury XClientMessageEvent tych komunikatéw ma
warto$¢ zmiennej aJoystick — warto$¢ ta jest atomem zarezerwowanym w systemie
X Window przez procedure xInitJoysticks. Zmienna aJoystick musi by¢ widoczna
dla aplikacji, aby ta mogla ja odczytywa¢. Ponadto procedury obstugi dzojstika odwoluja si¢
do zmiennej xdisplay, ktdra identyfikuje serwer X Window.

Listing D.3. Struktura komunikatu od dzojstika

C
: typedef struct JoyMessage {

char jsn; /* numer dzojstika */

char msg; /* identyfikator komunikatu */

char number ; /* numer przycisku lub osi */

char pressed; /* czy przycisk zostal nacisniety? */
float angle; /* kat obrotu osi */

unsigned int btnmask; /* maska bitowa przyciskow */

char pad[8]; /* dopeinienie do 20 bajtow */

} JoyMessage;

: extern Display *xdisplay;
: extern Atom aJoystick;

Listing D.4 przedstawia procedury. Aplikacja po otwarciu komunikacji z serwerem po-
winna wywota¢ procedure xInitJoysticks w celu wykonania niezbednych przygotowan,
a nastepnie dla kazdego dzojstika, od ktérego zamierza odbiera¢ komunikaty, ma wywota¢
procedure xOpenJoystick. Zakonczenie wspotpracy z dzojstikiem nastepuje przez wywo-



D.2. Komunikacja za posrednictwem systemu X Window 1097

tanie procedury xCloseJoystick lub przez odlaczenie dzojstika (o czym aplikacja zostanie
poinformowana za pomocg komunikatu JOY_EVENT_OFF).

W opisanym tu rozwigzaniu zalozytem, ze procedura czytajaca plik urzadzenia w razie
braku danych do odczytania ma czeka¢ na ich pojawienie sie. Zatem operacja czytania ma
by¢ blokujaca, dzigki czemu nie bedzie absorbujacego procesor aktywnego sprawdzania, czy
sg juz jakie$ dane. Ale niedopuszczalne jest tez ,,zawisniecie” aplikacji na operacji czytania.
Sposobem poradzenia sobie z tym problemem jest utworzenie dla kazdego podiaczonego
dzojstika osobnego watku obliczeniowego dzialajacego wspoétbieznie z gléwnym watkiem
aplikacji. Watek dzojstika bedzie czekal w procedurze czytania do chwili pojawienia si¢ da-
nych. Po powrocie z tej procedury watek wysle do wskazanego mu okna komunikat, po czym
znéw zapadnie sie w drzemke w oczekiwaniu na kolejne dane.

Do realizacji watkéw uzytem biblioteki pthread opisanej w podreczniku [20], do ktérego
odsylam Czytelnikéw chcacych ja poznaé. Aby uzy¢ opisanych tu procedur, do listy biblio-
tek dolaczanych do aplikacji trzeba dodac biblioteke pthread, dopisujac opcje¢ -1pthread
w odpowiednim miejscu pliku Makefile. Jeszcze jedno: wielowatkowa aplikacja systemu
X Window powinna przed nawigzaniem komunikacji z serwerem (czyli przed wywotaniem
procedury XOpenDisplay) wykonac¢ instrukcje XInitThreads () ; (zobacz listing 3.6).

Struktura MyXJoystick zawiera opis jednego dzojstika; tablica js zawiera tyle takich
struktur, ile maksymalnie dzojstikdéw ma moéc jednoczesnie obstugiwa¢ aplikacja. Pola fd
i fname zawierajg deskryptor i nazwe pliku dzojstika. Pole jsn jest numerem dzojstika —
jest to indeks elementu tablicy js przechowywany w tej strukturze dla uproszczenia kodu.
W polach buttons i axes sg pamigetane liczby przyciskow i osi. Pole btnmask jest maska
bitowa stanu przyciskéw. Pole window jest identyfikatorem okna, do ktérego maja by¢ kie-
rowane komunikaty, a pole thread jest identyfikatorem watku dzojstika.

Pierwsze dwa parametry procedury xOpenJoystick to identyfikator okna, do ktérego
watek dzojstika ma wysyla¢ komunikaty, oraz numer dzojstika. Pozostale parametry s
wskaznikami zmiennych, w ktérych ma by¢ zapamietana nazwa urzadzenia i liczby jego
przyciskow i osi. Poczatkowe instrukcje, nawigzujace kontakt z dzojstikiem, s podobne jak
w procedurze OpenJoystick na listingu D.2; w linii 113 jest tworzona nazwa pliku dzoj-
stika, ktory jest otwierany w linii 114. Drugi parametr procedury open okresla otwieranie
tylko do czytania (0_RDONLY), ale bit, ktéremu mozna by nada¢ warto$¢ 1 za pomocg makra
0_NONBLOCK, ma warto$¢ 0, bo teraz operacja czytania ma by¢ blokujaca.

W liniach 116-122 w polach odpowiedniego elementu (struktury MyXJoystick) sg zapa-
mietywane potrzebne informacje, w tym takze informacje odczytane z urzadzenia za pomoca
procedury ioctl, ktére w liniach 123-125 sg tez udostepniane aplikacji.

W liniach 126-129 jest uruchamiany watek obliczeniowy dzojstika. W zmiennej attr
sg zapisywane atrybuty watku, przy czym wigkszo$¢ z nich otrzymuje domyslne wartosci
(w szczegdlnosci watek bedzie mial minimalng okreslona przez biblioteke pthread wielko$¢
stosu maszynowego, ktory i tak jest az nadto pojemny). Watek ma by¢ odczepiony (detached)
od gléwnego watku aplikacji®. Watek utworzony przez procedure pthread_create w li-
nii 128 natychmiast przystepuje do pracy; wykonuje on opisang dalej procedure xJoyThread.

3Po objasnienia prosze zajrze¢ do [20].



11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

1098 D. DZOJSTIK W APLIKACJACH X WINDOW

Listing D.4. Procedury obstugi dzojstika w X Window
C

: #include <string.h>

: #include <unistd.h>

: #include <stdio.h>

: #include <fcntl.h>

: #include <errno.h>

: #include <linux/joystick.h>
: #include <pthread.h>

: #include <X11/X1ib.h>

. #include <X11/Xutil.h>

10:

#include "xjoystick.h"

#if defined (JS_VERSION) && JS_VERSION >= 0x010000
#define JOY_AXIS_RANGE  32767.0

typedef struct {

int fd;

char fname [16] ;
char jsn;

int buttons, axes;
unsigned int btnmask;
Window window;
pthread_t thread;

} MyXJoystick;

static MyXJoystick js[MAX_JOY];
Atom aJoystick;

void xInitJoysticks ( void )
{

int 1i;

memset ( js, O, MAX_JOY*sizeof (MyXJoystick) );
for (i = 0; i < MAX_JOY; i++ )
js[il.fd = -1;
aJoystick = XInternAtom ( xdisplay, "aJoystick", False );
} /*xInitJoysticks*/

static void PostJoystickEvent ( Window win, char jsn, char msg, char number,
char pressed, float ang, unsigned int btnmask )

{
JoyMessage jmsg;

jmsg.jsn = jsn; Jjmsg.msg = msg; Jjmsg.number = number;
jmsg.pressed = pressed; jmsg.angle = ang; Jjmsg.btnmask = btnmask;
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46:
47:
48:
a9: }

50:

memset ( jmsg.pad, O, 8*sizeof(char) );
PostClientMessageEvent ( win, aJoystick, 8,
XFlush ( xdisplay );

/*PostJoystickEvent*/

s1: static void *xJoyThread ( void *data )

52: {
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:

92:

MyXJoystick *js;
struct js_event ev;

ssize_t nbytes;
int number;
char msg;

js = (MyXJoystick*)data;
for (53) {
errno = 0;

nbytes = read ( js->fd, &ev, sizeof (struct

if ( nbytes < 0 ) {
if ( errno == ENODEV || errno == EBADF )

PostJoystickEvent ( js->window, js->jsn,

0, 0, 0.0, 0);
if ( js->fd >= 0 ) {
close ( js->fd );

js->fd = -1;
}
pthread_exit ( NULL );
}
else
continue;

}
switch ( ev.type & “JS_EVENT_INIT ) {
case JS_EVENT_AXIS:
if ( (number = ev.number) < js->axes ) {

msg = ev.type & JS_EVENT_INIT ? JOY_INIT_AXIS :
PostJoystickEvent ( js->window, js->jsn, msg, number, O,

(void*)&jmsg );

js_event) );

{

(float)ev.value/JOY_AXIS_RANGE, 0 );

}

continue;
case JS_EVENT_BUTTON:

if ( (number = ev.number) < js->buttons ) {

msg = ev.type & JS_EVENT_INIT 7

JOY_INIT_BUTTON : JOY_EVENT_BUTTON;

if ( tev.value )

js->btnmask &= ~(1 << ev.number);
else

js->btnmask |= 1 << ev.number;

PostJoystickEvent ( js->window, js->jsn, msg,

JOY_EVENT_OFF,

JOY_EVENT_AXIS;
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93: number, ev.value != 0, 0.0, js->btnmask );
94: }

95: continue;

96: default:

97: continue;

98: }

99: }

100: return NULL;

101: } /*xJoyThread*/

102:

103: char xOpenJoystick ( Window window, int jsn,

104: char *jname, int *buttons, int *axes )
105: {

106: unsigned char u;

107:  pthread_attr_t attr;

108:  int re;

109:  char name [MAX_JOY_NAMELENGTH] ;

110:

111:  if ( jsn < O || jsn >= MAX_JOY )

112: return false;

us:  sprintf ( js[jsn].fname, "/dev/input/js%d", jsn );

1a:  if ( (js[jsn].fd = open ( js[jsn].fname, O_RDONLY )) < 0 )
115: return false;

16:  js[jsn]l.jsn = jsn;

117: js[jsn].window = window;

us:  ioctl ( js[jsn].fd, JSIOCGBUTTONS, &u );

1e:  js[jsn] .buttons = u;

120:  ioctl ( js[jsn].fd, JSIOCGAXES, &u );

121: js[jsn] .axes = u;

122:  ioctl ( js[jsn].fd, JSIOCGNAME( MAX_JOY_NAMELENGTH ), name );
123:  if ( jname )  strncpy ( jname, name, MAX_JOY_NAMELENGTH ) ;
12: if ( buttons ) *buttons = js[jsn].buttons;

125:  if ( axes ) xaxes = js[jsn].axes;

126: pthread_attr_init ( &attr );

127:  pthread_attr_setdetachstate ( &attr, PTHREAD_CREATE_DETACHED ) ;
128: rc = pthread_create ( &js[jsn].thread, &attr, xJoyThread,

129 (void®x)&js[jsn] );
130: if (rc) {

131: pthread_attr_destroy ( &attr );

132: xCloseJoystick ( jsn );

133: return false;

134: }

135: return true;

136: + /*x0penJoystickx/

137:

138: char xCloseJoystick ( int jsn )

139: {



140:
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146:
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148:

149:

150:

151:

152:

153:
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if ( jsljsnl.fd >= 0 ) {
if ( js[jsn].thread ) {
pthread_cancel ( js[jsn].thread );
js[jsn].thread = 0;

close ( js[jsn].fd );
js[jsn]l.fd = -1;
return true;
X
return true;
} /*xCloseJoystick*/
#else
#error "No suitable joystick driver"
#endif

Jesli jednak uruchomienie watku zakonczyto si¢ niepowodzeniem, to w linii 133 ta przykra
wiadomos¢ zostaje przekazana aplikacji.

Parametr procedury xJoyThread (linie 51-101), wykonywanej przez watek dzojstika, jest

wskaznikiem odpowiedniej struktury MyXJoystick w tablicy js. Procedura wykonuje nie-
skonczona petle, w ktdrej czyta plik dzojstika (czekajac, ile trzeba, na dane w procedurze
read). W razie bledu uniemozliwiajacego dalsza wspolprace z dzojstikiem (zobacz pod-
rozdz. D.1) w linii es jest wysytany komunikat o odfaczeniu dzojstika, po czym watek sklada
rezygnacje z dalszego dziatania.
Uwaga: Zmienna errno jest jedna i wszystkie watki, takze gléwny watek aplikacji, majg do
niej dostep, co jest potencjalnym zrédlem bledéw. Nie jest bowiem mozliwe zidentyfikowa-
nie przyczyny bledu, gdy wiele watkéw w tym samym czasie wywoluje procedury systemowe
mogace przypisaé warto$¢ zmiennej errno?.

Po przeczytaniu danych nastepuje ich interpretacja: jesli zgloszone przez sterownik zda-
rzenie dotyczy osi, to s3 wykonywane instrukcje w liniach 7s-82, a jesli przycisku, to s5-94.
Po obliczeniu kata obrotu lub stanu przycisku i aktualnej maski bitowej naci$nietych przy-
ciskow (co jest wykonywane identycznie jak w procedurze ReadJoystick z listingu D.2)
wywolywana jest procedura PostJoystickEvent (linie 39-49), ktéra przygotowuje dane
do umieszczenia w komunikacie i wywoluje procedure PostClientMessageEvent z lis-
tingu 3.8, ktdra z kolei ten komunikat wysle. Sam fakt wstawienia (przez XSendEvent) ko-
munikatu do kolejki systemu X Window nie wystarczy, aby ten komunikat od razu dotart do
adresata. Gdy watek gtéwny aplikacji, ,,zawieszony” w procedurze XNextEvent, czeka na ko-
munikat, trzeba go odpowiednio ,,szturchng¢™. Takie ,,szturchniecie” wykonuje procedura
XFlush wywolana w linii 4s.

*Jedynym stuprocentowo poprawnym rozwiazaniem wydaje si¢ zastapienie watkéw przez procesy (urucha-
miane przy uzyciu procedur fork i exec), poniewaz kazdy proces ma wlasng zmienng errno, ale to rozwigzanie
wydaje si¢ cokolwiek sitowe.

>Co jest niepotrzebne, gdy gtéwny watek aplikacji sam do siebie wysyla komunikat: wkrétce po XSendEvent
wywola procedure XNextEvent, ktora znalazlszy od razu komunikat, nie zacznie na niego czeka¢. Nie ma tez
tego problemu z komunikatami wystanymi przez inne procesy, tj. inne dzialajace w tym samym czasie programy.
Tylko watki tego samego procesu muszg specjalnie ,,szturchac¢”
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Procedura xCloseJoystick moze by¢ wywolana przez aplikacje, jesli ta chce zakonczy¢
wspotprace z dzojstikiem bez proszenia uzytkownika o wyciagniecie wtyczki. Postanowienie
o dymisji wrecza watkowi procedura pthread_cancel, a oprdcz tego trzeba zamkna¢ plik
dzojstika i zapamieta¢, ze zostal zamkniety, przypisujac polu £d wartos¢ -1.

Listing D.5 przedstawia sposob odbierania przez aplikacje komunikatéw od dzojstika;
analogiczng procedure dla aplikacji biblioteki GLFW pokazalem na listingu 3.4. Inwencji
Czytelnikéw pozostawiam zamiane instrukcji wypisujacych komunikaty do terminala (nie-
zastapionych podczas uruchamiania programu) na instrukcje powodujace zmiany reprezen-
tacji obiektow i powodujace wykonywanie ich nowych obrazow.

Listing D.5. Procedura odbierajaca komunikaty dzojstika
C

: void MyJoystickEvent ( JoyMessage *jmsg )
A

printf ( "joystick %d:", jmsg->jsn );
switch ( jmsg->msg ) {

. case JOY_INIT_AXIS:

printf ( " init axis %d, ang = %f\n", jmsg->number, jmsg->angle );
break;

. case JOY_INIT_BUTTON:

printf ( " init button %2d, %d, %8x\n", jmsg->number, jmsg->pressed,
jmsg->btnmask ) ;
break;
case JOY_EVENT_AXIS:
printf ( " axis %d, ang = %f\n", jmsg->number, jmsg->angle );
break;
case JOY_EVENT_BUTTON:
printf ( " button %2d, %d, %8x\n", jmsg->number, jmsg->pressed,
jmsg->btnmask );
break;
case JOY_EVENT_OFF:
printf ( " off\n" );
break;
}
} /*MyJoystickEvent*/

24:

25:

26:

27:

28:

29:

w

0

void MyWinClientMessage ( XClientMessageEvent *ev )
{
if ( ev->message_type == aJoystick )
MyJoystickEvent ( (JoyMessage*)ev->data.b );
else .... /* obstuga innych komunikatdéw ClientMessage */
: } /#MyWinClientMessage*/




Rzutowanie nieliniowe

Przeksztalcenie przestrzeni trojwymiarowej na plaszczyzne, ktére zachowuje wspotliniowosé
kazdej trojki punktow, jest rzutem réwnolegltym albo perspektywicznym. Niekiedy sa po-
trzebne inne sposoby rzutowania. Przedstawiam zatem rzuty panoramiczne (na rzutnie wal-
cows, czyli rozwijalng) i rzuty na sfere (ktora nie jest rozwijalna), razem z propozycja sposobu
ich realizowania w aplikacjach OpenGL-a.

Odwzorowanie punktéw danych w ukladzie wspdtrzednych modelu do ukladu kostki
standardowej w rzutowaniu perspektywicznym lub réwnolegltym jest zlozeniem przejscia
do ukladu $wiata, przejscia od uktadu $wiata do ukladu obserwatora i przejscia od ukladu
obserwatora do ukfadu kostki standardowej (czego dokladniejszy opis jest w rozdz. 6). Aby
uzyska¢ kazdy z rzutdw opisanych nizej, trzeba wprowadzi¢ przeksztalcenie nieliniowe mie-
dzy ostatnimi dwoma z tych przejs¢.

E.l. Panorama punktowa

Rzutnia dla panoramy jest fragmentem powierzchni walcowej, ktoéry po rozwinigciu jest
prostokatem, odwzorowywanym nastepnie na klatke w oknie. Obserwator znajduje si¢
w punkcie na osi walca. Zatem bryta widzenia jest ograniczona szescioma powierzchniami:
walcowymi przednia i tylng (zakladamy, ze rzutnia jest powierzchnia przednia), stozkowymi
goérng i dolng oraz dwiema plaszczyznami bocznymi, zobacz rysunek E.1.

Przyjatem, ze o$ walcowej rzutni jest osig y ukltadu obserwatora i wyznacza kierunek
pionowy na obrazie w oknie. Wtedy bryle widzenia w ukladzie obserwatora mozna opisac za
pomoca pieciu parametréw. Dwa z nich, ktdre oznaczymy n i f (near i far), s3 promieniami
walcow. Kolejne dwa, b i t (bottom i top), sg wspolrzednymi y punktéw na dolnej i gornej
krawedzi wycinka przedniego walca, ktéry bedzie odwzorowany w okno. Ostatni parametr,
¢, jest katem miedzy bocznymi plaszczyznami bryly widzenial; bryla ta jest symetryczna
wzgledem plaszczyzny yz ukladu obserwatora.

"Wszystkie kgty mierze w radianach.
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Rysunek E.1. Bryta widzenia panoramy punktowej

Dlugos¢ dolnego i gornego brzegu przedniej $ciany bryly widzenia (ktéra po rozwinieciu
jest szerokoscig prostokata z obrazem) jest rowna n¢g. Aby zatem osiggnac jednakowe ska-
lowanie w pionie i poziomie na ekranie o wspotczynniku aspektu a dla klatki o szerokosci
w pikseli i wysokosci h pikseli, trzeba spelni¢ nastepujacy warunek:

aw:h=ng:t-b.
Stad dla ustalonej wysokosci t — b przedniej $ciany bryty widzenia? nalezy przyja¢

_t-baw
n ok
Przeksztalcenie nieliniowe wstawione przed przejsciem do uktadu kostki standardowe;j
jest zamiang wspotrzednych x, y,z na x’, ', z/, opisang wzorami

x
x' =arctg—, y' =y/r, Z'=-r, wktérychr=Vx2+2z2
-z

Przeksztalcajac punkt reprezentowany za pomoca wspolrzednych jednorodnych X, Y, Z, W,
mozemy uzy¢ Wzorow

X
X' =arctg — Y'=Y/R, Z'=-R/W, W'=1, podstawiajac R =V X2+ Z2.

Przeksztalcenie to odwzorowuje bryte widzenia na prostopadtoscian. Macierz P przeksztal-
cajaca go na kostke standardowg skonstruuje procedura M4x40rthof (listing 6.2) wywolana
z parametrami left = —¢/2, right = ¢/2, bottom = b/n, top = t/n, near = n, far = f.

*Mozemy ja wybra¢ tak samo jak dla rzutowania perspektywicznego w pierwszej aplikacji, zobacz s. 152.
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E.2. Panorama linearna

Wszystkie proste taczace punkty w przestrzeni i ich obrazy na walcowej rzutni w opisanej
Wyzej panoramie przecinaja si¢ w jednym punkcie — polozeniu obserwatora, stagd nazwa:
panorama punktowa. Mozemy okresli¢ takie rzutowanie na powierzchnie walca, w ktérym
analogiczne proste przecinaja o$ walca pod ustalonym katem; wtedy ,,srodki rzutowania”
zajmujg odcinek na tej osi, w zwiazku z czym takie odwzorowanie przestrzeni na plaszczyzne
wypada nazwa¢ panorama linearna.

Rysunek E.2. Bryla widzenia panoramy linearnej

Bryla widzenia panoramy linearnej jest ograniczona dwoma walcami (wewnetrznym,
czyli ,przednim” i zewnetrznym, ,,tylnym”), dwiema powierzchniami stozkowymi (,,dolng”
i,goérng”) i dwiema plaszczyznami bocznymi. Mozna jg opisa¢ za pomoca szesciu paramet-
réw: liczby n i f sa promieniami walcow, liczby b i t wyznaczajg konce odcinka srodkéw
rzutowania na osi walcow i stozkéw (osi y uktadu wspotrzednych obserwatora), liczba ¢ jest
miarg kata miedzy plaszczyznami bocznymi, a liczba 9 okresla kat miedzy prostymi rzutowa-
nia a plaszczyzng xz.3 Ale potrzebny jest jeszcze jeden parametr — odleglo$¢ d od osi walcéw
obiektéw, dla ktérych skalowanie wymiaréw poziomych i pionowych na obrazie ma by¢ takie
samo (zapewne przyjmiemy n < d < f). Rzutnia w tym przypadku jest walcem o promie-
niu d, ktérego rozwiniety i odwzorowany na klatke fragment ma szeroko$¢ d¢ i wysokos¢
t —b. W panoramie linearnej skalowanie wymiaréw pionowych jest stale, a poziomych jest
odwrotnie proporcjonalne do tej odlegtosci*. Dla klatki o wymiarach w x h pikseli (na ekra-

*Jedli 9 = 0, to gérna i dolna powierzchnia bryty widzenia s3 plaskie.
*W panoramie punktowej skalowanie obu osi zmienia sie z ta odlegtoécia.
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nie o wspotczynniku aspektu a) nalezy przyjac
_t-baw
T d ke
Przeksztalcenie nieliniowe wspolrzednych kartezjanskich punktu danego w uktadzie ob-
serwatora opiszemy wzorami

x' = arctgi, Y =y+rtgd, Z'=-r, r=Vx2+22
-z
a rownowazne przeksztalcenie wspotrzednych jednorodnych jest takie:
X
X' = arctg —, Y'=(Y+Rtgd)/W, Z'=-R/W, W'=1 R=VX?+Z2

Przejécie od tak obliczonych wsp6trzednych X', Y', Z’, W' do uktadu kostki standardowe;j
zapewni macierz P skonstruowana przez procedure M4x40rthof (listing 6.2) na podstawie
parametrow left = —¢/2, right = ¢/2, bottom = b, top = t, near = n, far = f, przy
czym liczby b i t maja spelnia¢ warunek opisany wczesniej; mozna przyjac ,,symetrycznie”
t=-b=doh/(2aw).

E.3. Rzutowanie na sfere

Plaski obraz przestrzeni mozemy otrzymac jako ztozenie dwdch rzutéw, z ktérych pierwszy
przeksztalca przestrzen na sfere, a drugi jest rzutem réwnolegtym wycinka tej sfery na prosto-
kat. W ten sposob powstajg obrazy przypominajace fotografie wykonane przez obiektywy
typu ,,rybie oko”.

Rysunek E.3. Bryla widzenia w rzutowaniu na sfere
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Aby opisac bryle widzenia pokazang na rysunku E.3, trzeba podac¢ parametry n i f, ktore
okreslaja minimalng i maksymalng odlegtos¢ jej punktéw od obserwatora (czyli promienie
sfery ,wewnetrznej” i ,zewnetrznej”, wyznaczajacej przednia i tylng $ciane bryly) i cztery
katy, oznaczone symbolami ¢;, ¢, 9, 1 9, ktore musza spelnia¢ nieréwnosci —7/2 < ¢; <
¢r < m[21-m[2 < 9 < 9¢ < m[2. Powierzchnie ograniczajace bryte widzenia z dotu, z gory
i z bokow sa stozkami obrotowymi. Najczesciej przyjmiemy ¢; = —¢@, i 9, = —9; i wtedy
bryla widzenia bedzie symetryczna wzgledem plaszczyzn yz i xz.

Przeksztalcenie nieliniowe wspdtrzednych kartezjanskich punktu w ukfadzie obserwa-
tora mozemy opisa¢ wzorami

X
/ / !/
X' ==, y= y—, Z=-r, r=y\/x2+y2+22,
r

r

a wtedy wspotrzedne jednorodne trzeba przeksztalci¢ wedtug wzoréw

X Y
X'==, Y==, Z=-R/W, W=1 R=VX2+Y2+22
R R
W ten sposéb otrzymujemy rzut $rodkowy przestrzeni na sfere jednostkowa”. Aby otrzymaé
poprawne skalowanie w pionie i poziomie, przy dobieraniu katéw do wymiaréw klatki trzeba
spelni¢ proporcje

sing, —sing; sin9; —sin Iy

aw h

Przejscie do ukladu kostki standardowej zapewni macierz P skonstruowana przez procedure
M4x40rthof, ktérej trzeba podaé parametry left = sin ¢;, right = sin ¢,, bottom = sin 9y,
top = sin 9y, near = n, far = f.

E.4. Rozdrabnianie w rzutowaniu nieliniowym

Listing E.1 przedstawia procedure, ktéra dokonuje jednego z opisanych wyzej przeksztalcen
nieliniowych. Przeksztalcenie jest okreslone przez zawarto$¢ bloku zmiennych jednolitych
NLProjection, ktorego pole type okresla rodzaj przeksztalcenia, a pole tantheta ma war-
to$¢ tg 9, potrzebng w panoramie linearnej. Wywotywane przez te procedure funkcje atan
i length sg opisane w podrozdziale 9.13.

Listing E.1. Procedura przeksztalcen nieliniowych
GLSL

: #define PROJ_POINT_PANORAMA 1
: #define PROJ_LINEAR_PANORAMA 2
: #define PROJ_SPHERICAL 3

> w N -

>Rysunek E.3 przedstawia sytuacje, w ktorej n = 1.
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: uniform NLProjection {

int type;
float tantheta;
} nlp;

vecd NonlinTransformation ( vecd p )

{
float R;

switch ( nlp.type ) {
case PROJ_POINT_PANORAMA:
R = length ( p.xz );
return vec4 ( atan ( -p.z, p.x ), p.y/R, -R/p.w, 1.0 );
case PROJ_LINEAR_PANORAMA:
R = length ( p.xz );
return vec4 ( atan ( -p.z, p.x ), (y+R*nlp.tantheta)/p.w, -R/p.w, 1.0 );
case PROJ_SPHERICAL:
R = length ( p.xyz );
return vec4 ( p.x/R, p.y/R, -R/p.w, 1.0 );
default: return p;
}

} /*NonlinTransformation*/

W implementacji rzutowania nieliniowego wyprowadzenie i oprogramowanie wzoréw,
na podstawie ktérych odbywa si¢ rzutowanie, jest tg fatwg czescig zadania. Znacznie wigk-
szy problem sprawia to, ze obrazem odcinka w tych rzutach jest na ogét zakrzywiony tuk
(w panoramach szerszych niz 7 to mogg by¢ dwa tuki), a ponadto bryly widzenia dla tych
rzutéw nie sg wypukle i nie sg wielo$cienne. Dlatego po przeksztalceniu wierzchotkéw pry-
mitywu do narysowania — odcinka lub tréjkata — trzeba go obcia¢ (przynajmniej zgrubnie,
do wieloscianu otaczajacego bryte widzenia), a nastepnie rozdrobni¢ na dostatecznie krotkie
odcinki lub dostatecznie male trdjkaty i podda¢ przeksztalceniu (nieliniowemu, a nastepnie
przejsciu do ukltadu kostki standardowej) wierzchotki tych odcinkéw lub tréjkatéow. Przy tym
zachodzi konieczno$¢ obcigcia i rozdrobnienia bokow trdjkatow w taki sposob, aby na obra-
zie powierzchni ztozonej z wielu tréjkatéw nie byto szczelin migdzy tréjkatami o wspélnych
bokach.

Przykladowy szader geometrii na listingu E.2 zamienia odcinek na tamang. W kwalifika-
torze wyjscia takiego szadera (linia 6) trzeba poda¢ maksymalna liczbe wierzchotkéw, ktore
szader ten moze wyprowadzi¢, przy czym w trakcie pracy moze ich wyprowadzi¢ mniej, jesli
mniejszy stopien rozdrobnienia famanej wystarczy do otrzymania dostatecznej dokladnos-
ci obrazu. Wierzcholki famanej, tj. konce fragmentéw rozdrobnionego odcinka, sg prze-
ksztalcane zgodnie z opisem wybranego rzutowania (perspektywicznego lub nieliniowego)
do ukladu kostki standardowej. Szader na listingu nie zawiera procedury obcinania odcinka,
koniecznej w zastosowaniach bardziej zaawansowanych niz tylko wykonanie ilustracji do
jednej ksiazki.
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Listing E.2. Rozdrabnianie i rzutowanie nieliniowe odcinka
GLSL

: #version 420
. #define N 30

: layout (lines) in;
: layout (line_strip,max_vertices=N) out;

: uniform TransBlock {

mat4 mm, mmti, vm, pm;
vec4 eyepos;
} trb;

vec4d NonlinTransformation ( vec4 p ) { .... /* listing E.1 %/ }

void main ( void )
{

int i;

vecd p;

for (i =0; i < N; i++ ) {
p = mix ( gl_in[0].gl_Position, gl_in[1].gl_Position,
float (i) /float(N-1) );
gl_Position = trb.pm*(NonlinTransformation ( trb.vm*(trb.mm*p) ));
EmitVertex ();

3

EndPrimitive ();
} /#*mainx/

Listing E.3 przedstawia najprostszy sposdb rozdrabniania tréjkata przez szader geometrii.
Dla ustalonej liczby N powstaje z niego N tasm tréjkatowych, ztozonych odpowiednio z 1, 3,
5,...,2N — 1 trojkatéw. Trojkaty te maja wiele wierzchotkéw wspdlnych, zatem obliczenie
przebiega w dwdch etapach: najpierw wierzchotki s3 wyznaczane, przeksztalcane i zapamie-
tywane w tablicach, z ktorych zostang wyprowadzone w drugim etapie. Calkowita liczba
wierzchotkéw, czyli potrzebna dlugos¢ tablic, jest réwna (N +1) (N +2)/2, liczba wierzchot-
kéw wyprowadzonych jest natomiast wieksza, bo wierzchotki wspélne dla dwdch tasm sa
wyprowadzane dwukrotnie. Stad liczba wierzchotkéw przekazywanych na wyjécie, zadekla-
rowana w kwalifikatorze w linii 5 jest rbwna N(N + 2).

Rysunek E.4 przedstawia schemat podziatu trojkata. Wierzcholki jego fragmentéw sa po-
numerowane parami liczb (i, j), przy czym 0 < j < i < N. Makrodefinicja TR_MAT_INDEX
zamienia taka pare na indeks do tablic jednowymiarowych, w ktérych szader zapisuje wyniki
obliczen pierwszego etapu. Pokazany szader przekazuje nastepujace atrybuty: wektor wspot-
rzednych jednorodnych polozenia wierzchotka w ukladzie kostki standardowej (w tablicy
ppp), wektor wspdtrzednych kartezjanskich w ukladzie swiata (w tablicy pos), kolor (w tab-
licy ccc) i polozenie obserwatora (w tablicy epos).
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)

Rysunek E.4. Schemat podzialu tréjkata na tasmy

D2

Listing E.3. Rozdrabnianie i rzutowanie nieliniowe tréjkata
GLSL

1: #version 420

2:

3: #define N 6

a: #define TN 28 /* (N+1)x(N+2)/2 */

s5: #define NN 48 /x N*(N+2) x/

6:

7: layout (triangles) in;

s: layout (triangle_strip,max_vertices=NN) out;
9:

10: in Vertex {

11: vec4d Colour;

122} In[];

13:

12: out FVertex {

15: vecd eyepos;

16: vec4d Colour;

17: vec3 Position;

18: vec3 Normal;

19:  } Out;

20:

21: uniform TransBlock { .... /* listing E.2 */ } trb;
22: uniform NLProjection { .... /* listing E.2%*/ } nlp;

23:

2a: #define TR_MAT_INDEX(i,j) ( (L)*((i)+1)/2+(j) )
25:

26: vec3 nv;

7. vecd pppl[TN], ccc[TN], epos[TN];

2s: vec3 pos[TN];

29:

N
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30: vecd

31:

32: void

33: {
34:
35:
36:
37:
38:
39:
40:
41:
42:

in

NonlinTransformation ( vecd p ) { .... /x listing E.1 %/ }

Emit ( int i, int j )

t k;

k = TR_MAT_INDEX ( i, j );

ppp [kl ;
t.eyepos = eposl[k];

gl
Ou
Ou
Ou
Ou
Em

_Position =

t.Position

= pos[k];
t.Normal = nv;

t.Colour = ccclk];

itVertex ();

a3: } /*Emitx/

44:

45: void main ( void )

46: {
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:

76:

in

t i, j, k;

vecd vl, v2;
vecd p, q;
mat4 vmi;
float x, y, z;

vl
v2
nv
if

for

~

(trb.mm*(gl_in[1].gl_Position - gl_in[0]
(trb.mm*(gl_in[2] .gl_Position - gl_in[0]
normalize ( cross ( vl, v2 ) );

nlp.type == PROJ_LINEAR_PANORAMA )

vmi = inverse ( trb.vm );

r (i=k-=

0;

i<=N; i++ ) {

x = float(N-i)/float(N);

for ( j = 0;

Lo
1]

j <= 1i; j++, k++ ) {

float(i-j)/float(N);

T N
Il

1.0 - x - y;
trb.mm * (x*gl_in[0].gl_Position + y*gl_in[1].gl_Position +

z*gl_in[2] .gl_Position);

pos[k] = p.xyz/p.w;
q = NonlinTransformation ( trb.vm*p ) ;
ppplk] = trb.pm * g;

if ( nlp.type == PROJ_LINEAR_PANORAMA ) {

q.x = q.z = 0.0;

epos [k]
}
else

epos [k]

ccclk] = x*In[0].Colour

vmix*q;

trb.eyepos;

.gl_Position)) .xyz;
.gl_Position)) .xyz;

+ y*In[1] .Colour + z*xIn[2].Colour;



83:
84:
.} /*mainx/
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for (i =1; i <=N; i++ ) {

}

Emit ( i, 0 );

for ( j =0; j<i; j++) A
Emit ( i-1, j );
Emit ( i, j+1 );

}

EndPrimitive (); /* koniec tasmy */

Ten ostatni atrybut wymaga wyjasnienia. W przypadku rzutu perspektywicznego, pa-
noramy punktowej i rzutowania na sfer¢ potozenie obserwatora, tj. Srodek rzutowania, jest

Rysunek E.5. Rzut perspektywiczny i panorama punktowa
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jednym punktem, ktérego wspoélrzedne sa podane w zmiennej jednolitej trb.eyepos i juz.
W panoramie linearnej jest wiele potozen obserwatora, ktdre tworzg odcinek (rys. E.2). Sza-
der fragmentéw potrzebuje znaé polozenie obserwatora do badania, czy poszczegélne zrodla
$wiatla znajduja sie po tej samej stronie co obserwator, czy po przeciwnej, i do obliczania
odblaskéw. Dlatego zestaw atrybutéw punktu na tréjkacie, przetwarzanego przez szader
fragmentéw, powinien zawiera¢ polozenie obserwatora, z ktorego zostal otrzymany obraz
tego punktu.

Szader oblicza polozenia obserwatora dla poszczegdlnych wierzchotkéw tréjkata, po
czym s3 one interpolowane, tak jak kazdy inny atrybut, w etapie rasteryzacji. Jesli jest
wybrana panorama linearna, to obliczenie polozenia obserwatora polega na znalezieniu jego
polozenia w uktadzie wspoltrzednych obserwatora (co jest robione w liniach e6 i 69) i przejs-

Rysunek E.6. Panorama linearna (z katem 9 = 0) i rzut na sfere
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ciu do uktadu $wiata w linii 70. Dla pozostalych rzutéw wspolrzedne potozenia obserwatora
s kopiowane z bloku zmiennych jednolitych trb.

W liniach s3-55 obliczany jest wektor normalny tréjkata. Zauwazmy, ze to jest wspolny
wektor normalny wszystkich fragmentéw tego trdjkata.

Adaptacyjne (dostosowane do wielkosci i ksztaltu obrazu) rozdrabnianie tréjkatéow przez
szader geometrii jest znacznie trudniejsze niz rozdrabnianie odcinkéw, bo zazwyczaj tréj-
katy przylegaja bokami do innych tréjkatéw, tworzac powierzchnie, ktére nie powinny mie¢
szczelin. Dlatego adaptacyjne algorytmy rozdrabniania, dajace poprawne wizualnie wyniki,
s3 do$¢ skomplikowane. Dla kazdego boku tréjkata trzeba indywidualnie ustali¢ liczbe od-
cinkéw, na ktore ten bok zostanie podzielony, przy czym liczba ta nie moze zaleze¢ od trze-
ciego wierzchotka trojkata. Po podzieleniu bokéw trzeba dokona¢ podzialu wnetrza tréjkata,
co moze prowadzi¢ do wygenerowania réznych zbioréw tasm tréjkatowych i algorytm musi
obstugiwa¢ wszystkie mozliwe (w ramach przyjetego ograniczenia stopnia rozdrobnienia)
przypadki. Kolejng komplikacja jest konieczno$¢ wstepnego obciecia trojkatéw do bryly wi-
dzenia (lub wielo$cianu zawierajacego bryle widzenia), przy czym nie ma prostego sposobu
wykorzystania ,,gotowych” algorytméw wbudowanych w etap obcinania prymitywéw w po-
toku przetwarzania grafiki. Alternatywa jest skorzystanie z szader6w rozdrabniania zamiast
geometrii, co jednak ma te wade, ze wszystkie obiekty trzeba rysowa¢ jako ptaty®. Ogra-
niczywszy si¢ do pokazania na rysunkach E.5 i E.6 obrazéw otrzymanych (bez adaptacji)
w rzucie perspektywicznym i w opisanych w podrozdziatach E.1-E.3 rzutach nieliniowych,
pozostawiam te zagadnienia jako problemy otwarte.

®Perspektywe punktowa i rzut na sfere mozna zrealizowaé znacznie proéciej, za pomocy przetwarzania obra-
zu. Wystarczy wykonac obraz w rzucie perspektywicznym, a nastepnie nalozy¢ go jako teksture na prostokat,
wprowadzajac odpowiednig dystorsje. Nie da sie jednak otrzymac w ten sposob obrazéw z wieloma potozeniami
obserwatora, takich jak perspektywa linearna.



Rysowanie fraktali

El. Zbior Mandelbrota

Wédz indianski znad Missisipi
Zapytany, ile ma tipi,

Zamiast skonczy¢ kolacje,
Zapadl sie w medytacje

I oznajmit: €*”. Howgh.

El1l. Liczby zespolone

Liczac si¢ z tym, ze do lektury tej ksigzki przystapia Czytelnicy nieznajacy jeszcze liczb ze-
spolonych, zamieszczam niezbedne minimum informacji na ich temat. Liczby zespolone sa
parami liczb rzeczywistych, (a, b) lub (x, y), czyli wektorami wspotrzednych kartezjanskich
punktéw na plaszczyznie'. Czesto zapisuje si¢ je w postaci a + bi lub x + yi. Pierwszy element
pary jest nazywany czescia rzeczywista, a drugi czescia urojonag liczby zespolone;j.

Dodawanie liczb zespolonych jest zwyktym dodawaniem wektoréw w przestrzeni R?,
a mnozenie jest okreslone wzorem

(a1, b1) (a2, b2) = (maz — biby, a1by + braz). (E1)

Tak okreslone mnozenie jest dzialaniem tacznym, przemiennym i rozdzielnym wzgledem do-
dawania — zbiér liczb zespolonych z tymi dzialaniami, oznaczany symbolem C, jest ciatem.
Zerem w tym ciele jest liczba (0, 0), a jedynka liczba (1, 0). Ograniczajac dodawanie i mno-
zenie do liczb, ktérych czesci urojone sg réwne 0, otrzymamy wyniki, ktérych czesci rze-
czywiste s3 sumami albo iloczynami czgsci rzeczywistych argumentéw tych dziatan, a czedci
urojone sg zerem. W ten sposoéb ciato liczb rzeczywistych R jest ,,zanurzone” w ciele C: mo-
zemy wykonywa¢ dodawanie i mnozenie liczb zespolonych i rzeczywistych, doczepiajac do
tych ostatnich czes¢ urojona 0.

'Plaszczyzne, ktérej punkty traktujemy jak liczby zespolone, nazywamy plaszczyzng Gaussa lub plaszczyzna
zespolona.
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Warto$¢ bezwzgledna liczby z = (x, y) jest to liczba rzeczywista |z| = \/x? + y2. Dla
dowolnych liczb zj, z; jest |z122| = |z1]|z2|. Liczba sprzezona z z jest to liczba z = (x, —y).
Tloczyn zZ jest rtéwny (x* + y%,0), a zatem jego cze$¢ rzeczywista jest kwadratem liczby |z.
Odwrotno$¢ liczby z # (0,0), czyli liczba z 7%, taka ze zz™! = (1,0), jest réwna #E.

Jedynka urojona jest to liczba (0, 1), oznaczana najczesciej literg i. Jesti? = (-1,0), a wiec
liczba i (a takze —i = (0, —1)) jest pierwiastkiem kwadratowym z —1.

Liczby zespolone mozna przedstawia¢ w postaci trygonometrycznej, tj. jako iloczyn
liczby rzeczywistej |z| i liczby zespolonej o wartoéci bezwzgledne;j 1:

z = |z|(cos ¢, sin ).

Jedli liczba z nie jest zerem, to liczba rzeczywista ¢ € [, ), zwana argumentem liczby z,
jest jednoznacznie okre$lona. Liczby |z|, ¢ sa wspdtrzednymi biegunowymi punktu na plasz-
czyznie, ktorego wspdtrzednymi kartezjanskimi sg czesci x, y liczby z.

Iloczyn dwoch liczb zespolonych zapisanych w postaci trygonometrycznej jest rowny

2123 = |z1|(cos @1, sin @1)|z2|(cos @2, sin ¢,) = |zl||zz|( cos( 1 + @), sin(¢@; + goz)).

Jego warto$¢ bezwzgledna jest iloczynem wartoséci bezwzglednych czynnikéw, a argument
jest sumg ich argumentéw?. Liczby zespolone o wartoéci bezwzglednej 1 reprezentujg ob-
roty plaszczyzny; chcac obrocic¢ punkt (x, y) wokoét poczatku uktadu wspotrzednych o kat ¢,
wystarczy pomnozy¢ go, jako liczbe zespolong, przez liczbe (cos ¢, sin ¢).

Calkowite potegi liczb zespolonych opisuje wzor de Moivre’a:

Z* = |2 (cos kg, sinkg).

Ten sam wzor definiuje potegowanie takze wtedy, gdy wykladnik jest dowolng liczba rzeczy-
wista®. Ostatni wzér, ktéry tu podam, zamienia postaé trygonometryczng liczby zespolonej
na posta¢ wykladniczg, zapisang przy uzyciu podstawy logarytmu naturalnego (liczby Eu-
lera) e = 2.71828 . . .; ma miejsce réwnos¢ |z|(cos ¢, sin @) = |z|e!?. Wodz o tym wiedzial.

F1.2. Iterowanie wielomianu kwadratowego

Zbiér Mandelbrota sklada si¢ z tych liczb zespolonych ¢, dla ktérych nieskonczony ciag liczb
Z0, 21, 22, - - . okre§lonych wzorami zo = 0 oraz zj,; = zi + ¢ jest ograniczony. Wartosci bez-
wzgledne wszystkich takich liczb nie sa wigksze niz 2, a wiec caly zbiér Mandelbrota jest
zawarty w kole o promieniu 2. Po utozsamieniu wybranego prostokata w plaszczyznie ze-
spolonej z obszarem okna na ekranie mozna dla kazdego piksela znalez¢ odpowiadajaca mu
liczbe ¢, a nastepnie obliczac kolejne wyrazy ciagu, konczac po osiggnieciu ustalonego limitu
liczby wyrazéw lub po weze$niejszym otrzymaniu takiej liczby z, ze |zx| > R, dla ustalonego

Do tej sumy moze by¢ potrzebne dodanie lub odjecie 27, aby otrzymac argument z przedziatu [, 7).
*Uwaga: Wprawdzie (cos(¢ + 2mm),sin(p + 2mm)) = (cos ¢,sin ¢) dla kazdej liczby catkowitej m, ale
jesli ¢ nie jest liczba catkowita, a m # 0, to nie musi by¢ (cos t(¢ + 2mm),sint(¢ + 2mm)) = (cos tg,sin tg).
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R > 2. Kolor piksela mozna wybra¢ na podstawie liczby k, otrzymujac pokolorowany obraz
otoczenia zbioru Mandelbrota.

Funkgja, ktoérej wartoscig dla kazdego punktu ¢ plaszczyzny zespolonej jest najmniejsza
liczba catkowita k, taka ze |zx| > R, lub oo, jedli taka liczba nie istnieje, jest nieciggta. Na
potrzeby grafiki warto ja ,uciagli¢’, czyli tak zmodyfikowac, aby otrzymac funkcje ciagla poza
zbiorem Mandelbrota*. Najprostsza taka funkcja jest okreslona wzorem

|Zk 1|
c k+ ——M—
fO) =k

w ktorym |zx_;| < R < |zg|- Jej ciagto$¢ wynika stad, ze dla kazdego k > 0 funkcja wy(c) = z
jest wielomianem (stopnia 2571), a wiec jest funkcja ciagha.

Rysunek F1. Obszary wewnatrz zbioru Mandelbrota

Duza cze$¢ zbioru Mandelbrota sklada sie z kola o $rodku (-1,0) i promieniu i oraz
obszaru, ktérego brzegiem jest krzywa zwana kardioida opisana przez punkt okregu o pro-
mieniu i toczgcego sie po okregu o $rodku (0,0) i tym samym promieniu (rys. E1). Warto
sprawdzi¢, czy odpowiadajgca pikselowi liczba ¢ = (i, y) lezy w tym kole lub w tym obszarze,
bo jesli tak, to ciag jest ograniczony i mozna od razu zaniecha¢ obliczania jego wyrazéw.

Punkt (x, y) lezy we wspomnianym kole, gdy (x +1)* + y* < 1. Nieco bardziej skompli-
kowane jest badanie, czy punkt lezy w obszarze ograniczonym przez kardioide. Jesli okrag,
po ktorym toczy si¢ drugi okrag, przesuniemy tak, aby jego srodek byl w punkcie (—i, 0), to
opis kardioidy we wspdtrzednych biegunowych ma postac

r(p) = %(l—cos ®), ¢€[0,2m).

Na tej podstawie mozna (najpierw sprobuj samodzielnie, a potem zajrzyj na strone [60])
znalez¢ funkeje opisang wzorem

w(x,y) = (£ +y*)2 +2(#7 + ) - y*/4,

*Dokladniej, ciggla w kazdym kole, ktorego brzeg nie przecina zbioru Mandelbrota; funkcja pozostanie
W jego otoczeniu nieograniczona, a zatem nieciagla.
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w ktérym £ = x — ;. Funkcja ta ma warto$¢ 0 we wszystkich punktach kardioidy, ujemna
w ograniczonym przez nig obszarze i dodatnig poza tym obszarem.

Dwie rzeczy w aplikacji wyswietlajacej obrazy zbioru Mandelbrota moga by¢ zmieniane
w czasie rzeczywistym: prostokat, ktéry mozna przesuwac i zmniejsza¢ lub powiekszac, oraz
paleta, czyli odwzorowanie wartosci funkcji f(c¢) na kolor. Zazwyczaj limit N liczby iteracji,
po osiagnieciu ktorego obliczenia sg przerywane, jest rzedu kilkuset do kilku tysiecy, wskutek
czego wykonanie obrazu trwa zbyt dtugo, aby mozna bylo osiggna¢ ptynng animacje wybie-
rania prostokata. Ale przeksztalcanie liczby na kolor zabiera bardzo malo czasu, a po zmianie
palety nie trzeba na nowo liczy¢ iteracji dla kazdego piksela. Z tego powodu sensowne wy-
daje sie wykonywanie obrazow w dwdch etapach: w pierwszym dla kazdego piksela trzeba
znalez¢ odpowiednig liczbe ¢, a potem obliczy¢ i zapamietad warto$¢ funkeji f(¢), albo liczbe
przyjeta do zakodowania nieskoriczonosci, jesli |zy| < R. W drugim etapie trzeba narysowa¢
prostokat w oknie, kolorujac go na podstawie zapamigtanych liczb i biezacej palety.

Listing E.1. Szader wierzchotkéw
GLSL

: #version 450 core

: void main ( void )
{
const vecd p[4] = { vec4(-1,-1,0,1), vecd4(1,-1,0,1),
vec4(1,1,0,1), vec4(-1,1,0,1) };

gl_Position = plgl_VertexID];
: } /*mainx*/

Listing F1 przedstawia szader, ktorego zadaniem jest wyprowadzenie jednego wierzchot-
ka kwadratu w ukladzie kostki standardowej; obraz kwadratu o boku 2, potozonego w ptasz-
czyznie xy i o $rodku w poczatku ukladu wypelni klatke (zajmujaca cate okno aplikacji).
Szader ten wchodzi w sktad programéw uzywanych w obu etapach wykonywania obrazu.
Odwzorowanie wspdtrzednych fragmentu (piksela) w oknie w plaszczyzne zespolong wy-
kona szader fragmentow pierwszego z tych programow.

Blok zmiennych jednolitych zawierajacy dane potrzebne do tego odwzorowania jest
przedstawiony na listingu F2. Warto$ci pol zmiennej rxy opisuja wybrany prostokat; x i y
przechowuja wspolrzedne x lewego i prawego boku, a z i w wspolrzedne y dolnego i gérnego
boku tego prostokata. W zmiennej wh sg przechowywane wymiary (szeroko$¢ i wysoko$¢)
klatki w pikselach. Pozostate pola sa opisane dalej.

Listing E.2. Blok TransBlock szaderéw fragmentéw
GLSL

:uniform TransBlock {

dvecd rxy;

dvec2 wh;

int width, mag, maxit, currit, diter;
} tr;
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Najefektowniejsze obrazy zbioru Mandelbrota przedstawiaja fragmenty jego otoczenia
w bardzo duzym powigkszeniu. Uzytkownik aplikacji moze odwzorowaé w okno tak maly
fragment plaszczyzny zespolonej, ze wspotrzedne punktéw odpowiadajacych sgsiednim pik-
selom (czyli czesci rzeczywiste i urojone liczb zespolonych bedacych tymi punktami) moga
by¢ reprezentowane przez te same liczby zmiennopozycyjne, przez co jakos¢ obrazéw spada.
Uzyjemy podwojnej precyzji: zmienne rxy i wh s3 typu dvec4 i dvec2, ale i tak konieczne
sg ograniczenia. Jesli obliczenia elementéw ciggu s3 prowadzone w podwdjnej precyzji, to
mozna dopusci¢ minimalng $rednice prostokata rzedu 10722,

W polu maxit jest podany limit liczby iteracji. Warto$¢ m pola mag (1 lub 3) okresla
powigkszenie obrazu wykonywanego w pierwszym etapie; obrazy fraktali powinny by¢ anty-
aliasowane i dlatego obraz ten (czyli tablica, w ktorej beda zapamietywane liczby wykonanych
iteracji) ma rozdzielczo$¢ m razy wigksza niz obraz koncowy.

Jeslilimit N liczby iteracji jest rzedu kilku lub kilkunastu tysiecy, to nawet najwieksza moc
obliczeniowa GPU® nie wystarczy do wykonywania obliczeni dostatecznie szybko, aby mozna
bylo, zmieniajac prostokat, otrzymaé ptynna animacje obrazéw®; opéznienia moga by¢ nawet
rzedu sekundy. Mozna si¢ z tym pogodzi¢ lub opracowa¢ pewien kompromis: iteracje wyko-
nywa¢ podetapami i wyswietla¢ obrazy tego, co GPU zdazyta policzy¢ w ustalonym limicie
czasu, dostatecznie krétkim, aby aplikacja plynnie reagowala na dziatania uzytkownika. Jesli
podczas trwania podetapu prostokat zostal zmieniony, to dla nowego prostokata trzeba ob-
liczenia zaczg¢ od poczatku, a jesli nie, to mozna wykonac kolejny podetap, w ktoérym liczba
iteracji bedzie dostosowana do mocy obliczeniowej GPU. To rozwigzanie ma swojg cene: jest
nig duze zapotrzebowanie na pamie¢ GPU. Na przyklad obraz o rozdzielczosci 4K ma wy-
miary 3480 x 2160 pikseli. Z wlaczonym antyaliasingiem dla kazdego piksela bedziemy ite-
rowa¢ wielomiany odpowiadajace 9 punktom plaszczyzny zespolonej. Dla kazdego takiego
punktu ¢ bedzie trzeba pamieta¢ warto$¢ funkeji f(c) w zmiennej typu float, oraz liczbe
zespolong z;_; w zmiennej typu dvec2. Zajmie to w sumie 1492992000 bajtow, czyli prawie
pottora gigabajta.

Listing F3 przedstawia szader fragmentdw pierwszego etapu rysowania. Wyniki jego ob-
liczen, czyli wartosci funkgji f, trafiaja do obrazu img przy uzyciu procedury imageStore,
dlatego ten szader zawsze konczy dziatanie instrukcja discard. Kwalifikator r32f w deklara-
cji zmiennej img oznacza, Ze kazdy piksel w tym obrazie ma tylko jedng skladowg, reprezen-
towang jako 32-bitowa liczba zmiennopozycyjna. Niestety, dostepne w OpenGL-u formaty
obrazéw nie daja mozliwo$ci pamietania pikseli o sktadowych podwéjnej precyzji’, dlatego
liczby zj, ktdre trzeba pamieta¢ miedzy podetapami pierwszego etapu rysowania, sa prze-
chowywane w bloku magazynowym Cmap, zawierajacego odpowiednio dlugg tablice.

Symbole INFO, INF1 i INF2 reprezentuja trzy liczby wieksze niz najwiekszy przewidy-
wany limit liczby iteracji; pierwsza z nich ma sygnalizowa¢ odkrycie, ze punkt ¢ lezy w kole,
druga, ze w obszarze ograniczonym kardioida, a trzecia oznacza, Ze wykonane iteracje nie
wystarczyly do stwierdzenia rozbieznosci ciagu. Umozliwia to pézniejsze nadanie odpowied-
nim pikselom innych koloréw.

*istniejacych w chwili pisania tego tekstu
®Istotna jest tez wielkoé¢ obrazu i to, czy jest wiaczony antyaliasing.
7a szkoda
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Listing F.3. Szader fragment6w pierwszego etapu rysowania zbioru Mandelbrota
GLSL

1: #version 440 core

3: #define INFO 65533.0
4: #define INF1 65534.0
5: #define INF2 65535.0
6: #define R 5.0
7: #define RR 25.0

o: uniform TransBlock { .... } tr; /* listing F.2 */
10:

11: layout (r32f,binding=1) uniform image2D img;

12: layout (std430,binding=0) buffer Cmap { dvec2 cmapl[]; };
13:

14: void main ( void )

15: {

16: dvec2 c, z;

17: double xx, x2, y2, r2, rk2, fr;

18:  int i;

19:  ivec2 xy;

20:
21:  xy = ivec2 ( int(gl_FragCoord.x), int(gl_FragCoord.y) );
2: ¢ = dvec2 ( tr.rxy.x + double(gl_FragCoord.x)/tr.wh.x*(tr.rxy.y-tr.rxy.x),

23: tr.rxy.z + double(gl_FragCoord.y)/tr.wh.y*(tr.rxy.w-tr.rxy.z) );
2. if ( tr.currit == 0 ) {

25: xx = c.x+1.0; y2 = c.y*c.y;

26: if ( xx*xx+y2 <= 0.0625 ) {

27: imageStore ( img, xy, vec4 ( INFO, 0.0, 0.0, 0.0 ) );
28: cmap [xy.y*tr.width + xy.x] = c;

29: discard;

30: ¥

3t else {

32: xx = c.x - 0.25; x2 = xx*xx; T2 = X2+y2;

33: if ( (r2 + xx)*r2 <= 0.25 * y2 ) {

34: imageStore ( img, xy, vec4d ( INF1, 0.0, 0.0, 0.0 ) );
35: cmap [xy.y*tr.width + xy.x] = c;

36: discard;

37: }

38: }

39: imageStore ( img, xy, vec4d ( INF2, 0.0, 0.0, 0.0 ) );
40: z = dvec2 ( 0.0, 0.0 );

4a1: rk2 = 0.0;

42: }

s else {

44: if ( imageLoad ( img, xy ).r < INFO )

45: discard;
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z = cmap[xy.y*tr.width + xy.x];
rk2 = z.x*z.X + zZ.y*z.y;

}
for ( i = tr.currit; i < tr.currit+tr.diter; i++ ) {
z = dvec2 ( (z.x + z.y)*(z.x - z.y) + c.x, (z.x + z.X)*2.y + c.y );
l_ ( (r2 = z.x*xz.x + z.y*z.y) > RR ) {
= (R-sqrt ( rk2 )) / (sqrt ( r2 )-sqrt ( rk2 ));
1mageStore ( img, xy, vec4d ( float(i) + fr, 0.0, 0.0, 0.0 ) );
cmap [xy.y*tr.width + xy.x] = z;
discard;
¥
rk2 = r2;
}
cmap [xy.y*tr.width + xy.x] = z;
discard;

} /*mainx/

W linii 21 wspdlrzedne fragmentu sg zaokraglane i skladane w wektor xy potrzebny do
zapisania wyniku obliczen w obrazie img. Czgéci rzeczywista i urojona liczby ¢ odpowiada-
jacej fragmentowi sg obliczane w liniach 22-23.

Warto$¢ zmiennej jednolitej currit wbloku TransBlock jestliczbag iteracji wykonanych
od poczatku pierwszego etapu rysowania (w poprzednich podetapach). Jesli jest réwna 0, to
szader sprawdza, czy liczba c lezy w kole lub w obszarze, ktérego brzegiem jest kardioida.
Zmienne xx i y2 otrzymuja wartosci x +1i y%, po czym w linii 26 nastepuje sprawdzenie, czy
punkt ¢ lezy w kole. Jesli nie, to w linii 32 zmiennym xx, x2 i r2 kolejno przypisywane sg
wartosci £, £% i £% + y? i nastepuje badanie, czy jest spelniona nieréwno$¢ (%% + y2)? + £ (&2 +
¥*) < y*/4, czyli czy w(x, y) < 0. Zaleznie od wynikéw testéw, do obrazu img trafia jedna
z liczb reprezentujacych nieskonczonos¢, a w tablicy cmap zostaje zapamigtana liczba c.

Jesli zmienna currit ma warto$¢ niezerows, to szader zostal wywolany w celu konty-
nuowania iteracji. Jesli wczesniej w obrazie img zostala zapisana liczba mniejsza niz INFO,
to obliczenia dla tego punktu sg juz zakonczone i szader natychmiast konczy dziatanie in-
strukcjg w linii 45. W przeciwnym razie zmiennej z jest przypisywana warto$¢ z; odczytana
z tablicy cmap, a w linii 47 jest obliczana liczba |z |*.

Iteracje wielomianu kwadratowego s3 wykonywane w liniach 49-58; zmienna jednolita
diter przechowuje biezacy limit liczby iteracji, okreslony przez aplikacje®. Warunkiem prze-
rwania petli jest wykonanie danej liczby iteracji w biezagcym podetapie lub wykonanie w su-
mie N iteracji we wszystkich podetapach pierwszego etapu rysowania.

Obliczenie kolejnej liczby zj nastepuje w linii 50, a zaraz potem szader sprawdza, czy
nalezy przerwac iteracje, bo |zx| > R; warto$¢ zmiennej r2, czyli |zx|% jest porownywana
z R%. W linii 52 jest obliczana cze$¢ utamkowa funkcji f(c), ktéra jest dodawana do czeéci
catkowitej (liczby wykonanych iteracji) w linii nastgpnej. Wartos¢ zmiennej rk2 jest réwna

$Nie ma mozliwosci przerwania rozpoczetych obliczer na GPU, a zatem aplikacja nie moze spowodowaé
ich przerwania po ustalonym czasie. Zamiast tego aplikacja dobiera biezgcy limit liczby iteracji na podstawie
szybkosci obliczen zmierzonej w poprzednim podetapie.
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|zx_1|*>. W linii 59 ostatnia otrzymana liczba zj, ktéra lezy w kole o promieniu R, zostaje
zapamigtana, aby mozna byto wznowic iteracje w kolejnym podetapie.

Listing F.4 przedstawia procedure, ktéra wywoluje program zbudowany z szaderéw opi-
sanych wyzej, a potem program drugiego etapu rysowania, wykonujacy obraz biezacego
stanu obliczen. Dzialanie procedury zalezy od wartoéci zmiennych globalnych, ktérych de-
klaracje sg pokazane na listingu. Zmienna mappingchanged otrzymuje warto$¢ true po
kazdej zmianie prostokata odwzorowanego w okno, po zmianie wymiaréw okna i po zmianie
limitu N liczby iteracji, pamigtanego w zmiennej maxiter. Jesli zmienna mappingchanged
ma warto$¢ niezerows, to pierwszy etap rysowania trzeba zacza¢ od poczatku; zmienna
curriter otrzymuje warto$¢ 0. Zmienna finished nie otrzyma wartosci true, dopdki
suma liczb iteracji wykonanych w poszczegdlnych podetapach bedzie mniejsza niz N.

W linii 24 s obliczane wymiary obrazu w pikselach — takie jak okno lub 3 razy wigksze,
jesli jest wlaczony antyaliasing. W liniach 26-32 zmiennym jednolitym w bloku TransBlock
s3 nadawane warto$ci; w szczegdlnosci zmiennej curriter zostaje przypisana liczba iteracji
wykonanych we wczedniejszych podetapach, a zmienna diter otrzymuje warto$¢ poczat-
kowg podang w deklaracji w linii 12 albo warto$¢ obliczong w liniach 42-43 w poprzednim
wywolaniu procedury rysujace;j.

Podetapy pierwszego etapu wykonuja obraz w pozaekranowym buforze ramki, ktorego
sposob tworzenia jest opisany dalej. Instrukcje w liniach 39 i 41 mierza czas trwania podeta-
pu, w ktorym wykonane zostalo diter iteracji, po czym (na potrzeby kolejnego podetapu)
obliczana jest liczba iteracji, dla ktérej spodziewany czas obliczen (w sekundach) jest podany
w makrodefinicji FTIME — celem jest wyswietlanie 30 klatek na sekunde, co zapewnia wy-
starczajaca plynno$¢ animacji. Aby pomiary czasu obliczen na GPU mialy sens, wywolania
procedury TimerToc s3 poprzedzone wywolaniami procedury glFinish, ktéra czeka na
dokonczenie wszelkich obliczen przez GPU. Bez tego bylby mierzony tylko czas ,wprawia-
nia obliczen w ruch”

Listing F.4. Procedura rysowania zbioru Mandelbrota
C

: #define MINMAXIT 100

: #define MAXMAXIT 16000

: #define FTIME 0.032

: #define UNB GL_UNIFORM_BUFFER

: int wdt, hgh, magaa;

: static double width, height;

: static OffsFBO *fbo;

: static char mappingchanged = true, finished = false, antialiasl = true;

static GLuint program_id[2], trbuf, trbpoint;
static GLint trofs[7];
static GLint maxiter = MINMAXIT, curriter = 0, diter = 100;

char RedrawMyObjectl ( void )
{
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GLdouble xyc[2];
GLint dit;
double t0, t1, di;

if ( mappingchanged ) { finished = false; curriter = 0; }

if ( !finished ) {
mappingchanged = false;
magaa = antialiasl 7 MAGAA : 1;
xyc[0] = magaa*width; xyc[1] = magaa*height;
glBindBufferBase ( UNB, trbpoint, trbuf );
glBufferSubData ( UNB, trofs[1], 2*sizeof (GLdouble), xyc );
glBufferSubData ( UNB, trofs[2], sizeof (GLint), &maxiter );
glBufferSubData ( UNB, trofs[3], sizeof(GLint), &magaa );
glBufferSubData ( UNB, trofs[4], sizeof(GLint), &curriter );
glBufferSubData ( UNB, trofs[5], sizeof(GLint), &fbo->width );
dit = curriter+diter <= maxiter ? diter : maxiter-curriter;
glBufferSubData ( UNB, trofs[6], sizeof(GLint), &dit );
glBindFramebuffer ( GL_FRAMEBUFFER, fbo->fbo );
glViewport ( 0, O, magaa*wdt, magaaxhgh );
glBindImageTexture ( 1, fbo->txt, 0, GL_FALSE, 0, GL_WRITE_ONLY,

GL_R32F );

glUseProgram ( program_id[0] );
glBindVertexArray ( empty_vao );
glFinish (); t0 = TimerToc ();
glDrawArrays ( GL_TRIANGLE_FAN, 0, 4 );
glFinish (); t1 = TimerToc ();
di = (double)dit*FTIME/(t1-t0);
diter = di < MINMAXIT ? MINMAXIT : (di > MAXMAXIT ? MAXMAXIT : (int)di);
glBindFramebuffer ( GL_FRAMEBUFFER, 0 );
finished = (curriter += dit) >= maxiter;

}
glViewport ( 0, 0, wdt, hgh );
glBindImageTexture ( 1, fbo->txt, 0, GL_FALSE, O, GL_READ_ONLY, GL_R32F );
glUseProgram ( program_id[1] );
glDrawArrays ( GL_TRIANGLE_FAN, 0, 4 );
glBindVertexArray ( O );
if ( showtextl )
DisplayTextObject ( mytext );

glUseProgram ( 0 );
glFlush O;
ExitIfGLError ( "RedrawMyObjectl" );
return finished;

} /*RedrawMyObjectlx*/

Po wykonaniu podetapu lub po jego pominigciu, jesli zmienna finished miata war-
tos¢ false, drugi program szaderdw, opisany dalej, wykonuje obraz w oknie. Warto$¢ true
przekazywana przez procedure RedrawMyObject1 sygnalizuje, ze pierwszy etap rysowania
jest zakonczony. Listing E5 przedstawia przyklad uzycia tej procedury w aplikacji biblioteki
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GLFW; zmienna redrawl, ktdrej warto$¢ true powoduje wywolanie procedury Redrawl
w glownej petli komunikatow aplikacji, otrzymuje wartos¢ false dopiero po wykonaniu
wszystkich podetapéw pierwszego etapu rysowania. Pomiedzy wywotaniami procedury ry-
sowania aplikacja obstuguje komunikaty wejsciowe, powodowane dzialaniami uzytkownika.

Listing E.5. Procedura wykonywania obrazu w czesci okienkowej
C

: void Redrawl ( GLFWwindow *win )

{
glfwMakeContextCurrent ( win );
if ( optil == 0 ) {
if ( (redrawl = !RedrawMyObjectl ()) )
glfwPostEmptyEvent Q) ;
}
else {
optil --;
glfwPostEmptyEvent ();
}
glfwSwapBuffers ( win );
ExitIfGLError ( "Redraw" );

. } /*Redrawlx/

F1.3. Obliczanie koloru piksela

Zadaniem szadera, ktérego procedura main widnieje na listingu E.6, jest zamiana liczb f(c),
wpisanych w pierwszym etapie do obrazu img, na kolor piksela. Wymiary (szerokos¢ i wy-
sokos$¢ w pikselach) tego obrazu sg takie same jak wymiary obrazu koncowego (czyli klatki
zajmujacej cale okno aplikacji) lub m = 3 razy wigksze. W pierwszym przypadku (w linii 31)
kolor piksela na konicowym obrazie jest obliczany przy uzyciu wybranej palety na podstawie
jednego piksela obrazu wejsciowego.

W drugim przypadku (w liniach 33-48) jest wykonywany antyaliasing: kolor kazdego pik-
sela jest $rednig wazong koloréw wielu pikseli obrazu wejsciowego. Kolor piksela (&, ) ob-
razu wynikowego ¢ jest obliczany na podstawie pikseli obrazu wejsciowego p wedtug wzoru

3 3
q(&n)= > Ni Y Njp(38+1i,3n+j), (E2)

i=——3  j=-3

w ktérym liczby N; sa warto$ciami §rednimi funkcji rozkladu normalnego Gaussa N; w prze-
dziatach [i - 1/2,i + 1/2] (zobacz podrozdz. 27.2); przyjete odchylenie standardowe o = 1
odpowiada tu szerokosci lub wysokosci jednego piksela obrazu wejsciowego.

Pomocnicza funkcja itx odczytuje liczbe f(c¢) zapamietang w pikselu obrazu wejécio-
wego, przy czym jesli podane wspoélrzedne okreslajg piksel poza obrazem, to wartos$cig funk-
cji jest liczba INFO, ktorg opisane dalej palety zamienig na kolor czarny. Tablica mgf zawiera
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Listing F.6. Procedura main szadera fragmentdw drugiego etapu rysowania
GLSL

: #version 450 core
: uniform TransBlock { .... } tr; /* listing F.2 */
: layout (location=0) out vec4 out_Colour;

: layout (r32f ,binding=1) uniform image2D img;

: ivec2 wh;
10:

float itx ( ivec2 xy )

{
if (xy.x <0 || xy.y <0 || xy.x > wh.x || xy.y >= wh.y )
return float (INFO);
else
return imageload ( img, xy ).r;
} /xitxk/

void main ( void )

{
const float mgf[4] =
{0.3831031644, 0.2418428568, 0.0606257426, 0.0059798184};
int i, s
ivec2 xy;
float tx;

vec3 Colour, col;

wh = imageSize ( img );
xy = ivec2 ( int(gl_FragCoord.x), int(gl_FragCoord.y) );
if ( tr.mag == 1)
Colour = Palette ( uint(itx ( xy )) );
else { /* mag == 3 */
Xy = tr.mag * xy - ivec2 (-1,-1);
col = mgf[0] * Palette ( itx ( xy ) );
for ( j=1; j < 4; j++)
col += mgf[j] * (Palette ( itx ( xy+ivec2(0, j) ) ) +
Palette ( itx ( xy+ivec2(0,-j) ) ));
Colour = mgf[0] * col;
for (i=1; i< 4; i++ ) {
col = mgf[0] * (Palette ( itx ( xy+ivec2( i,0) ) ) +
Palette ( itx ( xy+ivec2(-1,0) ) ));
for ( j =15 j < 4; j++)
col += mgf[jl * (Palette ( itx ( xy+ivec2( i, j) ) ) +
Palette ( itx ( xy+ivec2( i,-j) ) ) +
Palette ( itx ( xy+ivec2(-i, j) ) ) +
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Palette ( itx ( xy+ivec2(-i,-j) ) ));
Colour += mgf[i] * col;
}
}
out_Colour = vec4 ( AGamma ( Colour ), 1.0 );
} /#mainx/

liczby Nj, te same co na listingu 27.7. Instrukcje w liniach 34-4s realizujg obliczanie koloru
piksela wedlug wzoru (E2), po czym jest on poddawany korekeji gamma i wyprowadzany.

Na listingu F.7 sa przedstawione procedury realizujace dwie palety i wywolujaca je proce-
dura pomocnicza Palette; pierwsza paleta (linie 1-10) jest bardzo prosta: punktom w kole
nadaje kolor niebieski, punktom w obszarze, ktérego brzegiem jest kardioida kolor zielony,
punktom, dla ktérych ciag liczb z; po N iteracjach nie opuscit kota o promieniu R kolor
czerwony, a pozostaltym punktom kolor czarny albo bialy, zaleznie od parzystosci liczby wy-
konanych iteracji (czyli podanej jako parametr czesci catkowitej warto$ci funkgji f(¢)).

Procedura w liniach 32-47 realizuje bardziej wyrafinowang palete, okreslong przy uzyciu
wymiernej krzywej Béziera p (zobacz podrozdz. 15.1115.2), ktéra uzytkownik aplikacji moze
zmieniad. Jesli w pierwszym etapie zostalo wykonane N iteracji lub test spowodowal ich za-
niechanie, to punkt jest czarny. Jesli obliczenia zostaly przerwane po mniej niz N iteracjach,
to w linii 43 jest obliczany parametr ¢ = f(c)/N krzywej, bedacy liczbg z przedziatu (0,1).
Krzywa jest polozona w tréjwymiarowej przestrzeni koloréw; wspolrzedne x y punktu p(t)
okreslaja odcien, a wspolrzedna z odpowiada za jasnos¢ koloru.

Blok zmiennych jednolitych PaletteBlock zawiera reprezentacje krzywej; wartos¢ pola
deg to stopien krzywej, tablica cp zawiera wektory wspoétrzednych jednorodnych punktéw
kontrolnych, a wektory w tablicy bpcp reprezentuja te same punkty, przy czym wspolirzedne
wagowe sg rowne 1. Ta ostatnia reprezentacja jest potrzebna do wykonania obrazu krzywej,
aby uzytkownik mogt ja wygodnie zmieniaé; rozwiniecie tego tematu jest dalej.

Po obliczeniu (przez procedure wywolang w linii 41) punktu p(t) nastepuje obliczenie
koloru. Do wspdtrzednych kartezjanskich x, y jest dotgczana liczba 1 — x — y i w ten sposéb
powstaja wspolrzedne barycentryczne opisujace sktadowe koloru. W linii 43 sktadowe te s3
obcinane do przedziatu [0, 1]; w tym momencie zostaje ustalony odcien, zalezny od proporcji

Listing F.7. Podprogramy realizujace palety

GLSL
vec3 Palette0 ( uint itr )
{
switch ( itr ) {
case INFO: return vec3 ( 0.0, 0.0, 1.0 );
case INF1: return vec3 ( 0.0, 1.0, 0.0 );
case INF2: return vec3 ( 1.0, 0.0, 0.0 );
default: return (itr & 0x01) !'= 0 ? vec3 (1.0, 1.0, 1.0)
vec3 ( 0.0, 0.0, 0.0 );

}
. } /*Palette0x/

11:
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uniform PaletteBlock {
int deg;
vec4d cp[MAXDEG+1], bpcp[MAXDEG+1];
} pal;

16:

17:

18:

19:

20:

21:

{
int i, b;
float s, d;
vecd p;

22:

23:

24:

25:

26:

27:

28:

29:

30:

=1.0-t; d=+t; Db =n;
bep[0];

or (i =1; i <=mn; i++ ) {

p = s¥xp + (b*d)*bcplil;

d *=t; b= (bx(n-1))/(i+1);

H g n
[

}
return p.xyz/p.w;
} /*BCHorner3Rfx*/

31:

32:

33:

34:

35:

vec3 Palettel ( float itr )

{
float t;
vec3 p, C;

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

4a7:

if ( itr >= INFO )
return vec3 ( 0.0, 0.0, 0.0 );
else {

t = itr / float(trb.maxit);

p = BCHorner3Rf ( pal.deg, pal.cp, t );
c.rg = p.xy; c¢.b=1.0 - p.x - p.y;
c

t

= clamp ( c, vec3(0.0), vec3(1.0) );
=max ( c.r, c.g ); t=max (t, c.b);
return p.z*c/t;
}
} /*Palettelx/

48:

49:

uniform int pn = 1;

50:

51:

52:

53:

54:

55:

56:

57:

58

vec3 Palette ( float tx )

{
switch ( pn ) {

default: return Palette0 ( uint(tx) );
case 1: return Palettel ( tx );
case 2: return Palettel ( trunc(tx) );
}

. } /*Palettex/

vec3 BCHorner3Rf ( int n, vec4 bcp[MAXDEG+1], float t )
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skladowych, czyli od kierunku wektora (r, g,b) zapamietanego w zmiennej c. Pozostaje
ustalenie jasno$ci, czyli dtugosci wektora wspotrzednych koloru. W linii 44 najwieksza skta-
dowa jest przypisywana zmiennej t. Obliczony w linii 45 wektor ma najwieksza wspétrzedna
réwng wspdtrzednej z punktu p(t) (ma ona warto$¢ z przedziatu [0, 1]).

Wywolujac Palettel, procedura Palette podaje jako parametr liczbe f(c) albo czes¢
catkowitg tej liczby — do wyboru przez uzytkownika aplikacji.

F1.4. Pozaekranowy bufor ramki

W pierwszym etapie rysowanie odbywa si¢ poza ekranem. Obraz, w ktérym majg by¢ za-
pamietane warto$ci funkcji f(c) dla kazdego piksela, jest zalacznikiem koloru uzywanego
wtedy pozaekranowego bufora ramki’. Oprécz tego obrazu potrzebna jest tablica, w ktérej
beda pamigtane liczby zj.

Listing F.8 przedstawia strukture 0f £ sFBO bedaca opakowaniem pozaekranowego bufora
ramki, oraz procedury obslugi tego bufora. Procedura NewOffsFBO tworzy bufor, ktérego
zalgcznikiem jest tekstura o podanych wymiarach (tekstura ta zawiera obraz, w ktorym sa
zapisywane warto$ci funkcji f(c)), oraz bufor zawierajacy blok magazynowy Cmap; bufor
ten zostaje przywiazany do punktu dowigzania O w celu GL_SHADER_STORAGE_BUFFER (zo-
bacz listing F.3, linia 12). Procedura Set0ffsFB0Size stuzy do zmiany wymiaréw tekstury
i bufora z blokiem Cmap, ktore trzeba dostosowywa¢ do wymiaréw okna aplikacji. Wartos¢
GL_R32F trzeciego parametru procedury glTexStorage2D wywolanej w linii 10 oznacza, ze
kazdy element tekstury ma mie¢ tylko jedng sktadowg reprezentowang jako 32-bitowa liczba
zmiennopozycyjna. Procedura Delete0ffsFBO likwiduje bufor ramki z zalgcznikiem i bu-
for z blokiem magazynowym Cmap.

Listing F.8. Procedury obstugi pozaekranowego bufora ramki
C

. typedef struct {

GLuint fbo, txt, cmap;
int width, height;
} OffsFBO;

. static char AllocOffsTexture ( OffsFBO *fbo, int w, int h )

{
glGenTextures ( 1, &fbo->txt );
glBindTexture ( GL_TEXTURE_2D, fbo->txt );
glTexStorage2D ( GL_TEXTURE_2D, 1, GL_R32F, w, h );
glBindFramebuffer ( GL_FRAMEBUFFER, fbo->fbo );
glFramebufferTexture ( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, fbo->txt,

°Bufor ramki jest gotowy do pracy, gdy ma okreslong szeroko$¢ i wysokos¢ w pikselach; wystarczy po-
danie zalgcznika, tj. tekstury o okreslonych wymiarach. Mozna tez poda¢ wymiary za pomoca procedury
glFramebufferParameteri i w ten sposob przygotowa¢ do pracy bufor ramki bez zalacznikéw (przykiad
jest pokazany w p. 29.2.5); zwré¢émy uwage, ze szader fragmentéw z listingu E3 zawsze wykonuje instrukcje
discard; wynik jego obliczen jest zapisywany z pominig¢ciem ostatniego etapu potoku przetwarzania grafiki.
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13:

14:

15:

16:

17:

18:

19:

20:

21:

22

-}

23:

24: Of£SFBO *NewOffsFBO ( int w, int h )

25:

{

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52

0);
if ( glCheckFramebufferStatus ( GL_FRAMEBUFFER ) !=
GL_FRAMEBUFFER_COMPLETE )

ExitOnError ( "AllocOffsTexture" );
glBindFramebuffer ( GL_FRAMEBUFFER, O );
fbo->cmap = NewStorageBuffer ( wxh*2*sizeof (GLdouble), 0 );
fbo->width = w; fbo->height = h;
ExitIfGLError ( "AllocOffsTexture" );
return true;
/*A11locOffsTexture*/

0ffsFBO *fbo;

if ( (fbo = malloc (sizeof (0ffsFB0))) ) {
glGenFramebuffers ( 1, &fbo->fbo );
if ( AllocOffsTexture ( fbo, w, h ) )
return fbo;
else {
glDeleteFramebuffers ( 1, &fbo->fbo );
free ( fbo );

}
}
return NULL;
. } /*NewOffsFBO*/
char SetOffsFBOSize ( OffsFBO *fbo, int w, int h )
{
if ( w !'= fbo->width || h != fbo->height ) {
glDeleteTextures ( 1, &fbo->txt );
glDeleteBuffers ( 1, &fbo->cmap );
if ( 'AllocOffsTexture ( fbo, w, h ) ) {
glDeleteFramebuffers ( 1, &fbo->fbo );
free ( fbo );
return false;
}
}
return true;
. } /*Set0ffsFBOSize*/

53:
s4: void DeleteOffsFBO ( OffsFBO *fbo )

55:

{

56:

57:

58:

59:

glDeleteFramebuffers ( 1, &fbo->fbo );
glDeleteTextures ( 1, &fbo->txt );
glDeleteBuffers ( 1, &fbo->cmap );
ExitIfGLError ( "DeleteOffsFBO" );
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free ( fbo );
} /*DeleteOffsFBO*/

E15. Odwzorowanie prostokata w okno

Prostokat w plaszczyznie zespolonej, ktdrego obraz wypetnia okno, jest okreslony za pomoca
srodka i promienia okregu opisanego na tym prostokacie; dlugosci jego bokéw mozna ob-
liczy¢, znajac ten promien i wymiary okna w pikselach. Wspolrzedne srodka i promien sg
przechowywane w zmiennych xc, yc i rc; deklaracje pozostaltych zmiennych globalnych,
ktoérych wartosci zalezg od prostokata i od wymiaréw okna, sg pokazane na listingu F4.

Obliczenie wspodtrzednych wierzcholkéw prostokata wykonuje procedura pokazana na
listingu F.9. Instrukcja w linii 11 oblicza dtugos¢ przekatnej okna w pikselach (przy zaloze-
niu, Ze wspolczynnik aspekt jest rowny 1). W linii 12 sg obliczane sinus i kosinus kata miedzy
przekatng a poziomym bokiem prostokata, co umozliwia znalezienie w linii 13 potéwek sze-
rokosci i wysokosci prostokata. W liniach 14 i 15 liczby te s3 odejmowane od i dodawane do
wspolrzednych $rodka prostokata, po czym nastepuje przestanie otrzymanej czworki liczb
do zmiennej rxy w bloku TransBlock.

Wywolana w linii 18 procedura NotifyRectangle przygotowuje tekstowy opis prosto-
kata, ktéry moze by¢ dodatkowo wyswietlony w oknie.

Listing F.9. Procedura znajdujaca odwzorowanie plaszczyzny zespolonej w okno
C
: static double xc = -0.5, yc = 0.0, rc = 3.0, dxc, dyc;

N

3

4

5:

© o N o

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

: void FindTheMapping ( int w, int h )
: q{

double d, s, c;
GLdouble xyc[4];

if ( !Set0ffsFB0Size ( fbo, wxMAGAA, h*MAGAA ) )
ExitOnError ( "FindTheMapping" );

width = (double) (wdt = w); height = (double) (hgh = h);

d = sqrt ( width*width + height*height );

s = height/d; c¢ = width/d;

dxc = rcx*c; dyc = rc*s;

xycl[0] = xc - dxc; xycl1] xc + dxc;

xyc[2] = yc - dyc; xycl[3] = yc + dyc;

glBindBuffer ( GL_UNIFORM_BUFFER, trbuf );

glBufferSubData ( GL_UNIFORM_BUFFER, trofs[0], 4*sizeof (GLdouble), xyc );

NotifyRectangle ();

mappingchanged = true;

ExitIfGLError ( "FindTheMapping" );

: } /*FindTheMapping*/
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Listing F.10. Procedury wybierania prostokata
C

: static int zoomcnt = 0;

. char Zoom ( char zoom_in )

It

int cnt;
double r;

if ( zoom_in ) {
if ( (r = 3.0%xpow ( 1.05, ++cnt )) < MIN_RC )
return false;
¥
else {
if ( (r = 3.0%xpow ( 1.05, --cnt )) > MAX_RC )
return false;

}
rc = r; zoomcnt = cnt;
FindTheMapping ( wdt, hgh );
return true;

} /*Zoomx/

char Pan ( double dx, double dy )

{
xc -= (dx/width)*2.0*dxc; yc += (dy/height)*2.0*dyc;
FindTheMapping ( wdt, hgh );
return true;

} /*Panx*/

Procedury na listingu F10 umozliwiajg zmienianie promienia kofa i srodka prostokata.
Parametr procedury Zoom okresla, czy nalezy wykona¢ najazd, tj. powiekszy¢ fragment ob-
razu przez zmniejszenie promienia okregu. Parametry procedury Pan sg wspolrzednymi
wektora przesuniecia kursora w oknie — na ich podstawie procedura oblicza przesuniecie
w plaszczyznie zespolonej i znajduje srodek nowego prostokata.

E1.6. Paletaiwymierne krzywe Béziera

Rysunek F.2 przedstawia okno z przyktadowymi wihajstrami umozIliwiajagcymi interakcyjne
zmienianie palety; przypomnijmy, Ze jej zadaniem jest przyporzadkowanie kazdej liczbie
f(c) € [1, N] wektora o wspotrzednych r, g, b € [0,1] reprezentujacego kolor do nadania pik-
selom, dla ktorych szader fragmentéw w pierwszym etapie przerwat obliczenia po wyznacze-
niu k = | f(c)| elementow ciggu zespolonego. Wihajster z lewej strony przedstawia trojkat,
na ktorego tle jest narysowana plaska krzywa Béziera i jej tamana kontrolna. Kolor kazdego
piksela tréjkata jest opisany przez wektor (R, G, B), ktorego wspélirzedne s3 jednorodnymi
wspolrzednymi barycentrycznymi (zobacz podrozdz. 5.3) odpowiedniego punktu w ukladzie
okreslonym przez wierzchotki tréjkata. Najwieksza wspolrzedna jest rowna 1, dzigki czemu
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kazdy punkt tréjkata ma maksymalng jasnos¢ mozliwg do otrzymania przy ustalonym odcie-
niu. Uzytkownik aplikacji moze dowolnie przesuwa¢ punkty kontrolne krzywej, sprawiajac,
ze przechodzi ona przez punkty o wybranych odcieniach.

bh(t
k(1)
p=30
p =10
P73
P p
=/2
P 3_1
P ml
0 5 -—
0 1t

Rysunek E.2. Obraz krzywej Béziera okreslajacej palete i wykresy funkgji h

Wihajster z prawej strony wyswietla krzywa Béziera, ktdra jest wykresem funkcji ska-
larnej (wielomianu) z(t) opisujgcej jasnos¢ koloréw; punkty kontrolne tej krzywej mozna
przesuwa¢ do dotu i do gory, aby jasno$¢ zmniejszy¢ lub zwiekszy¢. Wspélrzedne R, G punk-
tow plaskiej krzywej i warto$¢ funkcji skalarnej opisanych wyzej opisuja wspoélrzedne x, y, z
wielomianowej krzywej Béziera q polozonej w przestrzeni tréjwymiarowe;.

Opisana w p. E1.3 krzywa wymierna p powstaje przez reparametryzacje krzywej q: jest
p(t) = q(h(t)), przy czym h jest to funkcja homograficzna skonstruowana tak, aby spelniata
nastepujace warunki: ma by¢ rosngca w przedziale [0,1] i ma by¢ h(0) = 01 h(1) = 1. Kazda
taka funkcja ma postac

___pt
h(t)_pt+(1—t)’

z dodatnim parametrem p.
Podstawiajac funkcje & w miejsce parametru krzywej Béziera ¢, ktérej punkty kontrolne
oznaczymy po, . . ., Pn (zobacz p. 15.1), dostaniemy parametryzacje

Wszystkie skladniki maja wspSlny mianownik, réwny (pt + (1 - t))n =yl (h)ra—-t)

= Y1 p'B(t), zatem
Siop'piBI(t)
p(1) = S5

o p'BY(t)
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Wektorem wspolrzednych jednorodnych punktu p(t) jest wiec punkt P(t) krzywej Béziera,
ktérej punkty kontrolne Py, ..., P, sa wektorami wspolrzednych jednorodnych punktéw
Pos ... Pn, takimi ze wspolrzedna wagowa W; wektora P; jest réwna p’. Punkt p(t) znaj-
duje pokazana na listingu E7 procedura BCHorner3Rf, ktora najpierw oblicza wektor P(t),
a potem (w linii 29) dokonuje przejscia od wspotrzednych jednorodnych do kartezjanskich.
Do manipulowania wartoscig parametru p najlepiej nadaje si¢ rolka myszy; w odpowie-
dzi na komunikat o jej obréceniu warto$¢ zmiennej przechowujacej ten parametr (poczat-
kowo 1) nalezy pomnozy¢ lub podzieli¢ na przyklad przez czynnik 1.05. Uzytecznym zakre-
sem wartosci parametru p okazal si¢ przedzial [107%,10*]. Rysujac wihajster taki jak w oknie
na rysunku E2, lepiej jest uzywac reprezentacji, w ktérej wspdtrzedne wagowe wszystkich
punktow kontrolnych sg réwne 1 (sg one przechowywane w tablicy bpcp). Wiecej wiado-
mosci na temat wizualizacji zbioru Mandelbrota mozna znalez¢ w sieci, polecam strone [61].

~0.763213624, yc = 0.094630919. r = 8.02e-06. N = 16000

Rysunek F.3. Obraz fragmentu zbioru Mandelbrota i jego otoczenia

Wszystkie opisane w tym podrozdziale (i wszystkie inne) sposoby wizualizacji zbioru
Mandelbrota moga by¢ tez uzyte do wykonywania obrazéw zbioréw Julii. Dla ustalonej
liczby zespolonej ¢ zbidr Julii J. sklada sie z tych punktéw z, plaszczyzny zespolonej, dla
ktérych ciag nieskoriczony okreslony wzorami zg = 0, zx; = z; + ¢ jest ograniczony. Liczba c
jest zatem ta sama dla wszystkich punktow, dla ktérych wykonuje obliczenia szader tatwy
do otrzymania przez modyfikacje szadera z listingu E3, i mozna jg przekaza¢ w zmiennej
jednolitej. Aplikacja moze liczbe ¢ przeczytac z pliku lub z klawiatury, ale znacznie lepszym
pomystem jest umozliwienie uzytkownikowi wskazywania punktu ¢ w dodatkowym oknie,
w ktorym jest wyswietlany zbiér Mandelbrota (lub powigkszony fragment tego zbioru).



10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

1134 F. RYSOWANIE FRAKTALI

F2. Piramida Sierpinskiego i gabka Mengera

Znana konstrukcja zbioru Cantora — dzielimy odcinek na trzy réwne czeéci, usuwamy czesé
srodkowq (zostawiajac jej konce) i powtarzamy w nieskoniczono$¢ to samo z odcinkami, ktdre
pozostaly — ma swoje uogélnienia w dwoch, trzech i wiekszej liczbie wymiaréw. Narysujemy
dwie najbardziej znane figury tréjwymiarowe otrzymane tg metoda.

Piramida Sierpinskiego powstaje z czworoscianu foremnego przez usunigcie o$mio-
$cianu foremnego, ktérego wierzcholki sg srodkami krawedzi tego czworo$cianu. W wyniku
otrzymamy cztery czworosciany, z ktérych kazdy jest obrazem czworoscianu danego w jed-
nokladnosci o wspotczynniku skali 1/2 i o $rodku w jednym z jego wierzchotkéw. Czworo-
$ciany te drazymy dalej w ten sam sposéb.

Na obrazach przedstawiamy oczywiscie przyblizenia piramidy otrzymane po skonczenie
wielu krokach usuwania; poniewaz takie przyblizenie sklada sie z czworoscianéw, ktérych
$ciany sg trojkatami, mozemy je o$wietli¢. Zauwazmy jednak, ze liczba czworoscianow za-
lezy wyktadniczo od liczby N wykonanych iteracji — jest ona réwna 4V, czyli dla N = 12
mamy ponad 16 milionéw czworoécianéw. Nie ma sensu tworzenie tablic z wszystkimi ich
wierzchotkami; znacznie lepiej i prosciej jest do ich wygenerowania zatrudni¢ GPU.

Szader geometrii z listingu F11 oblicza i wyprowadza $ciany jednego czworoscianu; prog-
ram z tym szaderem trzeba wywola¢ za pomocg procedury glDrawArraysInstanced, ka-
7ac jej narysowa¢ jeden punkt w 4" instancjach. Szader wierzchotkéw musi przekazaé tylko
numer instancji (otrzymany w zmiennej gl _InstanceID), przy czym przed przystapieniem
do rysowania nalezy nada¢ zmiennej jednolitej level wartos¢ N.

Listing F.11. Szader geometrii do rysowania piramidy Sierpiniskiego
GLSL

: #version 440
. #define A 0.57735027 /* sqrt(1/3) */

: layout (points) in;
: layout (triangle_strip,max_vertices=12) out;

. in int instanceID[];

out FVertex {
vec3 Colour, Position, Normal, TNormal;
} Out;

uniform TransBlock {
mat4 mm, mmti, vm, pm, vpm;
vec4 eyepos;
} trb;

uniform int level;

const vecd pl[4] = { vecd(-A,-A,-A,1.0), vecd(A,A,-A,1.0),
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vecd(-A,A,A,1.0), vecd(A,-A,A,1.0) };
const vec3 nv[4] = { vec3(-A,A,-A4), vec3(-A,-A,4),
vec3(A,-A,-A), vec3(A,AA) };
{ vec3(1.0,0.0,0.0), vec3(0.0,1.0,0.0),
vec3(0.0,0.0,1.0), vec3(0.5,0.5,0.5) };
{{1,2,3},{0,2,3},{0,1,3},{0,1,2}};
{{0,1,2},{0,2,3},{0,3,1},{3,2,1}};

const vec3 col[4]

const int t[4][3]
const int f[4][3]

void main ( void )

{
vecd ql4], pos[4];
vec3 c[4], nl[4];
iLt i’ j’ k: ls

for (i =0; i< 4; i++ ) { qli] = p[il; cli] = collil; 2}
for (i =0, j = instanceID[0]; i < level; i++, j /=4 ) {
k=3%4;
for (1 =0; 1< 3; 1++ )
qlt[k][1]1] = 0.5%(qlk] + qltlkI[111);
for (1 =0; 1< 3; 1++ )
cltlk][11] = 0.5%x(c[k] + cl[t[k][111);
}

for (i =0; i < 4; i++ ) {

n[i] = normalize ( mat3(trb.mmti) * nv[i] );
pos[i] = trb.mm * q[il;

qli] = trb.vpm * pos[i];

H Y

i= 0; i< 4; i+ ) o
for ( j =0; j<3; j++ ) {
= f[l][J]
gl_P051t10n = qlk];
Out.Position = pos[k].xyz;
Qut.Colour = clk];
OQut.Normal = Out.TNormal = nl[i];
EmitVertex ();
}

EndPrimitive ();

(@]
2}
Hr\

3

} /*main*/

Polozenia i kolory wierzchotkéw ,,duzego” czworoscianu sa podane w tablicach p i col.
W linii 36 dane te s3 kopiowane do tablic roboczych, po czym w petli w liniach 37-43 nastepuje
N iteracji przeksztalcenia czworoscianu. W kazdej iteracji, na podstawie numeru instancji
jest wybierany (i przypisywany zmiennej k) numer wierzchotka, ktéry ma by¢ srodkiem jed-
nokltadnosci. Postugujac sie indeksami z pomocniczej tablicy t, szader zastepuje pozostale
trzy wierzcholki srodkami odpowiednich krawedzi czworosécianu, czyli ich obrazami w tej
jednokladnosci. W taki sam sposob sg przetwarzane (interpolowane) kolory wierzchotkow.
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Petla w liniach 44-48 ma na celu przejscie od uktadu wspétrzednych modelu do uktadéw
$wiata i kostki standardowej. Jednokladnosci zachowuja wektory normalne $cian czworo-
$cianu, zatem w linii 45 przeksztatceniu (przejsciu do ukladu $wiata i normalizacji) sg podda-
wane wektory wziete z tablicy nv. Sciany s3 wyprowadzane w petli w liniach 49-s9; w kazdym
przebiegu wewnetrznej petli jest wyprowadzany jeden wierzcholek trojkata.

Gabka Mengera powstaje przez podzielenie szescianu na 27 szescianéw 3 razy mniej-
szych i odrzuceniu tych szescianéw, ktérych zadna krawedz nie lezy na krawedzi szescianu
oryginalnego. Pozostate 20 szescianéw w ten sam sposob przeksztalca si¢ dalej. Praktyczne
ograniczenie liczby iteracji w konstruowaniu przyblizenia gabki Mengera jest znacznie sil-
niejsze, bo w kazdej iteracji liczba szescianéw rosnie dwudziestokrotnie, wiec po wykonaniu
5 iteracji dostaniemy 3200000 sze$ciandw i na tym wypadatoby poprzestac.

Implementujac przeksztalcenia szescianu, ktérego krawedzie sa réwnolegte do osi ukladu
wspolrzednych (modelu), skorzystamy z faktu, ze kazda potrzebna jednoktadnos¢ moze by¢
zrealizowana przez niezalezne przeksztalcenie wspoétrzednych x, y, z. ,,Skompresowana” in-
formacja o przeksztalceniach jest umieszczona w tablicy t; jesli w danej iteracji szescian
ma by¢ poddany przeksztatceniu o numerze k € {0,...,19}, to liczby t [k] [0], t [k] [1]
i t[k] [2] oznaczaja odpowiednio numery trzech przeksztalcen, ktérym nalezy poddac te
wspolrzedne. Aby umozliwi¢ przetwarzanie wspdtrzednych w petli, zamiast nada¢ zmien-
nym pO i p1 typ vec3, zadeklarowalem je jako tablice liczb typu float.

Niech s oznacza wspolrzedng x, y lub z; indeks 1 jest numerem tej wspdlrzednej. Jej
przedziat zmiennosci [ so, s1] dla poddawanego przeksztalceniu sze$cianu, zaleznie od liczby
t [k] [1] nalezy zastapi¢ przez [so,a], [a,b] lub [b,s;], gdzie liczby a i b dzielg przedziat
[s0, 51] odpowiednio w 1/3 i 2/3 jego dtugosci; odpowiednie obliczenia s3 wykonywane w li-
niach 4s, 49-51 albo 54. Zwracam uwage, Ze wzory zaprogramowane w liniach 46 i 49 oraz so
i 54 sg identyczne, dzigki czemu wyniki obliczen liczb a i b na danym poziomie podziatu sg
obarczone identycznymi btedami zaokraglen. Trzeba dbac o takie szczegoty.

W liniach ss-61 z liczb znajdujacych si¢ w tablicach p0 i p1 skfadane jest 8 wierzchot-
kow szescianu, ktdre zostajg zapamietane w tablicy p. Czworki indeksow do tej tablicy, ra-
zem z odpowiednimi wektorami normalnymi $cian szedcianu, s3 przekazywane procedurze
OutputFacet, ktdrej zadaniem jest przekazanie na wyjscie szadera jednej $ciany szescianu.
Warunki sprawdzane przed kazdym wywotaniem tej procedury majg na celu pominiecie
$cian, ktore nie moga by¢ widoczne na obrazie. Po pierwsze, jesli ostatnie przeksztalcenie
wspotrzednej s zamienilo przedziat [so, s1] na [a, b] (czyli odrzucito poczatek i koniec prze-
dziatu), to $ciany w plaszczyznach s = a i s = b przylegaja do $cian innych szescianéw. Po
drugie, szader odrzuca $ciany odwrdcone tytem do obserwatora.

Wektor normalny kazdej $ciany sze$cianu ma kierunek jednej z osi uktadu wspétrzednych
modelu. Dzigki temu wystarczy sprawdzié, czy réznica wspdlrzednej s polozenia obserwa-
tora i dowolnego punktu na $cianie ma taki sam znak jak wspdtrzedna s (zorientowanego na
zewnatrz szescianu) wektora normalnego tej §ciany. Aby umozliwi¢ te testy, w linii 62 szader
oblicza polozenie obserwatora w ukladzie wspotrzednych modelu. W zmiennej trb.mmti
jest przechowywana potrzebna do przeksztalcenia wektoréw normalnych transpozycja od-
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Listing F.12. Szader geometrii do rysowania gabki Mengera

GLSL

: #version 440

. const int t[21][3]

:.... /* linie 3-19 takie same, jak na listingu F.11 %/

{{0,0,0},{1,0,0},{2,0,0},{0,1,0},{2,1,0},{0,2,0},{1,2,0},

0
{2,2,0},{0,0,1},{2,0,1},40,2,1},{2,2,1},40,
{2’0,2}7{031,2}7{2’1,2}7{032)2}7{1’2’2}’{2’

ip3[4] = {2,6,3,7}, ip4[4]

vec3 pl8];
void OutputVertex ( vec3 p, vec3 nv )

{

vecd q;

Out.Colour = vec3( p.x/(2%A)+0.5, p.y/(2.0%A)+0.5, p.z/(2.0%A)+0.5 );
Out.Position = (q = trb.mm*vec4(p,1.0)) .xyz;

2
0
2

0
,2 ){1’052},
2 ’{O’O,O}};

B

}
}
}

: const int ip0[4] = {0,3,4,7}, ip1[4] = {1,5,2,6}, ip2[4] = {1,0,5,4},
{1,2,0,3}, ip5[4] = {5,4,6,7};

Out.Normal = Out.TNormal = mat3(trb.mmti) * nv;

gl_Position = trb.vpm * q;
EmitVertex ();
} /*0utputVertexx/

void OutputFacet ( int ip[4], vec3 nv )
{

int i;

for (i =0; i < 4; i++ )
OutputVertex ( plip[ill, nv );
EndPrimitive ();
} /*0QutputFacet*/

void main ( void )

{
float pO[3], p1[3], a;
vecd epm;
int i, j, k, 13

pO[0] = pO[1] = pO[2] = -A; p1[0] = pi[1] = pi[2] = A;

for (i = 0, j = instanceID[0]; i < level;
k=3 % 20;
for (1 =0; 1< 3; 1++ )
switch ( t[k][1] ) {
case 0:

i++, j /=20 ) {
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p1[1] = (2.0%p0[1] + p1[1])/3.0;
break;

case 1:
a = (2.0%xp0[1] + p1[11)/3.0;

pi[1] = (pO[1] + 2.0%p1[1]1)/3.0;
pO[1] = a;
break;

case 2:
pO[1] = (pO[1] + 2.0%p1[1])/3.0;
break;

}

}
pl0] = vec3(p0[0],p0[1],p0[2]1); pl1] = vec3(p1[0],p0[1],p0[2]);
pl2] = vec3(p1[0],p1[1],p0[2]); pl[3] = vec3(pO[0],p1[1],p0[2]);
pl[4] = vec3(p0[0],p0[1],p1[2]); pl[5] = vec3(p1[0],pO[1],p1[2]);
pl6] = vec3(p1[0],p1[1],p1[2]); pl[7] = vec3(p0[0],p1[1],p1[2]);
epm = transpose(trb.mmti) * trb.eyepos;
if ( level == 0 ) k = 20;
if ( t[xk]1[0] !'= 1 && epm.x - pO[0] < 0.0 )

OutputFacet ( ip0O, vec3(-1.0,0.0,0.0) );
if ( t[k][0] !'= 1 && epm.x - p1[0] > 0.0 )

OutputFacet ( ipl, vec3(1.0,0.0,0.0) );
if ( t[k][1] !'= 1 && epm.y - pO[1] < 0.0 )

OutputFacet ( ip2, vec3(0.0,-1.0,0.0) );
if ( t[kI[1] !'= 1 && epm.y - p1[1] > 0.0 )

OutputFacet ( ip3, vec3(0.0,1.0,0.0) );
if ( t[k][2] !'= 1 && epm.z - pO[2] < 0.0 )

OutputFacet ( ip4, vec3(0.0,0.0,-1.0) );
if ( t[k]1[2] !'= 1 && epm.z - p1[2] > 0.0 )

OutputFacet ( ip5, vec3(0.0,0.0,1.0) );

} /#*mainx/

wrotnos$ci macierzy przejécia od uktadu modelu do ukladu $wiata, czyli transpozycja ma-
cierzy przejscia od ukladu $wiata do ukladu modelu. Dlatego w tym miejscu jest uzyta
funkcja transpose, ktdra likwiduje skutki transpozycji wykonanej przez CPU. Z szesciu
$cian szescianu odwrdcone przodem do obserwatora sa zawsze tylko jedna, dwie lub trzy,
zatem szader wyprowadzi co najwyzej trzy tasmy trojkatowe z czterema wierzchotkami (re-
prezentujace po dwie trojkatne potdéwki $cian). Dlatego limit liczby wierzchotkéw podany
w kwalifikatorze wyjscia tego szadera jest tez rowny 12 (zob. listing E11, linia 6). Procedura
OutputFacet wyprowadza jedng taka tasme, za pomocg procedury OutputVertex. W li-
nii 18 jest obliczany kolor wierzchotka — przez poddanie polozenia wierzchotka takiemu
przeksztalceniu, ktore szescian [—\/1/—3 , \/1/—3 ]? przeprowadza na kostke jednostkowa [0, 1]°.
W linii 19 nastepuje przejscie od ukladu modelu do ukladu $wiata, w linii 20 obliczany jest
wektor normalny $ciany w ukladzie $wiata, a w linii 21 polozenie wierzchotka jest przeksztal-
cane do ukladu wspoélrzednych kostki standardowe;.
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Za wyglad obiektéw na obrazie odpowiada szader fragmentéw, ktéry moze stosowac do-
wolny model oswietlenia i moze tez realizowac algorytm cieni. Obrazy na rysunku F.4 zostaly
wykonane przy uzyciu szadera z listingéw 18.1-18.4.

Rysunek F.4. Obrazy piramidy Sierpinskiego i gabki Mengera

Rozszerzymy zadanie, otrzymujac obrazy przeciecia gabki (a raczej jej przyblizen) z pot-
przestrzenig. W tym celu trzeba okresli¢ plaszczyzne, ktora jest brzegiem tej potprzestrzeni
i podda¢ $ciany rysowanych szescianéw obcinaniu tg ptaszczyzna, ale to nie wystarczy: trzeba
jeszcze narysowac $ciany bryt otrzymanych z przecigtych sze$ciandéw. Uzyjemy do tego prog-
ramoéw z dwoma nowymi szaderami geometrii; szadery wierzchotkéw i fragmentéw pozosta-
ng te same.

Listing F13 przedstawia szader powodujacy obcinanie $cian szescianéw; jest do niego do-
dana deklaracja tablicy gl _ClipDistance, do ktérej sa wpisywane odleglosci wierzchotkéw
od ptaszczyzny obcinajacej i blok zmiennych jednolitych opisujacy te plaszczyzne. Pole nv
w tym bloku przechowuje wektor normalny n, a w tablicy square s3 podane wierzchotki
Wwo, ..., w3 lezacego w tej plaszczyznie czworokata; kazdy z nich, razem z wektorem normal-
nym, wyznacza te plaszczyzne jednoznacznie.

Listing F.13. Pierwszy szader geometrii do rysowania obcietej gabki Mengera
GLSL

#version 440
.... /% linie 3-19 takie jak na listingu F.11 %/
out float gl_ClipDistance[1];
uniform ClipPlane {
vec4 nv;

vec4d square([4];
} clp;
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vec3 pl8];
float c[8];

void OutputVertex ( vec3 p, vec3 nv, float c )

{

. /* poczatek procedury bez zmian */
gl_ClipDistance[0] = c;
EmitVertex ();
} /*0utputVertex*/

void OutputFacet ( int ip[4], vec3 nv )
{

int 1i;

for (i =0; i < 4; i++ )
OutputVertex ( plip[il], nv, c[ip[il] );
EndPrimitive ();
} /*0OutputFacet*/

void main ( void )
{
. /* zmienne lokalne procedury main bez zmian */
bool  pos;

. /* obliczanie wierzchotkdw szeScianu bez zmian */
for (i = 0, pos = false; i < 8; i++ ) {
c[i] = dot ( clp.nv.xyz, pl[il-clp.square[0].xyz );
if ( c[i]l > 0.0 ) pos = true;
}
if ( !'pos ) return;
epm = transpose(trb.mmti) * trb.eyepos;
. /* wyprowadzanie §cian szeScianu bez zmian */
} /*mainx*/

Obliczenie wierzchotkéw szescianu jest wykonywane tak samo jak przez szader z lis-
tingu F.12. Zadaniem instrukcji w liniach 3740 jest obliczenie odleglosci ze znakiem wierz-
chotkéw od ptaszczyzny obcinajacej, a dokladniej, dla wierzchotka p; jest znajdowana liczba
¢i = (n, pi — wo). Jedli zadna liczba c; nie jest dodatnia, szader konczy dzialanie, oszczedzajac
niepotrzebnej pracy etapowi obcinania w potoku przetwarzania grafiki. Modyfikacje proce-
dur OutputFacet i OutputVertex maja na celu wyprowadzenie razem z wierzchotkiem p;
liczby c;.

Listing F.14 przedstawia szader geometrii, ktérego zadaniem jest znalezienie i wyprowa-
dzenie wielokatéw otrzymanych z przecigcia szesciandw, z ktérych sklada si¢ gabka, plasz-
czyzng obcinajgca. Taki wielokat musi by¢ podzielony na tréjkaty i wyprowadzony w postaci
tasmy tréojkatowej; moze ona miec co najwyzej 6 wierzchotkow.
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Listing F.14. Drugi szader geometrii do rysowania obcig¢tej gabki Mengera

GLSL

. #version 440

:.... /* zmienne interfejsu takie jak na listingu F.12 */
:uniform ClipPlane { .... } clp; /* listing F.13 %/

. vec3 cp[20];

s: int SHClip ( vec3 nv, vec3 p, int n, int k, int 1 )

9:

10:

11:

12:

13:

{
vecd s, t;
float ds, dt;
int i, m;

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31

32

s = cplk+n-1]; ds = dot (
for (i =m=0; i
t = cplk+i]; dt =
if (ds >= 0.0 ) {

A

dot (

else OUTPUT ( mix ( s,
}
else {
if (dt >= 0.0 ) {
OUTPUT ( mix ( s, t,
QUTPUT ( t )
}

= t; ds = dt;
}

return m;

: #fundef OUTPUT

: } /*SHClip*/

33:

34:

35:

36:

void OutputVertex ( vec3 p )
{

vecd q;

37:

38:

39:

40:

41:

42:

43

Out.Normal = Qut.TNormal =
gl_Position = trb.vpm * q;
EmitVertex ();

: } /*0utputVertex*/

44:

45

: void OutputPolygon ( int n )

#define OUTPUT(P) { cp[l+m] =

P; m++; }

nv, g-s );

n; i++ ) {

nv, g-t );

if (dt >= 0.0 ) OUTPUT ( t )

t, ds/(ds-dt) ) )

ds/(ds-dt) ) )

Out.Colour = vec3( p.x/(2%A)+0.5, p.y/(2.0%A)+0.5, p.z/(2.0%A)+0.5 )
Out.Position = (q = trb.mm*vec4(p,1.0)).xyz;

mat3(trb.mmti) * clp.nv.xyz;

>
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a7: int i, k;

9: for (1i=0, k=mn-1; i< k; i++, k-- ) {

50: OutputVertex ( cplil );
51: OutputVertex ( cplk] );
s2: }

s3: if (1 ==k )

sa: OutputVertex ( cplil );

s5: EndPrimitive ();
s6: + /*0utputPolygonx/

s8: void main ( void )

59: {

60: .... /* zmienne jak na listingu F.12 x/
61: float c;

62: bool pos, neg;

64: .... /* obliczanie wierzchotkdéw szeScianu bez zmian */
es: for (i =0, pos = neg = false; i < 8; i++ ) {

66: ¢ = dot ( clp.nv.xyz, plil-clp.square[0].xyz );

67: if (¢ > 0.0 ) pos = true;

68: else if ( ¢ < 0.0 ) neg = true;

69 }

70. if ( !'(pos && neg) ) return;

~
i
Hh

or (i =0; 1< 4; i++ )
72: cplil = clp.square[i] .xyz;

73: i = SHClip ( vec3(-1.0,0.0,0.0), p[0], 4, 0, 10 );
7a: i = SHClip ( vec3(1.0,0.0,0.0), p[1], i, 10, 0 );
7s: i = SHClip ( vec3(0.0,-1.0,0.0), p[1], i, 0, 10 );
76: i = SHClip ( vec3(0.0,1.0,0.0), p[2], i, 10, 0 );
77: i = SHClip ( vec3(0.0,0.0,-1.0), p[1], i, 0, 10 );
78: i = SHClip ( vec3(0.0,0.0,1.0), p[5], i, 10, 0 );
79: if (1> 2)

80: OutputPolygon ( i );

g1: ¥ /*mainx/

Procedura main, na podstawie numeru instancji sze$cianu, oblicza jego wierzchotki tak
samo jak w szaderach na listingach F12 i F13. W liniach 65-69 s3 obliczane odleglosci ze zna-
kiem wierzchotkéw od plaszczyzny obcinajacej, po czym, jesli wszystkie one maja ten sam
znak, to szader konczy dzialanie. Jesli za$ plaszczyzna obcinajaca przecina szescian, to prze-
cigcie jest wyznaczane. Czworokat, ktorego wierzchotki sg podane w tablicy square, musi
by¢ tak duzy, aby zawieral przeciecie plaszczyzny z calg gabka. Przecigcie jest znajdowane
za pomocg opisanego w p. 19.8.7 algorytmu Sutherlanda-Hodgmana obcinania wielokgta do
polprzestrzeni; szescian (czes¢ przyblizenia gabki okreslona przez numer instancji) jest prze-
cigciem szesciu polprzestrzeni, a zatem procedure obcinania trzeba wywota¢ szesciokrotnie.
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Parametrami procedury obcinania s3 wektor normalny i punkt plaszczyzny obcinajacej
(ktéra w tym przypadku jest plaszczyzna zawierajaca $ciane szescianu), liczba wierzchotkéw
obcinanego wielokata i dwa indeksy do globalnej tablicy cp, w ktorej sa przechowywane
te wierzchotki. Tablica ta jest podzielona na potowy; wierzchotki sa odczytywane z jednej
polowy (ktdrej poczatek jest wskazywany przez pierwszy indeks) i zapisywane w drugiej po-
fowie; w nastepnym wywolaniu procedury role tych poléwek sa zamieniane. Cho¢ podczas
obcinania duzego czworokata do sze$cianu nie pojawi si¢ wiecej niz 6 wierzchotkow, tablica
cp ma dlugos¢ 20; jest to zabezpieczenie na wypadek, gdyby (wskutek zmian aplikacji) po-
dany w tablicy square czworokat stal si¢ za maly i wynik jego obcinania mégt mie¢ nawet 10
wierzchotkéw!®.

W liniach 71-72 wierzcholki czworokata sg przepisywane do pierwszej polowy tablicy cp.
Procedura SHC1ip jest podobna do tej z listingu 19.15, ale w tym przypadku obliczenie jest
wykonywane we wspolrzednych kartezjanskich. Wzér opisujacy parametr ¢ punktu przecie-
cia krawedzi st wielokata z plaszczyzng obcinajacg ma postaé

t=(q-s,n)/(t-s,n)=ds/(ds —dy),

w ktorej liczby d i dy sg odleglosciami ze znakiem punktow s i t od plaszczyzny obcinajace;.

Procedura OutputPolygon wyprowadza wynik obcinania. Jego wierzchotki sg uporzad-
kowane w kolejno$ci wystepowania na brzegu. Gdyby byta mozliwos¢ wyprowadzenia wach-
larza tréjkatow przez szader geometrii, to taka kolejnos¢ bylaby odpowiednia. Ale szader
moze wyprowadzi¢ tylko tasme tréjkatowa. Instrukcje procedury OutputPolygon realizuja
kolejnos$¢ wyprowadzania wierzchotkéw odpowiednia dla tasmy.

Przedstawiona na listingu F15 procedura wykonuje obraz obcietej gabki przy uzyciu
programow z szaderami opisanymi wyzej. Liczba instancji obiektu (tj. sze$ciandw, z kto-
rych sklada sie przyblizenie gabki) jest wyznaczana tak jak dla gabki nieobcietej. Podczas
rysowania $cian szescianéw (w linii 16) obcinanie ma by¢ wiaczone, ale jest ono wytaczane
w linii 17, przed rysowaniem przekroju gabki.

Listing F.15. Procedura rysowania obci¢tej gabki Mengera
C

: void DrawClippedSponge ( void )

-~

GLint ninst;
int i;

glBindVertexArray ( empty_vao );

for (i =1, ninst = 20; i < level[1]; i++ )
ninst *= 20;

glEnable ( GL_CLIP_DISTANCEO );

glEnable ( GL_CULL_FACE );

glCullFace ( GL_FRONT );

1°Czasami trzeba dmucha¢ na zimne i moim zdaniem to jest taka sytuacja. Z kazdym obcinaniem wielokata
wypuklego do pélprzestrzeni liczba wierzchotkéw moze si¢ zwigkszy¢ co najwyzej o 1.
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glFrontFace ( GL_CCW );
glUseProgram ( program_id[2] ); /* program z szaderem z listingu F.13 */
glUniformli ( levelloc[2], levell[l] );
glUniformli ( ColourSourcelLoc[2], 0 );
glDrawArraysInstanced ( GL_POINTS, O, 1, ninst );
glDisable ( GL_CLIP_DISTANCEO );
glUseProgram ( program_id[3] ); /* program z szaderem z listingu F.14 */
glUniformli ( levelloc[3], levell[l] );
glUniformli ( ColourSourceLoc[3], 0 );
glDrawArraysInstanced ( GL_POINTS, O, 1, ninst );
glBindVertexArray ( 0 );
ExitIfGLError ( "DrawClippedSponge" );
} /#DrawClippedSpongex*/

Rysunek E5. Obrazy cz¢sci wspdlnej gabki Mengera i potprzestrzeni

Rysunek E5 przedstawia obrazy przecie¢ dwoch przyblizen gabki Mengera z polprzes-
trzenig { (x, y,z):x+y+2z<0}.



GPGPU

Przedstawiona w rozdziale 31 implementacja metody zageszczania siatek jest przyktadem za-
stosowania GPU do obliczen niezwigzanych bezposrednio z grafika, czyli GPGPU. W tym
dodatku s3 opisane przyklady implementacji algorytméw ogdlnego stosowania, wykorzys-
tujacych moc obliczeniowa pracujacych réwnolegle procesoréw GPU. Czgs¢ z nich zostala
uzyta w implementacji metody bilansu energetycznego w rozdziale 29 i w procedurach za-
geszczania siatek opisanych w rozdziale 31.

G.1. Dzialania parami

Majac dany ciag n liczb lub wektoréw, mozna obliczy¢ sume ich wszystkich w [log, 1| kro-
kach, dodajac jednoczesnie pary sktadnikéw, a potem pary sum czesciowych. Implementacja
najprostszego algorytmu sumowania parami jest pokazana na listingach G.1i G.2. Pierwszy
z nich przedstawia szader obliczeniowy, ktéry wywoluje procedure dodajaca do i-tego ele-
mentu w tablicy element j-ty; ta procedura, niepokazana tu, realizuje dziatanie odpowiednie
dla konkretnych obiektéw, ktore moga by¢ liczbami catkowitymi lub zmiennopozycyjnymi,
ale tez wektorami lub macierzami. Szczegdly budowy tablicy w pamigci GPU, w ktdrej sa
umieszczone obiekty (np. uklad danych w buforze) i rodzaj obiektow, zna tylko ta procedura.
Zadaniem procedury main jest wyznaczenie liczb i oraz j — pierwsza z nich jest numerem
instancji szadera w grupie roboczej i jest mniejsza niz n/2, a druga jest o [ n/2] wieksza.

Przedstawiony tu szader jest wywolywany przez procedure GPUSumUp, ktdra przedtem
przywiazuje do odpowiedniego celu podany jako parametr bufor magazynowy zawierajacy
dane i nadaje wartosci zmiennym jednolitym — zmienna n0 okresla poczatek ciagu do zsu-
mowania w tablicy, a zmienna n okresla biezaca liczbe sktadnikéw. W kolejnych krokach
liczba ta maleje o polowe (z zaokraglaniem w gore), a gdy zmaleje do 1, w miejscu nO w tab-
licy jest gotowa suma wszystkich elementéw ciagu.

Rozwinigciem makrodefinicji COMPUTE (listing 9.1) jest instrukcja zlozona, w ktdrej po
wywolaniu procedury glDispatchCompute, uruchamiajacym obliczenia na GPU, naste-
puje wywolanie procedury glMemoryBarrier, z ktdrej powrdt nastepuje, gdy wszystkie
operacje zapisu do buforéw magazynowych sg zakonczone.
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Listing G.1. Procedura main szadera sumowania parami
GLSL

: #version 450 core

: layout (local_size_x=1) in;

:uniform uint n;

: void AddTwoTerms ( uint i, uint j );

: void main ( void )

{

uint i, j;

i = uint ( gl_GloballnvocationID.x );
if ( (j = i+(@+1)/2) < n)
AddTwoTerms ( i, j );
} /#mainx/

Listing G.2. Procedura sumowania parami na GPU
Cc

: static GLuint program_id, GLuint uloc[2];

: void GPUSumUp ( GLuint n, GLuint nO, GLuint databuf )
A

glUseProgram ( program_id );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, O, databuf );
glUniformiui ( uloc[1], nO );
for ( ;3 n>1; n= (n+t1)/2 ) {
glUniformiui ( uloc[0], n );
COMPUTE ( n/2, 1, 1)
}
ExitIfGLError ( "GPUSumUp" );
} /*GPUSumUp*/

Wypada uczyni¢ dwie uwagi: po pierwsze, algorytm ma spore wymagania pamieciowe,
bo ,,psuje” poczatkowa zawarto$¢ tablicy. Jesli oryginalny ciag bedzie p6zniej potrzebny, to
trzeba utworzy¢ dodatkowy bufor roboczy, skopiowa¢ do niego dane i zepsu¢ kopig. Po dru-
gie, algorytm zaklada tacznos¢ i przemienno$¢ wykonywanego dzialania; dodawanie liczb,
a takze wektoréw i macierzy ma te wlasnosci w algebrze i w arytmetyce stalopozycyjnej, ale
nie w arytmetyce zmiennopozycyjnej, poniewaz w niej wystepuja bledy zaokraglen'. Ich

!Zamiana argumentéw jednego dodawania nie zmieni wyniku, ale przestawienie wielu sktadnikéw lub inne
ich pogrupowanie (np. a + (b +c) zamiast (a+b) + ¢) juz moze. Matematyk powiedziatby, ze dodawanie zmien-
nopozycyjne jest dziataniem lacznym z doktadnoscia do btedow zaokraglen, co jest przyznaniem, ze dodawanie

zmiennopozycyjne nie jest Iaczne, ale stara si¢ najlepiej jak si¢ da.
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obecno$¢ sprawia, ze obliczona suma liczb zmiennopozycyjnych prawie zawsze jest tylko
prawie doktadng suma tych liczb.

Uwaga: Skutki bledow zaokraglen moga by¢ interpretowane jako wzgledne zaburzenia da-
nych; rézne algorytmy sumowania liczb zmiennopozycyjnych obliczg dokladne sumy troche
innych liczb. Wielkos¢ tych zaburzen zalezy od wzglednej dokladnosci reprezentacji (w przy-
blizeniu 10~ dla pojedynczej i 10" dla podwéjnej precyzji) i od tzw. stalych kumulacji, ktére
im s3 mniejsze, tym lepszy jest algorytm. Dla sumowania # liczb ,,po kolei” stale kumulacji
s3 rzedu n, a dla sumowania parami tylko log, n. A wigc algorytmy sumowania parami, dla
duzych », maja przewage nad sumowaniem ,,po kolei” takze pod tym wzgledem.

a)

3 3

2 2 K

1 1« O
0 0 v O ©

o Jor Jlz Js |

Rysunek G.1. Drzewa dzialan parami realizowanych przez dwa algorytmy réwnolegte dla n = 10

Pewne dzialania dwuargumentowe sg taczne, ale nie sg przemienne. Dzialaniami takimi
sa na przyktad mnozenie macierzy n x n (dla n > 1) i mnozenie kwaternionéw. Oznaczmy ta-
kie dzialanie symbolem ,,&” Jesli trzeba obliczy¢ wyrazenie ag & a; O+ <& a1, w ktérym nie
wolno przestawia¢ argumentdw, ale mozna (dzigki tacznosci) dowolnie rozmiesci¢ nawiasy,
to mozemy uzy¢ innego algorytmu réwnoleglego, ktory rowniez wykonuje [log, 7| krokéw.
Algorytm ten jest przedstawiony na listingach G.3 i G.4; szader obliczeniowy na pierwszym
listingu jest wywotywany odpowiednig liczbe razy przez procedure z drugiego listingu. Dzia-
lanie realizowane przez procedure AddTwoTerms moze by¢ dowolnym dzialaniem tacznym?,
przy czym procedura wykonuje dzialanie na obiektach obecnych na pozycjach n0+1 i n0+j
i wpisuje wynik do tablicy na miejsce pierwszego z tych argumentéw. Na rysunku G.1 sg po-
kazane drzewa wyrazen obliczanych przez oba opisane tu algorytmy, a takze miejsca w tablicy
z danymi, na ktérych sg zapisywane wyniki posrednie. W obu przypadkach wynik koncowy
zostaje na miejscu pierwszego elementu ciggu®.

?ewentualnie tacznym z doktadnoscig do btedéw zaokraglen
3Gdy dziatanie ,,¢” jest dodawaniem liczb zmiennopozycyjnych, state kumulacji sg takie same jak dla pierw-
szego algorytmu — od obu algorytméw sumowania parami mozna oczekiwaé podobnej dokladnosci.
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Listing G.3. Procedura main drugiego algorytmu sumowania parami
GLSL

: #version 450 core

: layout (local_size_x=1) in;

: uniform uint n, q;

: void AddTwoTerms ( uint i, uint j ); /* dowolne dziatanie taczne */

: void main ( void )

{

uint i, j;

i = uint ( (q+q)*gl_GlobalInvocationID.x );
if ( (j = i+q) < n)
AddTwoTerms ( i, j );
} /#*mainx*/

Listing G.4. Druga procedura sumowania parami na GPU
Cc

: static GLuint program_id, GLuint uloc[3];

: void GPUAltSumUp ( GLuint n, GLuint nO, GLuint databuf )
: {

GLuint q;

glUseProgram ( program_id );

glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 0, databuf );

glUniformiui ( uloc[0], n ); /* uniform n = n; */

glUniformiui ( uloc[1], n0 ); /* uniform n0O = n0; */

for (g=1; n>1; gq+=q, n= (n+1)/2 ) {
glUniformlui ( uloc[2], q ); /* uniform q = q; */
COMPUTE ( n/2, 1, 1)

}

} /*GPUA1tSumUp*/

W obu przedstawionych wyzej algorytmach mozemy wykonywa¢ dowolne dziatanie
faczne i przemienne (w drugim przypadku wystarczy tylko lgczno$¢), na przyktad wybie-
ranie mniejszego (albo wigkszego) elementu, co umozliwia znalezienie minimalnego (albo
maksymalnego) elementu ciggu w [log, n| krokach. Dokladnie tyle samo krokéw wystarczy,
aby oba elementy skrajne — minimalny i maksymalny — znalez¢ jednocze$nie.

Szader jednocze$nie znajdujacy elementy skrajne w danym ciagu postuguje sie trzema
procedurami, ktére majg dostep do tablicy zawierajacej ten ciag i ktére sa dostosowane do
konkretnego rodzaju elemento6w, ich reprezentacji i relacji ustalajacej porzadek miedzy nimi.
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Jedna z tych procedur jest komparator, czyli procedura poréwnujaca dwa elementy ciaggu na
wskazanych pozycjach i przestawiajaca je tak, aby na pierwszej pozycji znalazl sie¢ element
mniejszy. Pozostale dwie procedury poréwnuja dwa elementy i jesli drugi element jest od-
powiednio mniejszy albo wigkszy, to przepisuja go na pierwsza pozycje. Przyklad takich
procedur (dla ciggu liczb catkowitych) jest na listingu G.5.

Listing G.5. Procedury do znajdowania minimum i maksimum w ciagu liczb
GLSL

: #version 450 core
: layout (std430,binding=0) buffer Data { int d[]; } data;
:uniform uint n, nO;

: void CompSwap ( uint i, uint j )

{

int x;

if ( data.d[i += n0] > data.d[j += n0] )
{ x = data.d[i]; data.d[i] = data.d[j]l; data.d[j] = x; }

: } /*CompSwap*/

: void ChooseMin ( uint i, uint j )

A

if ( data.d[i += n0] > data.d[j += n0] )
data.d[i] = data.d[j];

: } /*ChooseMin*/

: void ChooseMax ( uint i, uint j )

A

if ( data.d[i += n0] < data.d[j += n0] )
data.d[i] = data.d[j];

: } /*ChooseMax*/

Procedura main na listingu G.6 dziala nieco inaczej w pierwszym kroku niz w kolejnych.
Warto$¢ zmiennej jednolitej n, ktéra musi by¢ wieksza niz 1, jest liczba elementéw w tab-
licy. W pierwszym kroku zmienna s ma warto$¢ true; wtedy komparator (wywotany w li-
nii 19) porzadkuje pare sasiednich elementéw, wskutek czego mniejsze elementy wszystkich
par znajda si¢ w tablicy na pozycjach parzystych, a wieksze na nieparzystych. Dodatkowo
jesli dlugos¢ ciagu jest nieparzysta, to ostatni jego element jest pordwnywany z elementami
pierwszej pary i jesli jest mniejszy od pierwszego z nich albo wiekszy od drugiego, to jest
wpisywany na odpowiednie miejsce w tej parze. Odtad liczba miejsc w tablicy zajetych przez
potrzebne dalej dane, bedaca wartoscig zmiennej n, jest parzysta.
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Listing G.6. Procedura main szadera znajdowania minimum i maksimum
GLSL

: #version 450 core
: layout (local_size_x=1) in;

:uniform uint n;
:uniform bool s;

: void CompSwap ( uint i, uint j );
: void ChooseMin ( uint i, uint j )
i)

>
>

void ChooseMax ( uint i, uint j

void main ( void )
{

uint i, j;

i = uint ( gl_GlobalInvocationID.x ); i += i;
if (s ) { /* porzadkowanie par */
if ( (j = i+1) <n )
CompSwap ( i, j );
if (i ==0 &% (n & 0x01) != 0 ) { /* n nieparzyste */
ChooseMin ( 0, n-1 );
ChooseMax ( 1, n-1 );
}
}
else if ( (j =i + 2%((n+3)/4)) <n ) {
ChooseMin ( i, j );
ChooseMax ( i+1, j+1 );
}

} /*mainx/

Gdy zmienna s ma warto$¢ false, w tablicy znajduje si¢ n/2 uporzadkowanych par, przy
czym ktdra$ z tych par zawiera element najmniejszy, a inna lub ta sama para zawiera element
najwiekszy danego ciggu. Watek i-ty szadera przetwarza pary o numerach i oraz j = i+[n/4];
mniejszy z mniejszych oraz wigkszy z wigkszych elementéw obu par zostaja zapamietane
w pierwszej parze. W ten sposob istotne dane zostaja przeniesione do pierwszej poltowy
dotychczas istotnego fragmentu tablicy.

Procedura na listingu G.7 po zakoniczeniu dzialania zostawia elementy najmniejszy i naj-
wigkszy na pierwszych dwdch miejscach tablicy zajmowanej poczatkowo przez dany ciag,
skad aplikacja moze je odczytaé. Zawartos¢ tablicy zostaje oczywscie ,,zepsuta”. Wydaje mi
sie, ze procedura ta nie wymaga dalszych objasnien. Polecam ¢wiczenie: napisanie szadera,
ktory dla tablicy punktéw w przestrzeni znajduje boks otaczajacy, tj. najmniejszy prostopad-
toscian o krawedziach réwnoleglych do osi uktadu wspoétrzednych zawierajacy te punkty,
i wyprébowanie tego szadera w aplikacji 1E (rozdz. 13) lub w innych, wlasnych aplikacjach.
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Listing G.7. Procedura znajdowania minimum i maksimum
C

: static GLuint program_id, uloc[3];

: void GPUFindMinMax ( GLuint n, GLuint nO, GLuint databuf )
: {

glUseProgram ( program_id );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 0, databuf );
glUniformiui ( uloc[0], n );
glUniformiui ( uloc[1], n0 );
glUniformiui ( uloc[2], GL_TRUE ); /* uniform s = true; */
COMPUTE ( n/2, 1, 1)
glUniformiui ( uloc[2], GL_FALSE ); /* uniform s = false; */
for (n &= ~0x01; n > 2; n = 2%x((n+3)/4) ) {
glUniformiui ( uloc[0], n );
COMPUTE ( n/4, 1, 1)
}
ExitIfGLError ( "GPUFindMinMax" ) ;

: } /*GPUFindMinMaxx*/

G.2. Obliczanie sum prefiksowych

W wielu zastosowaniach zachodzi konieczno$¢ znalezienia sum prefiksowych danego ciagu
liczb ay, ..., a1, czyli sum czegdciowych tego ciagu od poczatku do kazdego miejsca:

1
def
5= Zaj, I=0,....,n-1
Jj=0

Latwo jest to zrobi¢ sekwencyjnie (wykonujac kolejno n—1dodawan), ale uruchamiajac watki
dzialajace rownolegle, mozna to zadanie wykona¢ w [log, n| krokach, tak jak zsumowanie
wszystkich liczb (czyli obliczenie tylko ostatniego elementu ciggu sum prefiksowych, s,_1).

Zobaczmy implementacje (w postaci procedury w Ci szadera obliczeniowego) algorytmu
obliczania sum prefiksowych. Watki szadera s zorganizowane w jednowymiarowg grupe ro-
boczg. Algorytm réwnolegty obliczania sum prefiksowych sklada si¢ z s = [log, n| krokéw
(ponumerowanych od 0 do s — 1, rys. G.2). W kazdym kroku watek wykonuje jedno doda-
wanie elementéw danego ciagu lub ich sum.

Ciag ag, . . ., a,-1 dany w tablicy zostanie zastgpiony przez ciag o, . . ., Sy—1. W kolejnych
krokach pewne elementy tablicy sa dodawane do innych element6w, ktdre zostaja zastapione
przez obliczone sumy. Na rysunku mozna zauwazy¢, ze k+1 najmniej znaczacych cyfr w roz-
winieciu dwdjkowym indekséw elementéw dodawanych w k-tym kroku do elementéw na
innych pozycjach to 0 i k jedynek. Kazdy taki element jest dodawany do 2 kolejnych ele-
mentéw. W szczegdlnosci dla k = 0 kazdy element o indeksie parzystym zostaje dodany do
swojego prawego sasiada (i tylko do niego).
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k-4
k-3
k-2

0 1

k=1 9/<+

0 1

k:O + +

do ||d1 ||d2 ||d3 ||d4 ||d5 ||de ||d7 ||A8 |9 ||A10|d11 ||A12(/d13||A14(/d15 || A16 (/@17 ||A18 || 319 ||A20|A21||A22||323
Rysunek G.2. Nalozone drzewa binarne sum prefiksowych

Watek o numerze i ma w kroku k-tym doda¢ elementy o indeksach
ig =28 i/2K | + 25 —1, iy =i, + (i mod 2F) +1

i wpisa¢ sume na miejsce ip. Indeksy i,, ij dla kolejnych krokéw mozna oblicza¢ za pomoca
dziatan na cyfrach rozwinigcia dwoéjkowego liczby i i maskach bitowych. Gdyby dopusz-
czalna wielko$¢ lokalnej grupy roboczej byta wieksza lub réwna 1/2, to opisany wyzej algo-
rytm obliczania sum prefiksowych moglaby realizowac jedna taka grupa, w ktdrej i-ty watek
wykonywalby nastepujacg instrukeje:

for ( ii = i+i, mO = 0x01, m1 = 0; mO < n; ml = (m0 += m0)-1 ) {
ia = (ii & "m0) | mi;
if ( (ib=4da + (4 & ml) + 1) <N )
alib] += alial;
groupMemoryBarrier ();

}

Role zmiennej okreslajacej numer kroku k pelni tu zmienna m0, ktéra w k-tym kroku ma
wartos$¢ 2K, Warunek zakonczenia petli opisuje nieréwnos¢ 25 > n réwnowazna k > log, n.
Zmienna m1 ma w k-tym kroku warto$¢ 2% — 1, zatem k jej najmniej znaczacych bitéw ma
warto$¢ 1, a pozostale to zera. W wyrazeniu, ktérego warto$¢ jest przypisywana zmiennej ia,
bit rozwinigcia dwdjkowego liczby 2i na pozycji k jest kasowany, a wszystkie bity na pozyc-
jach 0,..., k — 1 otrzymuja warto$¢ 1, co daje wynik réwnowazny zastosowaniu podanego
wczeéniej wzoru na i,. Warto$¢ wyrazenia (i & m1) jest reszta z dzielenia i przez 2F.
Procedura groupMemoryBarrier ma zapewni¢ dokonczenie dzialania w k-tym kroku
przez wszystkie watki (calg grupe robocza) przed rozpoczeciem wykonywania kroku na-
stepnego. Jednak dzialanie tej procedury jest ograniczone do lokalnej grupy roboczej, ktorej
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maksymalny rozmiar ogranicza dopuszczalng dtugos¢ ciaggu mozliwego do przetworzenia
przy uzyciu powyzszej instrukcji?. Dlatego obliczenie sum prefiksowych dla ciggéw ponad
dwa razy dluzszych niz dopuszczalna wielkos$¢ lokalnej grupy roboczej wymaga uzycia roz-
wigzania, w ktérym za synchronizacje¢ dostepu do pamieci odpowiada CPU; dla lokalnych
grup roboczych przyjmiemy rozmiary 1x1x 1, a dlugo$¢ (jednowymiarowej) globalnej grupy
roboczej dobierzemy do dlugosci ciagu.

Listing G.8 przedstawia procedure, ktéra procedura main szadera ma wywota¢, aby wy-
kona¢ jeden krok algorytmu sumowania. Jej parametrem jest liczba i bedaca wartoscia
zmiennej wbudowanej gl_GlobalInvocationID — okresla ona numer watku w global-
nej grupie roboczej. Zmienna jednolita prStep przechowuje numer k biezacego kroku
algorytmu. Zmienne prNO i prN okreslaja miejsce poczatku ciggu i jego dlugos$¢ w tab-
licy seq.a znajdujacej si¢ w buforze magazynowym przywigzanym do punktu 0 w celu
GL_SHADER_STORAGE_BUFFER. Uklad std430° okresla, ze elementy tablicy (liczby catko-
wite 32-bitowe) s3 upakowane bez przerw.

Listing G.8. Procedura realizujaca krok obliczania sum prefiksowych
GLSL

: layout (std430,binding=0) buffer prSequence { int al[l; } seq;

: void iPrefixSum ( uint i )

{

uint ii, mO, ml, ia, ib;

ii = i+i; m0 = 0x01 << prStep; ml = m0-1;

ia = (ii & "m0) | mi;

if ( (ib =ia + (4 & ml) + 1) < prN )
seq.a[prNO + ib] += seq.alprNO + ial;

. } /*iPrefixSum*/

Przedstawiona na listingu G.9 procedura iPrefixSum, dzialajaca na CPU, realizuje ze-
wnetrzng petle algorytmu sumowania, wykonywang s = [log, n] razy. Parametry NO i N
procedury okreslaja miejsce poczatku i dlugos¢ ciaggu w buforze magazynowym przywiaza-
nym do punktu dowigzania O w celu GL_SHADER_STORAGE_BUFFER. Ich wartosci sg przypi-
sywane zmiennym jednolitym prNO i prN, ktérych potozenia zostaly odczytane po zlaczeniu
programu i zapamietane w zmiennych 1ocNO i 1ocN. Zmienna jednolita prStep otrzymuje
w kolejnych przebiegach petli wartosci 0,1, ...,s—1. W linii 7 jest obliczana potrzebna liczba
watkow, rowna | n/2 [, czyli dtugos¢ globalnej grupy roboczej.

Makrodefinicja COMPUTE po wywotaniu procedury glDispatchCompute wywoluje pro-
cedure glMemoryBarrier. Jej zadaniem jest wstrzymac¢ wykonywanie programu na CPU az
do zakonczenia obliczen i zapisania w pamieci wynikow przez wszystkie watki szadera, aby
mozna bylo przystapi¢ do nastepnego kroku sumowania lub do dalszych obliczen korzysta-
jacych z gotowych sum prefiksowych.

*Taki wariant algorytmu jest realizowany przez szader z listingu 29.30 w liniach 71-s1.
>wprowadzony w specyfikacji OpenGL 4.3, dopuszczalny tylko dla buforéw magazynowych
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Listing G.9. Podprogram na CPU wywolujacy procedure z listingu G.8

{

C
: void iPrefixSum ( GLuint *uvofs, GLuint NO, GLuint N )
unsigned int k, m, d;
glUniformiui ( locNO, NO ); /* uniform prNO = NO; =*/
glUinformiui ( locN, N ); /* uniform prN = N; */
d = N/2;

for (k =0, m=N-1; m > 0; k++t, m >>=1) {
glUniformiui ( locprStep, k ); /* uniform prStep = k; */
COMPUTE ( d, 1, 1)
}
ExitIfGLError ( "iPrefixSum" );
} /*iPrefixSumx/

G.3. Sortowanie
Ale zemsta, cho¢ leniwa,
Nagnala cie w nasze sieci;

ADAM MICKIEWICZ: Pani Twardowska

Zaprogramujemy tzw. sie¢ sortujaca, ktorej masywnie rownolegta implementacja sortuje
ciag o dtugosci n w czasie rzedu log® n. Implementacja sieci sortujacej na GPU okazuje sie
znacznie prostsza niz doktadny opis i dowod poprawnosci tego algorytmu; opisze jak on
dziala, ale po wyjasnienie, dlaczego on dziala (czyli po podstawy teoretyczne), jestem zmu-
szony odesta¢ Czytelnikoéw do rozdziatu 27 ksigzki [54].

Wykonawcg algorytmu na najnizszym poziomie jest komparator, czyli procedura poréw-
nujaca dane obiekty na dwdch wskazanych miejscach w tablicy i przestawiajaca je, jesli drugi
obiekt powinien poprzedza¢ pierwszy. Rodzaj obiektow i relacja, zgodnie z ktdra nalezy je
uporzadkowad, s3 ,,zaszyte” w komparatorze. Dla ustalenia uwagi w opisie algorytmu przyj-
miemy, ze w tablicy jest ciag liczb, ktéry ma by¢ posortowany niemalejaco. W kazdym kroku
algorytmu | /2| watkéw komparatora moze jednocze$nie zbada¢ i tam, gdzie trzeba, prze-
stawi¢ | n/2| par obiektow w tablicy. Jedli n > 2, to sztuka polega na wykonaniu wtasciwej
(jak najmniejszej) liczby krokéw i wskazaniu, w kazdym kroku, odpowiednich par dla po-
szczegolnych komparatorow.

Listing G.10 przedstawia implementacje sieci sortujacej na CPU — napisatem ja po to,
aby ulatwi¢ sobie uruchomienie implementacji docelowej i zrobi¢ rysunek G.3, a zamiesci-
fem ja tu, aby lepiej objasni¢ dzialanie algorytmu. Dlatego ta implementacja moze posor-
towac tylko ciag liczb calkowitych. Procedura CompSwap w liniach 1-9 jest dostosowanym
do tego komparatorem. Sortowanie sklada si¢ z s = [log, n] etapéw. W kolejnych etapach
sortowanie odbywa si¢ we fragmentach tablicy, ktérych dlugosciami sg liczby 2,4,8,.. ., tj.
kolejne catkowite potegi dwéjki®. Na poczatku etapu potowy kazdego takiego fragmentu s3
posortowane; zadaniem etapu jest ,,scalenie” tych potéwek, czyli takie przestawienie obiek-

®Jedli liczba n nie jest potega dwojki, to ostatni fragment tablicy moze by¢ krétszy.
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tow;, aby uporzadkowaé fragment. W i-tym etapie scalenie fragmentéw o dtugoséci 2/, dajace
posortowane fragmenty o dlugosci 2/, wymaga wykonania i krokéw algorytmu.

Listing G.10. Implementacja sekwencyjna sieci sortujacej
C
1: void CompSwap ( unsigned int n, int *data, unsigned int i, unsigned int j )
2: {
3: int x;
4:

5:ﬁ(j<n){
(

6: if ( datal[i] > datalj] )
7 { x = datal[il; datali]l = dataljl; dataljl = x; }
8:  F

9:  /*CompSwap*/

10:

11: void NetSort ( unsigned int n, int *data )

12:{

13: unsigned int steps, nn, h, h2, h4, i, j, k, kk, 1;
14:

i5: if (n<2)

16: return;

17z for ( nn = n-1, steps = 0; nn; nn >>= 1, steps ++ )
18: 5

19: nn = 1 << steps;

2. for (i =0, h2=1,h=2, k =nn > 1;

21: i < steps;

22: i++, h2 = h, h <<= 1, k >>=1 ) {

23: for ( j =0; j <k; j++ ) {

24: for (1 =0; 1 < h2; 1++ )

25: CompSwap ( n, data, j*h+l, jxh+h-1-1 );
26: T

27: for ( h2 = h > 1, h4 = h2 >> 1, kk = k << 1;
28: h2 > 1;

29: h2 = h4, kk <<= 1, hd4 >>=1 ) {

30: for ( j =0; j < kk; j++ ) {

31: for (1 =0; 1 < hd; 1++ )

32: CompSwap ( n, data, j*h2+l, j*h2+1+h4 );
33: }

34: }

35: }

36: + /*NetSort*/

Instrukcje procedury NetSort w liniach 17-19 wyznaczajg i zapamigtuja w zmiennej
steps liczbe s etapow sortowania, a zmienna nn otrzymuje wartos¢ 2°, tzn. najmniejszg cal-
kowitg potege liczby 2 nie mniejszg niz n.

Kolejne etapy wykonywane sg w petli w liniach 20-3s. Pierwszy krok kazdego z tych eta-
poéw rdzni si¢ od pozostatych, dlatego jest on wykonywany przez osobng petle wliniach 23-26.
Ale cho¢ CPU wywota komparator dla kazdej pary po kolei, zaréwno w tym, jak i w kazdym
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Rysunek G.3. Sie¢ sortujaca dla n = 16 — poziome odcinki i zygzaki symbolizujg komparatory

nastepnym kroku (linie 27-34) wszystkie dziatania wykonywane przez komparator (kompa-
ratory) mogg sie odbywac jednoczesnie.

Przed i-tym etapem obie polowy fragmentu o dtugoéci 2’ tablicy s3 posortowane.
W pierwszym kroku etapu komparatory poréwnujg pierwszy obiekt z pierwszej potowy
z ostatnim obiektem drugiej, drugi z przedostatnim itd. (rys. G.3). Okazuje sig, ze wsku-
tek dokonanej wymiany obiektoéw miedzy polowami powstaja w tych potowach fragmentu
tzw. ciagi bitoniczne, tj. dajace si¢ podzieli¢ na dwie czg¢$ci monotoniczne — niemalejaca
i nierosngcg — w tej lub w odwrotnej kolejnosci’. Co wiecej, wszystkie obiekty w pierwszej
polowie fragmentu s3 mniejsze lub réwne obiektom w drugiej potowie. Kolejne kroki i-tego
etapu majg na celu posortowanie tych potéwek.

Sortowanie ciggu bitonicznego jest nazywane czyszczeniem. Zaczyna si¢ ono w drugim
kroku i-tego etapu, w ktérym ciag bitoniczny w kazdym kolejnym fragmencie tablicy o dtu-
goéci 2'7! komparatory zamieniajg na dwa dwukrotnie krétsze ciagi bitoniczne, przy czym
zaden element pierwszego z nich nie jest wigkszy niz ktorykolwiek element drugiego ciagu.
Podobnie w kolejnych krokach czyszczenia dlugosci ciagow bitonicznych maleja dwukrotnie,
a elementy mniejsze zostaja przestawione przed wieksze, az powstana ciagi o dtugosci 1 —
i w ten sposob zawartosci kolejnych fragmentéw tablicy o dlugosci 2° zostajg posortowane.

Warto$¢ nadawana zmiennej k przed wykonaniem i-tego etapu jest liczbg fragmentéw
o dtugosci 27, przypisywanej zmiennej h. Wartosci zmiennych h2 i h4 to odpowiednio dtu-
gosci ciggdw bitonicznych przed i po kolejnym kroku czyszczenia.

Listing G.11 przedstawia szader obliczeniowy, ktorego watki (instancje) wyznaczajg za-
dania dla komparatoréw. Wtasciwy komparator jest procedurs, ktora najlepiej jest umiescic

7Ciqg monotoniczny tez jest ciagiem bitonicznym, ktorego jedna z cze$ci monotonicznych jest pusta.
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Listing G.11. Procedura main szadera sieci sortujacej
GLSL

: #version 450 core
: layout (local_size_x=1) in;

:uniform uint n, h;
: uniform bool reverse;

: void CompSwap ( uint i, uint j );

void main ( void )
{
uint iid, i, j, 1, h2;

iid = uint ( gl_GloballInvocationID.x );
h2 = h > 1; 1 = iid % h2; iid /= h2; i = iid¥h+l;
if ( (j = reverse 7 (iid+1)#h-1-1 : i+h2) < n )
CompSwap ( i, j );
} /#*mainx/

w innym szaderze. Dzigki temu tu nie ma zadnych zaleznosci od rodzaju sortowanych obiek-
tow ani Zadnej konkretnej relacji ustalajacej porzadek w ich zbiorze, co w zasadzie umozliwia
uzycie tej samej procedury sortowania do obiektéw réznych typow — wystarczy ztaczy¢ ten
szader z szaderami zawierajacymi rézne komparatory, aby zbudowa¢ wszystkie programy do
sortowania potrzebne w aplikacji.

Zadaniem procedury main jest obliczenie (na podstawie numeru instancji podanego
w zmiennej gl_GlobalInvocationID) wlasciwej pary indekséw do sortowanej tablicy
i wywolanie procedury komparatora. Zmienna jednolita reverse ma warto$¢ true, jes-
li szader jest wywolany w pierwszym kroku i-tego etapu; wtedy warto$¢ zmiennej h jest
réwna 2/, czyli jest dtugosécig fragmentu z dwoma podciggami niemalejacymi, ktére maja
by¢ scalone. Jesli reverse == false, to wywolanie szadera nastapito w kroku czyszcze-
nia, a warto$¢ zmiennej h jest dlugoscia fragmentu tablicy zawierajacego poczatkowy ciag
bitoniczny (to jest warto$¢ zmiennej h2 w procedurach na listingach G.10 i G.12).

W parze liczb podawanych jako parametry komparatora zawsze druga liczba jest wieksza;
jesli jest ona wigksza niz indeks ostatniego elementu ciggu, to komparator nie jest wywoty-
wany, bo obiekt okreslony przez pierwsza liczbe (jesli ona nie jest tez za duza) ma zosta¢ na
swoim miejscu. Warunek badany w linii 16 zapewnia, zZe oba parametry podawane w wywo-
taniu komparatora sg liczbami z zakresu 0, .. ., n — 1. Przykladowy komparator, odpowiedni
do sortowania liczb catkowitych, jest pokazany na listingu G.5.

Pliki o nazwach sortnet.comp.glsl i sortnetcs.comp.glsl zawierajg procedure
main szadera sortowania i komparator; poza tym przykladowa procedura kompilacji szade-
réw sortowania na listingu G.12 nie wymaga objasnien. Parametry procedury sortowania,
GPUNetSort, opisuja dlugos¢ i poczatek ciggu oraz identyfikator bufora magazynowego
zawierajacego ten ciag. W liniach 44-47 procedura przywiazuje ten bufor do celu, wybiera
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Listing G.12. Procedury kompilacji szaderéw i sortowania
C

: static GLuint shader_id[2], program_id;
: static GLuint uloc[4]; /* potozenia zmiennych jednolitych */

: void LoadSortingShaders ( void )
A

static const char *filename[] =

{ "sortnet.comp.glsl", "sortnetcs.comp.glsl" };
static const char *uname[] = { "n", "nO", "reverse", "h" };
int i;

10:

11:

12:

13:

14:

15:

16:

17:

shader_id[0] CompileShaderFiles ( GL_COMPUTE_SHADER, 1, &filename[0]
shader_id[1] = CompileShaderFiles ( GL_COMPUTE_SHADER, 1, &filename[1]
program_id = LinkShaderProgram ( 2, shader_id, "sort" );
for (i =0; i < 4; i++ )
uloc[i] = glGetUniformLocation ( program_id, uname[i] );
ExitIfGLError ( "LoadSortingShaders" );
} /*LoadSortingShaders*/

18:

19:

20:

21:

{

GLuint steps, nn, h, h2, gsize, 1i;

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

35:

36:

37:

38

if (n< 2)
return;
for ( nn = n-1, steps = 0; nn; nn >>= 1, steps ++ )
nn = 1 << steps; gsize = nn/2;
for (i =0, h2 =1, h =2; i < steps; i++, h2 =h, h+=h ) {
glUniformiui ( rloc, GL_TRUE ); /* uniform reverse = true; */
glUniformiui ( hloc, h );
COMPUTE ( gsize, nseq, 1 )
glUniformiui ( rloc, GL_FALSE ); /* uniform reverse = false; */
for ( ; h2>1; h2>>=1) {
glUniformiui ( hloc, h2 ); /* uniform h = h2; */
COMPUTE ( gsize, nseq, 1 )
}
}
. } /*_GPUNetSort*/

39:

40:

41:

42:

43:

44:

45:

void GPUNetSort ( GLuint n, GLuint nO, GLuint dbuf )
{
if (n<2)
return;
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 0, dbuf );
glUseProgram ( program_id );

)
)

static void _GPUNetSort ( GLuint nseq, GLuint n, GLuint rloc, GLuint hloc )
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glUniformiui ( uloc[0], n );
glUniformiui ( uloc[1], nO );
_GPUNetSort ( 1, n, uloc[2], uloc[3] );
ExitIfGLError ( "GPUNetSort" );

} /*GPUNetSortx*/

program szaderéw i nadaje wartoéci zmiennym jednolitym n i n0, po czym wywoluje
procedure _GPUNetSort, ktora realizuje wlasciwy algorytm; w zastosowaniach opisanych
dalej uzyjemy tej procedury, ktdrej parametry okreslaja liczbe sortowanych ciaggéw (tu mamy
jeden) oraz dtugos¢ ciagu i odczytane z programu szaderéw polozenia zmiennych jednolitych
reverse ih; wréznych zastosowaniach uzyjemy réznych programoéw zawierajacych petniace
te samg role zmienne jednolite o tych nazwach.

Zamiast petli w liniach 23-26 i 30-33 na listingu G.10, w liniach 31 i 35 s3 wywolania
programu szaderéw (przez makrodefinicje COMPUTE). Liczba potrzebnych watkéw (podczas
sortowania jednego ciagu) jest réwna nn/2 — jest to najwieksza catkowita potega liczby 2
mniejsza niz n. Wywolana nastepnie procedura glMemoryBarrier czeka, az wszystkie kom-
paratory zakoncza prace.

G.4. Przetwarzanie macierzy rzadkich

Macierz rzadka m x n jest to (duza) macierz, ktéra ma wiekszos¢ wspétczynnikéw réwnych 0.
Gdy liczba mn jest znacznie wieksza niz liczba wspétczynnikéw niezerowych, warto® uzywaé
reprezentacji macierzy zajmujacych jak najmniej miejsca w pamieci i wykonywac¢ dzialania
na nich bez marnowania czasu na mnozenie przez 0 i dodawanie zer.

Z pewnymi macierzami rzadkimi mozna sobie poradzi¢ dosy¢ latwo. Na przyktad
w podrozdziale B.3 jest uzyta najbardziej naturalna reprezentacja macierzy tréjdiagonalnych.
Troche wiekszym wyzwaniem s3 macierze o nieregularnej strukturze, ktérych niezerowe
wspotczynniki sg rozmieszczone w zupelnie dowolnych miejscach. W grafice komputerowe;j
takie macierze pojawiajg si¢ m.in. w obliczeniach globalnego o$wietlenia (rozdz. 29) i w prze-
twarzaniu siatek (rozdz. 31). Tu przyjrzymy si¢ reprezentacji takich macierzy zwanej CSR
(compressed sparse rows).

Dane opisujace macierz rzadka s3 umieszczone w trzech tablicach, ktoére nazwe r, c i a.
W tablicy r, o dlugosci m + 1, jest niemalejacy ciag liczb catkowitych ry, ..., 1, przy czym
ro = 0, a réznice r;41 — r; s liczbami niezerowych wspotczynnikéw w kolejnych wierszach®.
W szczegolnosci 1, jest liczba niezerowych wspdtczynnikéw w catej macierzy.

Pozostate dwie tablice maja dlugo$¢ N = r,,. Liczby catkowite w tablicy ¢ s3 numerami
kolumn, w ktérych wystepuja niezerowe wspdtczynniki. Tak wiec w i-tym wierszu macie-
rzy jest ri41 — r; wspOtczynnikéw znajdujacych si¢ w kolumnach, ktérych numery sa podane
w tablicy ¢ na miejscach r;, r; +1,. .., riy —1. Same wspdlczynniki sa przechowywane w tab-
licy a na miejscach o tych samych indeksach.

8a czasami po prostu trzeba
*Wiersze i kolumny macierzy, a takze wspétrzedne wektoréw, numerujemy, zaczynajac od 0.
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Przyklad. Macierz
1 2 0 0 0
A= o 5 6 7 o o o 8

9 0 0 10 0 0 0 0

ma wymiary 3 x 8 i tylko 10 niezerowych wspétczynnikéw. Reprezentuja ja tablice

{0, 4,8, 10};
{ O) 1) 4) 6) 1’ 2, 3, 7) O) 3};
{1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0};

Listing G.13 przedstawia definicje struktury, w ktdrej sa zebrane niezbedne informacje
o macierzy rzadkiej. Pola m, n i nnz stuza do przechowania liczb wierszy, kolumn i nieze-
rowych wspoélczynnikéw macierzy. Pole 1max stuzy do zapamietania maksymalnej liczby
niezerowych wspdtczynikow w wierszu. W tablicy buf sg identyfikatory dwdch buforéw
magazynowych. W pierwszym z nich s umieszczone opisane wyzej tablice r i c, a w drugim
tablica a z niezerowymi wspoélczynnikami.

Listing G.13. Opakowanie reprezentacji macierzy rzadkiej
C

. typedef struct {

int m, n, nnz, lmax;
GLuint buf[2];
} GPUSparseMatrix;

G.4.1. Mnozenie macierzy rzadkiej przez wektor

Przypus¢my, ze trzeba obliczy¢ wektor y € R™, ktéry jest iloczynem macierzy rzadkiej A
i wektora x = (xo, ..., x,-1) € R". Jak wiemy, i-ta wspo6irzedna wektora y jest rowna

n-1
Yi= Z aijXj, (G.1)
j=0

przy czym dla macierzy rzadkiej zwykle tylko niewiele skladnikéw sumy w tym wzorze nie
jest zerem. Opisane nizej algorytmy mnozenia, zrealizowane w postaci procedur w C i sza-
deréw obliczeniowych, obliczajg i sumujg tylko te sktadniki, w ktorych a;; # 0.

W wielu zastosowaniach wystepuje mnozenie macierzy rzadkiej przez macierz o wigcej
niz jednej kolumnie i dlatego warto mie¢ procedure realizujacg takie dzialanie. W szczegdl-
nosci wiersze macierzy X o wymiarach #n x d i macierzy Y = AX moga by¢ interpretowane
jako punkty w przestrzeni d-wymiarowej. Dotyczy to na przyklad rozpatrywanych w pod-
rozdziale 31.11 macierzy, za pomoca ktérych mozemy oblicza¢ polozenia wierzchotkéw za-
geszczonej siatki na podstawie wierzchotkéw siatki danej.
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Przedstawie dwa algorytmy mnozenia macierzy rzadkiej przez wektor. Pierwszy z nich
jest znacznie prostszy, nie korzysta z pamigci dodatkowej (tylko z reprezentacji macierzy oraz
tablic z macierzami X i Y), a przy tym czesto dziala znacznie szybciej niz algorytm opisany
dalej, o teoretycznie mniejszym rzedzie ztozonosci czasowej. Szader realizujacy ten algorytm
jest pokazany na listingu G.14; nie pokazuje procedury kompilujacej ten szader i odczytujacej
polozenia zmiennych jednolitych, uznajac to za niepotrzebne.

Listing G.14. Szader pierwszego algorytmu mnozenia macierzy rzadkiej przez wektor
GLSL

: #version 450 core
: layout (local_size_x=1) in;

: layout (std430,binding=0) buffer RowsCols { uint rc[]; } rc;
: layout (std430,binding=1) buffer Coeff {
: layout (std430,binding=2) buffer Xvec { float x[]; } x;
: layout (std430,binding=3) buffer Yvec {

float all; } a;
float y[1; } y;
uniform uint m, dim;

#define r(i) rc.rclil
#define c(i) rc.rc[m+1+(i)]

void main ( void )

{
uint xi, yi, j, k, 1;
float s;

xi = gl_GlobalInvocationID.x;

yi = gl_GlobalInvocationID.y;

k = xi*dim + yi;

for ( j = r(xi), s = 0.0; j < r(xi+1); j++) {
1=c(j);
s += a.alj] * x.x[1xdim + yil;

X

y.ylk]l = s;

} /*mainx*/

Deklaracje w liniach 5-8 opisuja punkty dowigzania buforéw z tablicami r i c, a, z ma-
cierza X i miejscem na macierz Y. Warto$ciami zmiennych jednolitych m i dim sg liczba m
wierszy macierzy A i liczba d kolumn macierzy X (i Y). Globalna grupa robocza ma wy-
miary m x d x1; zadaniem kazdego watku jest obliczenie jednego wspdtczynnika macierzy Y,
w wierszu i kolumnie okreslonych przez indeksy watku w grupie roboczej. Zastosowany jest
tu sekwencyjny algorytm sumowania. Sposdb zatrudnienia tego szadera przez procedure
z listingu G.15 nie wymaga objasnien.
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Listing G.15. Pierwsza procedura mnozenia macierzy rzadkiej przez wektor
C

: static GLuint program_id;
: static GLuint uloc[2]; /* polozenia odczytane po skompilowaniu programu */

: void GPUSMultSparseMatrixVectorf ( GLuint ybuf,

GPUSparseMatrix *a, GLuint dim, GLuint xbuf )

A

glUseProgram ( program_id );
glUniformiui ( uloc[0], a->m ); /* uniform m = a->m; */
glUniformiui ( uloc[1], dim ); /* uniform dim = dim; */
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 0, a->buf[0] );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 1, a->buf[1] );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 2, xbuf );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 3, ybuf );
COMPUTE ( a->m, dim, 1 )
ExitIfGLError ( "GPUSMultSparseMatrixVectorf" );

} /*GPUSMultSparseMatrixVectorf*/

Drugi algorytm powstal z checi uzycia algorytmu sumowania parami, ktéry jak wiemy
mozna zréwnolegli¢ i ktory daje lepsze oszacowania skutkéw bledéw zaokraglen (zobacz
podrozdz. G.1). Obie czedci implementacji sg przedstawione na listingach G.16 1 G.17.

Procedura GPUMultSparseMatrixVectorf ma takie same parametry jak procedura
GPUSMultSparseMatrixVectorf: identyfikator bufora, w ktérym ma si¢ znalez¢ wynik,
strukture z opisem macierzy, liczbe d kolumn macierzy X i Y i identyfikator bufora z macie-
rza X.

Pole 1max stuzy do zapamigtania maksymalnej liczby niezerowych wspdétczynnikow
w wierszu macierzy A; jest to maksymalna liczba sktadnikéw we wzorze (G.1), na jej podsta-
wie ustalana jest liczba krokéw sumowania parami. Jesli pole to ma wartos¢ 0, to procedura
znajduje i zapisuje w nim maksymalng liczbe niezerowych wspoétczynnikéw, aby poming¢
ten krok obliczei w nastepnym wywotaniu'’.

W liniach 12-26 nastepuja przygotowania, w tym nadawanie wartosci zmiennym jedno-
litym i przywigzywanie buforéw o podanych identyfikatorach do odpowiednich punktéw
dowigzania. Dwa bufory pomocnicze s3 tworzone w linii 20, po czym w liniach 21-26 s3
przywigzywane do odpowiednich punktéw i s3 im nadawane odpowiednie wielkosci.

Obliczenie sktada sie¢ z kilku etapow, ktérych numery sg kolejno przypisywane zmiennej
jednolitej stage. Globalna grupa robocza sklada sie z grup lokalnych o wymiarach 1 x 1 x 1
i w poszczegdlnych etapach jest jedno- lub dwuwymiarowa. Makrodefinicja EXECSTAGE w li-
niach 4-5, wprowadzona dla skrdcenia i uczytelnienia kodu, wywoluje (za posrednictwem
makrodefinicji COMPUTE z listingu 9.1) program szaderéw w celu wykonania kolejnego kroku

" Mnozenie macierzy przez wektor jest krokiem wielu iteracyjnych metod rozwigzywania uktadéw réwnan
liniowych, w ktorych dana macierz jest mnozona kolejno przez rézne wektory. Jesli macierz si¢ nie zmienia, to
iliczbe I;max wystarczy znalez¢ tylko raz.
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Listing G.16. Druga procedura mnozenia macierzy rzadkiej przez wektor
C

1: static GLuint program_id;
2: static GLuint uloc[5];

4: #define EXECSTAGE(STAGE,SIZEX,SIZEY,SIZEZ) \

{ glUniformii ( uloc[0], STAGE ); COMPUTE ( SIZEX, SIZEY, SIZEZ ) }

7: void GPUMultSparseMatrixVectorf ( GLuint ybuf,

9: {
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

45:

GPUSparseMatrix *a, GLuint dim, GLuint xbuf )
GLuint auxb[2], t;

glUseProgram ( program_id );
glUniformiui ( uloc[1], a->m );
glUniformiui ( uloc[2], a->nnz );
glUniformiui ( uloc[3], dim );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 0, a->buf[0] );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 1, a->buf[1] );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 2, xbuf );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 3, ybuf );
glGenBuffers ( 2, auxb );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 5, auxb[1] );
glBufferData ( GL_SHADER_STORAGE_BUFFER, a->nnz*dim*sizeof (GLfloat),
NULL, GL_DYNAMIC_DRAW );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 4, auxb[0] );
glBufferData ( GL_SHADER_STORAGE_BUFFER, a->m*sizeof(GLuint),
NULL, GL_DYNAMIC_DRAW );

EXECSTAGE ( 0, a->m, 1, 1)
if ( ta->Imax ) {

glUniformli ( uloc[0], 1 ); /* stage = 1 */

for (t =a->m; t>1; t = (t+1)/2 ) {

glUniformiui ( uloc[4], t );
COMPUTE ( t/2, 1, 1)
}
glGetBufferSubData ( GL_SHADER_STORAGE_BUFFER, O,
sizeof (GLuint), &a->lmax );

EXECSTAGE ( 0, a->m, 1, 1 )
}
EXECSTAGE ( 2, a->nnz, 1, 1)
glUniformii ( uloc[0], 3 );
for (t = a->lmax; t > 1; t

glUniformiui ( uloc[4], t

COMPUTE ( a->m, (t/2), 1)
}
EXECSTAGE ( 4, a->m, 1, 1)
glUseProgram ( O );

/* stage = 3 x/
t+1)/2 ) {

)
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glDeleteBuffers ( 2, auxb );
ExitIfGLError ( "GPUMultSparseMatrixVectorf" );
} /*GPUMultSparseMatrixVectorf*/

lub etapu obliczen i czeka na jego wyniki. Pierwszy etap (w ktérym zmienna stage ma war-
to$¢ 0) polega na obliczeniu réznic r;,; —r; i zapamigtaniu ich w tablicy 1gt . 1 (w pierwszym
buforze pomocniczym).

Jesli pole a->1max ma warto$¢ O, to nastepuja (w liniach 28-37) dwa dodatkowe etapy
majace znalez¢ maksymalng réznice. Pierwszy z nich realizuje algorytm opisany w podroz-
dziale G.11i sktadajacy si¢ z [log, m| krokéw. Najwicksza réznica jest odczytywana z bufora
w liniach 34-35. Poniewaz jej znalezienie wigze si¢ z zepsuciem zawartosci bufora, w linii 36
réznice sg obliczane ponownie.

Uwaga: Najwigksza liczba niezerowych wspétczynnikéw w wierszu jest odczytywana z bu-
fora auxb[0] (tj. z bloku magazynowego RowL) — to dlatego ten bufor zostal przywiazany
do celu GL_SHADER_STORAGE_BUFFER jako ostatni (w linii 24).

Etap realizowany w linii 38 wykonuje mnozenie wspoiczynnikéw macierzy przez odpo-
wiednie wiersze macierzy X; iloczyny sa zapamietywane w drugim buforze pomocniczym
(w tablicy b.b)". Zauwazmy (listing G.17, linie 33-34), ze wspolczynnik a;; macierzy, pa-
mietany w miejscu 1 tablicy a. a, musi by¢ pomnozony przez j-ty wiersz macierzy X, ktérgo
numer j jest brany z tablicy c.

Kolejny etap, realizowany w liniach 39-43 procedury w C i w liniach 37-42 szadera, ma
obliczy¢ sumy skfadnikow poszczegélnych wspétczynnikéw macierzy Y. Wszystkie wiersze
tej macierzy sg obliczane jednocze$nie za pomoca opisanego w podrozdziale G.1 sumowania
parami. W tym etapie grupa robocza jest dwuwymiarowa; indeks x watku w grupie jest
numerem sumy (czyli wiersza macierzy Y), a indeks y okresla pierwszy skltadnik w danym
kroku sumowania.

Drugi sktadnik w danym kroku ma numer k = j + [t/2], obliczany w linii 38, przy czym
numer ten musi by¢ mniejszy niz liczba sktadnikéw i-tej sumy i mniejszy niz liczba t (war-
to$¢ zmiennej t) okreslajagca maksymalna liczbe sktadnikéw sumowanych w danym kroku
algorytmu sumowania parami. Ten warunek jest sprawdzany w linii 39; zauwazmy, ze jesli
liczby skladnikéw poszczegdlnych sum sg rozne, to pewne watki ,,préznujg’, ale w kolejnych
krokach (ktorych jest [log, Imax|) drugi wymiar grupy roboczej maleje do jedynki i préznu-
jacych watkow jest coraz mniej.

Ostatni etap (linia 44 na listingu G.16 i linie 45-46 na listingu G.17) ma skopiowa¢ obliczone
sumy z bufora pomocniczego do bufora, w ktérym ma si¢ znalez¢ wynik. Miejsce w buforze
pomocniczym, w ktérym poprzedni etap obliczen zostawil i-ty wiersz macierzy Y (ktorego
indeks i jest wartoscig zmiennej i), ma numer r (i), chyba ze nastgpna liczba w tablicy r
jest taka sama (czyli réznica r; ) — r; pamietana w 1gt .1 [1] jest zerem). Jest tak wtedy, gdy
w i-tym wierszu macierzy A sg tylko zerowe wspoétczynniki, a wtedy i-ty wiersz macierzy Y
tez sklada si¢ z samych zer.

"Mnozenie wspélczynnikéw wiersza macierzy X jest tu wykonywane sekwencyjnie. Mozna by to zréwno-
legli¢, ale dla zadan ,,duzych” (w poréwnaniu z liczbg procesoréw w GPU) to nie musi przyspieszy¢ obliczen.
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: layout (std430,binding=0) buffer RowsCols
: layout (std430,binding=1) buffer Coeff

: layout (std430,binding=2) buffer Xvec

: layout (std430,binding=3) buffer Yvec

: layout (std430,binding=4) buffer RowL

G.4. Przetwarzanie macierzy rzadkich

Listing G.17. Szader drugiego algorytmu mnozenia macierzy rzadkiej przez wektor

GLSL

: #version 450

: layout (local_size_x=1) in;

uint rcll; } rc;
float all; } a;
float x[]; } x;
float y[1; } y;
uint 1[]; } 1lgt;
float b[l; } b;

A A A

layout (std430,binding=5) buffer Prod

uniform int stage;
uniform uint m, nnz, dim, t;

#define r(i) rc.rcli]
#define c(i) rc.rclm+1+(i)]

void main ( void )
{

uint i, j, k, 1, u, v;

i = gl_GlobalInvocationID.x;
switch ( stage ) {
case 0:
lgt.1[i] = r(i+1) - r(i);
return;
case 1:
if ( (j =1+ (t+1)/2) <t )
if ( 1gt.1[j] > 1gt.1[i] )
1lgt.1[i] = 1gt.1[j];
return;
case 2:
for (1 =0, u= ixdim, v = c(i)*dim; 1 < dim; 1++)
b.b[u++] = a.ali] * x.x[v++];
return;
case 3:
j = gl_GloballnvocationID.y;
k =3+ (£+1)/2;
if (k < 1gt.1[i]l & k <t ) {
for (1 =0, u= (r()+j)*dim, v = (r(i)+k)*dim; 1 < dim;
b.b[u++] += b.b[v++];

for (1 =0, u=i*dim, v = r(i)*dim; 1 < dim; 1++ )

1++ )
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y.ylut+] = b.blv++];
return;
default:
return;
}

} /*mainx/

Drugi z przedstawionych wyzej algorytmow jest znacznie bardziej skomplikowany i po-
trzebuje sporo pamieci dodatkowej. Warto wiec sprawdzi¢, czy jest lepszy. Cho¢ obliczenia sa
w nim podzielone na wiecej watkow, ktére moga by¢ wykonywane réwnolegle, warunkiem
faktycznego przyspieszenia obliczen byloby istnienie odpowiednio duzej liczby procesoréw
GPU. W rzeczywisto$ci wielokrotne uruchamianie kolejnych etapéw obliczen i czekanie na
ich dokonczenie przed nastepnymi etapami zabiera sporo czasu. Jesli liczba wierszy macierzy
jest zblizona do liczby procesoréw lub wigksza, a przy tym maksymalna liczba niezerowych
wspolczynnikow w wierszu nie jest duza, to pierwszy algorytm ,,zatrudnia” procesory GPU
w prawie jednakowym stopniu, a to oznacza, ze wykorzystuje GPU bardzo efektywnie.

Algorytm sumowania parami daje zazwyczaj dokladniejsze wyniki niz algorytm sekwen-
cyjny, ale dla zwiekszenia doktadnosci tego ostatniego wystarczy zadeklarowa¢ zmienng s
(listing G.14, linia 18) typu double'?, co zmniejszy bledy zaokraglen sumowania.

Jesli macierz rzadka n x n jest symetryczna, to moze by¢ przechowywana w mniejszej ilos-
ci pamieci — poniewaz a;; = aj; dla kazdego i, j, w zasadzie wystarczy trzymac w tablicach
tylko niezerowe wspolczynniki na i pod diagonalg (dla i > j). Nie jest jednak tatwe dostoso-
wanie do takiej oszczednej reprezentacji rownoleglego algorytmu mnozenia macierzy przez
wektor, dlatego rzadkie macierze symetryczne powinny by¢ w pamigci GPU reprezentowane
tak jak niesymetryczne.

G.4.2. Transponowanie macierzy rzadkiej

Dla macierzy rzadkiej A znajdziemy reprezentacje jej transpozycji, AT, a raczej napiszemy
szader i procedure w C, ktére to bedg robi¢. Dla macierzy m x n, ktéra ma N niezerowych
wspotczynnikow, zostanie to wykonane w O (log® N + log m) krokach.

Listing G.18 przedstawia procedure dokonujaca transpozycji przy uzyciu szadera z lis-
tingu G.19. Identyfikator programu szaderéw i polozenia zmiennych jednolitych w tym prog-
ramie s3 pami¢tane w zmiennych program_id iuloc.

Po znalezieniu macierzy AT macierz A moze by¢ w aplikacji niepotrzebna. W takim przy-
padku tablica a, w ktorej sa przechowywane wspolczynniki macierzy A, moze stac sie czescia
reprezentacji macierzy AT — beda w niej te same liczby ustawione w innej kolejnosci. Jesli
potrzebne s3 obie macierze, to zostanie utworzony bufor z nowg tablicg o tej samej dtugos-
ci. Zawsze bedzie tworzony nowy bufor z tablicami r i ¢ dla macierzy AT, bo jego dlugosé,
n+1+ N, jest na ogdt inna niz suma m + 1+ N dlugosci tablic r i ¢ dla macierzy A.

2 Trzeba wtedy dopisa¢ konwersje miedzy typami double a float, aby kompilator uznat kod szadera za
bezbtedny.
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Listing G.18. Procedura znajdowania transpozycji macierzy rzadkiej

C
1: static GLuint program_id;
2: static GLuint uloc[7];
3:
4: #define EXECSTAGE(STAGE,SIZEX,SIZEY,SIZEZ) .... /* listing G.16 */

6: char GPUTransposeSparsef ( GPUSparseMatrix *at, GPUSparseMatrix *a,
7 char keep_a )

s {

9: GLuint atb[3];

10:  GLuint m, n, nnz;

11:

12:  glUseProgram ( program_id );

13:  glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 0, a->buf[0] );
1a:  glUniformiui ( uloc[4], m = at->n = a->m );

15:  glUniformlui ( uloc[5], n = at->m = a->n );

16: glUniformlui ( uloc[6], nnz = at->nnz = a->nnz );

17 if ( keep_a ) {

18: glGenBuffers ( 3, atb );

191 glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 1, a->buf[1] );

20: glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 3, at->buf[1] = atb[2] );
21: glBufferData ( GL_SHADER_STORAGE_BUFFER, nnz*sizeof (GLfloat),

22: NULL, GL_DYNAMIC_DRAW );

23: EXECSTAGE ( O, nnz, 1, 1 );

24: }

s else {

26: glGenBuffers ( 2, atb );

27: glBindBufferBase ( GL_SHADER_STORAGE_BLOCK, 3, at->buf[l] = a->buf[1] );
28: }

20: glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 2, at->buf[0] = atb[0] );
s0: glBufferData ( GL_SHADER_STORAGE_BUFFER, (n+1+nnz)*sizeof (GLuint),
31: NULL, GL_DYNAMIC_DRAW );

32: glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 4, atb[1] );

s3:  glBufferData ( GL_SHADER_STORAGE_BUFFER, nnz*sizeof (GLuint),

34: NULL, GL_DYNAMIC_DRAW );

35: EXECSTAGE ( 1, nnz, 1, 1 );

s: _GPUNetSort ( 1, nnz, uloc[2], uloc[3] ); /* listing G.12 */

a7:  EXECSTAGE ( 3, n+1, 1, 1 );

ss: glDeleteBuffers ( 1, &atb[1] );

s9: if ( tkeep_a ) {

40: glDeleteBuffers ( 1, &a->buf([0] );
at: memset ( a, 0, sizeof (GPUSparseMatrix) );
42: }

43: return true;
aa: } /*GPUTransposeSparsef*/
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Listing G.19. Szader znajdowania transpozycji macierzy rzadkiej

: layout (std430,binding=1) buffer Coeff { float all; }
: layout (std430,binding=2) buffer RCT { uint rcl]; }
: layout (std430,binding=3) buffer CoeffT { float al]l; 1}
: layout (std430,binding=4) buffer auxb { uint afl]l; 2}

10:

uniform uint m, n, nnz;
uniform uint stage, step, h;
uniform bool reverse;

#define r(I) rc.rc[I]

#define c(I) rc.rc[m+1+(I)]
#define rt(I) rct.rc[I]
#define ct(I) rct.rc[n+1+(I)]
#define pairi(I) ct(I)
#define pairj(I) aux.alIl

void CompSwap ( uint i, uint j )

{

uint b;

float x;

if ( pairj(j) < pairj(i) ||

pairj(j) == pairj(i) && pairi(j) < pairi(i) ) {

b = pairi(i); pairi(i) = pairi(j); pairi(j) = b;
b = pairj(i); pairj(i) = pairj(j); pairj(j) = b;
x = at.alil; at.ali] = at.alj]; at.aljl = x;

}

} /*CompSwap*/

void main ( void )

{
uint i, j, k, 1, h2;

i = gl_GlobalInvocationID.x;
switch ( stage ) {
case 0:
at.al[i] = aa.alil;
return;
case 1:

GLSL
: #version 430
: layout (local_size_x=1) in;
: layout (std430,binding=0) buffer RC { uint rcll; } rc;

aa;
rct;

aux;
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(j=0,k=m k-j>1;) {
1 =3+ (k-j)/2;
i<r() 7?2 &k=1 :({=1;

}
pairi(i) = j;
return;
case 2:
h2 =h > 1; 1=1i % h2; i /= h2; j = ixh+l;
if ( (k = reverse 7 (i+1)*h-1-1 : j+h2) < nnz )
CompSwap ( j, k );

return;

. case 3:

if ( i > pairj(anz-1) )
rt(n) = nnz;

else if ( i <= pairj(0) )
rt(i) = 0;

else { /* i <n %/

for ( j =1, k =mnnz; k-j>1; ) {
1 =3+ (k-7)/2;
i < pairj(1) || i == pairj(1-1) ? (k = 1) : (j = 1);
}
rt(i) = j;
}
return;
: default:
return;
}

. } /*mainx/

Pierwszy parametr procedury GPUTransposeSparsef to wskaznik opakowania wyniku,
tj. transpozycji macierzy, ktdrej opis jest wskazywany przez drugi parametr. Jesli trzeci pa-
rametr ma warto$¢ zerowg (false), to reprezentacja macierzy danej zostanie zlikwidowana,
a bufor, w ktérym sg jej wspdtczynniki, stanie si¢ cz¢$cig macierzy wynikowej.

W liniach 12-16 procedura wybiera program szaderéw, przywiazuje bufor z tablicami r
i c do celu GL_SHADER_STORAGE_BUFFER i nadaje zmiennym jednolitym m, n i nnz wartosci
m,niN.

Jesli reprezentacja macierzy danej ma by¢ zachowana, to w linii 18 s3 tworzone trzy bu-
fory, z ktérych dwa stang si¢ cze$cig reprezentacji wyniku, a trzeci jest pamigcig dodatkowa
dla algorytmu. Etap O (listing G.19, linia 42) ma skopiowa¢ tablice a ze wspotczynnikami
macierzy danej do bufora z tablicg a znajdowanej transpozycji. Jeli reprezentacja macierzy
danej nie jest dalej potrzebna, to w linii 26 s tworzone tylko dwa bufory, w pierwszym z nich
beda tablice r i ¢ wyniku, a drugi jest pamiecig dodatkowa.

W liniach 29-34 nowo utworzone bufory sg przywiazywane do odpowiednich punktéw
dowiazania w celu GL_SHADER_STORAGE_BUFFER i sg im nadawane potrzebne wielkosci —
bufor roboczy musi pomiesci¢ N liczb catkowitych.
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W etapie 1 powstaja trojki (i, j, a;;) opisujace niezerowe wspolczynniki macierzy A; kaz-
dy watek szadera przetwarza jeden wspolczynnik. Indeks kolumny, j, ktéry stanie sie nu-
merem wiersza macierzy AT, jest wpisywany do bufora roboczego (listing G.19, linia 4s).
Indeks wiersza i stanie si¢ indeksem kolumny; jest on wpisywany do docelowej tablicy c
(listing G.19, linie s0, 18, 19), przy czym dla kazdego wspdlczynnika numer wiersza macie-
rzy A, w ktérym on sie znajduje, trzeba znalez¢ metoda wyszukiwania binarnego — to jest
wykonywane w petli w liniach 46-49.

Etap 2 jest sortowaniem trdjek w kolejnosci niemalejacych indekséw j, tréjki z tym sa-
mym indeksem j sg sortowane w kolejnosci rosngcych indekséw i. Do sortowania jest uzyta
procedura w C z listingu G.12. Instrukcje w linii 53 obliczajg indeksy pary tréjek, po czym
jest wywolywana procedura CompSwap, czyli komparator, ktory porzadkuje te pare.

Ostatni etap, 3, ma wypelni¢ tablice r reprezentacji macierzy AT. W tablicy roboczej
s3, uporzagdkowane niemalejgco, numery wierszy kolejnych wspotczynnikéw tej macierzy.
Pierwszy element tablicy r jest réwny 0, ostatni element (o indeksie 7) jest rowny N. Jesli po-
czatkowe wiersze maja tylko zerowe wspoétczynniki, to na poczatku tablicy bedzie odpowied-
nio wiecej zer, podobnie, jesli macierz AT ma zerowe koricowe wiersze, to odpowiadajace im
elementy tablicy r otrzymujg warto$¢ N — to robig instrukcje w liniach 61 i 59. Dla kazdego
z pozostalych wierszy metoda wyszukiwania binarnego jest znajdowany (w liniach 63-66) in-
deks w tablicy a pierwszego niezerowego wspolczynnika, albo, jesli wiersz jest zerowy, indeks
w tablicy a pierwszego niezerowego wspolczynnika w najblizszym wierszu niezerowym.

Bufor roboczy jest likwidowany przez instrukcje w linii 38 na listingu G.18. Jesli repre-
zentacja macierzy A nie ma by¢ zachowana, to w liniach 40-41 jest tez sprzatany bufor z jej
tablicami r i ¢ i opakowanie macierzy A jest czyszczone.

G.4.3. Mnozenie macierzy rzadkich

Zrealizujemy na GPU mnozenie macierzy rzadkich reprezentowanych w sposéb przedsta-
wiony na poczatku tego podrozdzialu. Procedura mnozenia korzysta z opisanych wcze$niej
w tym dodatku algorytméw sortowania i obliczania sum prefiksowych.

Spodziewajac sie, ze macierz C, ktdra jest iloczynem macierzy rzadkich A i B, tez jest
rzadka i chcac ja reprezentowac w taki sam sposob, trzeba wskaza¢ miejsca, w ktérych po-
jawig sie jej niezerowe wspodlczynniki. Aby to zrobi¢, zobaczmy schemat na rysunku G.4.
Przedstawia on niezerowe wspotczynniki w pewnym (i-tym) wierszu macierzy A; i-ty wiersz
iloczynu jest sumg wierszy macierzy B pomnozonych przez wspolczynniki z i-tego wiersza
macierzy A. Macierz C moze mie¢ niezerowe wspolczynniki w tych kolumnach, w ktérych
wystepuja niezerowe wspotczynniki w wyréznionych wierszach macierzy B. Zatem, aby ob-
liczy¢ i-ty wiersz macierzy C, trzeba przez niezerowe wspdtczynniki w i-tym wierszu macie-
rzy A pomnozy¢ niezerowe wspotczynniki w odpowiednich wierszach macierzy B, a nastep-
nie obliczy¢, dla kazdego j, wspotczynnik c;; jako sume tych iloczynow, w ktorych wystepuja
wspolczynniki macierzy B z j-tej kolumny™.

PTaka suma iloczynéw moze by¢ réwna 0, ale tym sie nie zajmiemy, chyba ze Czytelnik, w ramach ¢wiczenia,
rozbuduje procedure o ,,czyszczenie” otrzymanego wyniku z zer. Ma to wigkszy sens dla macierzy o wspoélczyn-
nikach catkowitych niz zmiennopozycyjnych. Dalej, piszac o niezerowych wspotczynnikach macierzy C, mam
na mysli sumy niezerowych iloczynéw.
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Rysunek G.4. Schemat Falka dla iloczynu macierzy rzadkich

Listing G.20 przedstawia procedure GPUMultSparseMatricesf, ktdra oblicza iloczyn
macierzy rzadkich m x n i n x I, korzystajac z szadera obliczeniowego zamieszczonego na
listingu G.21. Po skompilowaniu i zlgczeniu programu szaderéw odczytane z niego poltozenia
zmiennych jednolitych stage, prNO, prN, prStep, ma, nnza, mb, nprod, nnzc, h, reverse
i tablgt sa (w tej kolejnosci) zapamietane w tablicy uvloc.

Parametry procedury mnozenia to wskazniki opakowan macierzy: wynikowej (tj. ilo-
czynu C = AB) oraz czynnikéw A i B.

Instrukcje wliniach 15-21 przywiazuja bufory z macierzami A i B do odpowiednich punk-
tow dowigzania i nadaja warto$ci zmiennym jednolitym ma (liczba wierszy macierzy A i C),
nnza (liczba niezerowych wspoélczynnikéw macierzy A) imb (liczba wierszy macierzy B jed-
nocze$nie liczba kolumn macierzy A). W linii 22 procedura rezerwuje pie¢ buforéw; pierwsze
trzy z nich bedg uzyte jako pamiec robocza, a w pozostalych dwoch bedzie umieszczony wy-
nik (i identyfikatory tych buforéw zostang przypisane wskaznikom w tablicy c->buf).

Pierwszy etap algorytmu (linie 26—29) ma znalez¢ liczbe wszystkich niezerowych iloczy-
now a;iby;. Niezerowy wspétczynnik a;; ma by¢ pomnozony przez niezerowe wspotczyn-
niki macierzy B w k-tym wierszu. Do bufora roboczego (o dtugosci nnza+1), przywigza-
nego do punktu 4, watki szadera wpisuja liczby wspdtczynnikéw w odpowiednich wierszach
macierzy B (listing G.21, linie 55-57). Liczby te s3 wpisywane ,,0 jedno miejsce dalej”, a na
poczatek ciggu liczb w buforze trafi 0. W linii 27 nastepuje obliczenie ciggu sum prefikso-
wych. Ostatnia liczba w tym ciagu, oznacze jg litera P, jest catkowitg liczbg iloczynoéw, ktora
trafi do zmiennej nprod w procedurze GPUMultSparseMatricesf i do zmiennej jednolitej
nprod szadera. Pary sasiednich liczb w tym ciagu wyznaczaja poczatki i konce obliczonych
pdzniej podciagow iloczyndw wspoétczynnikéw, otrzymanych dla kolejnych wspdtczynnikow
macierzy A.

Istniejg takie niezerowe macierze rzadkie, ktérych iloczyn jest macierza zerowg. W szcze-
golnosci moze si¢ okazad, ze liczba P niezerowych iloczyndw jest zerem, a wtedy procedura
konczy dzialanie, wypelniajac zerami opakowanie macierzy C (linie 31-33).
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Listing G.20. Procedura mnozenia macierzy rzadkich

C
: static GLuint program_id;
. static GLuint uvloc[12];
: #define EXECSTAGE(STAGE,SIZEX,SIZEY,SIZEZ) .... /* listing G.16 */
: static void iPrefixSum ( int NO, int N ) { .... } /* listing G.9 */

: char GPUMultSparseMatricesf ( GPUSparseMatrix *c,

GPUSparseMatrix *a, GPUSparseMatrix *b )
{
GLuint auxb[5];
GLuint nprod, _nnzc, maxnt, tablgt, i;

glUseProgram ( program_id );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, O, a->buf[0] );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 1, a->buf[1] );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 2, b->buf[0] );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 3, b->buf[1] );
glUniformiui ( uloc[4], a->m );
glUniformiui ( uloc[5], a->nnz );
glUniformiui ( uloc[6], a->n );
glGenBuffers ( 5, auxb );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 4, auxb[0] );
glBufferData ( GL_SHADER_STORAGE_BUFFER,
(a->nnz+1) *sizeof (GLuint), NULL, GL_DYNAMIC_DRAW );
EXECSTAGE ( 1, a->nnz, 1, 1)
iPrefixSum ( 1, a->nnz );
glGetBufferSubData ( GL_SHADER_STORAGE_BUFFER,
a->nnz*sizeof (GLuint), sizeof (GLuint), &nprod );

if ( !nmprod ) {

glDeleteBuffers ( 5, auxb );

memset ( ¢, 0, sizeof (GPUSparseMatrix) );

return false;

}
glUniformiui ( uloc[7], nprod );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 6, auxb[1] );
glBufferData ( GL_SHADER_STORAGE_BUFFER,

2xnprod*sizeof (GLuint), NULL, GL_DYNAMIC_DRAW );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 5, auxb[2] );
glBufferData ( GL_SHADER_STORAGE_BUFFER,

nprod*sizeof (GLfloat), NULL, GL_DYNAMIC_DRAW );
EXECSTAGE ( 2, nprod, 1, 1)
glUniformiui ( uloc[11], tablgt = nprod > a->m 7 nprod+l : a->m+1 );
glDeleteBuffers ( 1, &auxb[0] );
glGenBuffers ( 1, &auxb[0] );
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glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 4, auxb[0] );
glBufferData ( GL_SHADER_STORAGE_BUFFER,

2xtablgt*sizeof (GLuint), NULL, GL_DYNAMIC_DRAW );
EXECSTAGE ( 3, a->m, 1, 1)

EXECSTAGE ( 4, a->m, 1, 1 );
glUniformli ( uloc[0], 5 ); /* uniform stage = 5; */
for (i =a->m; i>1; i= (i+1)/2 ) {
glUniformiui ( uloc[2], i );
COMPUTE ( i/2, 1, 1 );
}
glGetBufferSubData ( GL_SHADER_STORAGE_BUFFER,
tablgt*sizeof (GLuint), sizeof (GLuint), &maxnt );
_GPUNetSort ( a->m, maxnt, uloc[10], uloc[9] );
EXECSTAGE ( 7, nprod, 1, 1)
iPrefixSum ( 1, nprod );
glGetBufferSubData ( GL_SHADER_STORAGE_BUFFER,
nprod*sizeof (GLuint), sizeof(GLuint), &_nnzc );
glUniformiui ( uloc([8], _nnzc );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, 1, auxb[4] );
glBufferData ( GL_SHADER_STORAGE_BUFFER,

_nnzc*sizeof (GLfloat), NULL, GL_DYNAMIC_DRAW );
glBindBufferBase ( GL_SHADER_STORAGE_BUFFER, O, auxb[3] );
glBufferData ( GL_SHADER_STORAGE_BUFFER,

(a->m+1+_nnzc)*sizeof (GLuint), NULL, GL_DYNAMIC_DRAW );
EXECSTAGE ( 8, nprod+1l, 1, 1)

EXECSTAGE ( 9, _nnzc, 1, 1 );
EXECSTAGE ( 10, a->m, 1, 1)
c->m = a->m; c->n = b->n; c->nnz = _nnzc; c->lmax = 0;
c->buf[0] = auxb[3]; c->bufl[l] = auxb[4];
glUseProgram ( 0 );
glDeleteBuffers ( 3, auxb );
ExitIfGLError ( "GPUMultSparseMatricesf" );
return true;
} /*GPUMultSparseMatricesf*/

Drugi etap mnozenia realizujg instrukcje w liniach s5-42. Dla kazdego iloczynu a;iby;
trzeba zapamieta¢ w buforach roboczych trzy liczby: indeksy i, j oraz sam iloczyn. W liniach
36—41 rezerwowana jest pamiec na 2P liczb typu GLuint w jednym oraz P liczb typu GLf1oat
w drugim buforze. Bufory robocze sg przywiazywane do punktéw dowigzania 6 i 5; ich
nazwy lokalne w tresci szadera to aux2 i aux1, ale dostep do pierwszego z nich odbywa sie¢ za
pomoca makrodefinicji pairi i pairj (linie 22, 23), bo w tym buforze beda przechowywane
pary liczb (i, j).

Wywolanie (przez makro EXECSTAGE) procedury glDispatchCompute w linii 42 po-
woduje wykonanie, dla kazdego iloczynu do obliczenia, instrukeji szadera w liniach 60-71.
Petla w liniach 60-63 znajduje numer p niezerowego wspodlczynnika a;i, ktory jest pierw-
szym czynnikiem, za pomocg wyszukiwania binarnego w ciggu sum prefiksowych obliczo-
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nych w pierwszym etapie. Petla w liniach e4-67, rowniez metoda wyszukiwania binarnego,
znajduje indeks i, tj. numer wiersza zawierajacego wspolczynnik a;; bedacy przedmiotem
zainteresowania danego watku szadera i zapamietuje go (w linii 68) w buforze. Wartos¢
przypisana zmiennej q w linii 69 jest numerem wspdlczynnika by; w tablicy niezerowych
wspotczynnikéw macierzy B, a w linii 7o jest zapamigtany w buforze indeks j kolumny z tym
wspotczynnikiem. W linii 71 wspotczynniki a;y i by s3 mnozone. Z powodu koniecznosci
wyszukiwania indekséw koszt tego etapu, identyczny dla wszystkich iloczynéw, jest rzedu
sumy logarytméw liczby niezerowych wspoélczynnikéw macierzy A i liczby jej wierszy.

Po zapamigtaniu w buforach pomocniczych par (i, j) oraz iloczynéw a;by; dostep do
tablic z reprezentacjami macierzy A i B przestaje by¢ potrzebny. W zwiazku z tym, oraz
dazeniem do zmieszczenia si¢ w limicie o$miu buforéw magazynowych, do ktdrych szader
obliczeniowy moze mie¢ dostep (zobacz p. 11.5.1), bufory, w ktérych bedzie umieszczony
koncowy wynik (czyli reprezentacja macierzy C) zostang przywigzane do punktéw 0 i 1,
dzieki ktérym wczesniej szader mial dostep do macierzy A. Do zrobienia pozostalo oblicze-
nie sum wlasciwych iloczynéw i znalezienie, dla kazdej sumy, numeru wiersza i kolumny, na
przecieciu ktérych ta suma jest wspdtczynnikiem macierzy C.

W liniach 44-48 nastepuje realokacja pierwszego bufora pomocniczego, poniewaz dalej
trzeba bedzie zmie$ci¢ w nim dwie tablice o dlugosciach T = max(P,m) + 1. Dostep do
tych tablic w tresci szadera odbywa si¢ za pomoca makrodefinicji tab1 i tab2. Wartoscia
zmiennej jednolitej tablgt jest liczba T, przypisywana w linii 43.

Kolejne cztery etapy majg posortowac tréjki (i, j, ajxbi;), aby iloczyny, ktore trzeba zsu-
mowac, znalazly sie w tablicy obok siebie. Trojki juz sg uporzadkowane wzgledem indek-
séw i, zatem trzeba dla kazdego i wyodrebni¢ odpowiedni podciag trdjek i uporzadkowac
go wzgledem j. Etap 3 (listing G.21, linie 74-84) znajduje metodg wyszukiwania binarnego
i wpisuje do pierwszej tablicy m +1liczb bedacych numerami miejsc, od ktérych zaczynaja si¢
podciagi z danym indeksem i; ostatnia liczba jest rOwna P. W ten sposdb rdznice kolejnych
liczb w tablicy sg dlugosciami odpowiednich podciaggéw do posortowania. Etap 4 oblicza te
réznice, a etap 5 (listing G.20, linie 51-57, listing G.21, linie 90-93) znajduje najwieksza z nich
i przypisuje j3 zmiennej maxnt.

Szosty etap jest sortowaniem podciggéw trdjek za pomoca algorytmu sieci sortujacej re-
alizowanego przez procedure _GPUNetSort z listingu G.12; liczba sortowanych podciagéw
jest liczbg wierszy macierzy A i C. Liczba krokéw sortowania jest okreslona przez najwieksza
diugos$¢ podciggu. Globalna grupa robocza jest w tym etapie dwuwymiarowa. Jej pierw-
szy wymiar jest rowny [log, I — 1, gdzie [ jest najwigksza dtugoscia sortowanego podciagu,
a drugi wymiar jest liczbg podciagéw (czyli liczbg wierszy macierzy C).

Wspolrzedne x i y watku w grupie roboczej okreslaja numer podciggu i numer kompara-
tora zatrudnionego do posortowania tego podciggu. Numery te s parametrami procedury
SortIt (listing G.21, linie 29-42), ktéra na ich podstawie oblicza potozenia tréjek w tablicach
i wykonuje zadanie komparatora. Warto zwrdci¢ uwage, ze cho¢ dtugosci podciggéw moga
sie znacznie rézni¢ (moga by¢ nawet podciagi puste), okreslenie liczby etapéw sortowania
na podstawie najwigkszej dlugosci daje poprawny wynik: podciagi najkrétsze zostang po-
sortowane w poczatkowych etapach, a dalej komparatory, po poréwnaniu, niczego juz nie
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przestawig. Trzeba tylko sprawdza¢, czy indeks drugiego elementu pary odpowiada elemen-
towi tego samego podciagu, co jest robione w linii 6.

Listing G.21. Szader obliczeniowy mnozenia macierzy rzadkich
GLSL

1: #version 450 core
3: layout (local_size_x=1) in;

s: layout (std430,binding=0) buffer RCA { uint rcll; } rca;
6: layout (std430,binding=1) buffer CoeffA { float all; } aa;

7: layout (std430,binding=2) buffer RCB { uint rcll; } rcb;
s: layout (std430,binding=3) buffer CoeffB { float al[]l; } ab;

9: layout (std430,binding=4) buffer Auxb0 { uint all; } seq;
10: layout (std430,binding=5) buffer Auxbl { float all; } auxi;
11: layout (std430,binding=6) buffer Auxb2 { uint all; } aux2;
12:

13: uniform int stage;

14: uniform uint prNO, prN, prStep;

15: uniform uint ma, nnza, mb, nprod, nnzc, h, tablgt;

16: uniform bool reverse;

17:

18: #define ra(I) rca.rc[I]

19: #define ca(I) rca.rc[ma+1+(I)]

20: #define rb(I) rcb.rc[I]

21: #define cb(I) rcb.rc[mb+1+(I)]

2. #define pairi(I) aux2.a[2*(I)]

23: #define pairj(I) aux2.a[2x(I)+1]

24: #define tabl(I) seq.alI]

25: #define tab2(I) seq.altablgt+(I)]

26:

27: void iPrefixSum ( uint i ) { .... } /* procedura z listingu G.8 */

28:

20: void SortIt ( uint ns, uint np )

30: {

s uint i, j, 1, h2;

32: float x;

33:

3a: h2 =h > 1; 1 =mnp % h2; np /= h2;

3s: 1 = tabl(mns)+npxh+l; j = reverse 7 tabl(ns)+(np+1)*h-1-1 : i + h2;
se: if ( j < tabl(ms+1l) ) {

a7: if ( pairj(i) > pairj(j) ) {

38: 1 = pairj(i); pairj(i) = pairj(j); pairj(j) = 1;
39: x = auxl.a[i]l; auxl.al[i] = auxl.al[jl; auxl.alj] = x;
40: }

41: }

a2: ¥ /*SortItx/
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43:

a2: void main ( void )

45: {

46: uint i, j, k, 1, m, p, q;
a7: float s;

48:

49: 1 = gl_GlobalInvocationID.x;
so: switch ( stage ) {

s1: case O:

52: iPrefixSum ( i );

53: return;

sa: case 1:

55: if (i == 0 ) seq.ali] = 0;

56: j = ca(i);

57 seq.ali+1] = rb(j+1)-rb(j);

58: return;

59: case 2:

60: for ( p =0, k = nnza; k-p>1; ) {
61: 1 =p+ (k-p)/2;

62: if (i >= seq.a[l] ) p = 1; else k = 1;
63: }

64: for ( j =0, k =ma; k-j>1; ) {

65 1=3+ (k-j)/2;

66: if (p>=ra(l) ) j=1; else k = 1;
67: }

68: pairi(i) = j;

69: q = rb(ca(p))+i-seq.alp];

70: pairj(i) = cb(q);

71 auxl.al[i] = aa.a[pl*ab.alq];

72: return;

73: case 3:

74: if (i==0){

75: tab1(0) = 0;

76: tabl(ma) = nprod;

77 }

78: else {

79: for ( j =0, k = nprod; k-j > 1; ) {
80: 1=3j+ (k—j)/Q;

81: if ( pairi(l) < i) j =1; else k = 1;
82: }

83: tabl(i) = k;

84: }

85: return;

g6: case 4:

87: tab2(i) = tabl(i+1)-tab1(i);

88: return;

89: case b:
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90: if ( (j = i+(prN+1)/2) < prN ) {

91: if ( tab2(i) < tab2(j) )

92: tab2(i) = tab2(j);

93: }

94: return;

95: case 6:

96: SortIt ( i, gl_GlobalInvocationID.y );
97: return;

98: case T7:

99: if (i==0)

100: { tab1(0) = 0; tabi(1) =1; }

101: else

102: tabl(i+l) = pairi(i-1) != pairi(i) || pairj(i-1) !'= pairj(i) ? 1 : O;
103: return;

104: case 8:

105: if ( i == nprod )

106: tab2(nnzc) = nprod;

107: else if ( tabl(i+1) > tabl(i) ) {

108: ca(tab1(i)) = pairj(i);

109: tab2(tab1(i)) = i;

110: }

111: return;

112: case 9:

113: if ( tab2(i+1) > tab2(i) ) {

14 for ( j = tab2(i), s = 0.0; j < tab2(i+l); j++ )
115: s += auxl.al[j];

116: aa.ali] = s;

117: tabl(i) = pairi(tab2(i));

118: }

119: return;

120: case 10:

121: E (i==0)HA

122: ra(0) = 0;

123: ra(ma) = nnzc;

124: }

125: else {

126: for ( p =0, k = nnzc; k-p > 1; ) {
127: 1 =p+ (k-p)/2;

128: if (i > tab1(1-1) ) p = 1; else k = 1;
129: }

130: ra(i) = p;

131: }

132: return;

133: default:

134: return;

135: }

136: } /*main*/
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W etapie siodmym (linia 59 na listingu G.20 oraz 99-102 na listingu G.21) do pierwszej tab-
licy sa wpisywane jedynki i zera: jedynka odpowiada iloczynowi, ktory jest pierwszym sklad-
nikiem sumy do obliczenia (czyli jest pierwszym iloczynem z dang para indekséw (i, f)),
a zero odpowiada kazdemu kolejnemu skladnikowi. Wspomniane zera i jedynki sg wpisy-
wane ,,0 jedno miejsce dalej”, a na poczatek tablicy trafia 0. Po obliczeniu ciggu sum pre-
fiksowych na koncu ciagu (w miejscu o numerze P) otrzymamy liczbe wpisanych jedynek,
czyliliczbe¢ N niezerowych wspdtczynnikéw macierzy C. Liczba ta jest odczytywana z bufora
w liniach 61-62, a w linii 63 jest przypisywana zmiennej jednolitej nnzc.

W liniach e4-69 bufory, w ktorych ma si¢ znalez¢ wynik, sg przywigzywane do punktéw
dowigzania 0 i 1 i nast¢puje rezerwacja blokéw pamieci GPU o odpowiedniej dtugosci.

W etapie 6smym (listing G.20, linia 7o i listing G.21, linie 105-110) dla kazdego niezero-
wego wspolczynnika macierzy C do tablicy c bedacej czescia reprezentacji tej macierzy jest
wpisywany numer kolumny, w ktorej jest ten wspotczynnik. Ponadto do drugiej tablicy po-
mocniczej jest wpisywany ciag liczb, ktdre sg indeksami poczatkéw podciggdw iloczynow do
zsumowania. Warunek badany przez szader w linii 107 jest spelniony, gdy numer watku jest
numerem pierwszego iloczynu w sumowanym podciagu. Instrukcja przypisania w linii 106
»zakancza” wpisywany do tablicy ciag liczbg P na pozycji N. W rezultacie w tablicy tab2
mamy ciag liczb to = 0, f4,. .., tN_1, tn = P, taki ze i-ty wspotczynnik macierzy C jest suma
iloczynéw znajdujacych si¢ w tablicy aux1 od miejsca ¢; do ;41 — L.

W etapie dziewigtym (linia 71 i 113-118) nastepuje sumowanie sktadnikéw w celu oblicze-
nia wspdtczynnikéw c;; macierzy C. Obliczona suma jest w linii 116 zapisywana w tablicy a
reprezentacji macierzy C, a w linii 117 w tablicy pomocniczej jest zapamietywany numer wier-
sza, w ktorym wystepuje obliczony wspoélczynnik.

W etapie dziesigtym jest wypelniana tablica r reprezentacji macierzy C; sa w niej zapisy-
wane indeksy poczatkéw miejsc w tablicach c i a, od ktérych zaczynajg si¢ numery kolumn
i wspolczynniki w danym wierszu macierzy C. Indeksy te s znajdowane metoda wyszuki-
wania binarnego w tablicy tab1, w ktérej (wlasnie w tym celu) w poprzednim etapie zostaty
zapisane numery wierszy obliczonych wspoélczynnikéw. Dziala to poprawnie takze wtedy,
gdy pewne wiersze macierzy C s3 zerowe. Watek zerowy, oprocz zera na poczatku, wpisuje
do tablicy r na pozycji m, ktora jest liczba wierszy macierzy C, liczb¢ N niezerowych wspot-
czynnikow tej macierzy.

Tyle obliczen na GPU. W liniach 73-76 procedura przypisuje liczbe niezerowych wspoét-
czynnikéw wyniku i identyfikatory zawierajacych go buforéw zmiennym wskazywanym
przez parametry, po czym sprzata po sobie.
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AABB — axis-aligned bounding box, prostopadlo$cian otaczajacy obiekt, jego cze$¢, zespot
obiektéw lub calg sceng, o krawedziach réwnoleglych do osi (jakiegos ustalonego) uktadu
wspotrzednych, zobacz OBB.

AFR — alternating frame rendering, naprzemienne wykonywanie klatek, technika tworzenia
animacji na komputerze wyposazonym w wiecej niz jedng GPU. Kolejne klatki sg wy-
konywane przez inne GPU, co pozwala na zwiekszenie liczby klatek na sekunde albo na
zwiekszenie stopnia skomplikowania rysowanych scen lub algorytmdéw rysowania.

AMD — Advanced Micro Devices, jeden z dwoch wiodacych producentéw CPU i jeden
z dwdch wiodacych producentéw GPU.

ANSI — American National Standards Institute, organizacja, ktéra opracowata kanoniczny
standard jezyka C. Staram si¢ go trzymac.

API — application programming interface, po wlosku stowo api oznacza pszczoly.

ARB — OpenGL Architecture Review Board, komitet, ktéry w latach 1992-2006 odpowiadat
za rozwoj standardu OpenGL, p6zniej wszedt w sktad Khronos Group.

ATD — abstrakcyjny typ danych, czyli opis mozliwych dzialan na obiekcie i ich skutkow,
umozliwiajacy programiscie skupienie sie na sposobie uzywania obiektu, bez rozprasza-
nia uwagi na szczegoéty jego implementacji (ktére moga by¢ rozne). Przykladami ATD sa
stosy, kolejki i stowniki, a takze konteksty OpenGL-a — maszyny stanéw zdefiniowane
w specyfikacji.

AZDO — approaching zero driver overhead, co proponuje spolszczy¢ na QZNS, czyli ku
zerowemu narzutowi sterownika. Filozofia rozwoju standardu Vulkan na podstawie do-
$wiadczen z OpenGL-em, zgodnie z ktérg dla optymalnego wykorzystania GPU cata od-
powiedzialnos¢ za konfiguracje obiektéw uzywanych w procesie wykonywania obrazéw,
a takze synchronizacje wspotdzialania CPU i GPU, spada na autora aplikacji.
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BFA — brute force approach, metoda brutalnej sily, czyli zamiana zadania trudniejszego (np.
narysowania gtadkiej powierzchni) na duzo zadan fatwych (np. narysowania mndstwa
trojkacikow), ktére mozna rozwigzywac réwnolegle, gdy sie ma odpowiedni sprzet.

BES — breadth-first search, przeszukiwanie grafu wszerz.

BLAS — basic linear algebra subroutines, podstawowe podprogramy algebry liniowej realizu-
jace dziatania elementarne, takie jak mnozenie wektoréw przez liczby, dodawanie wekto-
réw, obliczanie iloczynu skalarnego, mnozenie macierzy przez wektor, mnozenie dwoch
macierzy itd. Podprogramy te sg zwykle zoptymalizowane do pracy na sprzecie, na kto-
rym maja dzialac i sg wykorzystywane m.in. przez biblioteke¢ LAPACK. Ich odpowiedniki
dzialajace na GPU sg w bibliotece CUBLAS, dostepnej dla procedur napisanych w jezyku
CUDA.

Takze bottom level acceleration structure, struktura danych uzywana w §ledzeniu promieni
za pomocg GPU, zobacz TLAS.

blit — block image transfer, blokowe przestanie obrazu, dzialanie wykonywane przez proce-
dure glBlitFramebuffer.

BRDF — bidirectional reflectance distribution function, dwukierunkowa funkcja rozkladu
odbicia $wiatla, sktadnik BSDF.

BSDF — bidirectional scattering distribution function, dwukierunkowa funkcja odbicia i za-
famania $wiatla, centralny element modelu o$wietlenia powierzchni. Jej argumentami
sg kierunki padania i odbicia lub zalamania $wiatta, a jej warto$¢ jest ilorazem radiancji
$wiatla odbitego lub zatamanego i irradiancji $wiatla padajacego na powierzchnie.

BTDEF — bidirectional transmission distribution function, dwukierunkowa funkcja rozkladu
zalamania $wiatla, drugi skltadnik BSDE.

BVH — bounding volume hierarchy, hierarchia otoczek czgéci skomplikowanej sceny uzy-
wana do przyspieszania rozwigzywania zadan takich jak znajdowanie przecie¢ promieni
z obiektami lub wykrywanie kolizji obiektéw. Czesto otoczkami sg kule lub AABB.

CAD — computer aided design, projektowanie wspomagane komputerem.

CAGD — computer aided geometric design, modelowanie geometryczne, dzial matematyki
stosowanej zajmujacy sie teoretycznymi podstawami CAD.

CCD — charge-coupled device, wspolczesna namiastka szklanej plyty lub tasmy z octanu
celulozy, pokrytej emulsja z bromkiem srebra.

CCW — counterclockwise, przeciwnie do ruchu wskazéwek zegara.

CIE — Commission Internationale de I'Eclairage, Miedzynarodowa Komisja O$wietleniowa,
zalozona w roku 1913 organizacja zajmujaca si¢ opracowaniem standardéw dla radio-
metrii, fotometrii i kolorymetrii.

CMY, CMYK — Cyan, Magenta, Yellow, (blacK), wspolrzedne uzywane w subtraktywnym
modelu mieszania barw.
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CPU — central processing unit, ,gtéwny” procesor, albo ,,jednostka centralna’, stad uznalem,
ze CPU jest rodzaju zenskiego.

CRT — cathode ray tube, w zasadzie lampa kineskopowa, ale wciaz jeszcze tym skrotem
w roznych pakietach oprogramowania (i bibliotekach procedur) okresla si¢ monitor.

CSR — compressed sparse rows, reprezentacja macierzy rzadkich opisana w podrozdziale G.4
i uzyta w implementacji metody bilansu energetycznego w rozdziale 29 i w zageszczaniu
siatek w rozdziale 31. Jest tez skrot CSC (compressed sparse columns), ktéry oznacza po-
dobna reprezentacje, z zamienionymi rolami wierszy i kolumn.

CUDA — Compute Unified Device Architecture, jezyk programowania GPU opracowany
przez firme¢ NVIDIA. Jest on podobniejszy do C niz GLSL i w zastosowaniach niezwigza-
nych z potokiem przetwarzania grafiki wydaje si¢ mie¢ wieksza sile wyrazu. Zamiast
szaderéw obliczeniowych napisanych w GLSL-u mozna napisa¢ odpowiedni program
w jezyku CUDA, ale jego zastosowanie ograniczone jest do komputeréw wyposazonych
w GPU z procesorami firmy NVIDIA.

CzLS — czteroliterowy skrdt, na przyktad CzLS (nie myli¢ z TLS).
DES — depth-first search, przeszukiwanie grafu w glab.

DMA — direct memory access, uklady wejscia/wyjscia umozliwiajace przesytanie danych
m.in. miedzy pamiecig operacyjng CPU a pamiecig GPU znacznie szybciej niz moze to
czyni¢ CPU.

DOF — degrees of freedom, stopnie swobody, niezalezne parametry artykulacji tancucha
kinematycznego'.

Takze depth of field, glebia ostrosci obiektywu, ktérg mozna symulowa¢ przy uzyciu bu-
fora akumulacji.

DPI — dots per inch, jednostka rozdzielczo$ci obrazu, liczba pikseli na cal.

DRI — direct rendering interface, zaimplementowana w bibliotece GLX mozliwo$¢ przekazy-
wania danych i polecert miedzy CPU a GPU z pominieciem protokotu komunikacyjnego
systemu X Window, w celu przyspieszenia tworzenia grafiki.

DSA — direct state access, wprowadzony w specyfikacji OpenGL 4.5 dostep do obiektow
w pamieci GPU (bufordéw, tekstur i buforéw ramki) bez przywigzywania ich do odpo-
wiednich celdw, realizowany za pomocg procedur majgcych stowo Named w nazwie.

EBO — element buffer object, to samo co IBO.
FBO — framebuffer object, obiekt bufora ramki.
FIFO — first in, first out, kolejka.

FPS — frames per second, liczba wyswietlanych klatek na sekunde. Takze first person shooting,
co mozna rozumiec jako strzelanie w pierwszej osobie lub strzelanie do pierwszej osoby.
Ja tego nie robie.

"W taficuchach otwartych wszystkie parametry artykulacji sa niezalezne.
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FSF — Free Software Foundation, organizacja, ktéra opracowata licencje GPL i LGPL.

GAF — geometric attenuation factor, funkcja opisujaca wzajemne zastanianie mikro$cianek
w opartych na prawach fizyki modelach o$wietlenia powierzchni.

GCC — GNU compiler collection, pakiet kompilatoréw réznych jezykéw programowania,
w tym jezyka C.

GDI — graphics device interface, biblioteka grafiki dwuwymiarowej, ktérej mozna uzywac
w natywnych aplikacjach systemu Windows do rysowania wihajstrow.

GGX — mimo staran nie udalo mi si¢ odnalez¢ stéw, z ktoérych powstat ten TLS. Bywa on
uzywany jako okreslenie implementacji dwukierunkowej funkcji odbicia §wiatta (BRDF)
lub jej czynnikéw: funkcji rozkladu kierunkéw wektora normalnego (NDF) lub funkeji
zastaniania mikro$cianek (GAF).

GIGO — garbage in, garbage out, niezaleznie, czy uzywamy kolejki (FIFO), czy stosu (LIFO).
GIMP — GNU Image Manipulation Program, program do obrobki obrazéw rastrowych,
przydaje si¢ do przygotowywania tekstur i ilustracji.

GLEW — OpenGL Extension Wrangler, jedna z bibliotek udostepniajacych aplikacji adresy
procedur OpenGL-a.

GLSL — OpenGL shading language, bohater tej ksiazki.

GLU — OpenGL utilities, biblioteka pomocnicza, wigkszos¢ jej procedur jest dostosowana
do starego OpenGL-a.

GLUT — OpenGL Utility Toolkit, historycznie pierwsza biblioteka z API dla interakcyjnych
aplikacji OpenGL-a, umozliwiajaca uniezaleznienie aplikacji od systemu operacyjnego
i systemu okien.

GNU — GNU’s not Unix, TLS, w ktorym rekurencja stuzy kokieterii.

GPL — GNU Public License, opracowana przez FSF licencja, na zasadach ktdrej sg roz-
powszechniane liczne programy.

GPU — graphics processing unit, procesor grafiki. Inaczej ,jednostka” lub ,karta” graficzna,
wedlug mnie jest rodzaju takiego jak CPU.

GUI — graphical user interface, zestaw wyswietlanych na ekranie wihajstrow, ktdre stuza do
interakeji uzytkownika z programem. Zobacz tez WIMP.

GWS — global workgroup size, wielko$¢ globalnej grupy robocze;j.

HDR — high dynamic range, szeroki zakres dynamiczny, reprezentacja obrazu, w ktorej skla-
dowe r, g, b pikseli sg reprezentowane przez liczby zmiennopozycyjne. Wyswietlenie ta-
kiego obrazu na ekranie musi by¢ poprzedzone przeksztalceniem do postaci LDR, ale
reprezentacja HDR umozliwia prowadzenie obliczen z duzg dokladnoscia, a skladowe
pikseli nie muszg naleze¢ do przedziatu [0,1].

HID — human input device, dowolne urzadzenie umozliwiajace wprowadzanie danych przez
czlowieka, na przyklad klawiatura, mysz, dzojstik.
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HLSL — high level shading language, jezyk programowania GPU, ktéry w standardzie Di-
rectX firmy Microsoft pelni role analogiczng do GLSL-a.

HSL, HSV — Hue, Saturation, Lightness, Value (odcien, nasycenie, §wiatlo$¢, warto$c), ,ma-
larskie” wspolrzedne barw, wymyslone jako wygodniejsze niz RGB dla uzytkownikéw
programéw graficznych.

IBL — image-based lighting, o$wietlenie przez obraz, tj. przy uzyciu obrazu $wiata otaczajg-
cego rysowany obiekt — $wiattem odbitym lub wysytanym przez obiekty dookofta.

IBO — index buffer object, bufor z indeksami do tablicy wierzchotkéw, umozliwia wygodne
rysowanie famanych, ta$m tréjkatowych lub wachlarzy okreslonych przez cigg wierzchol-
kow, ktore moga si¢ powtarzac.

IEEE — Institute of Electrical and Electronics Engineers, organizacja, ktéra opracowata m.in.
standard arytmetyki zmiennopozycyjnej IEEE 754, obejmujacy reprezentacje liczb oraz
najwazniejsze wlasnosci dzialan na nich. CPU realizujg ten standard w pelni, natomiast
GPU zazwyczaj tylko w ograniczonym zakresie, o czym trzeba wiedzie¢.

IFS — iterated function system, uklad iterowanych przeksztalcen, jeden z modeli matema-
tycznych uzywanych do otrzymywania obrazéw figur fraktalowych.

JPEG — Joint Photographic Experts Group, komitet, ktéry opracowat algorytmy kompresji
odpowiednie dla fotografii. Takze format zapisu plikow z obrazami, korzystajacy z tych
algorytmow, ktére moga by¢ tez stosowane do kompresji obrazéw w zapisanych innych
formatach, na przyktad TIFE

JPG — TLS CzLS-u JPEG uzywany jako rozszerzenie nazw plikéw w formacie JPEG.

KISS — keep it simple, stupid!, najwazniejsza maksyma, ktéra powinna zawsze przy$wiecaé
kazdemu programiscie. W praktyce, niestety, nie kazdemu, nie zawsze, albo w ogdle nie
przyswieca. Mam wrazenie, ze tworcy standardu Vulkan o niej nie styszeli.

KHR — Khronos Group, konsorcjum sprawujace od roku 2006 opieke nad standardem
OpenGL.

LCD — liquid crystal display, wyswietlacz cieklokrystaliczny.

LDR — low dynamic range, waski zakres dynamiczny, reprezentacja obrazu z pikselami re-
prezentowanymi przy uzyciu 8 bitdw na kazda ze sktadowych r, g, b koloru (bity te repre-
zentujg liczniki utamkéw o mianowniku 255, sktadowe nalezg wiec do przedziatu [0,1]).
Taka reprezentacja nadaje si¢ do bezposredniego wyswietlenia na ekranie, ale jest niewy-
starczajgca dla niektérych metod tworzenia obrazéw. Zobacz HDR.

LGPL — Lesser GNU Public License, nieco inna licencja niz GPL.
LIFO — last in, first out, stos.

LLVM — low level virtual machine, niskopoziomowa maszyna wirtualna, obecnie jest to na-
zwa wlasna oderwana od stéw, ktorych jest skrotem. To jest kompilator dla wielu jezykow
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programowania (poczatkowo C/C++), wytwarzajacy kod posredni, ktéry moze by¢ pod-
dany optymalizacji przed przetworzeniem go na kod docelowy. Projekt ten byt podstawa
do opracowania reprezentacji SPIR-V szaderow.

LOD — level of detail, poziom szczegdtowosci modelu dostosowany do jego wielkosci na
obrazie. Nie nalezy rysowa¢ wentyli w kotach samochodu, jesli obraz calego tego samo-
chodu w narysowanym krajobrazie ma $rednice kilkunastu pikseli (co innego, jesli obraz
wentyla ma kilkanascie pikseli).

LSB — least-significant bits, bity na mniej znaczacych pozycjach w reprezentacji liczby.

LTE — light transfer equation, réwnanie transportu $wiatla, nazywane tez réwnaniem bilansu
energetycznego, jest ono matematycznym modelem globalnego oswietlenia sceny.

LWS — local workgroup size, wielkos¢ lokalnej grupy roboczej, zadeklarowana w tresci sza-
dera obliczeniowego i dostepna w zmiennej wbudowanej gl _WorkGroupSize.

LZNK — liniowe zadanie najmniejszych kwadratow. Dla danej macierzy A € R™*" i wektora
b € R™ polega ono na znalezieniu takiego wektora x € R", ze dlugos¢ wektorar = b — Ax
(rownowaznie: suma kwadratow jego wspoltrzednych) jest najmniejsza. Jesli uklad row-
nan Ax = b jest niesprzeczny, to kazde jego rozwigzanie jest rozwigzaniem LZNK. Jesli
kolumny macierzy A sg liniowo niezalezne, to jest to tzw. regularne LZNK, ktére ma jed-
noznaczne rozwigzanie. Jesli wiersze macierzy A sa liniowo niezalezne, to uklad Ax = b
jest niesprzeczny, ale dla m < n ma nieskonczenie wiele rozwigzan — wtedy stawia sie
tzw. dualne LZNK, ktore polega na znalezieniu rozwigzania najkrétszego lub potozonego
najblizej danego wektora x € R". Jesli i wiersze i kolumny macierzy A sa liniowo zalezne,
to LZNK jest nieregularne; w zbiorze wektoréw x, takich ze wektor b — Ax jest najkrotszy,
trzeba znalez¢ wektor najkrétszy lub najblizszy danego wektora .

MIMD — multiple instruction, multiple data, komputer wieloprocesorowy, w ktérym kazdy
procesor moze wykonywa¢ w tym samym czasie inng instrukcje, zobacz SIMD.

MIP — multum in parvo, wiele w niewielu, okreslenie techniki teksturowania (mipmapingu,
MIP-mapping) uzytej w rozdziale 19.

MRT — multiple render target, jednoczesne wykonywanie wielu obrazéw, na przyklad na
réznych warstwach jednego zalacznika bufora ramki (wybieranych przez nadanie od-
powiednich warto$ci zmiennej gl_Layer przez szader geometrii, zobacz rozdz. 26)
lub na réznych zalacznikach koloru bufora ramki (wybieranych przez kwalifikatory
layout (location=i) zmiennych wyjsciowych szadera fragmentéw, rozdz. 27) albo
w roznych klatkach (wybieranych za pomocg zmiennej gl _Viewport szadera geometrii,
zobacz rozdz. 29).

MSAA — multisampled antialiasing, antyaliasing przez wieloprébkowanie. W tej technice
szacuje sie obszar piksela zajety przez fragment powierzchni, zliczajac (wybrane w pik-
selu) punkty nalezace do obrazu tego fragmentu, ale jego kolor (uwzgledniajacy oswiet-
lenie i teksture) oblicza si¢ tylko dla jednego (lub niewielu) punktéw, poréwnaj z SSAA.

MSB — most-significant bits, bity na bardziej znaczacych pozycjach w reprezentacji liczby.



H.1. Stownik TLS-6w i CzLS-6w 1185

MVP — model-view-projection, ciag przeksztalcen opisujacych kolejno przejscia od ukladu
wspolrzednych obiektu (modelu) do ukladu $wiata, obserwatora i kostki standardowej,
definiujacy rzutowanie obiektu tréjwymiarowego na plaszczyzng obrazu. Macierz opisu-
jaca zlozenie tych przeksztalcen jest rowna PV M (zobacz rozdz. 6).

NaN — not a number, nie-liczba, ciag bitdw zapisany w zmiennej typu float lub double
niereprezentujacy zadnej liczby rzeczywistej ani nieskoficzonosci.

NDC — normalized device coordinates, uktad wspdtrzednych kostki standardowej; w tym
uktadzie wspolrzedne kartezjanskie punktow bryly widzenia leza w przedziale [-1,1].

NDF — normal distribution function, funkcja opisujaca rozklad kierunkéw wektoréw nor-
malnych mikro$cianek chropowatej powierzchni.

OBB — oriented bounding box, prostopadloscian otaczajacy obiekt, jego czes¢ lub zespot
obiektéw, ktérego krawedzie moga by¢ dowolnie obrécone wzgledem osi ukladu wspot-
rzednych, zobacz AABB.

ODW — ostatnia dzialajgca wersja, czyli program, ktéry dzialal, zanim postanowilismy go
ulepszy¢. Trzeba bylo zrobi¢ kopi¢ zapasowa.

OOP — object oriented programming, programowanie obiektowe, czyli takie, w ktérym pro-
cedury (zwane metodami) s3 traktowane jak integralna czes¢ przetwarzanych przez nie
danych. Jezyk C++ ma dostosowang do tego sktadnie, ale w C tez tak mozna.

Oops — ups, to akurat nie jest skrot.

PBO — pixel buffer object, bufor z tablica pikseli, a wlasciwie dowolnych danych reprezen-
towanych przez pojedyncze liczby, pary lub czworki liczb, przetwarzanych przez szadery
jako obraz (image).

PBR — physically based rendering, obrazowanie oparte na prawach fizyki. W wezszym sensie
jest to uzywanie zaawansowanych lokalnych i globalnych modeli oswietlenia, a w szer-
szym stosowanie w konstrukeji scen do narysowania odpowiednich modeli matematycz-
nych, na przyklad w animacji rozwigzywanie réwnan ruchu zgodnych z zasadami me-
chaniki.

PCF — percentage-closer filtering, technika antyaliasigu obrazu cienia opisana w p. 22.6.2.

PRAM — parallel random access machine, model matematyczny komputera z wieloma proce-
sorami, badany w teorii ztozonosci obliczeniowej. Do$¢ dobra realizacjg takiego modelu
jest komputer z wielordzeniowg CPU, a znacznie gorsza (z uwagi na to, Ze procesory nie
dzialajg calkowicie niezaleznie) jest GPU.

POLA — principle of least astonishment, zasada minimalizacji zaskoczen. Mianowicie, nalezy
ich oszczedzac¢ uzytkownikom aplikacji.

PWN — dawniej Panstwowe Wydawnictwo Naukowe, obecnie (od 1991 r.) Wydawnictwo
Naukowe PWN.

QED — quantum electrodynamics, elektrodynamika kwantowa, czyli fizyczna teoria $wiatla,
oraz quod erat demonstrandum, czego nalezalo dowies¢. O
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QZNS — zobacz AZDO.

RAM — random access memory, pamiec¢ o dostepie bezposrednim. Rowniez random access
machine, model matematyczny komputera sktadajacego sie z jednordzeniowego proce-
sora z pamigcia RAM, badany w teorii ztozonosci obliczeniowej. Po angielsku ram to
takze baran.

RGB — red, green, blue, wspdlrzedne w przestrzeni koloru.

RGBA — red, green, blue, alpha, wspolrzedne w przestrzeni koloru i skladowa alfa, pomoc-
nicza w tworzeniu obrazu.

RMS — root mean square, odchylenie standardowe, parametr rozkladu kierunkéw wektoréw
normalnych mikro$cianek, z ktorych skiada si¢ chropowata powierzchnia.

RRZ — réwnanie rézniczkowe zwyczajne, opisujace na przyklad ruch czasteczki w rozdzia-
le 24.

SIMD — single instruction, multiple data, komputer wieloprocesorowy, w ktérym wszystkie
procesory w danej chwili wykonuja te sama instrukcje na réznych danych albo czekaja.
GPU jest takim komputerem. Zobacz MIMD.

SMF — Simple Model Format, format plikow tekstowych przeznaczony do opisu modeli
obiektéw tréjwymiarowych.

SPD — spectral power distribution, widmo rozktadu mocy, okreslona w przedziale dlugosci
fal $wiatla widzialnego funkcja opisujaca strumien energetyczny $wiatla.

SPIR — Standard Portable Intermediate Representation, binarny format czesciowo skompi-
lowanych programéw dla GPU, mozna go uzywac do rozpowszechniania szaderéw bez
udostepniania ich kodéw zrodtowych.

SSAA — supersampled antialiasing, antyaliasing przez nadprébkowanie, kolor fragmentu ob-
licza sie na podstawie koloréw wszystkich wybranych punktéw w obszarze piksela. To jest
bardziej czasochlonne niz wieloprobkowanie, zobacz MSAA.

SSAO — screen space ambient occlusion, metoda obliczania o$wietlenia stosowana podczas
opoznionego cieniowania.

SSBO — shader storage buffer object, obiekt bufora magazynowego.

SVD — singular value decomposition, rozklad macierzy wzgledem wartosci szczegdlnych.
Jednym z jego najwazniejszych zastosowan jest rozwigzywanie nieregularnych LZNK.

TBO — texture buffer object, obiekt bufora tekstury, a wtasciwie bufor magazynowy udostep-
niony szaderom jako tekstura jednowymiarowa.

TIFF — tagged image file format, format plikéw do zapisu obrazéw rastrowych, niesamowicie
elastyczny.

TIGA — Texas Instruments Graphics Architecture, standard grafiki zbudowany w latach
dziewigédziesigtych XX wieku wokot procesoréw TMS 34010 i TMS 34020, ktore byty
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pierwszymi mozliwymi do zainstalowania w komputerach osobistych catkowicie prog-
ramowalnymi GPU (cho¢ wtedy ten TLS jeszcze nie istnial). Standard ten okazal si¢
Slepa uliczka w rozwoju technologii, ale byl w swoim czasie inspirujacy.

TLAS — top level acceleration structure, struktura danych uzywana w $§ledzeniu promieni (re-
alizowanym za pomoca obecnie najnowszych generacji GPU firmy NVIDIA), dostepnym
w rozszerzeniu standardu Vulkan (niestety, nie OpenGL, nie tylko ja ubolewam nad tym
zaniedbaniem). Okreslone przez aplikacje zbiory trojkatow, reprezentowane przez struk-
tury BLAS, sa (w fazie preprocesingu) organizowane w TLAS, ktéra umozliwia szybkie
odnajdowanie trdjkatow przecietych przez promienie.

TLS — trzyliterowy skrot, na przyklad TLS (nie myli¢ z CzLS).
UBO — uniform buffer object, bufor z blokiem zmiennych jednolitych.

ulp — unit in the last position, jednostka ,rozdzielczosci” dwojkowej reprezentacji liczby,
czyli warto$¢ bezwzgledna przyrostu wartosci x zmiennej danego typu spowodowanego
zmiang najmniej znaczacego bitu tej zmiennej. Dla zmiennych stalopozycyjnych (catko-
witych, np. int) jednostka ta nie zalezy od warto$ci zmiennej i w zasadzie jest réwna 1,
chyba ze zmienna reprezentuje licznik jakiego$ utamka. Na przyklad liczby osmiobi-
towe w buforze obrazu lub teksturze reprezentuja liczby rzeczywiste z przedziatu [0,1]

1

— wtedy ulpx = 5.

Dla liczby zmiennopozycyjnej znormalizowanej x = (-1)°2"°(1 + m), sktadajacej sie
z bitu znaku s, cechy c i (reprezentowanej przez t bitéw i bedacej utamkiem z prze-
dzialu [0,1)) mantysy m jest ulpx = 2°7°~*, Jedli ¢ = 0, to mamy liczbe nieznorma-
lizowang x = (-1)2""%m i wtedy ulpx = 27°~*. Mantysy liczb pojedynczej precyzji
(float) maja 23 bity, a mantysy liczb podwojnej precyzji (double) majg ich 52. Stale b
tych reprezentacji to odpowiednio 127 i 1023.

Ups — uch, pomylitem si¢ (zobacz Oops).

USB — universal serial bus, magistrala danych dla urzadzen wejscia/wyjscia, takich jak kla-
wiatury, myszy, drukarki, pendrajwy, dyski zewnetrzne, dzojstiki, wentylatory, lampki,
odkurzacze do klawiatury itp.

VAO — vertex array object, obiekt tablicy wierzchotkéw (zobacz hasto lista na s. 1188).

VBO — vertex buffer object, bufor przechowujacy atrybuty wierzchotkéw, rejestrowany
w VAO.

VESA — Video Electronics Standards Association, organizacja dbajgca o to, aby monitory
réznych producentéw mozna bylo podlacza¢ do komputeréw réznych producentow.

WIMP — windows, icons, menus, pointers, dawno uzywany CzLS, w krétkim czasie wyparty
przez TLS GUI, bo jak ktos zauwazyl, kazdy wolalby by¢ gui niz wimp.
WMIM — Wydzial Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego.

WWW — world-wide web, w praktyce wysypisko wszelkich wiadomo$ci, w ktérym potrzeb-
ne (i rzetelne) informacje bywaja trudne do znalezienia.
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H.2. Slownik wyrazéw wieloznacznych

bodziec — oddzialywujacy na zmysly sygnat, na przyktad swietlny lub dzwigkowy. Dawniej
kij pasterski.

bufor — pierwotnie zderzak wagonu lub lokomotywy, ulatwiajacy ich sprzegniecie. W kom-
puterach to najpierw byl magazyn danych przekazywanych miedzy urzadzeniami dzia-
tajacymi z rézng szybkoscia, na przyklad procesorem i dyskiem lub drukarkg. Obecnie
stowo to oznacza dowolny magazyn danych w pamieci RAM CPU, a takze GPU, ale nie
tylko. Bufor ramki (framebuffer) to struktura danych, w ktorej ramach odbywa sie two-
rzenie obrazu, w nomen omen buforach (obrazu, glebokosci i maski) zarejestrowanych
jako zalaczniki bufora ramki.

funkcja — w matematyce jest to podzbior iloczynu kartezjanskiego A x B, czyli zbioru par
(a, b) ztozonych z elementéw dowolnych zbioréw A i B. Piszemy f: A — B, aby okresli¢
dziedzing A i zbidr wartosci B funkgji f. Kazdy element zbioru A (argument funkcji) jest
pierwszym elementem jednej pary tego podzbioru. To samo znaczenie co funkcja maja
stowa przeksztalcenie, przyporzadkowanie, odwzorowanie i kilka innych, uzywanych
troche rzadziej. Jeli para (a, b) nalezy do (czyli jest elementem) funkgji f, to méwimy,
ze b jest wartoscia funkcji f w punkcie a, lub obrazem punktu a w przeksztalceniu f.

W informatyce ,funkcja’ to oficjalna nazwa dowolnego podprogramu w jezykach C
i GLSL, ale w tej ksigzce stowa tego uzywam tylko w odniesieniu do podprograméw obli-
czajacych pewien wynik i podajacych go przez swoja nazwe, przy czym wynik ten zalezy
tylko od parametrow tego podprogramu, ktéry ponadto nie ma zadnych efektéw ubocz-
nych (w zasadzie tylko taki podprogram wypada uznac za realizacj¢ funkcji w sensie
matematycznym). Pozostate podprogramy okreslam stowem procedura.

iloczyn — dzialanie zwane tez mnozeniem, albo wynik tego dzialania, okreslonego w spo-
s6b dostosowany do jego argumentéw. Iloczyn liczb catkowitych lub rzeczywistych, jaki
jest, kazdy widzi. Iloczyny dwdch macierzy, AB, macierzy i wektora, Ax oraz liczby
i macierzy, aA, sg opisane w podrozdziale 5.1. Iloczyn funkgcji o tej samej dziedzinie
jest funkcja (fg)(x) = f(x)g(x). Iloczyn tensorowy funkcji o dziedzinach D, i D,
jest funkcja okres$long w zbiorze D; x D, (iloczynie kartezjanskim dziedzin tych funk-
cji), (f ® g)(u,v) = f(u)g(v), zobacz podrozdziat 15.1. Szczeg6lnym przypadkiem ilo-
czynu tensorowego jest opisany w podrozdziale 17.1 iloczyn sferyczny dwdch ptaskich
krzywych, ktory jest konstrukcja ptata powierzchni parametrycznej. Opisy iloczynu ska-
larnego (a, b) i iloczynu wektorowego a b wektoréw w przestrzeni R* s3 podane w pod-
rozdziale 5.5, a iloczyn wektorowy a A b A ¢ w R* jest przedstawiony w podrozdziale 15.2.
Tloczyn mieszany wektoréw a, b, ¢ € R? jest liczba (a A b, ¢) = det[a, b, c]. W podroz-
dziale 28.3 jest uzyty przyklad iloczynu skalarnego (f, g) funkgji f i g okreslonych na
sferze jednostkowej. Definicja iloczynu liczb zespolonych jest przypomniana w p. EL1,
wreszcie w podrozdziale A.4 s3 rozpatrywane iloczyny kwaterniondéw, q; - q5.

lista — struktura danych, w ktérej kazdy element oprocz pewnej informacji przechowuje
identyfikator (wskaznik lub indeks) nastepnego elementu.
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Lista obrazowa (display list) to w starym OpenGL-u reprezentacja ciagu wykonanych
wywolan procedur OpenGL-a z odpowiednimi parametrami, umozliwiajaca powtarza-
nie go bez ponownego obliczania wartosci parametréw. Listy obrazowe i procedury ich
obstugi w nowym OpenGL-u zostaly zdeprecjonowane, a szkoda.

Listg obrazowa dostepng w nowym OpenGL-u jest obiekt tablicy wierzchotkéw (VAO),
w ktérym jest zapamietany ciag wywolan procedur okreslajacych miejsca, z ktérych etap
pobierania wierzchotkéw ma odczyta¢ atrybuty wierzchotkéw podczas rysowania. Od-
tworzenie tego ciagu nastepuje po kazdym wywolaniu procedury glBindVertexArray.

Lista parametrow to to, co w jezykach C i GLSL odréznia identyfikator podprogramu
(ktdry ja ma) od identyfikatora zmiennej (ktdra jej nie ma).

metoda — sposdOb robienia czegos, na przyklad metoda $ledzenia promieni lub metoda
bilansu energetycznego sa sposobami obliczania o$wietlenia.

W programowaniu obiektowym metoda to podprogram zintegrowany z pewnga struktura
danych.

model — w matematyce stosowanej jest to wzor lub algorytm opisujacy (zawsze w uprosz-
czeniu) dowolne zjawisko, na przyktad odbicie swiatta od powierzchni.

Stowo ,,model” oznacza réwniez rysowany przedmiot lub jego reprezentacje w pamieci
komputera.

obiekt — figura geometryczna lub jej reprezentacja. Obiekt to tez struktura danych wypo-
sazona w metody, czyli podprogramy oficjalnie uznawane za nieodfaczne czesci takiej
struktury. W nomenklaturze OpenGL-a to takze uzywany w okreslonej roli bufor lub
inna struktura danych w pamieci GPU, na przykiad FBO, IBO, TBO, SSBO, UBO, VAO,
VBO (zobacz podrozdz. H.1).

obraz — warto$¢ funkcji f w danym punkcie (obraz punktu) lub zbiér wartodci funkcji we
wszystkich punktach pewnego zbioru (obraz zbioru).

W grafice komputerowej obraz jest wyswietlonym na ekranie lub wydrukowanym po-
wodem stosowania grafiki, ale takze reprezentacja takiego obrazu w postaci tablicy
pikseli (w odpowiednim buforze), a nawet dowolnym zbiorem danych przechowywanych
w buforze obrazu (image buffer).

orientacja — relacja rownowaznosci okres$lona miedzy uporzadkowanymi liniowo niezalez-
nymi n-tkami wektoréw w n-wymiarowej rzeczywistej przestrzeni liniowej (a takze mie-
dzy uktadami wspdétrzednych kartezjanskich). Dwie takie n-tki s zorientowane zgodnie,
jesli wyznacznik macierzy przeksztalcenia przeprowadzajacego jedna z nich na druga jest
dodatni, i przeciwnie, jesli jest ujemny.
Orientacja danej n-tki wektoréw (lub danego uktadu wspolrzednych) jest to nalezenie do
jednej z dwdch klas abstrakcji powyzszej relacji. W przestrzeni tréjwymiarowej mowi sie
o orientacji prawoskretnej i lewoskretnej (zobacz podrozdz. 5.6). W plaszczyZznie wyrdz-
nia si¢ orientacje zgodng z ruchem wskazéwek zegara i orientacj¢ przeciwna do ruchu
wskazowek zegara. W przestrzeni jednowymiarowej orientacja jest zwrotem wektora.
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Stowem ,,orientacja” potocznie okresla si¢ tez obrot, ktéry razem z odpowiednim prze-
sunieciem nadaje obiektowi biezace polozenie w przestrzeni.

osobliwo$¢ — najogolniej, jest to miejsce nieciaglosci jakiejs funkcji zwigzanej z reprezen-
tacjg krzywej lub powierzchni, ktére moze by¢ widoczne na obrazie. Na przyklad osobli-
woscia jest wezel krzywej sklejanej: w wezle o krotnosci r krzywej stopnia n moze by¢
nieciagla pochodna rzedu n — r + 1 parametryzacji, jesli wiec r = n, to mozliwa jest
niecigglo$¢ pochodnej widoczna jako punkt zalamania, a jesli r = n — 1, to niecigglos¢
podchodnej drugiego rzedu powoduje skokowa zmiane krzywizny krzywe;j.

Inny przyklad to punkt, w ktérym pochodne czastkowe parametryzacji powierzchni sg
liniowo zalezne. Wyznacznik macierzy tzw. pierwszej formy podstawowej jest w takim
punkcie réwny 0, a poniewaz we wzorach opisujacych krzywizny powierzchni wystepuje
on w mianowniku, krzywizny moga by¢ nieograniczone (co oznacza brak ich ciaglosci),
tak jak w wierzchotku stozka. Nawet jesli powierzchnia jest gtadka (jak dno i pokrywka
czajnika), to iloczyn wektorowy liniowo zaleznych pochodnych czastkowych jest wekto-
rem zerowym i wektor normalny trzeba znalez¢ w inny sposéb.

Osobliwo$¢ macierzy kwadratowej to liniowa zaleznos¢ jej kolumn, macierz osobliwa nie
ma odwrotnosci, a przeksztalcenie przez nig opisane nie ma przeksztalcenia odwrotnego.

parametr — dla funkcji wielu zmiennych jest to zmienna (argument) o ustalonej wartos-
ci podczas badania wlasnosci funkcji (np. czy jest rosngca) ze wzgledu na pozostale
zmienne.

Parametr krzywej lub powierzchni jest to argument funkcji zwanej parametryzacja tej
krzywej lub powierzchni.

Parametr artykulacji okresla wzajemne potozenie cztonéw tancucha kinematycznego
zwigzanych w pare kinematyczna, jesli na przyktad jest ona zawiasem, to jest to kat obrotu
wokol jego osi.

Parametr formalny podprogramu jest to zmienna zadeklarowana w nagtéwku, otrzymuje
warto$¢ poczatkowa w chwili wywolania. Jest to warto$¢ parametru aktualnego, czyli
odpowiedniego wyrazenia podanego w wywotaniu tego podprogramu.

plat — powierzchnia lub fragment powierzchni dany za pomoca parametryzacji, tj. funkcji
wektorowej okreslonej w obszarze ptaskim, na przykltad ptat Béziera lub B-sklejany.

W OpenGL-u plat jest to prymityw, ktérego obrobka w potoku przetwarzania grafiki ma
etap rozdrabniania; w jego wyniku powstaja odcinki lub trdjkaty, ktére moga przybliza¢
gtadka krzywa lub powierzchnie.

W opisanej w rozdziale 29 implementacji metody bilansu energetycznego stowo ptat

oznacza zestaw trojkatow dzielony na elementy i makroelementy w celu dokonania dys-
kretyzacji réwnania bilansu energetycznego.

prymityw — figura geometryczna zdefiniowana lub przetwarzana ,w calosci’, niezlozona
z prostszych obiektow.
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W poszczegdlnych etapach potoku przetwarzania grafiki co innego moze by¢ prymity-
wem: dla etapu pobierania wierzchotkéw prymitywem moze by¢ zbiér punktéw, zbior
odcinkoéw, famana, zbidr trojkatow, tasma tréjkatowa, wachlarz trojkatéw lub plat. Dla
szadera geometrii lub obcinania prymitywami sg tylko pojedyncze punkty, odcinki i tréj-
katy, ale wyj$ciem szadera geometrii (z ktérego powstajg prymitywy dla etapu obcinania)
sg zbiory punktéw, famane lub tasmy tréjkatowe.

przestrzenn — w matematyce to dowolny zbior, najczesciej stowo to jest uzywane w geometrii
(a takze, nie bojmy sie tego stowa, topologii) i moze oznaczaé przestrzen jednowymia-
rowy (np. prosta), dwuwymiarowa (np. plaszczyzne) lub przestrzen o wigkszym wymia-
rze.

Przestrzen kolorow to w istocie uklad wspdtrzednych uzywanych do opisu $wiatfa.
Faktyczny zbiér kolorédw (przestrzen w sensie matematycznym, bedaca obrazem zbio-
ru widm promieniowania elektromagnetycznego w pewnym przeksztalceniu liniowym)
jest jeden, a w nim sg okreslone rézne uktady wspolrzednych nazywane przestrzeniami
koloréw. To jest powszechnie przyjety btad pojeciowy.

W informatyce jest mowa o przestrzeniach nazw, czyli wykazach identyfikatorow, w kto-
rych sa przechowywane nazwy podprograméw standardowych w danym jezyku lub
nazwy zmiennych, podprograméw i innych obiektow zadeklarowanych w programie.

punkt — w matematyce element dowolnego zbioru, czasami pojecie to bywa zawezone do
element6ow przestrzeni geometrycznej.

Punkt dowigzania to element tablicy w indeksowanym celu OpenGL-a. W ten sposéb
jeden cel (np. GL_UNIFORM_BUFFER lub GL_TEXTURE_2D) umozliwia dostep szadera do
wielu obiektéw (blokéw zmiennych jednolitych lub tekstur).

rzut — w matematyce dowolna funkcja f: A - A, taka ze f(f(a)) = f(a) dlakazdego a € A;
jest tez w tym znaczeniu uzywane okreslenie przeksztalcenie idempotentne. Dla takiej
funkgji, jesli b = f(a), to méwimy tez, ze punkt b jest rzutem punktu a.

W grafice najczesciej rzut oznacza przeksztalcenie przestrzeni (bryly widzenia), w kto-
rej s3 okreslone obiekty do narysowania, na obszar tworzonego obrazu. Moze by¢ rzut
réwnolegly, perspektywiczny lub nieliniowy (np. panoramiczny).

tekstura — funkcja opisujaca dowolng wlasnos¢, ktéra wptywa na wyglad punktow rysowa-
nej powierzchni na obrazie.

W OpenGL-u tekstury sg reprezentowane przez tablice tzw. tekseli, przechowywujacych
wartosci takiej funkcji w skoniczenie wielu punktach.

topologia — w matematyce jest to rodzina tzw. podzbioréw otwartych dowolnego zbioru,
zwanego przestrzenia topologiczna, spelniajaca aksjomaty podane w podrecznikach.

Dla powierzchni (zbioru punktéw) zbudowanej z wielokatéw informacja o ich polacze-
niach wzdluz wspdlnych krawedzi okresla topologie w sensie podanym wyzej, co uspra-
wiedliwia uzywanie stowa ,topologia” dla tej informacji.
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wektor — obiekt, ktéry mozna mnozy¢ przez skalary (tj. liczby) i dodawac¢ do innych obiek-
tow tego samego rodzaju. Najczesciej stowo to oznacza macierz kolumnowy skladajaca
sie ze wspdlrzednych punktu, ale to moze by¢ tez dowolna macierz, przeksztalcenie li-
niowe lub funkcja o okreslonej dziedzinie.

Lacinskie stowo VECTOR, zanim Galileusz wprowadzil je do matematyki, oznaczalo tra-
garza.

wezel — wyrdézniony punkt w dziedzinie funkcji skalarnej lub wektorowej (parametryzacji
krzywej). Wezly interpolacyjne sa to punkty u;, dla ktorych funkcja ma przyjmowac
zadane wartosci. Wezly funkcji lub krzywej sklejanej to punkty u; rozgraniczajace prze-
dzialy, w ktorych ta funkcja lub krzywa jest opisana przy uzyciu réznych wielomianow.
Wezly kwadratury to punkty, w ktérych sg obliczane wartosci funkeji w celu numerycz-
nego obliczenia catki z tej funkeji.

wierzcholek — w geometrii jest to punkt bedacy wspolnym koncem odcinkéw rozpatrywa-
nej tamanej (ktéra moze by¢ brzegiem wielokata, wtedy jest to wierzchotek wielokata,
a takze bryly wielo$ciennej, ktorej ten wielokat jest $ciang).

Wierzchotek stozka jest punktem wspolnym wszystkich jego tworzacych. Na powierzch-
ni stozka jest to jedyna osobliwos¢, czyli punkt, w ktérym kierunek wektora normalnego
nie jest okreslony.

W teorii graféw wierzcholek jest obiektem — elementem (dowolnie okreslonego) zbio-
ru wierzchotkéw grafu. Obiekt ten moze mie¢ dowolne atrybuty, jesli na przyklad jest
punktem w przestrzeni, to ma okreslone potozenie. Wierzchotek grafu opisujacego tan-
cuch kinematyczny jest czlonem tancucha.

W OpenGL-u wierzchotek jest obiektem o atrybutach opisanych przez liczby, przy czym
najczesdciej jest to punkt w przestrzeni. Wierzchotki sg przekazywane miedzy kolejnymi
etapami potoku przetwarzania grafiki, ale dopiero ostatni szader czgsci przedniej potoku
w programie szaderdw, jesli ma spowodowac rysowanie, musi przekaza¢ (do etapu ob-
cinania) wierzcholki o ustalonym polozeniu w przestrzeni (w ukladzie wspdtrzednych
kostki standardowej).

Jest jeszcze wierzchotek gory lodowej — to jest czes¢ OpenGL-a opisana w tej ksiazce.
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grupy robocze szadera obliczeniowego 209,
578, 610, 616, 647, 890, 1151
guzik 870, 940, 1005

H

Hamilton, William Rowan 1046
Hanrahan, Pat 746, 753
harmonia sfer 752

helikoida 789
Hewlett-Packard 1084

I
identyfikator
binarnego formatu programu 98
bloku zmiennych jednolitych 144
bufora 146,147, 386, 616, 622
bufora ramki 561
obiektu tablicy wierzchotkéw 147, 616
programu 93, 98, 144, 157
szadera 89,90, 92, 96, 144
tekstury 480, 561, 1003
iloczyn 1188
kartezjanski 419, 783, 1188
kwaternionow 1046
macierzy 111, 165, 295, 553, 1042, 1046
macierzy i wektora 841
sferyczny 419-421, 428, 431, 571, 606,
1188
skalarny 114, 116, 202, 215, 222, 286,
304, 434, 454, 488, 490, 525, 549,
731,737, 744, 753, 766, 795
funkeji 751
tensorowy 720, 1188
wektorowy 115, 202, 218, 371, 374, 383,
415, 430, 524, 962
iluminancja 741
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indeks
bloku zmiennych jednolitych 93, 144
podprogramu 190
instrukcje GLSL-a 187-188
Intel 80
intensywno$¢ katowa 740
intermodulacja 455
interpolacja 1069
atrybutéw wierzchotkéw 143, 280, 300,
309-311, 449, 457, 538, 555, 880,
1003
koloréw 236
kwaternionéow 1007, 1045, 1050-1053,
1075
tukowa 1045, 1051
obrotéow 1007, 1045, 1050-1053,
1074-1078
polozen obserwatora 1113
tekseli 457, 466, 528, 562, 693
wektoréw 201, 221, 611
irradiancja 729, 735, 738, 740, 742, 743, 746,
769,771,782, 847
izometria 115, 138, 284, 415, 545, 731, 833,
1045, 1052

J

jednokladnos¢ 134,138, 170, 316, 365, 423,
424, 739, 1136

jednolito$¢ obliczen na GPU 191, 696

jednostka obrazu 647

jedynka kwaternionowa 1024, 1047

K
Kajiya, James 742
kandela 741
kanwa 856, 858
kardioida 1117
Khronos Group 19, 20, 30, 38, 1179, 1183
Kilgard, Mark 40
klatka 24, 55, 131, 153, 495, 545, 642, 718, 747
Kklatki kluczowe 1005, 1018
kodowanie kolorow w X Window 868
kolorymetr klinowy 1080
kombinacja
afiniczna 108, 370, 811, 921
liniowa 107, 539, 752
wektorowa 108
komparator 812, 1149, 1154, 1157, 1170, 1174

komunikacja miedzy szaderami 192-196
komunikat X Window
ButtonPress 60
ButtonRelease 60
ClientMessage 60, 64-66, 858, 864,
953, 956, 957, 1096
ConfigureNotify 60, 858, 864, 953
EnterNotify 864
Expose 59, 60, 80, 856, 864, 867
GraphicsExpose 867
KeyPress 60,1091
KeyRelease 1091
LeaveNotify 864
MotionNotify 60
NoExpose 867
konstruktor
macierzy 183
tablicy 184
wektora 182
kontekst
grafiki X11 869
OpenGL-a 18, 20, 39, 46, 47, 51, 56,
73-76, 96, 223, 681
uruchomieniowy 101-104
konwersja typéw w GLSL-u 186
korekcja gamma 222, 499, 645, 734, 735,
846, 1085, 1087
kostka standardowa 24, 132, 134, 135, 142,
151, 280, 282, 489, 496, 497, 554,
616, 747, 754, 843
krawedzie
brzegowe siatki 877, 889, 913
sylwetkowe 303
wewnetrzne siatki 877, 889, 912
krzywa
bieli 1081
teczy 1081
krzywe
B-sklejane 297, 432, 931, 1057, 1075
interpolacyjne 1006
Béziera 248,297,369, 380, 386, 420,
429, 432, 571, 597, 931, 1058, 1075,
1131
wymierne 420, 421, 1126
interpolacyjne 1024
B-sklejane 1007, 1074
stalego parametru 370, 596
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Ksiezyc 313, 315, 332, 335, 337, 340, 348, 709,
763, 849
kwadratura 720, 730, 746, 754, 764, 772,
775, 824
kwalifikator
early_fragment_tests 449,830
interfejsu 191
miejsca 143,198
origin_upper_left 272
parametru podprogramu 189
pixel_center_integer 139
precyzji 189
ukladu 22,196-199, 229
bloku interfejsu 191
wejécia szadera geometrii 194, 240,
248,297
wejscia szadera rozdrabniania 296
wyjscia szadera geometrii 218, 243
zmiennej 141, 185
buffer 185
const 185
flat 143, 312, 449, 520, 555, 938
noperspective 311,490
shared 185, 835
uniform 185
kwaternion 1045-1056
czysty 1048
jednostkowy 1048, 1074, 1075
niemy 1047
odwrotny 1047
sprzezony 1046,1048
zerowy 1046
kwaternionowa reprezentacja obrotéw 166,
1007, 1018, 1048-1051

L
Lambert, Johann Heinrich 213
liczby zmiennopozycyjne 163, 615
potowkowej precyzji 474, 688
liczniki niepodzielne 182,208
linia purpury 1081
liniowe zadanie najmniejszych kwadratéw
310, 1184
Linux 3,29, 31, 39, 77, 931, 1091-1102
lista
obrazowa 1188
parametréw podprogramu 189

lokalna grupa robocza 578, 579, 818, 833,
1152

luks 741

lumen 739

luminancja 684, 741, 1087, 1088

L
tamana kontrolna 370, 421, 597, 1131
tancuch kinematyczny 313-332, 368,
575-578, 582-590, 616, 623-626,
663, 971-980, 985-994, 1069, 1074
otwarty 314
zamkniety 314, 320
facznosdé
mnozenia kwaternionéw 1046
mnozenia macierzy 106, 1046
operatoréw GLSL-a 186

M
macierz

diagonalna 787,790, 1042, 1043

jednostkowa 106, 118, 119, 151, 317, 322,
325, 549, 576, 1045, 1047

kolumnowa 106

kwadratowa 106, 204

kwaternionu 1046, 1052

nieosobliwa 106, 112, 113, 130, 168, 204,
283, 484,1044

obrotu 118, 119, 315, 415, 575, 827, 1039,
1042, 1050

odwrotna 106, 115, 127, 130, 134, 204,
329, 415, 576, 1044

ortogonalna 115, 165, 234, 284, 329, 415,
545, 1039, 1042-1044, 1047, 1052

permutacji 1071

podwajania 922, 927

przeksztalcenia afinicznego 111, 112,
1039

przeksztalcenia modelu 406, 423

przeksztalcenia perspektywicznego
134, 346

przesuniecia 118, 315, 575, 576

rozniczki 514, 515, 531

rzadka 790, 822, 839, 921, 928,
1159-1178

skalowania 118, 1042

stochastyczna 921

symetryczna 1042, 1044, 1166
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transponowana 106, 115, 130, 203, 329,
415, 1044, 1047, 1166
tréjdiagonalna 1071
uéredniania 922, 926, 928
zageszczania 921-930, 1034
zerowa 1171
makroelementy 789, 808, 812, 816, 817, 822
Metal 39
metoda
bilansu energetycznego 783-854, 1145
bisekcji 1043
Bromby 1193
eliminacji Gaussa 126, 788, 1071
Galerkina 786
kolokacji 785
Newtona 530
PCF 572
siecznych 1043
wyszukiwania binarnego 351, 839,
1063, 1170, 1173, 1174, 1178
mgla 237, 607-609, 620-623, 625, 627
miara
kata brytowego 739, 746
skréconego elementu powierzchni
740, 743, 782
Microsoft 1084
Miedzynarodowa Komisja O$wietleniowa
1081, 1180
mikro$cianki 539, 759-763, 766
mipmaping 456, 688, 690, 693, 1003
mnozenie
kwaternionéw 1045
liczb zespolonych 1046, 1115
macierzy rzadkich 928, 929, 1170-1178
macierzy rzadkiej przez wektor 841,
928, 1160-1166
model o$wietlenia
anizotropowy 539-542
Blinna-Phonga 433, 435, 438, 452, 454,
539, 557, 706, 728, 743, 985, 995
Cooka i Torrancea 760, 763, 766-770
hemisferycznego 450-452, 689, 728,
854
Lamberta 213-216, 237, 385, 433, 451,
454, 557, 690, 693, 694, 706, 718,
728, 744-759, 763, 765, 769, ...
Orena i Nayara 348,763, 766-770, 778

Phonga 433, 452, 539, 728, 743
modyfikatory 44

N
nadprébkowanie 711
nagtéwek podprogramu 189
nasycenie barwy 450, 1082
nazwa
instancji 191, 192
zewnetrzna 142, 144, 186, 191
Newell, Martin 393
norma
druga indukowana 1045
operatora liniowego 785
supremum 784
normalizacja
wektora 126, 202, 218, 221, 371
wspotrzednych 150, 687
nowy OpenGL 18,19, 29, 31, 38, 40, 43, 47,
63, 133, 155, 474, 639, 855
numer
instancji 376-378, 380, 388, 407, 457,
458, 517, 519, 829
miejsca atrybutu 141, 148, 198, 404
miejsca zmiennej interfejsu 280
NVIDIA 80, 83, 1181, 1187

0)
obcinanie 245-247, 486, 488, 489, 1108, 1139
obiekt
bufora magazynowego 1186
bufora ramki 1181
bufora zmiennych jednolitych 26, 144
tablicy wierzchotkéw 25, 141, 261, 502,
620, 790, 1187, 1189
pusty 15, 391, 943, 999
w lancuchu kinematycznym 314, 316,
317, 325, 578
z zamknieta objetoscia 159, 543, 570,
574
obraz 271, 647, 686
obszar cienia 543, 544, 552, 557, 570, 996
odbicie symetryczne 115, 126, 202, 495, 1043
Householdera 545, 731, 748, 833
odcinki z przylegto$ciami 297
odejmowanie punktéw 107
odlegtos¢é
punktéw 114, 201
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ze znakiem 116, 245
odrzucanie
prymitywow 246
$cian odwrdconych tytem 117, 159, 260,
494
odwzorowanie
bufora w przestrzen adresowa CPU
637
Gaussa 513
ograniczenia implementacji OpenGL-a 269
okno aktywne 43, 47, 48
Olszta, Pawel 40
OpenGL1.0 17
OpenGL ES 180
operatory GLSL-a 186-187
opdznione cieniowanie 711-738
Optimus 80-83
optyka
geometryczna 539, 742
liniowa 742
orientacja 44, 116, 159, 304, 378, 459, 494,
545, 878, 1189
ortogonalizacja wektora 521
osobliwo$¢ 535, 555
ostatnia dzialajaca wersja 1185
ostrostup widzenia 133-136, 151, 153,
346-348, 488, 639, 642, 643,
652-654, 672, 682, 683, 701
o$mioscian foremny 160, 1134
oé$wietlenie
bezkierunkowe 750
hemisferyczne 745, 746
przez obraz 745-759
przez otoczenie 745-759,771-781

P
pakiet BSTools 931
paleta 1118
panorama
linearna 1105, 1113
punktowa 1103, 1112
para kinematyczna 313-578, 582, 584, 971,
988, 990
parametry
artykulacji 313, 315, 317, 320, 328, 576,
591, 855, 990, 1005-1007, 1018, 1019,
1069, 1074
podprogramu w GLSL-u 189

rozdrabniania dziedziny plata 281, 377,
429, 596-606
Phong, Bui Tuong 433
pionizowanie obserwatora 414-417
piramida Sierpinskiego 1134-1136
Platon 133
plik
utilities.c 34, 85-87, 89-93,
118-130, 165, 222-225, 549, 663
utilities.h 40
wglext.h 472
xwidgets.h 856
pliki nagtéwkowe OpenGL-a 29
plaszczyzna niewltasciwa 486
plaszczyzna zespolona 1115
plaszczyzny obcinania 245, 488
platy 23,278
B-sklejane 330, 380, 1058
Béziera 317, 330, 369-373, 375-393,
407, 420, 429, 457, 458, 467, 497,
517, 531, 540, 549, 552, 571, ...
wymierne 373-374, 431, 518
trojkatowe 789, 794, 797
pochodne
parametryzacji 513, 514
plata Béziera 371-374, 382,519
podobienstwo geometryczne 138, 597, 789
podprogramy w GLSL-u 188-190
podwajanie siatki 887, 896-910
podwdjne buforowanie 16, 43, 60, 82, 156,
940
polaryzacja §wiatta 742
pole position 221
polozenie zmiennej jednolitej 185, 525
postaé trygonometryczna kwaternionu 1048
poswiata 719-728, 732, 735
potegowanie kwaternionéw 1048
potok
programéw 98, 143
przetwarzania grafiki 18, 22,185, 191,
196, 299, 376, 671, 999
cze$¢ przednia 23, 132, 236, 245, 1192
cze$¢ tylna 24
powierzchnia
anizotropowa 539, 761
graniczna ciggu siatek 940
izotropowa 539, 761, 764, 771
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obrotowa 373, 419-420, 431
prostokreslna 429
zakres§lana 431-432
powigkszanie danych 18, 239, 243
poziom szczegdtowosci 83, 296, 596, 994,
1184
poélcien 572
potkrawedzie w reprezentacji
fancucha kinematycznego 315, 317, 320,
325
siatki 877-880, 960, 962
prawa Grassmanna 1079
prawo zalamania $wiatta 1038
problem milenijny 77
procedura
AttachStorageBlockToBP 268
AttachUniformBlockToBP 224, 441
barrier 212, 834-836
ButtonInput 870
ButtonRedraw 871
CompileShaderFiles 91,145,232,
256, 290, 339, 396, 411, 444, 499,
558, 559, 582, 614, 647, 892, ...
CompileShaderStrings 89,90, 91
ConstructCubicInterpBSplinef
1019, 1071, 1073, 1076
ConstructEmptyVAO 257, 261, 262,
389, 391
ConstructQuaternionInterp-
Splinef 1076
CreateMyWindow 70
CreateSPIRVShader 96,97
CreateWindowExA 70
DefWindowProcA 70,71
DeleteBezierPatches 393,400
DeleteEmptyVAO 261, 262, 265, 401,
595
DeleteMyGLXWindow 64
DeleteWinMenu 859
DestroyWindow 73
DispatchMessage 72
DrawBezierPatches 392,399, 406,
412, 426, 446, 468
EmitVertex 195,217, 218, 241, 244,
285, 298, 308, 385, 430, 460, 521,
554, 673, 675, 704, 705, 748, ...
EmptyInput 869

EmptyRedraw 869
EndPrimitive 195,217, 218, 241, 242,
244, 285, 298, 308, 385, 460, 487,
521, 554, 673, 675, 704, 705, ...
EnterBezierPatches 388, 422
EnterBezierPatchesElem 390, 394,
572
EnterRSphericalProduct 422
EvaluateBSplinesf 1059, 1060,1073
_ExitIfGLError 85,86
ExitIfGLError 86,90, 92,96, 145,
152-154, 158,170, 174, 177,178, ...
_ExitOnError 85,86
ExitOnError 34, 86,223, 442, 481,
501, 537, 584, 585, 587, 618, 624, ...
GetAccessToBezPatchStorage-
Blocks 387,396, 466
GetAccessToStorageBlock 268,
387, 582, 614, 1066
GetAccessToUniformBlock 223,
229, 256, 257, 441, 614, 892, 963
GetGLProcAddresses 35,40, 42, 50,
51, 64, 75, 950
GetScreenDimensions 84
gl3wInit 33,35, 85, 95, 482
glActiveTexture 480,482,560, 566,
567, 589, 628-630, 676, 677, 699,
702, 732, 755, 774, 780, 827, 842, ...
gladLoadGL 15, 35, 85
glAttachShader 15,92,93
glBindBuffer 25,100, 146, 149,
151-153, 170, 174, 177, 178, 230, 258,
261, 289, 291, 364, 442, 443, 482, ...
glBindBufferBase 100, 145, 146, 224,
226, 257, 259, 268-270, 392, 469,
588, 618, 619, 623, 755, 780, 801, ...
glBindBufferRange 270
glBindBuffersBase 270
glBindBuffersRange 270
glBindFramebuffer 501,508, 510,
560, 561, 567, 568, 629, 630, 649,
660, 661, 678, 699, 702, ...
glBindImageTexture 650, 651,716,
723,778, 821, 843, 848, 1123
glBindProgramPipeline 98
glBindRenderbuffer 510
glBindSampler 474,754,755
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glBindTexture 465,468, 472, 476,
479, 480, 482, 501, 503, 560, 566,
567, 589, 629, 630, 648, 649, ...
glBindVertexArray 14,147,149, 15],
153, 154, 235, 259, 262, 291, 299,
306, 341, 364, 392, 410, 501, ...
glBlendFunc 620, 621, 637
glBlitFramebuffer 5l1, 637, 648,
661, 681, 715, 716, 1180
glBlitNamedFramebuffer 511
glBufferData 100, 145, 146, 148, 149,
151, 186, 197, 224, 257-259, 268, 291,
364, 501, 537, 584, 585, 587, 617, ...
glBufferStorage 638
glBufferSubData 100, 151-153, 170,
174,177, 178, 186, 197, 230, 257, 258,
261, 267, 289, 389, 390, 442, 443, ...
glCheckFramebufferStatus 501,
502, 510, 629, 649, 678, 699, 714,
750, 800, 828, 842, 1129
glClear 14,155, 347, 399, 412, 426,
508, 567, 568, 630, 660, 702, 716,
828, 842, 945, 981, 1000
glClearBufferiv 716
glClearColor 14,155, 347,399, 412,
426, 508, 567, 568, 630, 660, 842,
945, 981, 1000
glClearNamedBufferData 821, 822
glClearTexImage 828
glColorMask 626, 630, 631
glCompileShader 15,30, 89, 90
glCompressedTexImage2D 478, 479
glCopyBufferSubData 622, 623, 897
glCopyNamedBufferSubData 509,
622, 834, 841
glCreateProgram 15,92
glCreateShader 15,89, 90,92, 96
glCreateTextures 509
glCullFace 160, 1143
glDebugMessageCallback 101
glDebugMessageControl 101,103
glDeleteBuffers 99,158, 234, 258,
260, 261, 265, 293, 393, 400, 448,
501, 590, 595, 623, 755, 801, ...
glDeleteFramebuffers 501,561,
629, 650, 715, 750, 774, 801, 822,
843, 1129

glDeleteProgram 14,92, 93,158, 233,
261, 264, 293, 400, 582, 595, 614,
648, 892, 939, 998
glDeleteSamplers 755
glDeleteShader 15,90, 93, 96, 145,
232, 257, 290, 340, 396, 411, 445,
499, 558, 559, 582, 614, 647, ...
glDeleteTextures 469,477 501, 561,
590, 629, 650, 715, 822, 843, 1129
glDeleteVertexArrays 14,158, 234,
262, 265, 501, 623
glDepthFunc 20, 494, 716, 723, 732
glDepthMask 620, 621
glDetachShader 93
glDisable 20,104, 246, 449, 471, 472,
529, 567, 569, 620, 621, 630, 702,
1000, 1144
GL_CULL_FACE 160, 259
GL_DEPTH_CLAMP 821
GL_DEPTH_TEST 259
GL_MULTISAMPLE 470
glDisableVertexAttribArray 148,
162
glDispatchCompute 209, 210, 212,
580, 588, 620, 651, 716, 723, 732,
778, 848, 1145, 1153, 1173
glDrawArrays 14,16, 25, 146, 154, 159,
259, 260, 278, 297, 306, 364, 418,
503, 535, 566, 620, 676, 750, 774, ...
glDrawArraysInstanced 193, 376,
392, 393, 405, 410, 418, 801, 933,
936-938, 968, 999, 1134, 1144
glDrawBuffer 560,562,699, 750,774
glDrawBuffers 681,714, 828
glDrawElements 146, 148,154, 155,
159, 278, 291, 292, 296, 297, 300,
302, 341, 364, 368, 418, 493, 509, ...
glDrawElementsInstanced 405,418
glEnable 20, 470, 471, 692, 981
GL_BLEND 620
GL_CLIP_DISTANCEO 246, 1143
GL_CULL_FACE 160, 1143
GL_DEBUG_OUTPUT 103
GL_DEBUG_OUTPUT_SYNCHRONOUS
103
GL_DEPTH_CLAMP 543, 620, 716,
723,732
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GL_DEPTH_TEST 155, 293, 347, 399,
412, 426, 508, 568, 634, 660, 679,
702, 716, 723, 732, 821, 945, 1000
GL_FRAMEBUFFER_SRGB 1087
GL_MULTISAMPLE 472
GL_POLYGON_OFFSET_FILL 567,
568, 630, 702, 1000
GL_PRIMITIVE_RESTART 296
GL_PROGRAM_POINT_SIZE 193
GL_SAMPLE_SHADING 528
GL_SCISSOR_TEST 449
glEnableVertexAttribArray 25,
148, 149, 364, 501, 537, 618, 798,
1067
glewGetErrorString 32
glewInit 32,35, 95,482
glFinish 83,156, 829, 843, 1122, 1123
glFlush 14, 83,155, 156, 293, 399, 412,
426, 508, 567, 568, 660, 678, 679,
681, 716, 723,732, 750, 774, ...
glFramebufferParameteri 800
glFramebufferRenderbuffer 510
glFramebufferTexture 501,502,
560, 629, 649, 677, 699, 714, 750,
774, 827, 842, 1128
glFrontFace 160, 1144
glfwCreateWindow 48,50, 55, 470,
670
glfwDestroyWindow 50,55
glfwFocusWindow 55
glfwGetCursorPos 401
glfwGetJoystickAxes 53
glfwGetJoystickButtons 53
glfwGetMonitorPhysicalSize 83
glfwGetMouseButton 668
glfwGetProcAddress 55,96
glfwGetVideoMode 83
glfwHideWindow 54
glfwIconifyWindow 54
glfwInit 670
glfwJoystickPresent 53
glfwMakeContextCurrent 50,670,
1124
glfwMaximizeWindow 55
glfwPollEvents 52,53
glfwPostEmptyEvent 55, 81,1124
glfwRestoreWindow 55

glfwSetCharCallback 50,52, 402
glfwSetCursorPosCallback 50
glfwSetErrorCallback 48,50, 670
glfwSetFramebufferSizeCallback
50, 54
glfwSetKeyCallback 50,52,402
glfwSetMouseButtonCallback 50,
51
glfwSetScrollCallback 52,670
glfwSetWindowPos 54
glfwSetWindowRefreshCallback
50
glfwSetWindowShouldClose 49,
402, 668
glfwSetWindowSize 54
glfwSetWindowTitle 55
glfwSetWindowUserPointer 55
glfwShowWindow 55
glfwSwapBuffers 81,82, 681, 1124
glfwTerminate 48,50, 670
glfwWaitEvents 50, 52,53, 55, 82
glfwWindowHint 48,101, 470, 471,
668, 681
glfwWindowShouldClose 50,52
glGenBuffers 99,145,149, 150, 224,
257-259, 268, 364, 501, 508, 537,
584, 585, 587, 617, 624, 755, 798, ...
glGenerateMipmap 691
glGenerateTextureMipmap 464,
465, 474, 476, 511
glGenFramebuffers 501, 510, 560,
628, 649, 699, 714, 750, 774, 800,
827, 842, 1129
glGenProgramPipelines 98
glGenRenderbuffers 510
glGenSamplers 474,755
glGenTextures 464, 465, 476,479,
501, 508, 509, 560, 628, 648, 649,
677, 691, 699, 714, 778, 827, ...
glGenVertexArrays 15,147, 149, 262,
364, 501, 537, 617, 798, 1067
glGetActiveUniformBlockiv 144,
145
glGetActiveUniformsiv 145,197,
224, 229, 267
glGetBufferSubData 21,100, 638,
885, 896, 911, 926, 1163, 1172, 1173
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glGetCompressedTexImage 477
glGetError 36, 86,100,101
glGetIntegeri_v 211, 269,270
glGetIntegerv 21, 34, 35, 95, 210, 211,
223, 246, 266, 269, 270, 375, 479
glGetNamedBufferSubData 801,
802, 821, 833
glGetProcAddresses 670
glGetProgramBinary 98
glGetProgramInfolog 92
glGetProgramInterfaceiv 273,274
glGetProgramiv 92,98, 211
glGetProgramResourceIndex 268
glGetProgramResourceiv 268, 274
glGetProgramResourcelLocation
274
glGetProgramResourceName 274
glGetShaderInfolog 21, 89, 90
glGetShaderiv 90, 96
glGetString 85
glGetStringi 95
glGetSubroutineIndex 190,453
glGetSubroutineUniformLocation
190, 453
glGetTexImage2D 21
glGetTextureHandleARB 483
glGetTextureImage 462,463,477
glGetTexturelLevelParameteriv
477
glGetUniformBlockIndex 144,145,
223,224
glGetUniformIndices 144,145,224
glGetUniformLocation 186, 339,
444, 558, 582, 614, 647, 997, 1158
glIsEnabled 20
glIsProgram 274
glLineWidth 311
glLinkProgram 15,92, 93, 97, 144, 411
glMakeTextureHandleNon-
ResidentARB 483
glMakeTextureHandleResidentARB
483
glMapBuffer 637
glMapBufferRange 637
glMemoryBarrier 212,588, 620, 651,
652, 716, 723, 732, 848, 893, 979,
992, 994, 1145, 1153, 1159

glMinSampleShading 528
glMultiDrawArrays 418
glMultiDrawElements 418
glNamedBufferData 148,509
glNamedBufferSubData 148, 509
glNamedRenderbufferStorage 510
glPatchParameterfv 288,377
glPatchParameteri 278, 291, 292,
341
glPointSize 153,154, 364, 620,1068
glPolygonMode 363,364, 412, 414,
426, 446, 503, 504, 565, 566, 589,
676, 801, 842, 993
glPolygonOffset 567, 568,570, 573,
574, 630, 702, 719, 1000
glPrimitiveRestartIndex 296
glProgramParameteri 97
glProvokingVertex 312,938
glReadPixels 511
glRenderbufferStorage 510
glSamplerParameteri 755
glScissor 449
glShaderBinary 95,96
glShaderSource 15,89, 90, 96
glShaderStorageBlockBinding
267,269
glSpecializeShaderARB 95,96
glTexImagelD 1003
glTexImage2D 462, 472-474, 477,
500, 501, 510, 628, 629, 648, 1086
glTexParameterfv 473,509
glTexParameteri 464-466, 472,474,
476, 479, 501, 509, 560, 562, 629,
677,692, 699, 750, 774, ...
glTexStoragelD 778
glTexStorage2D 464, 465, 476, 478,
510, 560, 649, 677, 690, 691, 699,
714, 827, 842, 1128
glTexStorage3D 677
glTexSubImage2D 462,464, 465, 476,
510, 692, 693
glTextureParameterfv 509
glTextureParameteri 477,509
glTextureStorage2D 471
glUniformlf 36,306, 341, 651, 723,
732,774
glUniformli 185, 445, 447, 468, 525,
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565, 588, 589, 651, 723, 732, 755,
978, 992, 1000, 1144, 1163, 1173
glUniformlui 34l, 1146, 1148, 1151,
1158, 1159, 1162, 1163, 1167, 1172, 1173
glUniform3f 36
glUniform3fv 36, 341
glUniform4fv 620
glUniformBlockBinding 145, 224,
267
glUniformSubroutinesuiv 190, 453
glUnmapBuffer 638
glUseProgram 14, 25, 93, 153, 154, 157,
158, 185, 233, 235, 259, 261, 264,
291-293, 306, 341, 364, 399, ...
glUseProgramStages 98
glutCreateSubwindow 43
glutCreateWindow 15,43
glutDestroyWindow 14, 46, 158
glutDisplayFunc 15,44
glutFullScreen 46
glutGet 83
glutGetModifiers 44
glutGetProcAddress 40, 96
glutHideWindow 47
glutIconifyWindow 47
glutIdleFunc 45, 46,52, 60,172,173,
956
glutInit 15, 42,159, 362
glutInitContextFlags 15, 43,101
glutInitContextProfile 15,43
glutInitContextVersion 15,42
glutInitDisplayMode 15, 43,472,
681
glutInitWindowSize 15,43
glutJoystickFunc 45
glutKeyboardFunc 15,44
glutLeaveMainLoop 43, 46,156,159,
173
glutMainLoop 15, 42, 43, 46, 52, 159
glutMotionFunc 44,166
glutMouseFunc 44
glutPassiveMotionFunc 45
glutPopWindow 46
glutPositionWindow 46
glutPostRedisplay 44, 46
glutPostWindowRedisplay 44, 46,
65, 81, 156, 157,171, 173, 266, 343

glutPushWindow 46, 55
glutReshapeFunc 44,152
glutReshapeWindow 46
glutSetCursor 47
glutSetOption 43,47,472
glutSetWindow 43,47, 48,51
glutSetWindowTitle 46,366
glutShowWindow 47
glutSwapBuffers 14,16, 81, 82,156
glutTimerFunc 45,46
glVertexAttrib3fv 148
glVertexAttrib4f 364
glVertexAttrib4ub 148
glVertexAttribDivisor 405, 418
glVertexAttribIPointer 148
glVertexAttribLPointer 148
glVertexAttribPointer 25,
148-150, 155, 364, 501, 537, 618, 798,
1067
glViewport 54,132,139,153, 342, 347,
397,508, 567, 568, 630, 660, 678,
702, 750, 774, 800, 820, 842, ...
glViewportArrayv 819, 820
glXChooseFBConfig 62, 681
glXChooseVisual 62
glXCreateContextAttribsARB 62,
63
glXDestroyContext 64,67
glXGetProcAddress 30, 40, 55, 63,
96
glXMakeCurrent 64, 65,950
glXSwapBuffers 57 60, 82,952
GPUMatrixRefineMesh 1036
GPUmeshRefinement 919, 920, 978
GPUmeshRefinementMatrix 927,
1035
GPUMultSparseMatricesf 1172
GPUMultSparseMatrixVectorf
1163
GPUSMultSparseMatrixVectorf
841, 1162
GPUTransposeSparsef 1167
GrabInput 867 873
groupMemoryBarrier 212,1152
imageStore 208, 646, 647, 685, 717,
718,726, 727,734, 735, 777, 849,
1119, 1120
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InitGLXContext 62,949

InitMyGLXWindow 64, 948

InitRGBXColourmap 868

InitWGLContext 75,101

InitWGLExtensions 74

InitXServerConnection 61

IsGLExtensionPresent 95

k1 _Articulate 324, 330, 331, 336,
592, 635, 662, 979, 980, 982, 1030

k1 _DefaultTransform 324,330

kl_DestroyLinkage 322,595

k1 _NewJoint 325, 326, 327, 335, 583,
974, 989, 990

k1_NewLink 325, 326, 583, 624, 974,
989

k1l_NewLinkage 321,325, 334, 583,
623, 624, 973, 974, 989

k1l_NewObject 323,334,583, 624, 974,
989, 990

kl_NewObjRef 325,326, 585, 587, 625,
976, 977, 991

k1_Redraw 332,342,979-981

k1_SetArtParam 328,592, 635, 662,
980

k1_SetJointBtr 328,335

k1_SetJointFtr 328, 335,583,974,
989

LinkShaderProgram 92, 96,145, 232,
256, 290, 339, 396, 444, 499, 558,
559, 582, 614, 647, 892, 939, ...

LoadSPIRVFile 97

M3diagLUDecompf 1071,1072,1073

M3diaglUSolvef 1071,1072,1073,
1074

M4x4Copyf 122

M4x4Frustumf 135,153, 343, 347, 397,
496, 503, 506, 546, 548, 568, 644,
659, 701, 826, 827

M4x4TIdentf 118,120,152, 321, 323,
329, 353, 366, 501, 547

M4x4InvertAffineIsometryf 547

M4x4Invertf 128,129,130, 328,503

M4x4InvTranslatefv 120,177 397,
655

M4x4InvTranslateMfv 170, 234, 399,
507, 655

M4x4LookAtf 1041

M4x4LUDecompf 126,127,130, 644,
1044, 1071

M4x4LUDetf 129

M4x4LUSolvef 127,128, 644

M4x4MInvTranslatefv 177

M4x4RotateViv 170

M4x4MRotateViv 424

M4x4MRotateXf 425,988

M4x4MRotateYf 974, 988

M4x4MRotateZf 974, 988

M4x4MScalef 424,624,988

M4x4MTranslatef 366

M4x4Multf 126,127, 289, 331, 360, 365,
397, 506, 561, 563, 644, 684, 826,
832

M4x4MultMP3f 124, 125, 324, 325, 358,
503, 626, 822, 988

M4x4MultMTV3f 124,125,177,178

M4x4MultMTVE 124, 234, 399, 507, 655

M4x4MultMV3f 124,125, 626, 822,1040

M4x4MultMVE 124, 324, 325, 425

M4x40rthof 137,139, 261, 546, 548,
569, 1104, 1106, 1107

M4x4QuatRotationf 1054

M4x4RotateP2VE 123, 974, 975, 989

M4x4RotatePVE 123

M4x4RotateVE 119,121,165, 174, 234,
329, 397

M4x4RotateViv 120,121,170, 177,178,
399, 416, 507, 655

M4x4RotateXf 118,121, 335, 359, 583,
624

M4x4RotateYf 118,121, 335, 359

M4x4RotateZf 118,121, 359, 425, 989

M4x4RotationFromPointsf 1039,
1040

M4x4Scalef 118,121, 334, 360, 366,
397, 583, 624

M4x4Scalefv 121

M4x4SkewFrustumf 644, 656, 658,
682, 683

M4x4Translatef 118,120, 152,169,
234, 264, 329, 335, 360, 397, 424,
583, 644, 974, 988

M4x4Translatefv 120

M4x4TranslateMfv 425

M4x4Transposef 129,130, 329
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M4x4UTLTSolvef 129,130
M4x4ViewPVE 832
memoryBarrier 212
memoryBarrierAtomicCounter 212
memoryBarrierBuffer 212
memoryBarrierImage 212
memoryBarrierShared 212
NewButton 871,951, 983, 1029
NewEmptyWidget 870
NewLineEditor 875
NewSlidebarf 875,983
NewStorageBuffer 268,389, 390,
469, 585, 800, 801, 809, 812, 821,
823,977
NewSwitch 872,951, 983, 1029
NewUniformBindingPoint 223
NewUniformBuffer 224,441
NewWidget 860, 870, 871, 875, 955,
1017
NewWinMenu 859, 951, 953, 1029
PeekMessageA 72
PostClientMessageEvent 66, 955,
956, 1099, 1101
PostExposeEvent 66, 82, 867, 952
PostMenuExposeEvent 864, 865,
866, 867, 952, 955, 983, 1028
PostQuitMessage 70,71
PrintGLVersion 85,950
PrintProgramResources 274
PrintResourceNames 274
QuatAnglef 1055,1056
QuatArcInterpf 1056
QuatLDivf 1054
QuatMultf 1054,1076
QuatRDivE 1054, 1076
QuatRotVE 1055
QuatSlerpdeBoorf 1075,1076,1077
QuatSlerpf 1056, 1076,1077
RegisterClassA 70
RotVQuatf 1055
SlidebarfInput 873
SlidebarfRedraw 874
SwapBuffers 72
SwitchInput 871
SwitchRedraw 872
TimerInit 78,79,174, 341, 425, 943,
981

TimerTic 78,79,173, 427, 634
TimerToc 78,79, 634,1122
TimerTocTic 78, 80, 336, 400, 427,
592, 635, 660, 662, 1033
TranslateEventMsg 862, 867
TranslateMessage 72
UngrabInput 867 873,874
V3CompRotationsf 165,166, 169,170,
177, 398, 416, 656
V3CrossProductf 125,126, 166, 503,
1040, 1041
V3DotProductf 177, 416, 503, 655,
832, 1040, 1041
V3Normalisef 126, 626,1040,1041
V3ReflectPointf 126,503
V3Subtractf 1041
V4DotProductf 1020
V4Interpolatef 992
WaitMessage 72
wglChoosePixelFormatARB 472
wglDeleteContext 73
wglGetProcAddress 96
wglMakeCurrent 73
WinMenuInput 864
WinMenuRedraw 859
XCloseDisplay 59, 65,948
XCopyArea 865
XCreateColormap 64, 949
XCreateGC 869, 950
XCreatePixmap 859, 865
XCreateWindow 64, 65,949
XDefineCursor 67
XDestroySubwindows 948
XDestroyWindow 64, 67, 948
XDrawRectangle 871, 872, 875
XDrawString 871, 872
XFillPolygon 1029
XFillRectangle 859, 871, 872, 875,
1028
XFillRectangles 1029
XFlush 1101
XFree 62,64,949
XFreeColormap 64,949
XFreeGC 948
XFreePixmap 860, 865
XGetGeometry 66
XGetWindowAttributes 66
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XIconifyWindow 67
XInitThreads 62,1097
XInternAtom 62,947 948,1098
XLookupString 863
XLowerWindow 67
XMapWindow 64, 65, 67, 949
XMoveResizeWindow 67,957, 1034
XMoveWindow 67
XNextEvent 56,59, 67, 957, 1101
XOpenDisplay 62,1097
XQueryPointer 866
XRaiseWindow 67
XResizeWindow 67
XRestackWindows 67
XSendEvent 66,1101
XSetBackground 871, 872
XSetErrorHandler 67
XSetFont 870
XSetForeground 859, 871, 872, 875,
1028
XSetIOErrorHandler 67
XSetWMName 67
XSetWMProtocols 64, 949
XStoreName 950
XUnmapWindow 67
profil OpenGL-a
dla systeméw wbudowanych 180
podstawowy 19, 180
zgodnosci 19,180
program
glslangValidator 94, 96,270, 404
pozwalaj 931
program szaderéw 24
promien
pierwotny 694
wtorny 694, 696, 697
prosta niewlasciwa 486
prostopadlos¢ wektorow 114, 752
prototyp podprogramu 189
przechwytywanie procedur OpenGL-a
98-100
przeciazanie nazw w GLSL-u 184,190, 199,
676
przeciekanie koloru 729, 853
przeksztalcenie
afiniczne 105, 111, 136, 283, 432, 484,
515, 522, 529, 1038, 1042, 1058

cze$¢ liniowa 111, 115, 117, 124, 283,
415, 417, 524, 1039
interpretacja dualna 112,168
reprezentacja jednorodna 111
wektor przesuniecia 111, 283, 1039
liniowe 111,131, 531, 784, 1084
perspektywiczne 529
rzutowe 105, 484
przefacznik 871, 940, 1005
przestrzen
afiniczna 107
Banacha 784
euklidesowa 114
liniowa 106, 107, 752
przeszukiwanie grafu w gtab 315, 320, 797
przyblizenie Schlicka 763, 775
punkt
bezposrednio oéwietlony 543, 557
bieli 1082-1084
Des 1084
dowigzania 26, 145, 146, 222, 269, 613,
890, 898, 899, 912, 960, 979, 1153,
1191
tekstury 21, 479, 555, 561, 565, 569,
754, 827
niewlasciwy 485, 549
punktowe zrédlo $wiatla 215, 450, 452, 543,
572,739
punkty
kolokacji 799, 809, 811, 822, 826, 828
kontrolne 330, 370, 571, 575, 578, 580,
586, 597, 985, 988, 1058, 1075, 1126,
1132

R

radiancja 455, 729, 731, 740-743, 745, 746,
748,764,769, 771,778, 779, 783,
787, 788, 841, 842, 849

radiometria 739

Ramamoorthi, Ravi 746, 753

receptory $wiatta w oku 739, 1079

Reeves, William 572

referencja obiektu w taricuchu
kinematycznym 317, 319, 330,
584, 586

regiony Woronoja 731

rejestrowanie ruchu 1044

reprezentacja siatki nieregularnej 877-887
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w pamieci CPU  879-880
w pamieci GPU 880-887
restart prymitywu 296, 302, 368, 794
rozdzielczo$¢ ekranu 84, 654
rozklad
Beckmanna-Spizzichino 761, 772
kierunkéw wektoréw normalnych
mikro$cianek 760, 765
macierzy
biegunowy 1044
na czynniki tréjkatne 126, 1044, 1071
wzgledem wartosci szczegolnych
1043, 1186
normalny Gaussa 764
Trowbridge’a-Reitza 761
rozmycie obiektéw w ruchu 639, 661, 680
rozszerzenia
jezyka GLSL 181
standardu OpenGL 19, 30
GL_ARB_bindless_texture 482
GL_ARB_gl_spirv 95
GL_NV_gpu_shader5 483
sprawdzanie obecnosci 95
réwnania ruchu czgsteczki 607
réwnanie
bilansu energetycznego 743, 781, 782,
784
catkowe Fredholma 784
Laplacea 752
soczewki 640
ruch kulisty 1050, 1074
rysowanie na wielu warstwach 639,
671-680, 683
rzut 1191
na sfere 280, 787, 1106-1107, 1112
ortogonalny (prostopadly) 114, 136,
540, 752, 787
panoramiczny 1103-1106, 1112, 1191
perspektywiczny 133-136, 221, 237,
544, 546, 817, 820, 1103, 1112, 1191
réwnolegly 136-138, 221, 544, 546,
1103, 1191
$rodkowy 754, 787

S
Salesin, David 572
schemat

Falka 106, 1171

Hornera 221, 371, 380
Shoemake, Ken 1052
siatka kontrolna 370, 380, 407
Silicon Graphics 17, 40
skaner pliku tekstowego 349-352
skladanie przeksztalcen afinicznych 112
skltadowa alfa 150, 196, 215, 250, 252, 612,
621, 722
sktadowe trojchromatyczne 1080
skutecznos¢ $wietlna 741
skybox 689, 746, 854
Stonce 215, 313, 332, 335, 340, 348, 433, 572,
741, 1081, 1084
SPIR-V 87, 93-97,199, 270-272, 404, 454
splot 457,720
sferyczny 771
sprzatanie 48, 56, 60, 157-159, 233, 257, 260,
294, 322, 366, 427, 502, 559, 562,
595, 622, 630, 823, 947, 968, ...
stale specjalizacji szadera 96
standard IEEE-754 181, 615
stary OpenGL 19, 29, 37, 40, 43, 63, 133, 142,
150, 180, 237, 639, 680, 931
stella octangula 162
steradian 739
stereoskopia 63,136, 680-684
stopien
swobody 313
$ciany siatki 879
wierzchotka siatki 879
stozek 535
strumien
energetyczny 739, 741, 743, 746, 782
$wietlny 739, 741
subtraktywne mieszanie barw 1088
sumy prefiksowe 812, 836, 838, 894, 898,
900-903, 905, 906, 914, 915, 917,
923, 958, 1151-1153, 1178
suwak 858, 873, 957
symbol klawisza 861
szader 18
fragmentéw 16, 24, 142, 218, 252, 271,
338, 409, 436-438, 453, 460, 499,
521, 531, 541, 555, 613, 631, ...
kwalifikatory wejscia 199
kwalifikatory wyjscia 199, 449
zmienne wbudowane 195-196
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geometrii 23, 217, 240, 241, 243, 285,
298, 307, 385, 459, 486, 520, 554,
673, 675,704, 705, 747, 806, ...
kwalifikatory wejscia i wyjécia 198
zmienne wbudowane 194-195
obliczeniowy 185, 209-212, 578, 597,
601, 610, 645, 684, 716, 724, 727,

732,734,736, 756,775, 802, 814, ...

zmienne wbudowane 210-211
rozdrabniania 23, 279, 282, 284, 337,
379-384, 430, 458, 517-519, 550,
552, 672,1063
kwalifikator wejscia 198, 296
zmienne wbudowane 194
sterowania rozdrabnianiem 23, 278,
281, 337, 377, 429, 596
kwalifikator wyjscia 198
zmienne wbudowane 193-194
wierzchotkow 16, 22, 88, 141, 214, 216,
240, 251, 277, 306, 376, 408, 498,
612, 703, 747, 806, 809, 829, ...
zmienne wbudowane 193
wierzchotkéw 1118
szereg Neumanna 784, 788
szeroki zakres dynamiczny 645, 712, 750
sze$cian 160, 162
S
$ciany siatki 877, 937, 939, 940, 958
$ledzenie promieni 696, 697, 769
$rodek rzutowania 133, 639
$wiattos$¢ 741

T
tablica
deklaracja w GLSL-u 184
indeksow wierzchotkow 146, 150, 154,
367
punktéw dowiazania 26, 146, 267
w buforze magazynowym 267
tasma trojkatowa 147, 164, 218, 242, 296,
368, 486, 535, 1109, 1143
z przyleglosciami 300-309
teksel 28, 205, 455
tekstura 28, 205, 455, 472-485, 495, 497,
647, 686, 1002, 1065, 1191
bez dowigzania 482-483

irradiancji 746-751, 754, 756, 772,
788-790, 797,799, 802, 841, 843,
849, 851
jednowymiarowa 775,1003
kostkowa 688-697, 746, 772, 774, 780,
854
mgly 627
obszaru cienia 550, 562, 627, 851
proceduralna 28, 455, 494, 528-529
odksztalcen 513, 522, 529-534
przefiltrowanej radiancji 772, 778,779
radiancji otoczenia 774
rezydentna 483
skompresowana 474-479
wielopoziomowa 780
wielowarstwowa 677
test
maski 24, 449, 636
nozyczek 24,449, 636
widocznodci 24, 55, 132, 135, 196, 199,
260, 449, 621, 636
Texas Instruments 1186
TLS 1187
torus 419, 421-423
triangulacja Delaunaya 377
trojkaty z przyleglosciami 297, 299
tryb
izolinii 279
natychmiastowy rysowania 17, 29, 855,
1017
pracy potoku przetwarzania grafiki 159
GL_LINE_LOOP 159
GL_LINE_STRIP 159
GL_LINE_STRIP_ADJACENCY 299
GL_LINES 159
GL_LINES_ADJACENCY 297-299
GL_PATCHES 297
GL_POINTS 159
GL_TRIANGLE_FAN 159, 493
GL_TRIANGLE_STRIP 159
GL_TRIANGLE_STRIP_ADJACENCY
300-309
GL_TRIANGLES 159
GL_TRIANGLES_ADJACENCY
299-300
twierdzenie
Cauchyego 107, 1047
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Pitagorasa 84,752
Pohlkego 138
tworzenie obrazu poza oknem 495, 550, 627,
645-652, 671-680, 682, 711-738,
819-823, 827-831
typy w GLSL-u
macierzowe 181-183
podprograméw 190
proste 181
strukturalne 183
tablicowe 184
wektorowe 181-183
zamkniete 182, 208, 483, 687, 688
typy zamkniete 83

U
uchwyt tekstury 483
uklad
czasteczek 607-613, 616-623, 663, 680
odniesienia 108, 109, 496
rownan
liniowych 127, 310, 484, 786, 1044,
1070
nieliniowych 314, 530, 1075
wspolrzednych
Adobe RGB 1084, 1087
barycentrycznych 109
CIE XYZ 1081, 1087
CIELab 1088
HSL 1089-1090
HSV 1089-1090
izometryczny 115, 415
kartezjaniskich 108, 496
kostki jednostkowej 552, 735
kostki standardowej 137, 140, 164,
216, 284, 346, 385, 489, 503, 525,
529, 545, 553, 621, 672, 718, 747, ...
lewoskretny 117
modelu 138, 139, 151, 528, 531
obserwatora 133,138, 140, 142, 167,
168, 170, 284, 414, 488, 545, 553,
642, 643, 657, 820, 1103, 1107
obserwatora odbitego w lustrze 496,
503
obserwatora przesunigtego 643, 672
obserwatora zwigzanego z elementem
826

obserwatora zwigzanego ze Zrédtem
$wiatla 545, 546, 573
okna 44, 132,167,199, 250, 254, 568,
718
prawoskretny 117,133
sRGB 1084, 1085
$wiata 114, 140, 142, 151, 168, 170, 172,
234, 284, 385, 414, 486, 503, 531,
545, 553, 597, 642, 643, 652, 654, ...
tekstury 498
zmiennych w bloku
packed 197
shared 197
std140 197, 229, 270
std430 197,756, 790, 808, 1153
Unix 31,39
unormowane funkcje B-sklejane 1057, 1069
uprawnienia administratora 32,1091
usrednianie siatki 887, 910-919, 939

A%
Vulkan 7, 20, 39, 55, 94, 100, 143, 185, 193,
454, 638, 1019, 1179, 1183, 1187

w
wachlarz trojkatow 147, 159, 162, 296
walec 305-309
warstwy obrazu konicowego 671, 680
warstwy walidacyjne 100
wartos$¢ bezwzgledna kwaternionu 1046,
1048
warto$¢ wlasna macierzy 1042-1045
warunki
brzegowe 1070,1078
interpolacyjne 1007, 1078
waski zakres dynamiczny 645
watek dzojstika 1097, 1101
wczesne testy fragmentow 449
wektor 106, 1192
idealnego odbicia $wiatla 433
jednostkowy 114, 115, 119, 165, 167, 218,
371, 450, 497, 513, 752, 756, 766,
783,1037
normalny
mikro$cianki 539, 760, 763, 765
obrazu plaszczyzny 283
powierzchni 213, 215, 283, 285-287,
295, 301, 371, 382, 385, 433, 450,
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513, 514, 518, 531, 534-536, ...
powierzchni zaburzonej 514, 522
trojkata 216, 218, 283, 304, 385, 486,

490, 521, 555, 673, 769, 789, 792,

795, 844, 937, 965, 967, 1114

swobodny 107-109, 111, 112, 114, 283,

519

wlasny macierzy 1042, 1044
zerowy 107, 385, 430, 521, 965
wektory
liniowo niezalezne 107, 513, 515
liniowo zalezne 107, 385, 414, 1048
pseudolosowe 616, 617
wzajemnie prostopadle 114, 752
wersja
jezyka GLSL 85, 141, 180
standardu OpenGL 34, 85, 95
wersory osi 108, 138, 415, 496, 549
wezly
funkgji sklejanych 1057, 1069
interpolacyjne 1005, 1017, 1069, 1078
krzywej sklejanej 297, 299, 1058
kwadratury 746,772
plata B-sklejanego 1058
widmo $wiatla 1079
widzenie dzienne 1079
wiek czasteczki 609, 612, 621
wielokrotne probkowanie 196, 469, 528,
639, 643, 687, 711, 948
wielomiany bazowe Bernsteina 369, 1058
wierzcholki siatki
brzegowe 877, 913, 962
wewnetrzne 877, 912, 962
wieze Hanoi 431
wihajster 855, 858, 860, 867, 940, 1005, 1182
obrazu 953
osi czasu 1005-1018
pusty 858, 869
Williams, Lance 456
Windows 31, 37, 39, 68-77, 83, 101, 472, 855
wirtualny ekran 84
wizual 63, 949
wlasnos¢ otoczki wypuklej 370, 1058
wspolczynnik zalamania §wiatta 202, 742,
744,763, 765, 770, 1037
wspolczynniki
dwumianowe Newtona 372, 380

ksztaltu 786, 787, 789, 823
wspolrzedne
barycentryczne 109, 113, 170, 194, 281,
300, 310, 811, 1081, 1126
cienia 552, 555
jednorodne 108, 131, 132, 134, 139, 150,
221, 245, 309, 317, 373, 376, 382,
384, 484, 529, 557, 597, 689, ...
wagowa 108,109, 111, 221, 222, 382,
384, 484, 485, 492, 518, 549, 704
kartezjanskie 108,134, 150,170, 194,
221, 317, 373, 384, 529, 557, 961, 962,
1185
sferyczne 746,752
tekstury 182, 456-459, 468, 555, 675,
792, 995, 1002
w dziedzinie ptata OpenGL-a 280, 281,
384, 428, 457,1063
wartosci domysélne dla wierzchotka
150
wstawianie weztow 1059
wstega Mobiusa 878
Wydawnictwo PWN 1185
wyznacznik 107,116, 117, 127, 130, 204, 1042,
1044, 1047
wzory
Cardana 1043
Cramera 127
WzOr
de Moivrea 1116
Mansfielda-de Boora-Coxa 1057

X
X Window 3, 30, 31, 56-66, 101, 681,
855-876, 931-1034, 1091, 1096-1102

Z
zadanie dobrze okres§lone 1069, 1074
zageszczanie siatki  877-930, 937, 939, 979,
1002, 1145
zalamanie $wiatla 202, 765, 1037
zalgczniki bufora ramki 497, 550, 559, 628,
630, 648, 674, 677, 681, 712, 822,
827,1188
zasada
Helmholtza 434, 742-744, 763, 765
minimalizacji zaskoczen 1185
zachowania energii 215, 739, 743-745
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zaslanianie otoczenia w przestrzeni obrazu
728-738
zbidr
Cantora 1134
Julii 1133
Mandelbrota 1116-1124, 1133
zenit 414, 450
Ziemia 313, 315, 332, 335, 337, 340, 348
zlota proporcja 147, 645
zlozenie przeksztalcen 111, 140, 165, 1042
zmiana ukladu wspélrzednych 112
zmienna
gl_ClipDistance 193,195, 245, 1139,
1140
gl_CullDistance 193,195,246
gl_FragCoord 139, 195, 252-254, 272,
310, 450, 492, 522, 524, 525, 533,
706, 713, 808, 811, 1120, 1125
gl_FragDepth 196, 450, 514, 522,706
gl_FrontFacing 195, 498, 499, 675
gl_GloballInvocationID 211,579,
600, 604, 611, 646, 685, 717, 726,
727,734, 757,777, 805, 814, ...
gl_HelperInvocation 195
gl_InstanceID 193,376, 408, 810,
934, 937, 965, 995, 1134
gl_InvocationID 193, 194, 240, 241,
278, 281, 337, 377, 429, 597,
673-675, 685, 705, 748, 830
gl_Layer 194, 195, 673-675, 705, 747,
748, 1184
gl_LocallnvocationID 2II, 835
gl_LocallnvocationIndex 2II
gl_MaxPatchVertices 193,194
gl_NumWorkGroups 210, 757,777, 831
gl_PatchVerticesIn 193, 194
gl_PerVertex 192,193,194, 217, 498,
550
gl_PointCoord 195
gl_PointSize 192
gl_Position 14,16, 141, 142, 192, 214,

216, 217, 239-244, 251, 277-282,
284, 285, 298, 307, 308, 337, ...

gl_PrimitiveID 193-195, 807, 808,
844, 845

gl_PrimitiveIDIn 806, 807, 844

gl_SampleID 195

gl_SampleMask 196

gl_SampleMaskIn 196

gl_SamplePosition 196

gl_TessCoord 194, 280-282, 384,
430, 458, 459, 518, 519, 551, 553,
672,1063, 1064

gl_TessLevellnner 193,194,278,
281, 288, 296, 336, 337, 376, 377,
429, 596, 597, 1061

gl_TessLevelOuter 193,194,278,
279, 281, 296, 337, 376, 377, 429,
596, 597, 1061

gl_VertexID 14,16, 193, 250, 251, 306,
307, 407, 408, 414, 418, 493, 498,
810, 934, 937, 995, 1118

gl_ViewportIndex 195,829, 830

gl_WorkGroupID 210, 835

gl_WorkGroupSize 210,1184

zmienne
globalne 185
interfejsu 25, 98, 185, 191, 197
wbudowane 25, 192-196, 210-211
jednolite 26, 140, 185, 196, 208, 468, 891
wskazujace podprogramy 182, 186,

190-191, 452-454

statyczne 148,162, 305, 363

wspoldzielone 185, 210, 818

zakres widocznosci 184

7
zrodla $wiatta
powierzchniowe 740, 782
punktowe 215, 450, 452, 543, 572, 739,
766-770, 783, 791, 849



— Drugie wydanie ksigzki OpenGL i GLSL (nie taki krotki kurs) jest poprawione, przez usu-
niecie bledéw znalezionych w wydaniu pierwszym i ponowne zaimplementowanie aplikacji
ilustrujacych sposéb korzystania ze standardu OpenGL, poszerzone, o nowe aplikacje reali-

— zujace rézne algorytmy za pomocy karty graficznej, i poglebione, przez dodanie bardziej
szczegotowych opiséw teoretycznych podstaw grafiki komputerowej. Dotaczony do ksigzki
pakiet oprogramowania jest przygotowany do kompilowania i uruchamiania w systemach

—  Linux/X Window i Windows.

Cze$¢ 111 zawiera wiadomosci uzupelniajace:

e opis prostego interfejsu uzytkownika w srodowisku X Window,

o opis i implementacj¢ algorytmu zageszczania siatek reprezentujacych powierzchnie gtadkie,
— e aplikacje rysujacg takg powierzchnie,

o faricuch kinematyczny umozliwiajacy animowanie odksztalcent powierzchni,
| e opis i implementacj¢ sposobu wprawiania animacji w ruch,

o opis zastosowania kwaternionéw do reprezentowania i animowania obrotéw w przestrzeni,

o opis krzywych i powierzchni B-sklejanych, umozliwiajagcych modelowanie obiektow bar-

dziej skomplikowanych niz platy Béziera,

o podstawy kolorymetrii,
| e sposob uzycia dzojstika w aplikacjach X Window,

e sposoby nieliniowego rzutowania przestrzeni na plaskie obrazy,

e sposoby rysowania obiektow fraktalowych: zbioru Mandelbrota, piramidy Sierpinskiego
— igabki Mengera,

e algorytmy masywnie réwnoleglych obliczen na karcie graficznej niezwigzanych bezposred-

nio z grafikg: sumowania dtugich ciggéw, obliczania sum prefiksowych, sortowania i prze-
twarzania nieregularnych macierzy rzadkich.

78-83-971




