
PrzemysławKiciak

OpenGL i GLSL
(nie taki krótki kurs)

Część III

W
yd
an
ie
II

po
pr
aw

ion
e,

po
sze

rz
on

e

i p
og

łę
bio

ne

WSA

OpenGL i GLSL

Wyd
an

ie
II

po
pr
aw

ion
e,

po
sze

rz
on

e

i p
og

łę
bio

ne

Przemysław Kiciak

OpenGL i GLSL
(nie taki krótki kurs)

Część III

WSA

Projekt okładki Anna Ludwicka

Projekt stron tytułowych Przemysław Kiciak

Redaktor Maria Kasperska

Skład systemem TEX Przemysław Kiciak

Zastrzeżonych nazw firm i produktów użyto w książce wyłącznie w celu identyfikacji.

Autor wyraża zgodę na kopiowanie i bezpłatne rozpowszechnianie tej książki w postaci
oryginalnych plików PDF, zastrzegając sobie wyłączne prawo do wprowadzania poprawek
i zmian. Autor nie zgadza się na użycie treści tej książki jako danych dla tak zwanej sztucznej
inteligencji. Opisane w tej książce aplikacjemogą być rozpowszechniane, modyfikowane
i używane w dowolnym godziwym celu.

Copyright © by Wydawnictwo Naukowe PWN, Warszawa 2019

Copyright © by Przemysław Kiciak, Warszawa 2024

ISBN 978-83-971793-3-2 część III

ISBN 978-83-971793-0-1 części I–III

Wydanie II

Warszawa 2024

Własny Sumpt Autora

e-mail: przemek@mimuw.edu.pl

www.mimuw.edu.pl/~przemek

PDF: 14 listopada 2025, 4142903 B.

Spis treści części III

30. Graficzny interfejs użytkownika . 857

30.1. Struktury danych i procedury podstawowe . 858
30.2. Procedury przekazujące komunikaty . 863
30.3. Kodowanie kolorów w systemie XWindow . 870

30.4. Przykłady wihajstrów . 871

30.4.1. Wihajster pusty . 871
30.4.2. Guzik . 872
30.4.3. Przełącznik . 873

30.4.4. Suwak . 875
30.4.5. Edytor napisu . 877

31. Zagęszczanie siatek . 879

31.1. Definicja i warunki poprawności siatki . 879
31.2. Reprezentacja siatki w pamięci RAM CPU . 881
31.3. Reprezentacja siatki w pamięci GPU . 882
31.4. Podwajanie i uśrednianie siatki . 889
31.5. Zmienne szadera zagęszczania siatek . 892
31.6. Kompilacja programu zagęszczania i procedury pomocnicze 894
31.7. Procedura main . 896
31.8. Implementacja podwajania . 898
31.9. Implementacja uśredniania . 912
31.10. Procedura zagęszczania siatki . 921
31.11.*Uzupełnienia . 923

31.11.1. Macierz zagęszczania . 923
31.11.2. Szader i procedura znajdowania macierzy zagęszczania 924
31.11.3.Obliczanie współrzędnych wierzchołków . 930

31.12. Ćwiczenia . 931

32. Trzecia aplikacja . 933

32.1. Model dłoni . 933
32.2. Rysowanie siatki . 934
32.3. Część graficzna trzeciej aplikacji . 942
32.4. Okna trzeciej aplikacji . 949

32.5. Ćwiczenia . 959

33. Aplikacja trzecia A . 961

xxxiv SPIS TREŚCI CZĘŚCI III

33.1. Obliczanie wektorów normalnych . 961
33.2. Rysowanie siatki . 966
33.3. Zmiany w aplikacji . 970

33.4. Ćwiczenia . 971

34. Aplikacja trzecia B . 973

34.1. Łańcuch kinematyczny . 973
34.2. Przygotowanie i rysowanie sceny . 982
34.3. Interfejs użytkownika . 984
34.4. Ćwiczenia . 986

35. Aplikacja trzecia C . 987

35.1. Łańcuch kinematyczny . 987
35.2. Szadery rysujące i ich przygotowanie . 996
35.3. Pozostałe zmiany w aplikacji . 1003

35.4. Ćwiczenia . 1004

35.5. Uzupełnienia — określanie parametrów tekstury . 1004

36. Aplikacja trzecia D . 1007

36.1. Działanie interfejsu użytkownika . 1007

36.2. Wihajster osi czasu . 1009

36.3. Procedury obsługi animacji . 1020

36.4. Menu trzeciego podokna . 1028

36.5. Część graficzna aplikacji . 1032

36.6. Pozostałe zmiany w aplikacji . 1036

36.7. *Uzupełnienia — użycie macierzy zagęszczania siatek 1036

36.8. *Ćwiczenia . 1038

A. Jeszcze trochę algebry z geometrią . 1039

A.1. Załamanie światła . 1039

A.2. Konstrukcje obrotów do ustalonego położenia . 1040

A.3. Rozkładanie przekształceń afinicznych . 1044

A.4. Kwaterniony i obroty . 1047

B. Krzywe i powierzchnie B-sklejane . 1059

B.1. Określenie funkcji, krzywych i płatów B-sklejanych 1059

B.2. Algorytmy de Boora . 1061

B.3. B-sklejane krzywe interpolacyjne . 1071

B.4. Sklejane krzywe kwaternionowe . 1076

C. Kolory, barwy i ich współrzędne . 1081

C.1. Widzenie trójbarwne . 1081

C.2. Diagram CIE . 1083

C.3. Układy współrzędnych RGB i korekcja gamma . 1086

C.4. Układy z luminancją i chrominancją . 1089

C.5. Układy z subtraktywnym mieszaniem barw . 1090

C.6. Układy HSV i HSL . 1091

SPIS TREŚCI CZĘŚCI III xxxv

D. Dżojstik w aplikacjach XWindow . 1093
D.1. Aktywne sprawdzanie . 1093
D.2. Komunikacja za pośrednictwem systemu XWindow 1098

E. Rzutowanie nieliniowe . 1105

E.1. Panorama punktowa . 1105
E.2. Panorama linearna . 1107
E.3. Rzutowanie na sferę . 1108
E.4. Rozdrabnianie w rzutowaniu nieliniowym . 1109

F. Rysowanie fraktali . 1117
F.1. Zbiór Mandelbrota . 1117

F.1.1. Liczby zespolone . 1117
F.1.2. Iterowanie wielomianu kwadratowego . 1118
F.1.3. Obliczanie koloru piksela . 1126
F.1.4. Pozaekranowy bufor ramki . 1130
F.1.5. Odwzorowanie prostokąta w okno . 1132
F.1.6. Paleta i wymierne krzywe Béziera . 1133

F.2. Piramida Sierpińskiego i gąbka Mengera . 1136

G. GPGPU . 1147
G.1. Działania parami . 1147
G.2. Obliczanie sum prefiksowych . 1153
G.3. Sortowanie . 1156
G.4. Przetwarzanie macierzy rzadkich . 1161

G.4.1. Mnożenie macierzy rzadkiej przez wektor 1162
G.4.2. Transponowanie macierzy rzadkiej . 1168
G.4.3. Mnożenie macierzy rzadkich . 1172

H. Słowniki . 1181
H.1. Słownik TLS-ów i CzLS-ów . 1181
H.2. Słownik wyrazów wieloznacznych . 1190

Skorowidz . 1195

30
Graficzny interfejs użytkownika

Interfejs użytkownika opisanych dotąd aplikacji, mówiąc delikatnie, pozostawia co nieco do

życzenia: wszystkie polecenia oprócz zmieniania wymiarów okna i położenia obserwatora

użytkownik wydaje, naciskając jakiś klawisz. Nie da się w ten sposób wygodnie wprowadzać

wielkości analogowych, takich jak parametry oświetlenia lub parametry artykulacji, a zresztą

klawiatura bywa potrzebna dowprowadzania napisów (liczb, nazw plików itp.), a wtedy użyt-

kownik powinien na bieżąco widzieć, co pisze. Dlatego w bardziej skomplikowanych aplika-

cjach potrzebny jest graficzny interfejs użytkownika (GUI, graphical user interface), czyli

rozmaite wihajstry (widgets), które użytkownik widzi w oknie i za których pośrednictwem

może wprowadzać dane i wydawać polecenia. Niestety, biblioteka FreeGLUT ma tylko bar-

dzo ograniczony i niedziałający poprawnie z nowym OpenGL-em (zobacz p. 3.1.2) zestaw

procedur realizujących GUI, a w bibliotece GLFW nie ma nawet tego.

Mój kłopot polega na tym, że nie chcę zbytnio oddalać się od kursu OpenGL-a, a jed-

nocześnie nie chcę narażać Czytelników na studiowanie kiepskiego opisu jakiejś biblioteki

GUI, której akurat nie mają i z rozmaitych powodów nie mogą sobie zainstalować. Oczywiś-

cie, można stworzyć znakomity GUI w aplikacji FreeGLUT-a lub GLFW, w którym wihajstry

rysujeOpenGL, ale (wobec konieczności dostarczenia odpowiednich szaderów i utworzenia

buforów z danymi opisującymi wihajstry) jest to dużo bardziej pracochłonne niż poucza-

jące. Jeśli więc obrazy wihajstrów nie przedstawiają skomplikowanych obiektów trójwymia-

rowych, to łatwiej jest użyć jakichś procedur grafiki dwuwymiarowej i rysować wihajstry

w (znacznie prostszym do użycia) trybie natychmiastowym. Obrazy większości wihajstrów

są na tyle nieskomplikowane, że czas ich rysowania będzie niezauważalny.

Opisana w rozdziałach 32–36 aplikacja ma dwa warianty, natywne dla systemów XWin-

dow oraz Windows i korzystające z GUI zrealizowanego przy użyciu procedur dostępnych

w danym systemie. W pierwszym wariancie wihajstry są rysowane za pomocą procedur

z biblioteki X11 [11], a w drugim przy użyciu biblioteki GDI [19]. Sporo wysiłku włożyłem

w to, aby API obu wersji GUI był taki sam1. Dzięki temu, choć sposoby tworzenia okien

i obsługi komunikatów X Window i Windows są inne, części graficzne wariantów aplikacji

dla obu systemów są identyczne. Temu służy „tłumaczenie” komunikatów otrzymanych od

1co prawie mi się udało

856 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

systemu na komunikaty zdefiniowane w pliku nagłówkowym xwidgets.h i w szczególności

zamienianie kodów klawiszy specjalnych Home, Delete, F1 itd. na odpowiednie stałe sym-

boliczne. Ponieważ jednak tematyka współpracy aplikacji z systemem okien jest odległa od

OpenGL-a, w książce zamieściłem tylko opis implementacji GUI dla X Window.

30.1. Struktury danych i procedury podstawowe

Do zrealizowania wihajstra potrzebne są dwie procedury2. Pierwsza z nich przetwarza wejś-

cie (tj. reaguje na komunikaty o działaniach użytkownika), a druga wyświetla odpowiedni

obraz w oknie, aby użytkownik widział, gdzie ma umieścić kursor przed naciśnięciem przy-

ciskumyszy albow jakimwihajster jest stanie (np. czywihajster—przełącznik— jest w danej

chwili włączony).

Listing 30.1 przedstawia typy danych zdefiniowane w celu zaimplementowania GUI. Każ-

dy wihajster jest opisany przez strukturę typu xwidget, której pola to: id — identyfikator

wihajstra, r—opis prostokąta zajmowanego przez wihajster w oknie, state— stan wihajst-

ra, input i redraw — wskaźniki procedury przetwarzającej komunikaty wejściowe i pro-

cedury rysującej wihajster, wm — wskaźnik struktury menu okna, w którym wihajster ma

się pojawić, link — para wskaźników tworzących listę wihajstrów tego menu, oraz data0,

data1—wskaźniki danych specyficznych dla wihajstra konkretnego rodzaju.

Struktura typu xwinmenu reprezentuje zbiór wihajstrów należących do danego okna (lub

podokna) utworzonego przez system X Window. Pole window jest identyfikatorem okna.

Pole pixmap zawiera identyfikator kanwy (pixmap), na której odbywa się rysowanie wi-

hajstrów; można by je rysować bezpośrednio w oknie, ale choć to zabiera znikomy czas,

byłoby widoczne migotanie (spowodowane wyświetlaniem w oknie obrazów niedokończo-

nych). Dlatego wihajstry mają być rysowane na tej kanwie, a jej zawartość będzie kopio-

wana do okna, gdy obrazy wszystkich wihajstrów będą gotowe. Pole r opisuje wymiary okna

(i kanwy). W polach prevx, prevy i prevmask będą pamiętane położenia kursora w oknie

i stan przycisków myszy po zakończeniu obsługi komunikatu, aby można było ich użyć pod-

czas obsługi następnego komunikatu. Pole changed ma przypisywaną wartość niezerową,

gdy któryś wihajster lub aplikacja sygnalizuje potrzebę odświeżenia obrazu w oknie. Pole

expose_sent służy do tego, aby zapobiegać wysyłaniu do okna niepotrzebnych komunika-

tów Expose podczas przetwarzania komunikatów o przesunięciu kursora, co będzie wyjaś-

nione dalej. Wskaźnik data jest przeznaczony do użytku aplikacji. Pole wlist jest nagłów-

kiem listy dwukierunkowej wihajstrów. Pole redraw jest wskaźnikiem procedury rysującej

zawartość okna, czyli tło i na nim wszystkie wihajstry. Procedura ta ma używać do ryso-

wania albo procedur systemu X Window (z biblioteki X11), albo OpenGL-a, przy czym ten

sam sposób rysowania w oknie obowiązuje procedury rysujące wszystkie wihajstry w tym

oknie. W tym rozdziale opisałem tylko najprostsze przykłady wihajstrów rysowanych przez

procedury X11, ale trzecia aplikacja otworzy okno z wihajstrami, którego cała zawartość jest

rysowana przez OpenGL-a.

2W języku C++ wihajster powinien być obiektem z dwiema metodami wirtualnymi.

30.1. Struktury danych i procedury podstawowe 857

Listing 30.1. Typy danych dla systemu wihajstrów
C

1: #define WDGSTATE_DEFAULT 0

2: #define WDGSTATE_INACTIVE 1

3:

4: typedef struct {

5: struct xwidget *prev, *next;

6: } xwlink;

7:

8: typedef struct xwidget {

9: int id;

10: XRectangle r;

11: int state;

12: char (*input)(struct xwidget *wdg,

13: int msg, int key, int x, int y);

14: void (*redraw)(struct xwidget *wdg);

15: struct xwinmenu *wm;

16: xwlink link;

17: void *data0, *data1;

18: } xwidget;

19:

20: typedef struct xwinmenu {

21: Window window;

22: Pixmap pixmap;

23: XRectangle r;

24: int prevx, prevy;

25: unsigned int prevmask;

26: char changed, expose_sent;

27: void *data;

28: xwidget *empty, *focus;

29: XEvent *ev;

30: xwlink wlist;

31: void (*redraw)(struct xwinmenu *wm);

32: void (*callback)(struct xwidget *wdg,

33: int msg, int key, int x, int y);

34: } xwinmenu;

Wihajstry w oknie są połączone w listę dwukierunkową, której uporządkowanie odpo-

wiada kolejności rysowania: pierwszy element jest „na samym spodzie”, a ostatni „na samym

wierzchu” stosu wihajstrów, a zatem jeśli poszczególne wihajstry nakładają się, to element

„wyżej” (czyli położony dalej w liście) zasłania wihajster pod spodem. Podczas odświeżania

obrazu w oknie wihajstry są rysowane „od dołu do góry”, czyli od pierwszego do ostatniego.

Natomiast kolejność wyszukiwania wihajstra, do którego ma trafić komunikat o zdarzeniu,

które miało miejsce, gdy kursor był w pewnym punkcie okna, jest „od góry do dołu”, bo

komunikat ma trafić do wihajstra, który we wskazanym punkcie jest widoczny.

Procedura przetwarzania wejścia wihajstra ma poinformować, czy komunikat został

przetworzony, czy nie, podając odpowiednio niezerową wartość powrotną albo zero. W tym

858 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

ostatnim przypadku lista wihajstrów będzie przeszukiwana dalej, w celu znalezienia innego

wihajstra zainteresowanego tym komunikatem.

Pierwszym elementem listy wihajstrów w menu jest pusty wihajster o zerowych wymia-

rach. Jest on dodatkowo wskazywany przez pole empty i przydaje się jako parametr opisanej

dalej procedurywskazywanej przez pole callback. Pole focusma zwyklewartość NULL, ale

wihajstry mogą na pewien czas przypisywać mu swój adres. Wtedy kolejne komunikaty (do

odwołania, czyli do ponownego przypisania wartości NULL) będąwysyłane do tegowihajstra.

Jeśli na przykład użytkownik manipuluje suwakiem i przesunie kursor poza jego obszar, to

suwak nadal ma otrzymywać komunikaty do chwili, gdy użytkownik zwolni przycisk myszy,

w odpowiedzi na co suwak wyłączy tryb manipulowania sobą.

Parametry procedur przetwarzania wejścia wihajstrów opisują uproszczony komunikat,

przy czym opis ten w większości przypadków jest wystarczający do wykonania właściwej

reakcji wihajstra na zdarzenie. Pole ev wskazuje strukturę typu XEvent z pełną informacją

o komunikacie dostarczoną przez system X Window, na wypadek gdyby taka informacja

była potrzebna.

Pole callbackwskazuje procedurę aplikacji, która ma być wywoływana przez wihajstry

w celu powiadomienia na przykład o naciśnięciu guzika lub przesunięciu suwaka. Procedura

ta jestwywoływana takżew razie nieprzetworzenia komunikatuwejściowego przez żadenwi-

hajster w oknie albo w razie otrzymania komunikatu takiego jak ClientMessage. W takich

przypadkach pierwszy parametr tej procedury ma wartość pola empty.

Listing 30.2 przedstawia procedury tworzenia, rysowania zawartości i likwidacjimenu, tj.

listy wihajstrów dla okna. Procedura WinMenuRedraw, posługując się procedurami z biblio-

teki X11, rysuje tło, a następnie wywołuje procedurę rysowania po kolei dla wszystkich wi-

hajstrów z wyjątkiem nieaktywnych w danym momencie. Tło i wihajstry są rysowane na

kanwie, której identyfikator jest wartością pola pixmap, przy użyciu kontekstu graficznego

utworzonego przez aplikację, która jego identyfikator zapamiętała w zmiennej xgc.

Procedura NewWinMenu rezerwuje strukturę danych menu i zapisuje w jej polach od-

powiednie informacje, w szczególności tworzy pusty wihajster, który staje się pierwszym

elementem listy. Wywołując tę procedurę, aplikacja może podać parametr redraw pusty

(NULL) i wtedy procedurą rysującą w tym oknie stanie się procedura WinMenuRedraw. Apli-

kacja może też podać adres innej procedury rysującej, która jeśli korzysta z OpenGL-a, to

wszystkie wihajstry w tym menu muszą być rysowane za jego pomocą. Parametr callback

musi być adresem procedury w aplikacji, która będzie wywoływana za każdym razem, gdy

wihajster ma dla aplikacji komunikat, albo gdy menu przekazuje aplikacji komunikat od

systemu XWindow, taki jak ConfigureNotify lub ClientMessage.

Listing 30.2. Procedury tworzenia, rysowania i likwidacji menu okna
C

1: typedef void (*xcallback)(struct xwidget *wdg,

2: int msg, int key, int x, int y);

3: typedef void (*xmredraw)(struct xwinmenu *wm);

4:

5: GC xgc;

6:

30.1. Struktury danych i procedury podstawowe 859

7: void RedrawMenuWidgets (xwinmenu *wm)

8: {

9: xwidget *wdg;

10:

11: for (wdg = wm->wlist.next; wdg; wdg = wdg->link.next)

12: if (wdg->state != WDGSTATE_INACTIVE)

13: wdg->redraw (wdg);

14: wm->expose_sent = wm->changed = false;

15: } /*RedrawMenuWidgets*/

16:

17: void WinMenuRedraw (xwinmenu *wm)

18: {

19: XSetForeground (xdisplay, xgc, XWP_MENU_BACKGROUND_COLOUR);

20: XFillRectangle (xdisplay, wm->pixmap, xgc, 0, 0,

21: wm->r.width, wm->r.height);

22: RedrawMenuWidgets (wm);

23: } /*WinMenuRedraw*/

24:

25: xwinmenu *NewWinMenu (Window window, int w, int h, int x, int y,

26: void *data, xmredraw redraw, xcallback callback)

27: {

28: xwinmenu *wm;

29:

30: if ((wm = malloc(sizeof(xwinmenu)))) {

31: memset (wm, 0, sizeof(xwinmenu));

32: wm->window = window;

33: wm->r.width = w; wm->r.height = h; wm->r.x = x; wm->r.y = y;

34: wm->data = data;

35: wm->redraw = redraw ? redraw : WinMenuRedraw;

36: if (!redraw)

37: wm->pixmap = XCreatePixmap (xdisplay, window, w, h, 24);

38: wm->callback = callback;

39: wm->empty = NewEmptyWidget (wm, 0);

40: wm->changed = true;

41: }

42: return wm;

43: } /*NewWinMenu*/

44:

45: void DeleteWinMenu (xwinmenu *wm)

46: {

47: xwidget *wdg, *w;

48:

49: for (wdg = wm->wlist.next; wdg;) {

50: w = wdg; wdg = w->link.next;

51: w->input (w, XWMSG_DELETE, 0, 0, 0);

52: free (w);

53: }

860 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

54: if (wm->pixmap)

55: XFreePixmap (xdisplay, wm->pixmap);

56: free (wm);

57: } /*DeleteWinMenu*/

Procedura DeleteWinMenu likwiduje kolejnowszystkiewihajstry (tj. zwalnia zajmowaną

przez nie pamięć), a potem likwiduje kanwę (nieobecną w oknach z zawartością rysowaną

przy użyciu OpenGL-a) i menu. Wihajster przed likwidacją jest zawiadamiany, że ona na-

stąpi; umożliwia to posprzątanie, jeśli na przykład utworzenie go wymagało zarezerwowania

pamięci.

Procedura przedstawiona na listingu 30.3 rezerwuje pamięć na strukturę opisującą wi-

hajster i inicjalizuje jej pola wspólne dla wszystkich wihajstrów. Nowy wihajster jest dołą-

czany na koniec listy wihajstrów menu okna (zatem kolejność tworzenia wihajstrów będzie

kolejnością ich rysowania). Ponadto zapamiętywane są wymiary i położenie prostokąta

zajmowanego przez wihajster w oknie i nadany przez aplikację identyfikator wihajstra. Po-

czątkowawartość pola state określa stan, w którymwihajster niczego szczególnego nie robi.

Inne wartości będzie temu polu przypisywać procedura wskazywana przez parametr input

lub dowolna inna procedura aplikacji. W szczególności od stanu wihajstra może zależeć jego

wygląd na ekranie.

Listing 30.3. Procedura NewWidget
C

1: typedef char (*xwinput)(struct xwidget *wdg,

2: int msg, int key, int x, int y);

3: typedef void (*xwredraw)(struct xwidget *wdg);

4:

5: xwidget *NewWidget (struct xwinmenu *wm, int size, int id,

6: int w, int h, int x, int y,

7: xwinput input, xwredraw redraw, void *data0, void *data1)

8: {

9: xwidget *wdg;

10:

11: if (size < sizeof(xwidget))

12: size = sizeof(xwidget);

13: if ((wdg = malloc (size))) {

14: memset (wdg, 0, size);

15: if (!wm->wlist.prev)

16: wm->wlist.prev = wm->wlist.next = wdg;

17: else {

18: wdg->link.prev = wm->wlist.prev;

19: wdg->link.prev->link.next = wm->wlist.prev = wdg;

20: }

21: wdg->id = id;

22: wdg->r.width = w; wdg->r.height = h; wdg->r.x = x; wdg->r.y = y;

23: wdg->input = input; wdg->redraw = redraw;

24: wdg->data0 = data0; wdg->data1 = data1;

30.2. Procedury przekazujące komunikaty 861

25: wdg->wm = wm;

26: wdg->state = WDGSTATE_DEFAULT;

27: }

28: return wdg;

29: } /*NewWidget*/

30.2. Procedury przekazujące komunikaty

Zadaniem procedury przedstawionej na listingu 30.4 jest tworzenie uproszczonych infor-
macji na temat otrzymanych od systemu X Window komunikatów pochodzących od urzą-
dzeń wejściowych (myszy i klawiatury), co umożliwia pisanie prostszych procedur obsługi
tych komunikatów. Takie informacje są przekazywane w parametrach procedury wejścia
wihajstra i procedury przyjmującej polecenia wydane przez wihajstry (wskazywanej przez
pole callback struktury typu xwinmenu). Informacja zawiera rodzaj komunikatu (msg),
informację dodatkową (key) i współrzędne położenia kursora w oknie (x, y). Jeśli komu-
nikat opisuje naciśnięcie lub zwolnienie przycisku myszy, to informacja dodatkowa określa,
który to jest przycisk, przy czym „przyciski” 3 i 4 w X Window odpowiadają rolce myszy,
w związku z czym aplikacja otrzyma komunikat XWMSG_SCROLL. Jeśli komunikat opisuje
przesunięcie myszy, to informacja dodatkowa opisuje stan wszystkich przycisków. Jeśli zo-
stał naciśnięty klawisz, to informacja dodatkowa podaje kod ASCII napisanego znaku, lub
w przypadku klawisza specjalnego symbol klawisza (KeySym) przekazany w oryginalnym
komunikacie zostanie zamieniony na jedną ze stałych symbolicznych zdefiniowanych w li-
niach 16–28. Wszystkie makrodefinicje opisujące symbole klawiszy można znaleźć w pliku
/usr/include/X11/keysymdef.h3. Komunikaty inne niż pochodzące od urządzeń wejś-
ciowych otrzymują rodzaj XWMSG_UNKNOWN, ale aplikacja ma dostęp do oryginalnego komu-
nikatu od systemu XWindow, a dokładniej do zmiennej (wskazywanej przez pole ev struk-
tury typu xwinmenu) opisującej ostatni otrzymany od systemu komunikat, który aplikacja
właśnie przetwarza.

Listing 30.4. Procedura upraszczania komunikatów
C

1: #define XWMSG_NONE 0

2: #define XWMSG_UNKNOWN 1

3: #define XWMSG_ENTERING 2

4: #define XWMSG_LEAVING 3

5: #define XWMSG_BUTTON_PRESS 4

6: #define XWMSG_BUTTON_RELEASE 5

7: #define XWMSG_SCROLL 6

8: #define XWMSG_MOUSE_MOTION 7

9: #define XWMSG_KEY_PRESS 8

3Klawisze specjalne mają w systemie Windows zupełnie inne kody, ale obie implementacje GUI tłumaczą je
na te same stałe symboliczne.

862 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

10: #define XWMSG_KEY_RELEASE 9

11: #define XWMSG_SPECIAL_KEY_PRESS 10

12: #define XWMSG_SPECIAL_KEY_RELEASE 11

13: #define XWMSG_CLIENT_MESSAGE 12

14: #define XWMSG_DELETE 13

15:

16: #define WDGSYS_KEY_INSERT 100

17: #define WDGSYS_KEY_DELETE 101

18: #define WDGSYS_KEY_HOME 102

19: #define WDGSYS_KEY_END 103

20: #define WDGSYS_KEY_PGUP 104

21: #define WDGSYS_KEY_PGDN 105

22: #define WDGSYS_KEY_LEFT 106

23: #define WDGSYS_KEY_RIGHT 107

24: #define WDGSYS_KEY_UP 108

25: #define WDGSYS_KEY_DOWN 109

26: #define WDGSYS_KEY_F1 111

27: /* kolejne kody dla kolejnych klawiszy Fn */

28: #define WDGSYS_KEY_F12 122

29:

30: static char btn[3] = { false, false, false };

31: static int mouse_x, mouse_y;

32:

33: void TranslateEventMsg (XEvent *ev, int *msg, int *key, int *x, int *y)

34: {

35: char chr;

36: KeySym ks;

37:

38: switch (ev->xany.type) {

39: case ButtonPress:

40: switch (*key = ev->xbutton.button) {

41: case 3: *msg = XWMSG_SCROLL; *key = +1; break;

42: case 4: *msg = XWMSG_SCROLL; *key = -1; break;

43: default:

44: *key = ev->xbutton.button;

45: btn[*key - Button1] = true;

46: *msg = XWMSG_BUTTON_PRESS;

47: break;

48: }

49: *x = mouse_x = ev->xbutton.x; *y = mouse_y = ev->xbutton.y;

50: break;

51: case ButtonRelease:

52: if ((*key = ev->xbutton.button) >= 3)

53: *msg = XWMSG_NONE;

54: else {

55: *msg = XWMSG_BUTTON_RELEASE;

56: *x = mouse_x = ev->xbutton.x; *y = mouse_y = ev->xbutton.y;

30.2. Procedury przekazujące komunikaty 863

57: }

58: break;

59: case MotionNotify:

60: *msg = XWMSG_MOUSE_MOTION;

61: *key = ev->xmotion.state;

62: *x = mouse_x = ev->xmotion.x; *y = mouse_y = ev->xmotion.y;

63: break;

64: case KeyPress:

65: *msg = XWMSG_KEY_PRESS;

66: goto decode_key;

67: case KeyRelease:

68: *msg = XWMSG_KEY_RELEASE;

69: decode_key:

70: XLookupString (&ev->xkey, &chr, 1, &ks, NULL);

71: if (!chr) { /* not ASCII */

72: *msg = ev->xany.type == KeyPress ?

73: XWMSG_SPECIAL_KEY_PRESS : XWMSG_SPECIAL_KEY_RELEASE;

74: switch (ks) {

75: case XK_Insert: case XK_KP_Insert: *key = WDGSYS_KEY_INSERT; break;

76: case XK_Delete: case XK_KP_Delete: *key = WDGSYS_KEY_DELETE; break;

77: case XK_Home: case XK_KP_Home: *key = WDGSYS_KEY_HOME; break;

78: case XK_End: case XK_KP_End: *key = WDGSYS_KEY_HOME; break;

79: case XK_Page_Up: case XK_KP_Page_Up: *key = WDGSYS_KEY_PGUP; break;

80: case XK_Page_Down: case XK_KP_Page_Down: *key = WDGSYS_KEY_PGDN; break;

81: case XK_Left: case XK_KP_Left: *key = WDGSYS_KEY_LEFT; break;

82: case XK_Right: case XK_KP_Right: *key = WDGSYS_KEY_LEFT; break;

83: case XK_Up: case XK_KP_Up: *key = WDGSYS_KEY_LEFT; break;

84: case XK_Down: case XK_KP_Down: *key = WDGSYS_KEY_LEFT; break;

85: case XK_F1: case XK_KP_F1: *key = WDGSYS_KEY_F1; break;

86: /* translacja kodów kolejnych klawiszy Fn */

87: case XK_F5: *key = WDGSYS_KEY_F5; break;

88: /* kolejne klawisze Fn mają tylko jeden symbol */

89: case XK_F12: *key = WDGSYS_KEY_F12; break;

90: default: *key = ks; break;

91: }

92: }

93: else

94: *key = chr;

95: *x = ev->xkey.x; *y = ev->xkey.y;

96: break;

97: default:

98: *msg = XWMSG_UNKNOWN;

99: *x = *y = -1;

100: break;

101: }

102: } /*TranslateEventMsg*/

864 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

W odpowiedzi na komunikat Expose pokazana na listingu 30.5 procedura WinMenu-
Input rysuje wihajstry. Jeśli jest w użyciu kanwa X Window (pole pixmapma wartość nie-
zerową), to wihajstry są rysowane na niej, a następnie cały obraz z kanwy jest kopiowany do
okna, przy czym rysowanie jest zbędne, jeśli pole wm->changedmawartość false, co ozna-
cza, że ostatnio wykonany obraz na kanwie jest aktualny. Procedura rysowania zawartości
okna jest wywoływana zawsze, gdy kanwa nie jest używana (w oknie, którego zawartość ma
rysowaćOpenGL). Komunikat ConfigureNotify powoduje zapamiętanie nowych wymia-
rów okna i utworzenie nowej kanwy, której wymiary są równe nowej szerokości i wysokości
okna, po czym następuje wywołanie procedury callback, która może spowodować zmianę
wielkości i rozmieszczenia wihajstrów w oknie. Potem do okna jest wysyłany (za pośrednic-
twem opisanej dalej procedury PostMenuExposeEvent) komunikat Expose, aby spowodo-
wać odświeżenie jego zawartości. Komunikat ClientMessage jest przesyłany od razu do
procedury callback.

Komunikaty EnterNotify i LeaveNotify, otrzymywane, gdy kursor pojawia się w ob-
szarze okna lub go opuszcza, są „tłumaczone” na komunikat o wejściu kursora do obszaru
wihajstra lub o opuszczeniu tego obszaru. Zmienna lastinput jest wskaźnikiem wihajstra,
do którego są kierowane komunikaty; jeśli kolejny komunikat wejściowy ma odbierać inny
wihajster, to oba wihajstry są zawiadamiane o tej zmiane.

Listing 30.5. Procedura przesyłania komunikatów do wihajstrów
C

1: static xwidget *lastinput;

2:

3: char XYInside (xwidget *wdg, int x, int y)

4: {

5: return x >= wdg->r.x && x < wdg->r.x+wdg->r.width &&

6: y >= wdg->r.y && y < wdg->r.y+wdg->r.height;

7: } /*XYInside*/

8:

9: char IsButtonDown (unsigned int button)

10: {

11: if (button <= Button3)

12: return btn[button - Button1];

13: else

14: return false;

15: } /*IsButtonDown*/

16:

17: void WinMenuInput (xwinmenu *wm, XEvent *ev)

18: {

19: int msg, key;

20: int x, y;

21: xwidget *wdg;

22: char inp;

23: Window root, child;

24:

30.2. Procedury przekazujące komunikaty 865

25: wm->ev = ev;

26: switch (ev->xany.type) {

27: case Expose:

28: if (ev->xexpose.count == 0) {

29: if (wm->changed || !wm->pixmap) {

30: wm->redraw (wm);

31: wm->changed = wm->expose_sent = false;

32: }

33: if (wm->pixmap)

34: XCopyArea (xdisplay, wm->pixmap, wm->window, xgc,

35: 0, 0, wm->r.width, wm->r.height, 0, 0);

36: }

37: return;

38: case ConfigureNotify:

39: wm->r.width = ev->xconfigure.width;

40: wm->r.height = ev->xconfigure.height;

41: if (wm->pixmap) {

42: XFreePixmap (xdisplay, wm->pixmap);

43: wm->pixmap = XCreatePixmap (xdisplay, wm->window,

44: wm->r.width, wm->r.height, 24);

45: }

46: wm->callback (wm->empty, WDGMSG_RECONFIGURE, 0,

47: wm->r.width, wm->r.height);

48: wm->changed = true;

49: PostMenuExposeEvent (wm);

50: break;

51: case ClientMessage:

52: wm->callback (wm->wlist.next, XWMSG_CLIENT_MESSAGE,

53: ev->xclient.message_type, -1, -1);

54: break;

55: case EnterNotify:

56: for (wdg = wm->wlist.prev; wdg; wdg = wdg->link.prev)

57: if (XYInside (wdg, ev->xcrossing.x, ev->xcrossing.y)) {

58: wdg->input (wdg, XWMSG_ENTERING, 0,

59: ev->xcrossing.x, ev->xcrossing.y);

60: lastinput = wdg;

61: break;

62: }

63: break;

64: case LeaveNotify:

65: if (lastinput) {

66: lastinput->input (lastinput, XWMSG_LEAVING, 0,

67: ev->xcrossing.x, ev->xcrossing.y);

68: lastinput = NULL;

69: }

70: break;

71: case GraphicsExpose:

866 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

72: case NoExpose:

73: wm->callback (wm->wlist.next, XWMSG_UNKNOWN, 0, 0, 0);

74: break;

75: default:

76: inp = found = false;

77: TranslateEventMsg (ev, &msg, &key, &x, &y);

78: if ((wdg = wm->focus)) {

79: inp = wdg->input (wdg, msg, key, x, y);

80: if (!wm->focus && !XYInside (wdg, x, y)) {

81: wdg->input (wdg, XWMSG_LEAVING, 0, x, y);

82: lastinput = NULL;

83: }

84: }

85: else {

86: for (wdg = wm->wlist.prev; wdg; wdg = wdg->link.prev) {

87: if (XYInside (wdg, x, y)) {

88: found = true;

89: if (wdg != lastinput) {

90: if (lastinput)

91: lastinput->input (lastinput, XWMSG_LEAVING, 0, x, y);

92: wdg->input (wdg, XWMSG_ENTERING, 0, x, y);

93: lastinput = wdg;

94: }

95: if ((inp = wdg->input (wdg, msg, key, x, y)))

96: break;

97: }

98: }

99: if (!found && lastinput) {

100: lastinput->input (lastinput, XWMSG_LEAVING, 0, x, y);

101: lastinput = NULL;

102: }

103: }

104: if (!inp)

105: wm->callback (wm->wlist.next, msg, key, x, y);

106: if (wm->changed)

107: PostMenuExposeEvent (wm);

108: }

109: XQueryPointer (xdisplay, wm->window, &root, &child,

110: &x, &y, &wm->prevx, &wm->prevy, &wm->prevmask);

111: return;

112: } /*WinMenuInput*/

113:

114: void PostMenuExposeEvent (xwinmenu *wm)

115: {

116: if (!wm->expose_sent) {

117: PostExposeEvent (wm->window, wm->r.width, wm->r.height);

118: wm->expose_sent = true;

30.2. Procedury przekazujące komunikaty 867

119: }

120: } /*PostMenuExposeEvent*/

121:

122: void GrabInput (xwidget *wdg)

123: {

124: wdg->wm->focus = wdg;

125: } /*GrabInput*/

126:

127: void UngrabInput (xwidget *wdg)

128: {

129: wdg->wm->focus = NULL;

130: } /*UngrabInput*/

Komunikaty GraphicsExpose i NoExpose, dla porządku, są przekazywane aplikacji, ale
może ona je ignorować.

Inne komunikaty są wstępnie dekodowane przez procedurę TranslateEventMsg. Jeśli
pole focus nie ma wartości NULL, to komunikat jest przekazywany wskazywanemu przez to
pole wihajstrowi. W przeciwnym razie lista wihajstrów jest przeglądana („od góry do dołu”)
w poszukiwaniu wihajstra, którego prostokąt zawiera punkt wskazywany przez kursor. Jeśli
wihajster nie przetworzył komunikatu, to przeglądanie listy jest kontynuowane. Jeśli żaden
wihajster nie przetworzył komunikatu, to jest on przesyłany do aplikacji, tj. do procedury
wskazywanej przez pole callback. Wihajstermoże zmienić swój wygląd (a także wygląd in-
nych wihajstrów w oknie), o czym informuje, przypisując niezerową wartość polu changed.
Powoduje to wysłanie (przez okno do siebie) komunikatu Expose. Po przetworzeniu komu-
nikatu następuje wywołanie procedury XQueryPointer, która zapamiętuje w polach prevx,
prevy i prevmask współrzędne położenia kursora w oknie i stan przycisków myszy.

Procedura PostMenuExposeEvent w celu wykonania nowego obrazu w oknie, którego
dotychczasowa zawartość stała się nieaktualna, wywołuje procedurę PostExposeEvent (lis-
ting 3.8), ale komunikat jest wysyłany tylko wtedy, gdy pole wm->expose_sentma wartość
false. Jednocześnie z wysłaniem tego komunikatu pole to otrzymuje wartość true, po
czym wartość false zostanie temu polu nadana ponownie podczas przetwarzania komu-
nikatu Expose. Powodem wprowadzenia tej komplikacji jest duża częstotliwość wysyłania
przez system XWindow komunikatów o przemieszczeniu kursora podczas przesuwania my-
szy. Jeśli w odpowiedzi na przesunięcia obraz w oknie powinien się zmienić, to aplikacja
może otrzymać długą serię komunikatów o przemieszczeniu kursora przed otrzymaniem
komunikatu Expose wysłanego podczas obsługi pierwszego komunikatu z tej serii. Gdyby
każdy komunikat z serii powodował wysłanie komunikatu Expose, to po serii komunikatów
o przemieszczeniu kursora aplikacja dostałaby serię komunikatów Expose, z których pierw-
szy „odświeżyłby” zawartość okna, a podczas obsługi pozostałych byłby rysowany dokładnie
ten sam obraz. To już miałoby zauważalny wpływ na płynność działania aplikacji, tj. opóź-
nienia jej reakcji na przesuwanie myszy. Dlatego komunikaty Expose nie są wysyłane do
okna, jeśli wcześniej wysłany komunikat jeszcze jest „w drodze”.

Rola i sposób używania procedur GrabInput i UngrabInput są przedstawione dalej,
w opisie procedury przetwarzania komunikatów wejściowych suwaka.

868 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

30.3. Kodowanie kolorów w systemie XWindow

Przed opisem procedur realizujących wihajstry, w tym rysujących je, zobaczmy sposób ko-
dowania koloru pikseli w systemie X Window. Kolory są reprezentowane przez 32-bitowe
liczby całkowite bez znaku (unsigned int), przy czym jeśli z oknem jest związany wizual
klasy TrueColor, to składowe r, g, b piksela są reprezentowane przez spójne ciągi bitów ta-
kiej liczby. Długości i rozmieszczenie tych ciągów w liczbie mogą być różne. Dlatego na po-
czątku działania aplikacja powinna uzyskać odpowiednią informację, której będzie później
używać do przetworzenia trójki liczb — składowych r, g, b — na odpowiednią liczbę całko-
witą.

Listing 30.6 przedstawia procedurę InitRGBXColourmap, która powinna zostać wy-
wołana po tym, jak zmiennej xvii przypisany został wskaźnik struktury dającej dostęp
do wizualu (zobacz listing 3.6) lub zaraz po utworzeniu okien aplikacji. Struktura wizu-
alu zawiera m.in. maski bitowe dla wszystkich trzech składowych. Pomocnicza procedura
parse_colourmask na podstawie maski znajduje liczbę 2k− 1, gdzie k jest liczbą bitów skła-
dowej (tj. liczbą bitów o wartości 1 wmasce), i położenie najmniej znaczącego bitu składowej
w pikselu. Na podstawie tych informacji funkcja RGBXColour przetwarza trójkę liczb zmien-
nopozycyjnych z przedziału [0, 1] na liczbę 32-bitową reprezentującą zakodowany kolor.

Listing 30.6. Kodowanie koloru w XWindow
C

1: static struct {

2: float r_bits, g_bits, b_bits;

3: char r_shift, g_shift, b_shift;

4: } cmap;

5:

6: static void parse_colourmask (int mask, float *bits, char *shift)

7: {

8: char sh;

9:

10: for (sh = 0; !(mask & 0x01); mask = mask >> 1, sh++)

11: ;

12: *shift = sh;

13: *bits = (float)mask;

14: } /*parse_colourmask*/

15:

16: void InitRGBXColourmap (void)

17: {

18: parse_colourmask (xvii->visual->red_mask, &cmap.r_bits, &cmap.r_shift);

19: parse_colourmask (xvii->visual->green_mask, &cmap.g_bits, &cmap.g_shift);

20: parse_colourmask (xvii->visual->blue_mask, &cmap.b_bits, &cmap.b_shift);

21: } /*InitRGBXColourmap*/

22:

23: unsigned int RGBXColour (float r, float g, float b)

24: {

25: unsigned int ir, ig, ib;

26:

30.4. Przykłady wihajstrów 869

27: if (r <= 0.0) ir = 0;

28: else if (r >= 1.0) ir = (unsigned int)cmap.r_bits;

29: else ir = (unsigned int)(r*cmap.r_bits);

30: if (g <= 0.0) ig = 0;

31: else if (g >= 1.0) ig = (unsigned int)cmap.g_bits;

32: else ig = (unsigned int)(g*cmap.g_bits);

33: if (b <= 0.0) ib = 0;

34: else if (b >= 1.0) ib = (unsigned int)cmap.b_bits;

35: else ib = (unsigned int)(b*cmap.b_bits);

36: return (ir << cmap.r_shift) + (ig << cmap.g_shift) + (ib << cmap.b_shift);

37: } /*RGBXColour*/

Procedury rysujące w bibliotece X11 posługują się kontekstem grafiki, tj. strukturą da-
nych przechowującą kolor frontu i tła, grubość linii, krój pisma i wiele innych informacji
potrzebnych podczas rysowania. Na początku działania aplikacja powinna utworzyć kon-
tekst za pomocą procedury XCreateGC (i zapamiętać jej wartość powrotną w zmiennej xgc
typu GC). Wartość tej zmiennej trzeba potem podawać jako parametr wszystkich procedur
rysjących, przy czym aplikacjamoże utworzyć więcej niż jeden kontekst, aby oszczędzać czas
na przykład przy rysowaniu wielu figur o kilku różnych kolorach.

Aby wybrać kolory frontu i tła, którymi ma być coś narysowane, trzeba wywołać pro-
cedury XSetForeground i XSetBackground. Warto, aby aplikacja na początku działania
utworzyła sobiepaletę, czyli tablicę kolorów (zakodowanych przy użyciu RGBXColour), które
będą używane do rysowaniawihajstrów. Warto teżwkodzie źródłowymponazywać te kolory
zgodnie z przeznaczeniem (tzn. na przykład nie „KOLOR_FIOLETOWY”, ale „KOLOR_GUZIKA”),
aby w razie potrzeby łatwiej było je zmieniać i nie narobić przy tym bałaganu.

30.4. Przykłady wihajstrów

30.4.1. Wihajster pusty

Sposób realizacji wihajstrów przedstawię na czterech najprostszych przykładach. Pierwszy
jest pokazany na listingu 30.7. Jest to wihajster pusty, który nie zabiera miejsca w oknie i nic
nie robi, ale i tak jest potrzebny.

Listing 30.7. Procedury pustego wihajstra
C

1: static char EmptyInput (struct xwidget *wdg,

2: int msg, int key, int x, int y)

3: {

4: return false;

5: } /*EmptyInput*/

6:

7: static void EmptyRedraw (struct xwidget *wdg)

8: { } /*EmptyRedraw*/

9:

870 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

10: xwidget *NewEmptyWidget (xwinmenu *wm, int id)

11: {

12: return NewWidget (wm, sizeof(xwidget), id, 0, 0, 0, 0,

13: EmptyInput, EmptyRedraw, NULL, NULL);

14: } /*NewEmptyWidget*/

30.4.2. Guzik

Guzik (listing 30.8) jest to wihajster, który służy do wydawania aplikacji poleceń przez wska-
zanie kursorem i naciśnięcie przycisku myszy lub klawisza <Enter>. Obraz guzika jest obra-
mowanymprostokątem, w którym jest napis—nazwa polecenia. Znaki tego napisu (łańcuch
ASCIIZ) są w (zadeklarowanej w aplikacji) tablicy, której pierwszy element jest wskazywany
przez pole data0wihajstra. Sposób reagowania guzika na komunikaty jest chyba jasny, nato-
miast komentarza wymaga sposób wyświetlania tekstu: w kontekście grafiki X Window na-
leży ustawić kolory frontu i tła i nie należy ustawiać kroju pisma dla znaków napisu4. Wtedy
będzie używany domyślny krój fixed, którego znaki mają wysokość 12 pikseli i szerokość
6 pikseli; to ten krój przetworzyłem na dane w pliku font12x6.c umożliwiające wyświetla-
nie napisówwOpenGL-u sposobemopisanymw rozdziale 11. Guzik, po pstryknięciu, wysyła
do okna aplikacji komunikat WDGMSG_BUTTON_PRESS.

Listing 30.8. Procedury wihajstra — guzika
C

1: #define WDGMSG_BUTTON_PRESS 15

2:

3: static char ButtonInput (struct xwidget *wdg,

4: int msg, int key, int x, int y)

5: {

6: switch (msg) {

7: case XWMSG_BUTTON_PRESS:

8: if (key == Button1)

9: goto issue_command;

10: break;

11: case XWMSG_KEY_PRESS:

12: if (key == 0x0D) { /* <Enter> */

13: issue_command:

14: wdg->wm->callback (wdg, WDGMSG_BUTTON_PRESS, 0, x, y);

15: return true;

16: }

17: break;

18: default:

19: break;

20: }

4Chyba, że ktoś chce — służy do tego procedura XSetFont, ale wtedy trzeba wybrać taką wielkość wihajst-
rów, aby zmieściły się na nich potrzebne napisy i wybierać właściwy font przed każdym rysowaniem.

30.4. Przykłady wihajstrów 871

21: return false;

22: } /*ButtonInput*/

23:

24: static void ButtonRedraw (struct xwidget *wdg)

25: {

26: XSetForeground (xdisplay, xgc, XWP_BUTTON_COLOUR);

27: XFillRectangle (xdisplay, wdg->wm->pixmap, xgc,

28: wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1);

29: XSetForeground (xdisplay, xgc, XWP_TEXT_COLOUR);

30: XDrawRectangle (xdisplay, wdg->wm->pixmap, xgc,

31: wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1);

32: XSetBackground (xdisplay, xgc, XWP_BUTTON_COLOUR);

33: XDrawString (xdisplay, wdg->wm->pixmap, xgc,

34: wdg->r.x+2, wdg->r.y+13, (char*)wdg->data0,

35: strlen ((char*)wdg->data0));

36: } /*ButtonRedraw*/

37:

38: xwidget *NewButton (xwinmenu *wm, int id,

39: int w, int h, int x, int y, char *title)

40: {

41: return NewWidget (wm, sizeof(xwidget), id, w, h, x, y,

42: ButtonInput, ButtonRedraw, (void*)title, NULL);

43: } /*NewButton*/

30.4.3. Przełącznik

Nieco bardziej skomplikowany jest przełącznik, którego procedury są na listingu 30.9. Two-
rząc przełącznik, aplikacja podaje wskaźniki tytułu (tj. opisu przełączanej opcji) i zmiennej
typu char, która przyjmuje wartości 0 i 1. Pstryknięcie przełącznika powoduje zmianę do-
tychczasowej wartości tej zmiennej i zawiadomienie o tym fakcie aplikacji, przez wywołanie
procedury callback. Zależnie od wartości tej zmiennej obraz przełącznika jest kwadratem,
w którym nie ma nic, albo jest mniejszy biały kwadrat; tytuł przełącznika, jeśli jest obecny,
jest wyświetlany obok z prawej strony.

Zmiana stanu przełącznika powoduje wysłanie do okna aplikacji komunikatu WDGMSG_-
SWITCH_CHANGE.

Listing 30.9. Procedury wihajstra — przełącznika
C

1: #define WDGMSG_SWITCH_CHANGE 16

2:

3: static char SwitchInput (struct xwidget *wdg,

4: int msg, int key, int x, int y)

5: {

6: char *sw, s;

7:

8: switch (msg) {

872 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

9: case XWMSG_BUTTON_PRESS:

10: if (key == Button1)

11: goto issue_command;

12: break;

13: case XWMSG_KEY_PRESS:

14: if (key == 0x0D) { /* <Enter> */

15: issue_command:

16: sw = ((char*)wdg->data1); s = *sw;

17: wdg->wm->callback (wdg, WDGMSG_SWITCH_CHANGE, *sw = !s, x, y);

18: wdg->wm->changed |= *sw != s;

19: return true;

20: }

21: break;

22: default:

23: break;

24: }

25: return false;

26: } /*SwitchInput*/

27:

28: static void SwitchRedraw (struct xwidget *wdg)

29: {

30: char *title;

31:

32: XSetForeground (xdisplay, xgc, XWP_SWITCH_COLOUR);

33: XFillRectangle (xdisplay, wdg->wm->pixmap, xgc,

34: wdg->r.x, wdg->r.y, wdg->r.height-1, wdg->r.height-1);

35: XSetForeground (xdisplay, xgc, XWP_TEXT_COLOUR);

36: XDrawRectangle (xdisplay, wdg->wm->pixmap, xgc,

37: wdg->r.x, wdg->r.y, wdg->r.height-1, wdg->r.height-1);

38: if ((title = (char*)wdg->data0)) {

39: XSetBackground (xdisplay, xgc, XWP_MENU_BACKGROUND_COLOUR);

40: XDrawString (xdisplay, wdg->wm->pixmap, xgc,

41: wdg->r.x+wdg->r.height+2, wdg->r.y+13, title, strlen (title));

42: }

43: if (*((char*)wdg->data1))

44: XFillRectangle (xdisplay, wdg->wm->pixmap, xgc,

45: wdg->r.x+4, wdg->r.y+4, wdg->r.height-8, wdg->r.height-8);

46: } /*SwitchRedraw*/

47:

48: xwidget *NewSwitch (xwinmenu *wm, int id,

49: int w, int h, int x, int y, char *title, char *sw)

50: {

51: return NewWidget (wm, sizeof(xwidget), id, w, h, x, y,

52: SwitchInput, SwitchRedraw, (void*)title, (void*)sw);

53: } /*NewSwitch*/

30.4. Przykłady wihajstrów 873

30.4.4. Suwak

Ostatni przykład, którego pełną implementację tu przedstawię, to suwak, który służy do
nadawania zmiennej typu float wartości z przedziału [0, 1]. Obraz suwaka jest prostoką-
tem, wewnątrz którego jest narysowany kwadracik. Położenie tego kwadracika odpowiada
wartości sterowanej przez suwak zmiennej, od 0 na końcu z lewej strony do 1 z prawej. Su-
wakmadwa stany: początkowy (domyślny, WDGSTATE_DEFAULT) albo aktywny, WDGSTATE_-
MOVING_SLIDE. Przejście do stanu aktywnego następuje po naciśnięciu lewego przycisku
myszy, gdy kursor jest w obszarze suwaka. W stanie aktywnym przesunięcie kursora powo-
duje obliczenie nowej wartości zmiennej sterowanej przez suwak, zawiadomienie aplikacji
(przez procedurę callback wywołaną z drugim parametrem WDGMSG_SLIDEBAR_CHANGE)
i spowodowanie narysowania suwaka, którego obraz odpowiada nowej wartości przywiąza-
nej do suwaka zmiennej.

Uaktywnienie suwaka powoduje przechwycenie przez niego komunikatów wejściowych,
bo użytkownik często będzie „wyjeżdżał” kursorem z obszaru suwaka, który powinien po-
zostawać aktywny do chwili puszczenia przyciskumyszy. Dlatego, wchodzącw stan aktywny,
suwak wywołuje procedurę GrabInput (listing 30.5), a wracając do stanu domyślnego wy-
wołuje procedurę UngrabInput. W stanie aktywnym suwak ma inny kolor niż w stanie do-
myślnym, aby użytkownik widział, który wihajster jest aktywny. Z tego też powodu zmiana
stanu powoduje przypisanie wdg->wm->changed = true;, którego skutkiem jest naryso-
wanie nowego obrazu okna z wihajstrami w odpowiednich kolorach.

Listing 30.10. Procedury wihajstra — suwaka
C

1: #define WDGSTATE_MOVING_SLIDE 1

2: #define WDGMSG_SLIDEBAR_CHANGE 17

3:

4: static char SlidebarfInput (struct xwidget *wdg,

5: int msg, int key, int x, int y)

6: {

7: float z, *slipos;

8:

9: slipos = (float*)wdg->data0;

10: switch (wdg->state) {

11: case WDGSTATE_DEFAULT:

12: switch (msg) {

13: case XWMSG_BUTTON_PRESS:

14: if (key == Button1) {

15: if (x < wdg->r.x+5) x = (int)(wdg->r.x+5);

16: else if (x > wdg->r.x+wdg->r.width-5)

17: x = (int)(wdg->r.x+wdg->r.width-5);

18: wdg->state = WDGSTATE_MOVING_SLIDE;

19: wdg->wm->changed = true;

20: GrabInput (wdg);

21: goto update;

874 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

22: }

23: break;

24: default:

25: break;

26: }

27: break;

28:

29: case WDGSTATE_MOVING_SLIDE:

30: switch (msg) {

31: case XWMSG_MOUSE_MOTION:

32: if (IsButtonDown (Button1)) {

33: if (x < wdg->r.x+5) x = (int)(wdg->r.x+5);

34: else if (x > wdg->r.x+wdg->r.width-5)

35: x = (int)(wdg->r.x+wdg->r.width-5);

36: update:

37: z = (float)(x-wdg->r.x-5)/(float)(wdg->r.width-10);

38: if (z != *slipos) {

39: *slipos = z;

40: wdg->wm->callback (wdg, WDGMSG_SLIDEBAR_CHANGE, 0, x, y);

41: wdg->wm->changed = true;

42: }

43: }

44: else

45: goto release;

46: return true;

47: case XWMSG_BUTTON_RELEASE:

48: if (key == Button1) {

49: release:

50: wdg->state = WDGSTATE_DEFAULT;

51: UngrabInput (wdg);

52: wdg->wm->changed = true;

53: return true;

54: }

55: break;

56: default:

57: break;

58: }

59: break;

60:

61: default:

62: break;

63: }

64: return false;

65: } /*SlidebarfInput*/

66:

67: static void SlidebarfRedraw (struct xwidget *wdg)

68: {

30.4. Przykłady wihajstrów 875

69: int x;

70: float *slipos;

71:

72: slipos = (float*)wdg->data0;

73: if (wdg->state == WDGSTATE_MOVING_SLIDE)

74: XSetForeground (xdisplay, xgc, XWP_ACTIVE_SLIDEBAR_COLOUR);

75: else

76: XSetForeground (xdisplay, xgc, XWP_SLIDEBAR_COLOUR);

77: XFillRectangle (xdisplay, wdg->wm->pixmap, xgc,

78: wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1);

79: XSetForeground (xdisplay, xgc, XWP_TEXT_COLOUR);

80: XDrawRectangle (xdisplay, wdg->wm->pixmap, xgc,

81: wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1);

82: x = wdg->r.x + 2 + (int)((*slipos)*(float)(wdg->r.width - 10));

83: XFillRectangle (xdisplay, wdg->wm->pixmap, xgc,

84: x, wdg->r.y+2, 6, 6);

85: } /*SlidebarfRedraw*/

86:

87: xwidget *NewSlidebarf (xwinmenu *wm, int id,

88: int w, int h, int x, int y, float *data)

89: {

90: return NewWidget (wm, sizeof(xwidget), id, w, h, x, y,

91: SlidebarfInput, SlidebarfRedraw, (void*)data, NULL);

92: } /*NewSlidebarf*/

30.4.5. Edytor napisu

Ostatni wihajster w tym rozdziale opiszę skrótowo: jest to edytor umożliwiający wprowa-
dzenie jednej linii tekstu, na przykład nazwy pliku do przeczytania lub zapisania. Proce-
dura NewLineEditor (listing 30.11) zleca rezerwację obszaru pamięci o rozmiarze struktury
xLineEditor, której pierwszym polem jest struktura xwidget. Adres bufora na tekst jest
pamiętany w polu data0 tej struktury. Pozostałe pola struktury xLineEditor przechowują
maksymalną długość napisu, liczbę wyświetlanych znaków (krojem pisma o stałej szerokości
znaku, 6 pikseli), indeks pierwszego wyświetlanego znaku i położenie kursora tekstowego.

Listing 30.11. Procedury wihajstra — edytora
C

1: #define WDGSTATE_EDITING 2

2: #define WDGMSG_EDITOR_ENTER 18

3: #define WDGMSG_EDITOR_ESCAPE 19

4:

5: typedef struct xLineEditor {

6: xwidget wdg;

7: int maxlength, /* maximal string length */

8: chdisp, /* number of characters displayed */

876 30. GRAFICZNY INTERFEJS UŻYTKOWNIKA

9: start, /* first character displayed */

10: pos; /* text cursor position */

11: } xLineEditor;

12:

13: static char insert = true;

14:

15: void LeaveEditingState (xwidget *wdg);

16: static char LineEditorInput (struct xwidget *wdg,

17: int msg, int key, int x, int y);

18: static void LineEditorRedraw (struct xwidget *wdg);

19:

20: xwidget *NewLineEditor (xwinmenu *wm, int id, int w, int h, int x, int y,

21: int maxlength, char *txtbuf)

22: {

23: xLineEditor *xed;

24:

25: if ((xed = (xLineEditor*)NewWidget (wm, sizeof(xLineEditor), id, w, h,

26: x, y, LineEditorInput, LineEditorRedraw, (void*)txtbuf, NULL))) {

27: xed->maxlength = maxlength;

28: xed->chdisp = (w-2)/6;

29: xed->start = xed->pos = 0;

30: }

31: return (xwidget*)xed;

32: } /*NewLineEditor*/

Aby rozpocząć edycję, trzeba umieścić kursor na wihajstrze i nacisnąć lewy przycisk
myszy. Aby edycję zakończyć, trzeba nacisnąć lewy przycisk, gdy kursor jest poza wihajst-
rem, lub nacisnąć klawisz Enter. Poza tym edytor reaguje na strzałki (w lewo i w prawo)
i klawisze Delete, Backspace, Home i End i ma dwa tryby pracy, przełączane klawi-
szem Insert. O zakończeniu edycji wihajster zawiadamia aplikację, wysyłając komunikat
WDGMSG_EDITOR_ENTER. Ponadto, jeśli użytkownik naciśnie klawisz Esc, wihajster wysyła
komunikat WDGMSG_EDITOR_ESCAPE, co umożliwia aplikacji zakończenie edycji (przez wy-
wołanie procedury LeaveEditingState) i na przykład odrzucenie napisu.

31
Zagęszczanie siatek

Zaimplementujemy algorytm zagęszczania siatek (mesh refinement), który generuje przy-
bliżenia powierzchni sklejanych, będących (dalekim) uogólnieniem płatów Béziera. Siatkę,
która ma stosunkowo niewielką liczbę wierzchołków (punktów kontrolnych), można dosyć
łatwo kształtować, a jej zagęszczanie prowadzi do otrzymania dużej liczby trójkątów przybli-
żających gładką powierzchnię. Chcemy, aby zagęszczaniem zajmowała się GPU. Wyświetla-
niem siatek zajmie się trzecia aplikacja, opisana w następnym rozdziale.

31.1. Definicja i warunki poprawności siatki

Siatka składa się z wierzchołków, krawędzi i ścian. Wierzchołek ma określone położenie
w przestrzeni. Krawędź jest odcinkiem, którego końce są wierzchołkami. Ściana jest łamaną
zamkniętą złożoną z co najmniej trzech krawędzi, przy czymwszystkie wierzchołki tej łama-
nej muszą być różnymi wierzchołkami1.

Zakładamy, że każda krawędź należy do jednej albo dwóch ścian, przy czymwpierwszym
przypadku jest to krawędź brzegowa, a w drugim krawędź wewnętrzna. Końce co najmniej
jednej krawędzi brzegowej są wierzchołkami brzegowymi, a pozostałe wierzchołki są we-
wnętrzne. Wierzchołek brzegowy jest końcem co najmniej dwóch krawędzi2, a wierzchołek
wewnętrzny co najmniej trzech. Wszystkie ściany mające wspólny wierzchołek można od-
wiedzić po kolei, przechodząc przez ich wspólne krawędzie, których końcem jest ten wierz-
chołek.

Dla wygody krawędzie będą reprezentowane przez półkrawędzie, przy czym krawędzi
wewnętrznej odpowiadają dwie półkrawędzie powiązane w parę, a reprezentacją krawędzi
brzegowej jest jedna półkrawędź bez pary. Dzięki temu każda półkrawędź należy do jednej
ściany. Cowięcej, półkrawędzie są zorientowane: jeden zwierzchołków krawędzi jest począt-

1Ale różne wierzchołki mogą mieć to samo położenie. Wierzchołki mogą mieć też dodatkowe atrybuty,
na przykład wektor normalny, współrzędne tekstury i inne.

2Wierzchołek brzegowy jest końcem dwóch krawędzi brzegowych i pewnej (nieujemnej) liczby krawędzi
wewnętrznych.

878 31. ZAGĘSZCZANIE SIATEK

kiem półkrawędzi, a drugi jej końcem. Druga półkrawędź z pary reprezentującej krawędź
wewnętrzną jest zorientowana odwrotnie. Dowolną ścianę można obejść po jej półkrawę-
dziach zgodnie z ich orientacją3.

Wierzchołekma również zbiór półkrawędzi, których jest początkiem, i zbiór ten jest upo-
rządkowany (tj. ustawiony w ciąg), co wprowadza orientację wierzchołka. Można to zrobić
inaczej, ale kiedyś zaimplementowałem (na CPU) zestaw algorytmów przetwarzania siatek,
dla których orientacja wierzchołka (tj. kolejność półkrawędzi wokół niego) jest odwrotna niż
orientacja ściany i tak już (w moich programach) zostało. Widać to na rysunku 31.1 przed-
stawiającym przykład siatki; półkrawędzie tworzące pary zostały na nim porozsuwane.

2

0

1

9

3

1
4

6

10

4

1
2

7

1
1

5

13

8

0 1

2

3
0

1

2

3

4

5

Wierzchołki
0: 0, 14, 5

1: 1, 12, 3

2: 2, 13, 4

3: 11, 6

4: 9, 7

5: 10, 8

Ściany
0: 0, 1, 2

1: 3, 14, 6, 9

2: 4, 12, 7, 10

3: 5, 13, 8, 11

Półkrawędzie
0: (0, 1, 0, 3)

1: (1, 2, 0, 4)

2: (2, 0, 0, 5)

3: (1, 0, 1, 0)

4: (2, 1, 2, 1)

5: (0, 2, 3, 2)

6: (3, 4, 1, -1)

7: (4, 5, 2, -1)

8: (5, 3, 3, -1)

9: (4, 1, 1, 12)

10: (5, 2, 2, 13)

11: (3, 0, 3, 14)

12: (1, 4, 2, 9)

13: (2, 5, 3, 10)

14: (0, 3, 1, 11)

Rysunek 31.1. Schemat budowy siatki

W obu reprezentacjach siatki, używanych w pamięci CPU i GPU, wierzchołki, półkra-
wędzie i ściany są przechowywane w tablicach; identyfikatory wierzchołków, półkrawędzi
i ścian są indeksami do tych tablic, tj. kolejnymi liczbami całkowitymi od 0.

Półkrawędź jest reprezentowana przez cztery identyfikatory. Pierwsze dwa są nume-
rami wierzchołków będących początkiem i końcem półkrawędzi. Kolejna liczba to identy-
fikator ściany, do której należy półkrawędź, a ostatnia to identyfikator drugiej półkrawędzi
z pary. Krawędzie tworzące parę przechowują nawzajem swoje identyfikatory, a ponadto

3Zauważmy, że to wymusza orientowalność powierzchni złożonej ze ścian wyobrażonych jako wielokąty lub
błony rozpięte na krawędziach. Nie uzyskamy w ten sposób wstęgi Möbiusa.

31.2. Reprezentacja siatki w pamięci RAM CPU 879

mają te same identyfikatory wierzchołków zamienione miejscami. Taka informacja jest re-
dundantna, ale jest ona konieczna, ponieważ półkrawędź może nie mieć pary. Wtedy repre-
zentuje ona krawędź brzegową, a identyfikator jej drugiej połowy jest równy -1; liczba -1
pełni rolę identyfikatora pustego.

Wierzchołek oprócz położeniama określony ciąg (identyfikatorów) półkrawędzi, których
jest początkiem. Także ścianama ciąg identyfikatorów swoich półkrawędzi, przy czymw obu
przypadkach kolejność identyfikatorówmusi być zgodna z orientacją: na rysunkach 31.1–31.3
kolejność półkrawędzi odpowiada obchodzeniu ściany zgodnie z ruchemwskazówek zegara,
a wierzchołek jest okrążany w przeciwną stronę. Dla ściany i wierzchołka wewnętrznego nie
ma znaczenia, która półkrawędź jest podana jako pierwsza, ale dla wierzchołka brzegowego
wychodząca z niego półkrawędź brzegowa jest ostatnia w ciągu.

31.2. Reprezentacja siatki w pamięci RAMCPU

Reprezentacja siatki składa się z sześciu tablic. Trzy z nich (mv, mhe, mfac) przechowują
odpowiednio struktury opisujące wierzchołki, półkrawędzie i ściany, przy czym struktury
BSMvertex i BSMfacet reprezentujące wierzchołek i ścianę mają identyczną budowę (zo-
bacz listing 31.1). Pole degree przechowuje liczbę półkrawędzi, których początkiem jest dany
wierzchołek, lub liczbę krawędzi ściany; liczba ta jest dalej nazywana stopniem wierzchołka
lub ściany. Pole firsthalfedge jest indeksem dodatkowej tablicy, w której są przechowy-
wane identyfikatory kolejnych półkrawędzi wierzchołka lub ściany.

Listing 31.1. Struktury reprezentacji siatki
C

1: typedef struct {

2: char degree;

3: int firsthalfedge;

4: } BSMfacet, BSMvertex;

5:

6: typedef struct {

7: int v0, v1;

8: int facetnum;

9: int otherhalf;

10: } BSMhalfedge;

11:

12: typedef struct CPUmesh {

13: int nsattr, pdim, pofs, nvofs;

14: int nv, nhe, nfac;

15: BSMvertex *mv;

16: BSMhalfedge *mhe;

17: BSMfacet *mfac;

18: int *mvhei, *mfhei;

19: float *vc;

20: } CPUmesh;

880 31. ZAGĘSZCZANIE SIATEK

Kolejne pola struktury BSMhalfedge przechowują identyfikatory wierzchołków — po-
czątku i końca półkrawędzi oraz ściany i drugiej półkrawędzi z pary.

Dwie wspomniane wyżej tablice dodatkowe, mvhei i mfhei, mają długość równą liczbie
nh półkrawędzi siatki. Jeśli wierzchołek albo ścianamapoladegree i firsthalfedgeowar-
tościach d i f , to w pierwszej lub drugiej z tych tablic numery półkrawędzi są przechowywane
wmiejscach f , f +1, . . . , f +d−1. To rozwiązanie umożliwia oszczędne reprezentowanie sia-
tek, w których poszczególne wierzchołki lub ściany mają różne liczby półkrawędzi. W tych
tablicach znajdują się pewne permutacje ciągu liczb 0, . . . , nh− 1 — jest to jeden z warunków
poprawności reprezentacji siatki.

Współrzędne punktów położenia wierzchołków są przechowywane w osobnej tablicy vc
liczb typu float4. Oprócz liczb nv , nh i n f , odpowiednio wierzchołków, półkrawędzi i ścian
siatki, trzeba podać liczbę s skalarnych atrybutów wierzchołka5. Długość tablicy ze współ-
rzędnymi wierzchołków jest zatem równa snv .

Wprowadzona dla wygody struktura o nazwie CPUmesh przechowuje wskaźniki opisa-
nych wyżej tablic i liczby s, nv , nh i n f w polach nsattr, nv, nhe i nfac. Można pisać
procedury przetwarzania siatek z jednym parametrem — wskaźnikiem do takiej struktury
— zamiast przekazywać wszystkie jej pola jako osobne parametry. Pola pdim, pofs i nvofs
są opisane dalej.

31.3. Reprezentacja siatki w pamięci GPU

Reprezentacja siatki w pamięci GPU podlega pewnym ograniczeniom wynikającym ze spe-
cyfikacji OpenGL-a. Istnieje limit liczby buforów magazynowych, do których szader obli-
czeniowy ma dostęp; specyfikacja [1] gwarantuje, że może ich być 8, zobacz p. 11.5.1. W im-
plementacji algorytmu zagęszczania potrzebujemymieć siatkę daną, siatkę będącąwynikiem
opisanych dalej operacji podwajania lub uśredniania i tablice robocze. Dlatego siatkę w pa-
mięci GPU umieścimy w trzech buforach magazynowych. W pierwszym z nich znajduje się
tablica liczb typu int, której kolejne fragmenty są tablicami wierzchołków i ścian oraz tabli-
cami zawierającymi ciągi identyfikatorówpółkrawędzi poszczególnychwierzchołków i ścian.
W drugim buforze umieścimy opisy półkrawędzi, do czego nadają się elementy tablicy typu
ivec4. W trzecim buforze, zawierającym tablicę liczb typu float, umieścimy współrzędne
wierzchołków, przy czym mogą tu też być dodatkowe atrybuty wierzchołków, takie jak wek-
tor normalny i współrzędne tekstury. Obliczenia numeryczne wykonywane przez algorytm
zagęszczania siatki poskutkują dokonaniem odpowiedniej interpolacji wszystkich tych atry-
butów.

Listing 31.2 przedstawia strukturę przechowującą wymiar przestrzeni, liczby wierzchoł-
ków, półkrawędzi i ścian oraz identyfikatory czterech buforów magazynowych z opisanymi
wyżej tablicami. Pokazane na listingu makrodefinicje służą do uczytelnienia kodu procedur
opisanych dalej.

4Lub double— to zależy od aplikacji, ale aby użyć podwójnej precyzji, trzeba dostosować szadery.
5W najprostszym przypadku s jest liczbą współrzędnych położenia wierzchołka, ale będziemy używać też

innych atrybutów: współrzędnych wektora normalnego i tekstury. Zobacz opis w podrozdziale 31.3.

31.3. Reprezentacja siatki w pamięci GPU 881

Listing 31.2. Struktura dla CPU dająca dostęp do reprezentacji siatki w GPU
C

1: #define MVFBUF mbuf[0]

2: #define MHEBUF mbuf[1]

3: #define VCBUF mbuf[2]

4: #define MSBUF mbuf[3]

5:

6: typedef struct GPUmesh {

7: int nsattr, pdim, pofs, nvofs;

8: int nv, nhe, nfac;

9: GLuint mbuf[4];

10: } GPUmesh;

Liczbę d półkrawędzi wierzchołka lub ściany (przechowywaną w pamięci CPU w polu
degree struktury BSMvertex lub BSMfacet) i indeks f początku ciągu identyfikatorów
(z pola firsthalfedge) upakujemy w 32 bitach zmiennej typu int za pomocą masek
i przesunięć bitowych przedstawionych na listingu 31.3. Liczba f będzie przechowywana
w najmniej znaczących 25 bitach, co ogranicza liczbę półkrawędzi siatki do 225 (czyli ponad
32 milionów). Bit na pozycji 25 zarezerwujemy do oznaczania wierzchołka lub ściany pod-
czas przetwarzania. Stopień wierzchołka lub ściany (czyli liczbę półkrawędzi) umieścimy
w najbardziej znaczących 6 bitach (a więc liczba ta nie może przekraczać 63).

Listing 31.3. Maski bitowe i przesunięcia reprezentacji wierzchołka i ściany
C, GLSL

1: #define FHEMASK 0x01FFFFFF

2: #define TAGMASK 0x02000000

3: #define DEGMASK 0xFC000000

4: #define DEGSHIFT 26

Listing 31.4 przedstawia deklaracje buforów magazynowych w programach rysowania
krawędzi i ścian siatek; programy te są zbudowane z szaderów opisanych w dalszych rozdzia-
łach, ale blok zawierający parametry siatki jest przedstawionyw tymmiejscu, bo opisane niżej
procedury przesyłające reprezentację siatki między pamięcią CPU i GPU dbają o właściwą
zawartość tego bloku6.

Tablica mvfwbloku meshvf służy do przechowania czterech tablic, które w pamięci CPU
mają nazwy mv, mvhei, mfac i mfhei; wszystkie ich elementy są liczbami całkowitymi. Tab-
lica mhe w bloku meshhe zawiera opisy półkrawędzi, z których każdy składa się z czterech
liczb całkowitych. Współrzędne położenia wierzchołków siatki i inne ich atrybuty (wek-
tor normalny, współrzędne tekstury itp.) są przechowywane w tablicy vc w bloku meshvc.

6Opisany w podrozdziale 31.4 szader obliczeniowy, którego zadaniem jest otrzymanie siatki zagęszczonej,

zamiast bloku magazynowego z liczbami elementów siatki korzysta z bloku zmiennych jednolitych zawierają-

cego parametry obu siatek i zmienne pomocnicze. W pierwszym wydaniu książki liczby elementów siatki i inne

dane trzeba było przed rysowaniem siatki przypisać zmiennym jednolitymw domyślnym bloku zmiennych jed-

nolitych programu rysującego, czego skutkiem był bardziej skomplikowany kod aplikacji. Dlatego, przewidując,
że siatki będą rysowane (a nie tylko zagęszczane), warto uprościć sobie zadanie na przyszłość.

882 31. ZAGĘSZCZANIE SIATEK

Czwarty blok magazynowy, meshsurf, zawiera opis siatki potrzebny do rysowania. W jego
polach nv, nhe i nfac są pamiętane liczby wierzchołków, półkrawędzi i ścian siatki.

Listing 31.4. Bloki magazynowe siatki w programach rysujących
GLSL

1: layout(std430,binding=0) buffer meshvf { int mvf[]; } mvf;

2: layout(std430,binding=1) buffer meshhe { ivec4 mhe[]; } mhe;

3: layout(std430,binding=2) buffer meshvc { float vc[]; } mvc;

4: layout(std430,binding=3) buffer meshsurf {

5: int nv, nhe, nfac, nsattr, pdim, pofs, nvofs;

6: bool MeshNormals;

7: vec3 Colour;

8: };

W polu nsattr jest pamiętana całkowita liczba skalarnych atrybutów jednego wierz-
chołka, na przykład 3 lub 4, jeśli są w niej podane tylko współrzędne kartezjańskie albo jed-
norodne położenia wierzchołka w przestrzeni, ale jeśli jest też wektor normalny, to liczba ta
wzrośnie o 3, a jeśli będą obecne dodatkowe atrybuty (np. współrzędne tekstury), to je też
trzeba będzie policzyć.

Pole pdim przechowuje liczbę współrzędnych położenia (np. 3 lub 4), a pole pofs zawiera
informację, którym atrybutem skalarnym jest pierwsza współrzędna położenia wierzchołka.
Jeśli wektor normalny jest obecny, to jego pierwsza współrzędna jest atrybutem skalarnym
o numerze podanym w polu nvofs. Dodanie kolejnych atrybutów (np. współrzędnych teks-
tury) wymaga dodania odpowiednich pól do bloku.

Procedurę GetAccessToMeshSurfBlock pokazaną na listingu 31.5 aplikacja musi wy-
wołać przed przesyłaniem siatek do pamięci GPU, z parametrem, który jest identyfikatorem
dowolnego programu szaderów zawierającego blok meshsurf7.

Pomocnicza procedura UploadMeshParams przypisuje polom nv, nhe, nfac, nsattr,
pdim, pofs i nvofs wartości pól o tych samych nazwach w reprezentującej siatkę struktu-
rze typu GPUmesh. Osobne procedury przypisują wartości polom MeshNormals i Colour,
których opis jest częścią opisu programów rysujących.

Makrodefinicje SSB i UVB wprowadzają synonimy długich nazw symbolicznych Open-

GL-a, które dalej są potrzebne w tak wielu miejscach, że postanowiłem je skrócić.

Listing 31.5. Dostęp do bloku magazynowego meshsurf
C

1: #define NMBOFFS 9

2:

3: #define SSB GL_SHADER_STORAGE_BUFFER

4: #define UVB GL_UNIFORM_BUFFER

5:

7Ponieważ blok meshsurf niema nazwy wewnętrznej, podane w liniach 12–13 nazwy jego pól, których prze-

sunięcia względem początku bufora ma znaleźć procedura GetAccessToStorageBlock nie są prefiksowane
nazwą bloku. Zobacz przypis 14 na s. 192.

31.3. Reprezentacja siatki w pamięci GPU 883

6: static GLuint bpoint = GL_INVALID_INDEX;

7: static GLint mbsize, mbofs[NMBOFFS];

8:

9: GLuint GetAccessToMeshSurfBlock (GLuint program_id)

10: {

11: static const GLchar *names[] =

12: { "meshsurf", "nv", "nhe", "nfac", "nsattr", "pdim",

13: "pofs", "nvofs", "MeshNormals", "Colour" };

14:

15: if (bpoint == GL_INVALID_INDEX)

16: GetAccessToStorageBlock (program_id, NMBOFFS, names,

17: &mbsize, mbofs, &bpoint);

18: ExitIfGLError ("GetAccessToMeshSurfBlock");

19: return bpoint;

20: } /*GetAccessToMeshSurfBlock*/

21:

22: void UploadMeshParams (GPUmesh *gmesh)

23: {

24: glBindBuffer (SSB, gmesh->MSBUF);

25: glBufferSubData (SSB, mbofs[0], sizeof(GLint), &gmesh->nv);

26: glBufferSubData (SSB, mbofs[1], sizeof(GLint), &gmesh->nhe);

27: glBufferSubData (SSB, mbofs[2], sizeof(GLint), &gmesh->nfac);

28: glBufferSubData (SSB, mbofs[3], sizeof(GLint), &gmesh->nsattr);

29: glBufferSubData (SSB, mbofs[4], sizeof(GLint), &gmesh->pdim);

30: glBufferSubData (SSB, mbofs[5], sizeof(GLint), &gmesh->pofs);

31: glBufferSubData (SSB, mbofs[6], sizeof(GLint), &gmesh->nvofs);

32: ExitIfGLError ("UploadMeshParams");

33: } /*UploadMeshParams*/

Listing 31.6 przedstawia procedurę ReallocGPUmesh dokonującą rezerwacji pamięci
GPU na potrzeby reprezentowania siatek o podanych liczbach wierzchołków, półkrawędzi
i ścian. Jeśli identyfikatory buforów OpenGL-a w przekazanej strukturze GPUmesh są nie-
zerowe, to odpowiednie bufory są zwalniane, po czym procedura tworzy nowe bufory i na-
daje każdemu znich odpowiedniąwielkość, wywołując proceduręglBufferData. Zwracam
uwagę na sposób obliczania długości buforóww liniach 10, 13 i 15. Informacje podane w para-
metrach są zapamiętywane w polach struktury opisującej siatkę, skąd przesłaniem do bufora
z blokiem magazynowym meshsurf zajmuje się procedura UploadMeshParams.

Listing 31.6. Procedura rezerwowania pamięci GPU na reprezentacje siatek
C

1: char ReallocGPUmesh (GPUmesh *gmesh, int nv, int nhe, int nfac, int nsattr,

2: int pdim, int pofs, int nvofs)

3: {

4: int i;

5:

6: for (i = 0; i < 4; i++)

884 31. ZAGĘSZCZANIE SIATEK

7: if (gmesh->mbuf[i] > 0) glDeleteBuffers (1, &gmesh->mbuf[i]);

8: glGenBuffers (4, gmesh->mbuf);

9: glBindBuffer (SSB, gmesh->MVFBUF);

10: glBufferData (SSB, (nv+nfac+2*nhe)*sizeof(GLuint),

11: NULL, GL_DYNAMIC_DRAW);

12: glBindBuffer (SSB, gmesh->MHEBUF);

13: glBufferData (SSB, nhe*4*sizeof(GLint), NULL, GL_DYNAMIC_DRAW);

14: glBindBuffer (SSB, gmesh->VCBUF);

15: glBufferData (SSB, nv*nsattr*sizeof(GLfloat), NULL, GL_DYNAMIC_DRAW);

16: glBindBuffer (SSB, gmesh->MSBUF);

17: glBufferData (SSB, mbsize, NULL, GL_DYNAMIC_DRAW);

18: gmesh->nsattr = nsattr; gmesh->pdim = pdim; gmesh->pofs = pofs;

19: gmesh->nvofs = nvofs;

20: gmesh->nv = nv;

21: gmesh->nhe = nhe;

22: gmesh->nfac = nfac;

23: UploadMeshParams (gmesh);

24: ExitIfGLError ("ReallocGPUmesh");

25: return true;

26: } /*ReallocGPUmesh*/

Podobnie działa procedura ReallocCPUmesh pokazana na listingu 31.7. Zwalnia ona
tablice wskazywane przez wskaźniki w strukturze typu CPUmesh, po czym rezerwuje (za po-
mocą malloc) nowe tablice. Liczby wierzchołków, półkrawędzi i ścian i pozostałe parametry
są zapamiętywane w strukturze, ale zawartość tablic pozostaje nieokreślona. Niepowodzenie
rezerwacji (wskutek brakuwolnegomiejsca w pamięci CPU) powoduje odwołanie rezerwacji
pamięci, której udało się dokonać i jest sygnalizowane wartością powrotną false procedury.

Każdą zmienną typu GPUmesh albo CPUmesh przed przekazaniem jej adresu po raz pierw-
szy jako parametru jednej lub drugiej opisanej tu procedury trzeba wypełnić zerami.

Listing 31.7. Procedura rezerwowania pamięci CPU na reprezentacje siatek
C.

1: void FreeCPUmeshTab (CPUmesh *cmesh)

2: {

3: if (cmesh->mv) free (cmesh->mv);

4: if (cmesh->vc) free (cmesh->vc);

5: if (cmesh->mhe) free (cmesh->mhe);

6: if (cmesh->mfac) free (cmesh->mfac);

7: if (cmesh->mvhei) free (cmesh->mvhei);

8: if (cmesh->mfhei) free (cmesh->mfhei);

9: memset (cmesh, 0, sizeof(CPUmesh));

10: } /*FreeCPUmeshTab*/

11:

12: char ReallocCPUmesh (CPUmesh *cmesh, int nv, int nhe, int nfac, int nsattr,

13: int pdim, int pofs, int nvofs)

14: {

15: FreeCPUmeshTab (cmesh);

31.3. Reprezentacja siatki w pamięci GPU 885

16: cmesh->mv = malloc (nv*sizeof(BSMvertex));

17: cmesh->vc = malloc (nv*nsattr*sizeof(double));

18: cmesh->mhe = malloc (nhe*sizeof(BSMhalfedge));

19: cmesh->mfac = malloc (nfac*sizeof(BSMfacet));

20: cmesh->mvhei = malloc (nhe*sizeof(int));

21: cmesh->mfhei = malloc (nhe*sizeof(int));

22: if (!cmesh->mv | !cmesh->vc | !cmesh->mhe | !cmesh->mfac |

23: !cmesh->mvhei | !cmesh->mfhei) {

24: FreeCPUmeshTab (cmesh);

25: return false;

26: }

27: else {

28: cmesh->nsattr = nsattr; cmesh->pdim = pdim; cmesh->pofs = pofs;

29: cmesh->nv = nv;

30: cmesh->nhe = nhe;

31: cmesh->nfac = nfac;

32: return true;

33: }

34: } /*ReallocCPUmesh*/

Na listingu 31.8 są pokazane procedury przesyłające reprezentację siatki między CPU
aGPU, działające przy założeniu, że współrzędne wierzchołkóww pamięci CPU są reprezen-
towane w pojedynczej precyzji (jako liczby typu float). Działanie obu procedur jest dość
oczywiste, zwracam więc tylko uwagę na „pakowanie” i „rozpakowywanie” liczb d i f repre-
zentujących wierzchołek lub ścianę w liniach 20, 23, 60–61 i 65–66 oraz na obliczanie odległości
(w bajtach) od początku bufora początków poszczególnych tablic (wierzchołków, ścian i tab-
lic z ciągami indeksów półkrawędzi) w liniach 21, 24, 25, 27 (zobacz wyrażenia opisujące drugi
parametr procedur glBufferSubData) i w liniach 58, 63, 68 i 70 (drugi parametr procedury
glGetBufferSubData).

Listing 31.8. Procedury przesyłania siatek między CPU a GPU
C

1: char CPUmeshToGPU (CPUmesh *cmesh, GPUmesh *gmesh)

2: {

3: int dim, nv, nhe, nfac;

4: BSMvertex *mv;

5: BSMfacet *mfac;

6: GLuint *vf;

7: int i, size;

8:

9: if (ReallocGPUmesh (gmesh, nv = cmesh->nv, nhe = cmesh->nhe,

10: nfac = cmesh->nfac, dim = cmesh->nsattr,

11: cmsh->pdim, cmesh->pofs, cmesh->nvofs)) {

12: size = (nv > nfac ? nv : nfac)*sizeof(GLuint);

13: i = nv*dim*sizeof(GLfloat);

14: if (size < i) size = i;

886 31. ZAGĘSZCZANIE SIATEK

15: if (!(vf = (GLuint*)malloc (size)))

16: return false;

17: glBindBuffer (SSB, gmesh->MVFBUF);

18: mv = cmesh->mv; mfac = cmesh->mfac;

19: for (i = 0; i < nv; i++)

20: vf[i] = mv[i].firsthalfedge + (mv[i].degree << DEGSHIFT);

21: glBufferSubData (SSB, 0, nv*sizeof(GLuint), vf);

22: for (i = 0; i < nfac; i++)

23: vf[i] = mfac[i].firsthalfedge + (mfac[i].degree << DEGSHIFT);

24: glBufferSubData (SSB, nv*sizeof(GLuint), nfac*sizeof(GLuint), vf);

25: glBufferSubData (SSB, (nv+nfac)*sizeof(GLuint), nhe*sizeof(GLint),

26: cmesh->mvhei);

27: glBufferSubData (SSB, (nv+nfac+nhe)*sizeof(GLuint), nhe*sizeof(GLint),

28: cmesh->mfhei);

29: glBindBuffer (SSB, gmesh->MHEBUF);

30: glBufferSubData (SSB, 0, nhe*4*sizeof(GLint), cmesh->mhe);

31: vc = (GLfloat*)vf;

32: for (i = 0; i < nv*dim; i++)

33: vc[i] = (GLfloat)cmesh->vc[i];

34: glBindBuffer (SSB, gmesh->VCBUF);

35: glBufferSubData (SSB, 0, nv*dim*sizeof(GLfloat), cmesh->vc);

36: free (vf);

37: ExitIfGLError ("CPUmeshToGPU");

38: return true;

39: }

40: else return false;

41: } /*CPUmeshToGPU*/

42:

43: char GPUmeshToCPU (GPUmesh *gmesh, CPUmesh *cmesh)

44: {

45: int dim, nv, nhe, nfac;

46: BSMvertex *mv;

47: BSMfacet *mfac;

48: GLuint *vf;

49: int i, size;

50:

51: if (ReallocCPUmesh (cmesh, nv = gmesh->nv, nhe = gmesh->nhe,

52: nfac = gmesh->nfac, dim = gmesh->nsattr,

53: gmesh->pdim, gmesh->pofs, gmesh->nvofs)) {

54: size = (nv > nfac ? nv : nfac)*sizeof(GLuint);

55: if (!(vf = (GLuint*)malloc (size)))

56: return false;

57: glBindBuffer (SSB, gmesh->MVFBUF);

58: glGetBufferSubData (SSB, 0, nv*sizeof(GLuint), vf);

59: for (mv = cmesh->mv, i = 0; i < nv; i++) {

60: mv[i].firsthalfedge = vf[i] & FHEMASK;

61: mv[i].degree = vf[i] >> DEGSHIFT;

31.4. Podwajanie i uśrednianie siatki 887

62: }

63: glGetBufferSubData (SSB, nv*sizeof(GLint), nfac*sizeof(GLuint), vf);

64: for (mfac = cmesh->mfac, i = 0; i < nfac; i++) {

65: mfac[i].firsthalfedge = vf[i] & FHEMASK;

66: mfac[i].degree = vf[i] >> DEGSHIFT;

67: }

68: glGetBufferSubData (SSB, (nv+nfac)*sizeof(GLint),

69: nhe*sizeof(GLint), cmesh->mvhei);

70: glGetBufferSubData (SSB, (nv+nfac+nhe)*sizeof(GLint),

71: nhe*sizeof(GLint), cmesh->mfhei);

72: glBindBuffer (SSB, gmesh->MHEBUF);

73: glGetBufferSubData (SSB, 0, nhe*4*sizeof(GLint), cmesh->mhe);

74: glBindBuffer (SSB, gmesh->VCBUF);

75: glGetBufferSubData (SSB, 0, nv*dim*sizeof(GLfloat), cmesh->vc);

76: free (vf);

77: ExitIfGLError ("GPUmeshToCPU");

78: return true;

79: }

80: else return false;

81: } /*GPUmeshToCPU*/

31.4. Podwajanie i uśrednianie siatki

Operacja zagęszczania siatki (mesh refinement) jest złożeniemdwóch bardziej elementarnych
operacji, zwanych podwajaniem (doubling) i uśrednianiem (averaging): wynik podwajania
jest poddawany n-krotnemu uśrednianiu, przy czym najczęściej wykonuje się 2 lub 3 uśred-
niania. Matematyczne podstawy zagęszczania są opisane w książkach [40] i [41]. Przed za-
głębieniem się w opis implementacji zobaczmy, na czym te operacje polegają.

Podwajaniewytwarza siatkę, w której występują ściany odpowiadającewszystkim wierz-
chołkom, krawędziom i ścianom siatki danej. Ściany odpowiadające ścianom siatki danej są
(w zasadzie) ich kopiami. Każdej krawędzi siatki danej odpowiada ściana złożona z czterech
krawędzi, przy czym dwie z nich są odcinkami pokrywającymi się z krawędzią daną, a po-
zostałe dwie są ściągnięte do punktów — końce tych krawędzi są różnymi wierzchołkami
o tym samym położeniu. Wreszcie, każdemu wierzchołkowi siatki danej odpowiada ściana
ściągnięta do punktu (mająca wszystkie krawędzie o zerowej długości). Jeśli wierzchołek
siatki danej jest wewnętrzny, to odpowiadająca mu ściana ma tyle samo krawędzi co on. Dla
wierzchołka brzegowego też mogłoby tak być, ale lepiej jest wygenerować ścianę, która ma
o jedną krawędź więcej, bo wierzchołek brzegowy może być końcem tylko dwóch krawędzi,
a (zgodnie z przyjętym założeniem) ściana musi być co najmniej trójkątem.

Jeśli w siatce danej dwie ściany mają wspólną krawędź (i w tym sensie sąsiadują), to mię-
dzy kopie tych ścian w siatce wynikowej jest wstawiona ściana odpowiadająca tej krawę-
dzi. Implementacja podwajania, oparta na opisanej wyżej reprezentacji, musi wygenerować
odpowiednie półkrawędzie, połączone w pary.

888 31. ZAGĘSZCZANIE SIATEK

8

0

4

4
2

1
2

6
2

2
4

46

16

5
4

30

5
0

20

58

36

14

1

2

1
3

18

5

6

17

2
2

9

10

21

2
9

2
5

2
6

2
8

35

31

3
2

34

4
1

37

38

40

56

4
3

44

5
5

6
0

47

4
8

59

64

5
1

52

6
3

32
3

65

7

15

57

11

19

6
1

6
7

66

2
7

53

6
9

683
3

45

71

7
0

39

4
9 0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19
20

Rysunek 31.2. Wynik podwajania siatki z rysunku 31.1

Na rysunku 31.2 jest pokazany schemat siatki otrzymanej w wyniku podwajania siatki
z rysunku 31.1, przy czym pokrywające się wierzchołki zostały odpowiednio porozsuwane,
aby uwidocznić ściany 4–12 odpowiadające krawędziom i ściany 13–18 odpowiadające
wierzchołkom siatki danej. Ponadto półkrawędzie tworzące pary zostały rozsunięte podob-
nie jak na rysunku 31.1.

Wynikiem uśredniania jest siatka, której ściany odpowiadają wierzchołkom wewnętrz-
nym siatki danej. Każdy wierzchołek siatki wynikowej jest położony w środku ciężkości
zbioru wierzchołków pewnej ściany siatki danej. Dwa takie wierzchołki są połączone kra-
wędzią, jeśli odpowiednie ściany siatki danej mają wspólną krawędź, której przynajmniej je-
den koniec jest wierzchołkiemwewnętrznym. Jeśli zatem w siatce danej wszystkie krawędzie

31.4. Podwajanie i uśrednianie siatki 889

są wewnętrzne (czyli powierzchnia zbudowana ze ścian nie ma brzegu), to każdemu wierz-
chołkowi siatki danej odpowiada ściana, każdej krawędzi siatki danej odpowiada krawędź
i każdej ścianie siatki danej odpowiada wierzchołek siatki wynikowej8.

1

8

22

3

5
7

12

2
5
9

2
1

44

5
8

23

5

0

1
4

7

49

1
6

6

5
1

13

3
6

5
0

1
5

9
4

18

11

5
3

2
0

10

55

1
7

4
0

54

19

35

4
7

45

3
2

4
6

2
6

25

5
6

2
7

3
9

3
7

24

3
8

30

2
9

48

3
1

43

4
1

2
8

42

3
4

3
3

5
2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Rysunek 31.3. Wynik uśredniania siatki z rysunku 31.2

Sytuacja jest bardziej skomplikowana, gdy pewne krawędzie (i wierzchołki) siatki danej
są brzegowe. Wtedy nie każdej ścianie takiej siatki musi odpowiadać wierzchołek, co więcej,
przyjęta reprezentacja siatki wymusza wytworzenie więcej niż jednego wierzchołka odpo-
wiadającego ścianie siatki danej, jeśli ciąg wierzchołków tej ściany zawiera więcej niż jeden
spójny fragment złożony z wierzchołków wewnętrznych — osobny wierzchołek siatki wyni-
kowej odpowiada każdemu takiemu fragmentowi, ponieważ te wierzchołki będą brzegowe
i każdy z nich będzie początkiem jednej półkrawędzi brzegowej. Taka sytuacja nie występuje
na rysunku 31.3, który przedstawia wynik uśredniania siatki z rysunku 31.2, ale w przypadku
„pełnowymiarowych” siatek może się to zdarzyć i implementacja uśredniania musi popraw-
nie działać także wtedy.

8Jeśli graf danej siatki bez brzegu jest planarny, to graf siatki będącej wynikiem uśredniania jest do niego

dualny.

890 31. ZAGĘSZCZANIE SIATEK

Zwróćmy uwagę, że wszystkie wierzchołki wewnętrzne siatki otrzymanej w wyniku po-
dwajania są końcami czterech krawędzi. Wierzchołek wewnętrzny siatki otrzymanej w wy-
niku uśredniania ma tyle samo krawędzi, co odpowiadającamu ściana, a ściana tej siatki ma
tyle samo krawędzi, co odpowiedni wierzchołek siatki danej. Otrzymane w wyniku podwa-
jania ściany odpowiadające krawędziom są czworokątne, a stąd wynika, że w siatce otrzy-
manej przez zagęszczanie: podwajanie, po którym nastąpiło n kroków uśredniania, mamy
wszystkie ściany czworokątne, gdy n jest nieparzyste, oraz wszystkie wierzchołki wewnętrzne
z czterema krawędziami dla parzystego n. Zauważmy też, że podczas iterowania operacji za-
gęszczania siatki liczby wierzchołków, półkrawędzi i ścian rosną wykładniczo, a zatem liczbę
iteracji zagęszczania trzeba wybierać z umiarem. Ciąg siatek otrzymanych przez wielokrotne
zagęszczanie szybko zbiega do granicy, która w ogólności jest gładką powierzchnią, a zatem
do otrzymania dobrego obrazu zazwyczaj wystarczy niewiele iteracji. Mając siatkę o ścia-
nach czworokątnych, wyświetlimy dwa trójkąty dla każdej ściany, odpowiednio je cieniując.
Ale najpierw zagęszczanie trzeba zaimplementować.

31.5. Zmienne szadera zagęszczania siatek

Listing 31.9 przedstawia makrodefinicje i deklaracje zmiennych globalnych szadera oblicze-
niowego realizującego zagęszczanie siatek, wykorzystywane przez obie operacje: podwajanie
i uśrednianie. Szader ten zawiera także zmienne i procedurę z listingu G.8. Każda lokalna
grupa robocza składa się z jednego wątku. Makrodefinicje V0, V1, FACN i OTHE wprowa-
dzają nazwy pól wektora ivec4 wykorzystywanego do reprezentowania półkrawędzi — dla
zwiększenia czytelności kodu.

Bufory magazynowe przywiązane do punktów dowiązania 1, 2 i 3 (w celu GL_SHADER_-
STORAGE_BUFFER) zawierają tablice reprezentujące siatkę daną, a bufory przywiązane do
punktów 4, 5 i 6 zawierają tablice, do których ma być wpisany wynik. Wszystkie zmienne
jednolite zostały umieszczone w bloku RefineBlock. W zmiennej nsattr jest podana cał-
kowita liczba skalarnych atrybutów wierzchołka siatki9. Wartości zmiennych jednolitych
inv, inhe oraz infac są odpowiednio liczbami wierzchołków, półkrawędzi i ścian siatki
danej. Podane w liniach 25–28 makrodefinicje imv, imfac, imvhei oraz imfhei ułatwiają
dostęp do czterech tablic umieszczonych w buforze magazynowym Invmf, zawierających
opisy wierzchołków i ścian oraz tablice z indeksami półkrawędzi dla wierzchołków i ścian.
Do wyrażenia opisującego indeks odpowiedniej tablicy dodawane jest wyrażenie opisujące
położenie jej początku w buforze. W podobny sposób zorganizowany jest dostęp do czterech
tablic w buforze magazynowym Outmvf, w którymma być umieszczona reprezentacja siatki
wynikowej. Liczby wierzchołków, półkrawędzi i ścian tej siatki, po ich znalezieniu, zostaną
przypisane zmiennym jednolitym outnv, outnhe i outnfac, przy czym robiąc to, aplikacja

9Są nimi współrzędne kartezjańskie lub jednorodne położenia wierzchołka, ale mogą być też współrzędne
wektora normalnego, koloru lub tekstury. Liczba i interpretacja poszczególnych atrybutów są określone przez
aplikację, a ściślej przez szadery rysujące siatkę. Szader zagęszczania siatek nie interpretuje tych atrybutów,

wykonując na każdym z nich takie same obliczenia numeryczne.

31.5. Zmienne szadera zagęszczania siatek 891

utworzy także bufory magazynowe o odpowiednich długościach i przywiąże je do podanych
na listingu punktów dowiązania.

Listing 31.9. Zmienne jednolite i bloki magazynowe szadera zagęszczania siatek
GLSL

1: #version 450 core

2:

3: layout(local_size_x=1) in;

4:

5: #define V0 x

6: #define V1 y

7: #define FACN z

8: #define OTHE w

9:

10: layout(std430,binding=1) buffer Inmvf { int mvf[]; } inmvf;

11: layout(std430,binding=2) buffer Inmhe { ivec4 mhe[]; } inmhe;

12: layout(std430,binding=3) buffer Invc { float vc[]; } inmvc;

13:

14: layout(std430,binding=4) buffer Outmvf { int mvf[]; } outmvf;

15: layout(std430,binding=5) buffer Outmhe { ivec4 mhe[]; } outmhe;

16: layout(std430,binding=6) buffer Outvc { float vc[]; } outmvc;

17:

18: uniform RefineBlock {

19: int stage;

20: int nsattr, inv, inhe, infac, outnv, outnhe, outnfac;

21: int invb, inei, fvf, maxonv, fvhe;

22: uint prN0, prN, prStep;

23: };

24:

25: #define imv(I) inmvf.mvf[I]

26: #define imfac(I) inmvf.mvf[inv+(I)]

27: #define imvhei(I) inmvf.mvf[inv+infac+(I)]

28: #define imfhei(I) inmvf.mvf[inv+infac+inhe+(I)]

29: #define imhe(I) inmhe.mhe[I]

30: #define imvc(I) inmvc.vc[I]

31: #define omv(I) outmvf.mvf[I]

32: #define omfac(I) outmvf.mvf[outnv+(I)]

33: #define omvhei(I) outmvf.mvf[outnv+outnfac+(I)]

34: #define omfhei(I) outmvf.mvf[outnv+outnfac+outnhe+(I)]

35: #define omhe(I) outmhe.mhe[I]

36: #define omvc(I) outmvc.vc[I]

W zmiennych jednolitych invb oraz inei znajdą się liczby wierzchołków brzegowych
i krawędzi (nie półkrawędzi) wewnętrznych; liczba krawędzi (i półkrawędzi) brzegowych
jest równa liczbie wierzchołków brzegowych. Role pozostałych zmiennych jednolitych są
wyjaśnione dalej.

892 31. ZAGĘSZCZANIE SIATEK

31.6. Kompilacja programu zagęszczania i procedury pomocnicze

Listing 31.10 przedstawia procedurę przygotowującą do pracy program szaderów służący
do zagęszczania siatek, procedurę likwidującą ten program i dwie procedury pomocnicze
używane podczas zagęszczania. Procedura kompilacji odczytuje przesunięcia pól w bloku
zmiennych jednolitych RefineBlock i przygotowuje bufor, w którym ten blok będzie prze-
chowywany.

Listing 31.10. Procedura kompilacji programu zagęszczania siatek
C

1: static GLuint progid = 0;

2: static GLuint rbuf, rbbp;

3: static GLint uvofs[16];

4:

5: void LoadMeshRefinementProgram (void)

6: {

7: const GLchar *filename[] = { "md.comp.glsl" };

8: const GLchar *uvnames[] =

9: { "RefineBlock", "stage", "nsattr", "inv", "inhe", "infac", "outnv",

10: "outnhe", "outnfac", "invb", "inei", "fvf", "maxonv", "fvhe", "prN0",

11: "prN", "prStep" };

12: GLuint shader_id;

13: GLint size;

14:

15: shader_id = CompileShaderFiles (GL_COMPUTE_SHADER, 1, &filename[0]);

16: progid = LinkShaderProgram (1, &shader_id, "meshes refinement 0");

17: glDeleteShader (shader_id);

18: GetAccessToUniformBlock (progid, 16, uvnames, &size, uvofs, &rbbp);

19: glGenBuffers (1, &rbuf);

20: glBindBufferBase (GL_UNIFORM_BUFFER, rbbp, rbuf);

21: glBufferData (GL_UNIFORM_BUFFER, size, NULL, GL_DYNAMIC_DRAW);

22: ExitIfGLError ("LoadMeshRefinementProgram");

23: } /*LoadMeshRefinementProgram*/

24:

25: void DeleteMeshRefinementProgram (void)

26: {

27: glUseProgram (0);

28: if (progid) { glDeleteProgram (progid); progid = 0; }

29: glDeleteBuffers (1, &rbuf);

30: ExitIfGLError ("DeleteMeshRefinementProgram");

31: } /*DeleteMeshRefinementProgram*/

Pomocnicza procedura ExecStage (listing 31.11) uruchamia program szaderów w celu
wykonania kolejnego etapu obliczeń podczas podwajania lub uśredniania. Wartość paramet-
ru stage tej procedury jest przypisywana zmiennej jednolitej stage programu szaderów,
z kolei parametr gsize określa liczbę wątków potrzebnych w danym etapie. Po wywołaniu

31.6. Kompilacja programu zagęszczania i procedury pomocnicze 893

Listing 31.11. Procedury pomocnicze zagęszczania siatek
C

1: #define SSB GL_SHADER_STORAGE_BUFFER

2:

3: #define SETUVAR(n,type,x) \

4: glBufferSubData (GL_UNIFORM_BUFFER, uvofs[n], sizeof(type), &x);

5:

6: static void ExecStage (GLint *uvofs, int stage, int gsize)

7: {

8: SETUVAR (0, GLint, stage)

9: COMPUTE (gsize, 1, 1)

10: } /*ExecStage*/

11:

12: static void PrefixSum (GLint *uvofs, GLuint N0, GLuint N)

13: {

14: GLuint k, m, d;

15: GLint z = 0;

16:

17: SETUVAR (0, GLint, z)

18: SETUVAR (13, GLuint, N0)

19: SETUVAR (14, GLuint, N)

20: d = N/2;

21: for (k = 0, m = N-1; m > 0; k++, m >>= 1) {

22: SETUVAR (15, GLuint, k)

23: COMPUTE (d, 1, 1)

24: }

25: ExitIfGLError ("PrefixSum");

26: } /*PrefixSum*/

27:

28: static void SumUp (GLint *uvofs, GLuint n0, GLuint n)

29: {

30: GLint one = 1;

31:

32: SETUVAR (0, GLint, one)

33: SETUVAR (13, GLuint, n0)

34: while (n > 1) {

35: SETUVAR (14, GLuint, n)

36: COMPUTE (n/2, 1, 1)

37: n = (n+1)/2;

38: }

39: ExitIfGLError ("SumUp");

40: } /*SumUp*/

(za pomocą makrodefinicji COMPUTE, zobacz listing 9.1) programu szaderów CPU czeka
(w procedurze glMemoryBarrier) na dokończenie obliczeń przez wszystkie wątki w glo-
balnej grupie roboczej.

Ponieważ poszczególne wierzchołki i ściany mogą mieć różne liczby półkrawędzi, a re-
prezentacja siatki jest „spakowana” w tablicach, procedury podwajania i uśredniania, prze-

894 31. ZAGĘSZCZANIE SIATEK

twarzając równolegle elementy siatki danej, muszą w wielu etapach obliczeń dysponować
informacją, w które miejsca tablic należy wpisać odpowiednie wyniki. Aby obliczyć indeksy
tych miejsc, w wielu etapach procedury zagęszczania siatek trzeba będzie pododawać na
przykład liczby półkrawędzi dla kolejnych wierzchołków lub ścian, czyli obliczyć ciąg sum
prefiksowych. Sumy prefiksowe są potrzebne w wielu zastosowaniach, więc opis algorytmu
ich obliczania i jego implementacji na GPUumieściłemwdodatkuG. Procedura PrefixSum
pokazana na listingu 31.11 różni się od procedury z listingu G.9 tylko innym sposobem nada-
wania wartości zmiennym jednolitym (które tu są przechowywane w bloku RefineBlock).
Ponadto zmienna stage otrzymuje wartość 0, aby opisana w następnym podrozdziale pro-
cedura main szadera wywołała procedurę iPrefixSum pokazaną na listingu G.8. Podobnie,
procedura SumUp jest procedurą sumowania parami z listingu G.2, dostosowaną do współ-
pracy z procedurami i szaderem podwajania i uśredniania.

31.7. Procedura main

Listing 31.12 przedstawia procedurę main szadera, który jest działającą na GPU częścią im-
plementacji podwajania i uśredniania. Przed każdym wywołaniem tej procedury program
działający naCPU (opisanawcześniej procedura ExecStage,PrefixSum lub SumUp) przypi-
suje zmiennej stage odpowiednią wartość, wskutek czego instrukcja przełącznika wykona
instrukcje realizujące bieżący etap obliczeń. Może to być obliczanie sum prefiksowych we
wskazanym fragmencie roboczej tablicy seq.a, dodanie wszystkich liczb w takim fragmen-
cie lub wywołanie jednej z opisanych dalej procedur szadera. Liczby wątków potrzebnych
w kolejnych etapach obliczeń są różne, ponieważ obliczenia te dotyczą działań na wierzchoł-
kach, półkrawędziach lub ścianach siatki danej lub (rzadziej) docelowej. Liczby te oczywiście
ustala procedura działająca na CPU.

Niektóre procedury są bardzo krótkie (np. zawierają tylko jedną instrukcję). Takie proce-
dury przerobiłem na makrodefinicje, które zastępują wywołanie procedury jej treścią, dzięki
czemu szader działa szybciej, a jego kod źródłowy nie traci czytelności. Na przykład makro-
definicja AddTwoTerms, wywoływana w etapie 1 realizowanym przez procedurę SumUp z lis-
tingu 31.11, dodaje dwa elementy tablicy pomocniczej i zapamiętuje ich sumę na miejscu
pierwszego składnika.

Listing 31.12. Procedura main szadera zagęszczania siatek
GLSL

1: #define AddTwoTerms(I) seq.a[prN0+(I)] += seq.a[prN0+(I)+(prN+1)/2];

2:

3: void main (void)

4: {

5: uint i;

6:

7: i = gl_GlobalInvocationID.x;

31.7. Procedura main 895

8: switch (stage) {

9: case 0: iPrefixSum (i); break;

10: case 1: AddTwoTerms (i); break;

11: case 2: TagVertex (i); break;

12: /* etapy podwajania */

13: case 3: DSetECN (i); break;

14: case 4: DSetVCN (i); break;

15: case 5: DCopyVC (i); break;

16: case 6: DSetOVdeg (i); break;

17: case 7: DSetOVfhe (i); break;

18: case 8: DSetWLF (i); break;

19: case 9: DSetEFN1 (i); break;

20: case 10: DSetEFN2 (i); break;

21: case 11: DSetOMfac1 (i); break;

22: case 12: DSetOMfac2 (i); break;

23: case 13: DSetOMfac3 (i); break;

24: case 14: DBindNewhe1 (i); break;

25: case 15: DBindNewhe2 (i); break;

26: case 16: DBindNewhe3 (i); break;

27: case 17: DSetIFDeg (i); break;

28: case 18: DSetOMfhei1 (i); break;

29: case 19: DSetOMfhei2 (i); break;

30: case 20: DSetTgv (i); break;

31: case 21: DSetOMfhei3 (i); break;

32: /* etapy uśredniania */

33: case 22: ASetNvi1 (i); break;

34: case 23: ASetNhei1 (i); break;

35: case 24: ASetNfi1 (i); break;

36: case 25: ASetNvi2 (i, true); break;

37: case 26: ASetNfi2 (i); break;

38: case 27: ASetNhei2 (i); break;

39: case 28: ASetNvi2 (i, false); break;

40: case 29: ASetNhei3 (i); break;

41: case 30: ASetNfi3 (i); break;

42: case 31: AClearFVd (i); break;

43: case 32: ASetFVd1 (i); break;

44: case 33: ASetFVd2 (i); break;

45: case 34: AClearFVd (i); break;

46: case 35: ASetOMVert (i, true); break;

47: case 36: ASetOMVert (i, false); break;

48: case 37: ABindHe (i); break;

49: case 38: ASetOMfacHe (i); break;

50: case 39: Average (i); break;

51: default: break;

52: }

53: } /*main*/

896 31. ZAGĘSZCZANIE SIATEK

31.8. Implementacja podwajania

Listing 31.13 przedstawia procedurę działającą na CPU, której zadaniem jest wywoływanie
programu szaderów w celu zrealizowania kolejno wszystkich etapów obliczeń dla operacji
podwajania siatki. W linii 7 procedura ta wybiera program szaderów z szaderem oblicze-
niowym zawierającym opisane wcześniej i dalej zmienne i procedury — identyfikator tego
programu, przygotowanego zawczasu do pracy, jest pamiętany w zmiennej progid[0] (lis-
ting 31.10).

Listing 31.13. Procedura podwajania
C

1: char GPUmeshDoubling (GPUmesh *inmesh, GPUmesh *outmesh)

2: {

3: int inv, inhe, infac, invb, inei, onv, onhe, onfac, fvf, maxonv, fvhe;

4: GLint bufsize;

5: GLuint auxbuf = 0;

6:

7: glUseProgram (progid[0]);

8: glBindBufferBase (GL_UNIFORM_BUFFER, rbbp, rbuf);

9: inv = inmesh->nv; inhe = inmesh->nhe; infac = inmesh->nfac;

10: glBindBufferBase (SSB, 1, inmesh->MVFBUF);

11: glBindBufferBase (SSB, 2, inmesh->MHEBUF);

12: glBindBufferBase (SSB, 3, inmesh->VCBUF);

13: SETUVAR (1, GLint, inmesh->nsattr)

14: SETUVAR (2, GLint, inv)

15: SETUVAR (3, GLint, inhe)

16: SETUVAR (4, GLint, infac)

17: maxonv = inhe+2*inv; SETUVAR (11, GLint, maxonv)

18: bufsize = (3*inv + 4*inhe + infac + 3)*sizeof(GLint);

19: glGenBuffers (1, &auxbuf);

20: glBindBufferBase (SSB, 0, auxbuf);

21: glBufferData (SSB, bufsize, NULL, GL_DYNAMIC_DRAW);

22: ExecStage (uvofs, 2, inv); /* TagVertex */

23: SumUp (uvofs, 0, inv);

24: glGetBufferSubData (SSB, 0, sizeof(GLint), &invb);

25: inei = (inhe-invb)/2;

26: onv = inhe + 2*invb; SETUVAR (5, GLint, onv)

27: onhe = 8*(inei + invb); SETUVAR (6, GLint, onhe)

28: onfac = infac + inei + invb + inv; SETUVAR (7, GLint, onfac)

29: fvhe = onhe - 2*invb; SETUVAR (12, GLint, fvhe)

30: if (!ReallocGPUmesh (outmesh, onv, onhe, onfac, inmesh->nsattr,

31: inmesh->pdim, inmesh->pofs, inmesh->nvofs))

32: goto failure;

33: glBindBufferBase (SSB, 4, outmesh->MVFBUF);

34: glBindBufferBase (SSB, 5, outmesh->MHEBUF);

35: glBindBufferBase (SSB, 6, outmesh->VCBUF);

36: glBindBufferBase (SSB, 0, auxbuf);

31.8. Implementacja podwajania 897

37: ExecStage (uvofs, 3, inhe); /* DSetECN */

38: PrefixSum (uvofs, maxonv, inhe+1);

39: ExecStage (uvofs, 4, inv); /* DSetVCN */

40: PrefixSum (uvofs, maxonv+inhe+1, inv+1);

41: ExecStage (uvofs, 5, inv); /* DCopyVC */

42: ExecStage (uvofs, 6, onv-1); /* DSetOVdeg */

43: PrefixSum (uvofs, 0, onv);

44: ExecStage (uvofs, 7, onv); /* DSetOVfhe */

45: ExecStage (uvofs, 8, infac); /* DSetWLF */

46: ExecStage (uvofs, 9, inhe); /* DSetEFN1 */

47: PrefixSum (uvofs, maxonv+inhe+inv+2, inhe);

48: ExecStage (uvofs, 10, inhe); /* DSetEFN2 */

49: glBindBuffer (GL_COPY_READ_BUFFER, inmesh->MVFBUF);

50: glBindBuffer (GL_COPY_WRITE_BUFFER, outmesh->MVFBUF);

51: glCopyBufferSubData (GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,

52: inv*sizeof(GLint), onv*sizeof(GLint), infac*sizeof(GLint));

53: SETUVAR (8, GLint, invb)

54: SETUVAR (9, GLint, inei)

55: fvf = infac+inei+invb; SETUVAR (10, GLint, fvf)

56: ExecStage (uvofs, 11, inei+invb); /* DSetOMfac1 */

57: ExecStage (uvofs, 12, inv); /* DSetOMfac2 */

58: PrefixSum (uvofs, 0, fvf-infac+1);

59: ExecStage (uvofs, 13, inv); /* DSetOMfac3 */

60: ExecStage (uvofs, 14, inhe); /* DBindNewhe1 */

61: PrefixSum (uvofs, 0, inhe);

62: ExecStage (uvofs, 15, inhe); /* DBindNewhe2 */

63: ExecStage (uvofs, 16, inhe); /* DBindNewhe3 */

64: ExecStage (uvofs, 17, infac); /* DSetIFDeg */

65: PrefixSum (uvofs, maxonv+3*inhe+inv+3, infac);

66: ExecStage (uvofs, 18, infac); /* DSetOMfhei1 */

67: ExecStage (uvofs, 19, inhe); /* DSetOMfhei2 */

68: ExecStage (uvofs, 20, inv); /* DSetTgv */

69: PrefixSum (uvofs, 0/*maxonv+4*inhe+inv+infac+3*/, inv);

70: ExecStage (uvofs, 21, inv); /* DSetOMfhei3 */

71: glDeleteBuffers (1, &auxbuf);

72: glUseProgram (0);

73: ExitIfGLError ("GPUmeshDoubling");

74: return true;

75:

76: failure:

77: glDeleteBuffers (1, &auxbuf);

78: glUseProgram (0);

79: return false;

80: } /*GPUmeshDoubling*/

W liniach 10–16 utworzone za pomocą opisanej wcześniej procedury CPUmeshToGPU

bufory, w których znajduje się reprezentacja siatki danej, są przywiązywane do odpowied-

898 31. ZAGĘSZCZANIE SIATEK

nich punktów dowiązania w celu GL_SHADER_STORAGE_BUFFER, a zmiennym jednolitym
nsattr, inv, inhe, infac w bloku RefineBlock są nadawane wartości opisujące liczbę
atrybutów wierzchołka i liczby elementów siatki. W linii 17 jest obliczana i przypisywana
zmiennej jednolitej maxonv maksymalna możliwa liczba wierzchołków siatki wynikowej.
W liniach 18–21 jest tworzony odpowiednio pojemny bufor zawierający tablicę roboczą dla
szadera. Bufor ten jest przywiązywany do punktu dowiązania 0; w szczególności w nim będą
obliczane sumy prefiksowe różnych ciągów liczb.

Opis kolejnych etapów podwajania jest podany dalej, obok listingów przedstawiających
poszczególne procedury wywoływane przez procedurę main pokazaną na listingu 31.12.

Listing 31.14 przedstawia makrodefinicje używane w treści procedur szadera realizują-
cych etapy podwajania. Używają one sześciu tablic liczb typu int, upakowanych w buforze
magazynowym o nazwie seq (zobacz listing G.8). Długości tych tablic są określone przez
liczby wierzchołków (nv), półkrawędzi (nh) i ścian (n f) siatki danej i makrodefinicja dająca
dostęp do elementów każdej tablicy dodaje do jej indeksu sumę długości tablic ją poprze-
dzających w buforze. Zmiennej jednolitej maxonv procedura podwajania przypisuje wartość
nh + 2nv , która jest górnym oszacowaniem liczby wierzchołków siatki wynikowej.

Makrodefinicja PREVIFAC_HEDGE służy do znalezienia identyfikatora półkrawędzi po-
przedzającej półkrawędź na pozycji en w zamkniętym w cykl ciągu identyfikatorów półkra-
wędzi ściany fn.

Listing 31.14. Makrodefinicje dla podwajania
GLSL

1: #define ecn(I) seq.a[maxonv+(I)]

2: #define vcn(I) seq.a[maxonv+inhe+1+(I)]

3: #define efn(I) seq.a[maxonv+inhe+inv+2+(I)]

4: #define wlf(I) seq.a[maxonv+2*inhe+inv+3+(I)]

5: #define fcn(I) seq.a[maxonv+3*inhe+inv+3+(I)]

6:

7: #define PREVIFAC_HEDGE(fn,en) \

8: ((en) > 0 ? \

9: imfhei((imfac(fn) & FHEMASK) + (en) - 1) : \

10: imfhei((imfac(fn) & FHEMASK) + (imfac(fn) >> DEGSHIFT) - 1))

Listing 31.15 przedstawia procedurę realizującą etap 2 podwajania (listing 31.13, linia 22):
znakowanie i liczenie wierzchołków brzegowych siatki danej. Procedura bada, czy ostat-
nia półkrawędź wychodząca z i-tego wierzchołka jest brzegowa (co oznacza, że wierzchołek
jest brzegowy) i ustawia albo kasuje bit na pozycji 25 (zobacz listing 31.3). Jednocześnie dla
wierzchołka brzegowego wpisuje do tablicy seq.a liczbę 1, a dla wewnętrznego 0. Następnie
(listing 31.13, linia 23) obliczana jest suma wpisanych liczb, tj. suma wpisanych jedynek, która
jest liczbą wierzchołków brzegowych siatki. W linii 24 liczba ta jest odczytywana przez proce-
durę podwajania, po czym znajdowane są liczby krawędzi wewnętrznych siatki danej (inei)
oraz wierzchołków (onv), półkrawędzi (onhe) i ścian (onfac) siatki wynikowej; liczby te są
natychmiast przypisywane odpowiednim zmiennym jednolitym. W linii 29 zmiennej jed-
nolitej fvhe zostaje przypisana wartość, od której zaczynają się identyfikatory półkrawędzi
ścian siatki wynikowej odpowiadających wierzchołkom siatki danej.

31.8. Implementacja podwajania 899

Listing 31.15. Znakowanie wierzchołków brzegowych
GLSL

1: void TagVertex (uint i) /* etap 2 podwajania i uśredniania */

2: {

3: int fhe, deg;

4:

5: fhe = imv(i) & FHEMASK;

6: deg = imv(i) >> DEGSHIFT;

7: if (imhe(imvhei(fhe+deg-1)).OTHE < 0) {

8: imv(i) |= TAGMASK;

9: seq.a[i] = 1;

10: }

11: else {

12: imv(i) &= ~TAGMASK;

13: seq.a[i] = 0;

14: }

15: } /*TagVertex*/

W linii 30 następuje rezerwacja pamięci na reprezentację siatki wynikowej w pamięci
GPU, po czym odpowiednie bufory są przywiązywane do punktów dowiązania 4, 5, 6w celu
GL_SHADER_STORAGE_BUFFER. Odtąd można używać makrodefinicji podanych w liniach
1–5 na listingu 31.14 i w liniach 31–36 na listingu 31.9.

Listing 31.16. Ustalanie liczb półkrawędzi i kopii wierzchołków
GLSL

1: void DSetECN (uint i) /* etap 3 */

2: {

3: ecn(i+1) = imhe(i).OTHE < 0 ? 6 : 4;

4: if (i == 0)

5: ecn(0) = 0;

6: /*DSetECN*/

7:

8: void DSetVCN (uint i) /* etap 4 */

9: {

10: int deg;

11:

12: deg = imv(i) >> DEGSHIFT;

13: vcn(i+1) = (imv(i) & TAGMASK) != 0 ? deg + 2 : deg;

14: if (i == 0)

15: vcn(0) = 0;

16: } /*DSetVCN*/

Etap 3 podwajania (listing 31.13, linie 37–38 i listing 31.16, linie 1–6) ma na celu ustalenie

dla każdej krawędzi siatki danej identyfikatorów półkrawędzi w siatce wynikowej odpowia-

dających tej krawędzi. Jeśli krawędź jest brzegowa, to będzie dla niej wygenerowane 6 pół-
krawędzi, a jeśli wewnętrzna, to 8, ale to oznacza potrzebęwygenerowania 4 półkrawędzi dla

900 31. ZAGĘSZCZANIE SIATEK

każdej z tworzących parę półkrawędzi reprezentujących krawędź wewnętrzną. Dlatego pro-
cedura DSetECNwpisuje do tablicy ecn liczbę 6 albo 4. Pierwszy element tablicy10 otrzymuje
wartość 0, a liczba 6 lub 4 dla i-tej półkrawędzi jest wpisywana w miejsce i + 1. Po wpisaniu
tych liczb następuje obliczenie sum prefiksowych w tablicy ecn.

Podobne obliczenie jest wykonywane w etapie 4 (listing 31.13, linie 39–40 i listing 31.16,
linie 8–16) dla wierzchołków siatki danej. Do tablicy vcnwmiejscu i + 1 procedura DSetVCN
wpisuje stopień (liczbę półkrawędzi wychodzących z) i-tego wierzchołka, jeśli jest on we-
wnętrzny, lub liczbę o 2 większą, jeśli jest brzegowy, a następnie są obliczane sumy prefik-
sowe. W ten sposób dla każdego wierzchołka siatki danej są określane numery wierzchołków
ściany siatki wynikowej odpowiadającej temu wierzchołkowi.

Listing 31.17. Tworzenie kopii wierzchołka
GLSL

1: void DCopyVC (uint i) /* etap 5 */

2: {

3: int deg, p, j, k;

4:

5: deg = imv(i) >> DEGSHIFT;

6: if ((imv(i) & TAGMASK) != 0)

7: deg += 2;

8: p = vcn(i);

9: for (j = 0; j < deg; j++) {

10: for (k = 0; k < nsattr; k++)

11: omvc((p+j)*nsattr+k) = imvc(i*nsattr+k);

12: omv(p+j) = 4 << DEGSHIFT;

13: }

14: if ((imv(i) & TAGMASK) != 0)

15: omv(p) = omv(p+deg-1) = 2 << DEGSHIFT;

16: } /*DCopyVC*/

Listing 31.17 przedstawia procedurę wykonywaną w etapie 5 podwajania (listing 31.13, li-
nia 41). Ta procedurawykonuje d (dlawierzchołkawewnętrznego) albo d+2 (dlawierzchołka
brzegowego będącego początkiem d półkrawędzi) kopii wektora współrzędnych (położenia
i innych atrybutów), a ponadto określa stopnie wierzchołków siatki wynikowej. Wierzchołki
wewnętrzne tej siatkimają stopień 4, awierzchołki brzegowe (pierwsza i ostatnia kopiawierz-
chołka brzegowego siatki danej) są początkami dwóch półkrawędzi.

10Wmoich wczesnych wersjach procedury GPUmeshDoubling wartość 0 była przypisywana pierwszemu ele-

mentowi tablicy przez CPU za pomocą procedury glBufferSubData. Na moim komputerze stacjonarnym to

działało, a po przeniesieniu na laptopa też działało, ale dawało błędne wyniki (nie udało mi się odkryć natury
tego błędu, byćmoże chodziło o synchronizację). Dlatego w treści szadera do procedury DSetECN i opisanych

dalej procedur DSetVCN, DSetOVdeg i DSetOMfac2 dopisałem instrukcje przypisujące odpowiednią wartość
pierwszemu elementowi tablicy, wykonywane, gdy i == 0. Takie rozwiązanie jest bardziej eleganckie, mniej

podatne na błędy podczas pielęgnacji programu i chyba korzystne dla szybkości obliczeń, choć to jest trudne

do zmierzenia.

31.8. Implementacja podwajania 901

Listing 31.18. Tworzenie reprezentacji wierzchołków wyjściowych
GLSL

1: void DSetOVdeg (uint i) /* etap 6 */

2: {

3: seq.a[i+1] = omv(i) >> DEGSHIFT;

4: if (i == 0)

5: seq.a[i] = 0;

6: } /*DSetOVdeg*/

7:

8: #define DSetOVfhe(i) omv(i) |= seq.a[i]; /* etap 7 */

Procedura i makro na listingu 31.18 realizują etapy 6 i 7 podwajania. W etapie 6 do tab-
licy seq.a na pozycji i+1 jest wpisywany stopień i-tego wierzchołka wyjściowego, a element
seq.a[0] otrzymuje wartość 0. Następnie obliczane są sumy prefiksowe ciągu w tablicy, co
daje dla każdego wierzchołka wyjściowego numer f pozycji w tablicy mvhei, od której za-
czyna się ciąg półkrawędzi tego wierzchołka. Wykonywana w etapie 7 instrukcja (zawarta
w makrodefinicji DSetOVfhe) zapisuje w 25 najmniej znaczących bitach opisu i-tego wierz-
chołka wyjściowego ten numer— użyty operator przypisania to „|=”, ponieważ 6 najbardziej
znaczących bitóww tymmomencie już przechowuje stopieńwierzchołka wyjściowego (a po-
zostałe bity, póki co, mają wartość 0).

Listing 31.19. Wypełnianie tablicy wlf
GLSL

1: void DSetWLF (uint i) /* etap 8 */

2: {

3: int deg, fhe, k;

4:

5: deg = imfac(i) >> DEGSHIFT;

6: fhe = imfac(i) & FHEMASK;

7: for (k = 0; k < deg; k++)

8: wlf(imfhei(fhe+k)) = k;

9: } /*DSetWLF*/

Procedura DSetWLF na listingu 31.19, wykonywana dla każdej ściany siatki danej, wy-
pełnia tablicę pomocniczą o długości nh, nazwaną wlf. Parametr i jest numerem ściany.
Do tablicy dla każdej półkrawędzi należącej do tej ściany jest wpisywany numer pozycji tej
półkrawędzi w ciągu półkrawędzi ściany, od 0 do d − 1, gdzie d jest stopniem ściany.

Listing 31.20 przedstawia procedury realizujące etapy 9 i 10 podwajania; procedury te są
wykonywane dla każdej półkrawędzi siatki danej. W etapie 9 do pomocniczej tablicy efn
(przechowywanej w buforze seq) jest wpisywany ciąg liczb całkowitych; pierwsza z nich jest
równa n f (jest to liczba ścian siatki danej), a każda następna jest jedynką albo zerem. Jedynka
jest wpisywana na pozycji i-tej, jeśli półkrawędź o numerze i − 1 nie ma pary (czyli repre-
zentuje krawędź brzegową) albo jeśli półkrawędź tworząca z nią parę ma większy numer.
W ten sposób liczba jedynek wpisanych do tablicy efn jest równa liczbie krawędzi (brze-
gowych i wewnętrznych). Po wpisaniu tych zer i jedynek w tablicy efn są obliczane sumy

902 31. ZAGĘSZCZANIE SIATEK

prefiksowe, a następnie wykonywana jest procedura DSetEFN2, która (dla tych półkrawędzi,
którym odpowiada 0 wpisane przez procedurę DSetEFN1) przypisuje liczbę w tablicy efn
odpowiadającą drugiej półkrawędzi z pary. Ściany siatki wynikowej odpowiadające krawę-
dziom siatki danej będą miały numery od n f (liczby ścian siatki danej) do n f + ne − 1 (gdzie
ne jest liczbą krawędzi siatki danej). W ten sposób dla każdej półkrawędzi siatki danej na od-
powiednim miejscu tablicy efn jest podany numer ściany siatki wynikowej odpowiadający
krawędzi reprezentowanej przez tę półkrawędź (zarówno wtedy, gdy półkrawędź ma parę,
jak i wtedy, gdy jej nie ma).

Listing 31.20. Liczenie krawędzi siatki danej
GLSL

1: void DSetEFN1 (uint i) /* etap 9 */

2: {

3: int j;

4:

5: if (i == 0)

6: efn(i) = infac;

7: else {

8: j = imhe(i-1).OTHE;

9: efn(i) = j < 0 || j >= i ? 1 : 0;

10: }

11: } /*DSetEFN1*/

12:

13: void DSetEFN2 (uint i) /* etap 10 */

14: {

15: int j;

16:

17: j = imhe(i).OTHE;

18: if (j >= 0 && j < i)

19: efn(i) = efn(j);

20: } /*DSetEFN2*/

Instrukcje w liniach 49–52 na listingu 31.13 kopiują n f liczb z tablicy imfac do tablicy
omfac. Ma to na celu utworzenie reprezentacji ścian siatki wynikowej odpowiadających
ścianom siatki danej —wszystkie te ściany mają identyczne stopnie i będąmiały ciągi nume-
rów półkrawędzi zaczynające się w tablicy omfhei od tych samych miejsc co ciągi numerów
półkrawędzi w tablicy imfhei11.

Procedury na listingu 31.21 tworzą opisy ścian odpowiadających krawędziom i wierzchoł-
kom siatki danej; ściany odpowiadające krawędziom mają po 4 półkrawędzie (a zatem, w li-
nii 3 w opisie ściany przechowywanym w tablicy omfac jest zapisywany stopień 4). Proce-
dura DSetOMfac2 zapisuje tylko stopień ściany odpowiadającej wierzchołkowi — równy d
dla wierzchołka wewnętrznego stopnia d oraz d + 2 dla wierzchołka brzegowego. Stopnie te
są też zapisywane w tablicy seq.a, po czym następuje (listing 31.13, linia 58) obliczanie sum

11Oczywiście, numery półkrawędzi tych ścian w siatce wynikowej będą inne.

31.8. Implementacja podwajania 903

prefiksowych. Otrzymane w ten sposób indeksy początków list półkrawędzi dla ścian odpo-
wiadających wierzchołkom są w etapie 13 (przez makro DSetOMfac3, listing 31.21, linia 20)
zapisywane w tablicy omfac.

Listing 31.21. Tworzenie ścian odpowiadających krawędziom
GLSL

1: void DSetOMfac1 (uint i) /* etap 11 */

2: {

3: omfac(infac+i) = (4 << DEGSHIFT) +

4: (imfac(infac-1) & FHEMASK) + (imfac(infac-1) >> DEGSHIFT) + 4*int(i);

5: } /*DSetOMfac1*/

6:

7: void DSetOMfac2 (uint i) /* etap 12 */

8: {

9: int deg;

10:

11: deg = imv(i) >> DEGSHIFT;

12: if ((imv(i) & TAGMASK) != 0)

13: deg += 2;

14: omfac(fvf+i) = deg << DEGSHIFT;

15: seq.a[i+1] = deg;

16: if (i == 0)

17: seq.a[i] = 4;

18: } /*DSetOMfac2*/

19:

20: #define DSetOMfac3(i) omfac(fvf+i) += (omfac(fvf-1) & FHEMASK) + seq.a[i];

Listing 31.22 przedstawia procedury wykonywane w etapach 14–16 podwajania; mają
one na celu połączenie w pary półkrawędzi siatki wynikowej, tzn. przypisanie każdej pół-
krawędzi numeru jej drugiej połowy (albo numeru -1 dla półkrawędzi brzegowych) oraz
numeru jej ściany.

Procedura DBindNewhe1 (wywoływana przez instrukcję w linii 60, listing 31.13) do tab-
licy seq.a wpisuje ciąg zer i jedynek o długości nh; i-ty element tego ciągu odpowiada i-tej
półkrawędzi siatki wejściowej i jest jedynką, jeśli druga półkrawędź z pary nie istnieje lub
ma numer większy niż i, a zerem w przeciwnym razie. Następnie dla tego ciągu obliczane są
sumy prefiksowe.

Listing 31.22. Łączenie półkrawędzi w pary
GLSL

1: void DBindNewhe1 (uint i) /* etap 14 */

2: {

3: int j;

4:

5: j = imhe(i).OTHE;

6: seq.a[i] = j < 0 || j > i ? 1 : 0;

7: } /*DBindNewhe1*/

904 31. ZAGĘSZCZANIE SIATEK

8:

9: void DBindNewhe2 (uint i) /* etap 15 */

10: {

11: int j, ecni;

12:

13: j = imhe(i).OTHE;

14: ecni = ecn(i);

15: omhe(ecni).OTHE = ecni+1;

16: omhe(ecni+1).OTHE = ecni;

17: omhe(ecni+2).OTHE = ecni+3;

18: omhe(ecni+3).OTHE = ecni+2;

19: omhe(ecni).FACN = imhe(i).FACN;

20: omhe(ecni+3).FACN = fvf + imhe(i).V0;

21: if (j < 0) {

22: omhe(ecni+4).OTHE = omhe(ecni+5).OTHE = -1;

23: omhe(ecni+1).FACN = omhe(ecni+2).FACN =

24: omhe(ecni+4).FACN = omhe(ecni+5).FACN = infac+seq.a[i]-1;

25: }

26: else if (i < j)

27: omhe(ecni+1).FACN = omhe(ecni+2).FACN = infac+seq.a[i]-1;

28: } /*DBindNewhe2*/

29:

30: void DBindNewhe3 (uint i) /* etap 16 */

31: {

32: int j, ecni;

33:

34: j = imhe(i).OTHE;

35: if (j >= 0 && j < i) {

36: ecni = ecn(i);

37: omhe(ecni+1).FACN = omhe(ecni+2).FACN = omhe(omhe(ecn(j)).OTHE).FACN;

38: }

39: } /*DBindNewhe3*/

Procedura DBindNewhe2 (linia 62 na listingu 31.13) w linii 14 odczytuje z tablicy ecn nu-
mer pierwszej półkrawędzi siatki wynikowej odpowiadającej i-tej półkrawędzi siatki danej,
oznaczmy go literą k. Jeśli i-ta półkrawędź siatki danej jest brzegowa, to zostanie dla niej
wygenerowanych 6 półkrawędzi siatki wynikowej, o numerach k, . . . , k + 5. W przeciwnym
razie powstaną 4 półkrawędzie o numerach k, . . . , k+3 i w ten sposób krawędziwewnętrznej
siatki danej odpowiada obiecane 8 półkrawędzi siatki wynikowej.

Sposób określania atrybutów półkrawędzi siatki wynikowejmożemy prześledzić na przy-
kładzie z rysunków 31.1 i 31.2. Półkrawędzi 0 siatki danej, która razem z półkrawędzią 3 re-
prezentuje krawędź wewnętrzną, odpowiadają półkrawędzie k = 0, 1, 2 i 3 siatki wynikowej.
Półkrawędzie siatki wynikowej o numerach k i k + 1 oraz k + 2 i k + 3 tworzą pary, przy
czym półkrawędź o numerze k należy do kopii ściany siatki danej (przypomnijmy, że pierw-
sze e f ścian siatki wynikowej to kopie ścian siatki danej), a zatemw linii 19w reprezentacji tej
półkrawędzi zostaje zapamiętany numer ściany i-tej półkrawędzi z siatki danej. Półkrawędź

31.8. Implementacja podwajania 905

k + 3 należy do ściany odpowiadającej wierzchołkowi siatki danej; numer tego wierzchołka
jest obliczany w linii 20 i jest to suma numeru wierzchołka siatki danej oraz liczby ścian i kra-
wędzi tej siatki (bo ściany odpowiadającewierzchołkom dostają kolejne numery po ścianach
odpowiadających ścianom i krawędziom).

Jeśli i-ta półkrawędź ma parę, której numer jest większy, to półkrawędzie k + 1 i k + 2
siatki wynikowej należą do ściany odpowiadającej krawędzi wewnętrznej reprezentowanej
przez i-tą półkrawędź. Numer tej ściany jest obliczany w linii 27, na podstawie ciągu sum
prefiksowych w tablicy seq.a. Jeśli i-ta półkrawędź ma parę, której numer jest mniejszy, to
jej numer ściany zostanie przypisany później.

W przykładzie z rysunków 31.1 i 31.2 półkrawędzi brzegowej 6 odpowiadają w siatce wy-
nikowej półkrawędzie 24 = k, 25, . . . , 29. Półkrawędzie k + 1, . . . , k + 4 otaczają ścianę
(numer 7 w rozważanym przykładzie) odpowiadającą krawędzi brzegowej siatki danej. Pół-
krawędź k + 4 jest brzegowa, zatem otrzymuje numer swojej pary -1. Półkrawędź k + 5 nie
jest brzegowa, ale tymczasem dostaje numer pary -1, a właściwy numer półkrawędzi do pary
będzie ustalony później.

Etapy realizowane przez procedury na listingu 31.23 mają na celu znalezienie, dla ścian
siatki wynikowej odpowiadających ścianom i krawędziom siatki danej, ciągównumerówpół-
krawędzi i wpisanie ich do tablicy omfhei. Procedura (makrodefinicja) DSetIFDeg, wyko-

nywanaw etapie 17, wpisuje na i-tymmiejscu tablicy fcn stopień ściany o numerze i−1 siatki
danej (przy czym fcn[0] otrzymuje wartość 0), po czym następuje obliczenie sum prefik-

sowych ciągu liczb wpisanych do tej tablicy. W ten sposób są obliczane, dla ścian będących
kopiami ścian siatki, numery miejsc w tablicy omfhei, od których zaczynają się listy nu-

merów półkrawędzi tych ścian. Wywoływana w etapie 18 procedura DSetOMfhei1 wpisuje

numery tych półkrawędzi, korzystając z odwzorowania numerów półkrawędzi ścian siatki

danej na numery półkrawędzi ich kopii w siatce wynikowej w tablicy ecn (odwzorowanie to

jest reprezentowane przez sumy prefiksowe ciągu otrzymanego w etapie 2).

Listing 31.23. Ustalanie list półkrawędzi ścian
GLSL

1: #define DSetIFDeg(i) fcn(i) = i == 0 ? 0 : imfac(i-1) >> DEGSHIFT;

2:

3: void DSetOMfhei1 (uint i) /* etap 18 */

4: {

5: int deg, fhe, imfh, j;

6:

7: deg = imfac(i) >> DEGSHIFT;

8: fhe = fcn(i);

9: imfh = imfac(i) & FHEMASK;

10: for (j = 0; j < deg; j++)

11: omfhei(imfh+j) = ecn(imfhei(imfh+j));

12: } /*DSetOMfhei1*/

13:

14: void DSetOMfhei2 (uint i) /* etap 19 */

15: {

906 31. ZAGĘSZCZANIE SIATEK

16: int k, ecni;

17:

18: k = omfac(efn(i)) & FHEMASK;

19: ecni = ecn(i);

20: if (imhe(i).OTHE < 0) {

21: omfhei(k) = ecni + 1;

22: omfhei(k+1) = ecni + 2;

23: omfhei(k+2) = ecni + 4;

24: omfhei(k+3) = ecni + 5;

25: }

26: else if (imhe(i).OTHE > i) {

27: omfhei(k) = ecni + 1;

28: omfhei(k+1) = ecni + 2;

29: }

30: else {

31: omfhei(k+2) = ecni + 1;

32: omfhei(k+3) = ecni + 2;

33: }

34: } /*DSetOMfhei2*/

Procedura DSetOMfhei2, wywoływana w etapie 19, dla i-tej półkrawędzi siatki danej
tworzy listę półkrawędzi ścian odpowiadających krawędziom siatki danej. Każda taka ściana
ma cztery półkrawędzie. Jeśli i-ta półkrawędź nie ma pary, to w liniach 21–24 do tablicy

omfhei następują przypisania wszystkich czterech numerów półkrawędzi. Jeśli zaś półkra-
wędź ma parę (razem z którą reprezentuje krawędź wewnętrzną), to gdy numer pary jest

większy niż i, do tablicy zostają wpisane odpowiednie numery na pierwsze dwa miejsca

(linie 27, 28), a jeśli mniejszy, to na ostatnie dwa miejsca na liście (linie 31, 32).

Ostatnie dwa etapy podwajania realizuje makro i procedura na listingu 31.24; ich zada-
niem jest ustalenie list półkrawędzi dla ścian siatki wynikowej odpowiadających wierzchoł-
kom siatki danej i uzupełnienie w tablicach wszystkich brakujących informacji.

Makro DSetTgv, zawierające instrukcję wykonywaną w etapie 20, wpisuje do tablicy
seq.a na pozycji i liczbę 1, jeśli wierzchołek i − 1 jest brzegowy, albo 0, jeśli wewnętrzny.
Następnie obliczone zostają sumy prefiksowe w tej tablicy. Są one potrzebne do ustalenia nu-
merów półkrawędzi w otoczeniu ścian odpowiadających wierzchołkom brzegowym, które
należy połączyć w pary (co nie zostało zrobione w etapie 16).

Listing 31.24. Ustalanie list półkrawędzi ścian odpowiadających wierzchołkom
GLSL

1: #define DSetTgv(i) seq.a[i] = i == 0 ? \

2: 0 : ((imv(i-1) & TAGMASK) != 0 ? 1 : 0); /* etap 20 */

3:

4: void DSetOMfhei3 (uint i) /* etap 21 */

5: {

6: int d, j, v0, v1, l, f, ecnl, p, q, k;

7:

31.8. Implementacja podwajania 907

8: d = imv(i) >> DEGSHIFT;

9: j = imv(i) & FHEMASK;

10: if ((imv(i) & TAGMASK) != 0) {

11: v0 = vcn(i);

12: l = imvhei(j);

13: f = imhe(l).FACN;

14: l = PREVIFAC_HEDGE (f, wlf(l));

15: ecnl = ecn(l);

16: omhe(ecnl+4).V1 = v0;

17: q = fvhe + 2*seq.a[i];

18: omhe(ecnl+5).OTHE = p = q+1;

19: omhe(p).OTHE = ecnl+5;

20: omhe(ecnl+5).V0 = omhe(p).V1 = v0;

21: omhe(ecnl+5).V1 = omhe(p).V0 = v0+1;

22: omvhei(omv(v0) & FHEMASK) = ecnl+5;

23: omhe(q).OTHE = -1;

24: omhe(q).V0 = v0;

25: omhe(q).V1 = v0+d+1;

26: omvhei((omv(v0) & FHEMASK)+1) = q;

27: omhe(q).FACN = omhe(p).FACN = fvf+int(i);

28: omfhei(omfac(fvf+i) & FHEMASK) = q;

29: for (k = 0; k < d; k++) {

30: v0 = vcn(i)+k+1;

31: l = imvhei((imv(i) & FHEMASK) + k);

32: f = imhe(l).FACN;

33: ecnl = ecn(l);

34: omvhei(omv(v0) & FHEMASK) = p;

35: omfhei((omfac(fvf+i) & FHEMASK)+d+1-k) = p;

36: omhe(ecnl).V0 = omhe(ecnl+1).V1 = v0;

37: omhe(omhe(ecnl).OTHE).V1 = v0;

38: omhe(ecnl+2).V0 = omhe(ecnl+3).V1 = v0;

39: omhe(ecnl+2).V1 = omhe(ecnl+3).V0 = v0+1;

40: omvhei((omv(v0) & FHEMASK)+2) = ecnl;

41: omvhei((omv(v0) & FHEMASK)+3) = ecnl+2;

42: p = ecnl+3;

43: l = PREVIFAC_HEDGE (f, wlf(l));

44: ecnl = ecn(l);

45: omhe(ecnl).V1 = v0;

46: omhe(omhe(ecnl).OTHE).V0 = v0;

47: omvhei((omv(v0) & FHEMASK)+1) = ecnl+1;

48: }

49: omfhei((omfac(fvf+i) & FHEMASK)+1) = p;

50: l = imvhei((imv(i) & FHEMASK)+d-1);

51: ecnl = ecn(l);

52: omhe(ecnl+4).V0 = vcn(i)+d+1;

53: omvhei(omv(vcn(i)+d+1) & FHEMASK) = ecnl+3;

54: omvhei((omv(vcn(i)+d+1) & FHEMASK)+1) = ecnl+4;

908 31. ZAGĘSZCZANIE SIATEK

55: }

56: else {

57: for (k = 0; k < d; k++) {

58: v0 = vcn(i)+k;

59: v1 = (k < d-1) ? v0+1 : vcn(i);

60: l = imvhei((imv(i) & FHEMASK)+k);

61: f = imhe(l).FACN;

62: ecnl = ecn(l);

63: omhe(ecnl).V0 = v0;

64: omhe(ecnl+2).V0 = omhe(ecnl+3).V1 = v0;

65: omhe(ecnl+2).V1 = omhe(ecnl+3).V0 = v1;

66: omhe(omhe(ecnl).OTHE).V1 = v0;

67: omvhei(omv(v0) & FHEMASK) = ecnl;

68: omvhei((omv(v0) & FHEMASK)+1) = ecnl+2;

69: omvhei((omv(v1) & FHEMASK)+2) = ecnl+3;

70: omfhei((omfac(fvf+i) & FHEMASK)+d-1-k) = ecnl+3;

71: l = PREVIFAC_HEDGE (f, wlf(l));

72: ecnl = ecn(l);

73: omhe(ecnl).V1 = v0;

74: omhe(omhe(ecnl).OTHE).V0 = v0;

75: omvhei((omv(v0) & FHEMASK)+3) = omhe(ecnl).OTHE;

76: }

77: }

78: } /*DSetOMfhei3*/

Jeśli i-ty wierzchołek siatki danej jest brzegowy, to wywoływana w etapie 21 procedura
DSetOMfhei3 wykona dla tego wierzchołka instrukcje w liniach 11–54, a jeśli wewnętrzny,
to instrukcje w liniach 57–76. W liniach 8 i 9 zmiennym d i j zostają przypisane odpowiednio
stopień i-tegowierzchołka siatki danej i numermiejscaw tablicy imvhei, od którego zaczyna
się lista numerów wychodzących z niego półkrawędzi.

Wierzchołkowi o numerze i w siatce danej odpowiada pewna liczba wierzchołków siatki
wynikowej, o kolejnych numerach zaczynających się od vcn[i]. Na przykład wierzchoł-
kowi brzegowemu 3 siatki z rysunku 31.1 odpowiadają wierzchołki 9, 10, 11, 12 siatki z ry-
sunku 31.2, przy czym pierwszy i ostatni z tych wierzchołków są brzegowe. Półkrawędzie
w ich otoczeniu są konstruowane odpowiednio w liniach 11–28 i 49–54, czyli przed i po pętli
for, w której procedura tworzy dane opisujące półkrawędzie w otoczeniu wewnętrznych
kopii i-tego wierzchołka (brzegowego) siatki danej.

W linii 11 zmienna v0ma przypisywany numer pierwszego wierzchołka siatki wynikowej
odpowiadającego i-temu wierzchołkowi siatki danej (w przykładzie dla i = 3 jest v0=9).
W linii 13 zmienna f otrzymuje wartość będącą numerem ściany, do której należy pierwsza
półkrawędźwychodząca z i-tegowierzchołka, w rozpatrywanym przykładzie jest to ściana 3.

W linii 14 zmiennej l jest przypisywany numer wchodzącej do i-tego wierzchołka pół-
krawędzi tej ściany, czyli poprzedniej w zamkniętym w cykl ciągu półkrawędzi tej ściany (to
jest półkrawędź brzegowa, 8 w rozpatrywanym przykładzie); służy do tego makrodefinicja
PREVIFAC_HEDGE zamieszczona na listingu 31.14. W linii 15 zmiennej ecnl jest przypisy-

31.8. Implementacja podwajania 909

wany numer pierwszej z sześciu półkrawędzi wygenerowanych dla tej półkrawędzi w etapach
3 i 16 (w rozpatrywanym przykładzie półkrawędź ta ma numer 36).

Zmiennej q jest w linii 17 przypisywany identyfikator półkrawędzi brzegowej ściany siatki
wynikowej odpowiadającej i-temu wierzchołkowi siatki danej (w przykładzie to jest półkra-
wędź 66 ściany 16), a zmienna p otrzymuje w linii 18 wartość identyfikującą poprzednią
w cyklu półkrawędź tej ściany (numer 67 w przykładzie).

Informacje zapisywane do tablic zawierających reprezentację tworzonej siatki wyniko-
wej w liniach 16 i 18–28 są numerami wierzchołków początkowego i końcowego półkrawędzi
i numerami półkrawędzi do pary oraz numerem ściany; ponadto do list półkrawędzi wierz-
chołka (w linii 22 i 26) oraz ściany (w linii 28) są wpisywane numery odpowiednich półkra-
wędzi. W przykładzie półkrawędź q=66 otrzymuje numer pary -1 (bo reprezentuje krawędź
brzegową), a półkrawędzie p=67 i ecnl+5=41 zostają połączone w parę. W linii 27 półkrawę-
dzie 66 i 67 mają przypisywany numer ściany, do której należą, tj. 16 (numer ten jest sumą
liczby ścian i krawędzi siatki danej oraz numeru i wierzchołka tej siatki).

Liczba półkrawędzi wychodzących z i-tego wierzchołka jest równa d; dla takiego wierz-
chołka jest generowanych d + 2 wierzchołków, z których d to wierzchołki wewnętrzne. Pętla
w liniach 29–48 jest wykonywana d razy, aby wygenerować odpowiednie informacje dla tych
wierzchołków. Po wykonaniu instrukcji w liniach 30–33 zmienne v0, l, f i ecnl przechowują
odpowiednio numer wierzchołka początkowego półkrawędzi, numer kolejnej półkrawędzi
wychodzącej z i-tego wierzchołka siatki danej, numer ściany tej półkrawędzi i numer pierw-
szej z czterech półkrawędzi siatki wynikowej wygenerowanych dla tej półkrawędzi. W przy-
kładzie dla wierzchołka i=3 pętla zostanie wykonana dwa razy, za pierwszym razem jest
v0=10, l=11, f=3 i ecnl=50, a za drugim v0=11, l=6, f=1 i ecnl=24. Dla półkrawędzi 11
zostały wygenerowane półkrawędzie 50, 51, 52 i 53, które w etapie 15 zostały połączone
w dwie pary (listing 31.22, linie 15–18). W tym etapie trzeba jeszcze przypisać im odpowiednie
numery wierzchołków początkowych i końcowych oraz wpisać ich numery do list półkra-
wędzi odpowiednich wierzchołków i ścian.

Wartości przypisane zmiennym v0, l, f i ecnl w liniach 30, 32, 43 i 44 to numer kolejnej
kopii wierzchołka siatki danej (ta kopia w siatce wynikowej jest wierzchołkiem wewnętrz-
nym), numer kolejnej półkrawędzi wychodzącej z i-tego wierzchołka siatki danej, numer
jej ściany i numer pierwszej z półkrawędzi siatki wynikowej odpowiadających odpowiedniej
półkrawędzi siatki danej. W przykładzie, w pierwszym przebiegu pętli jest v0=10, l=11, f=3
i ecnl=50, a w drugim v0=11, l=6, f=1 i ecnl=24.

W liniach 34, 35 do list półkrawędzi wierzchołka v0 (na początku) i ściany odpowiadającej
i-temuwierzchołkowi siatki danej (na końcu) jest wpisywany numer półkrawędzi p, ustalony
przed wejściem w pętlę (w linii 18) lub w poprzednim przebiegu pętli (w linii 42). W przy-
kładzie za pierwszym razem jest p=67, a za drugim razem p=53. W linii 43 jest znajdowany
numer półkrawędzi siatki danej poprzedzający półkrawędź l, tj. kończącej się w i-tymwierz-
chołku półkrawędzi ściany f, co umożliwia przypisanie odpowiedniej półkrawędzi siatki
wynikowej numeru jej wierzchołka końcowego, czyli v0.

Po zakończeniu pętli pozostaje uzupełnienie informacji dla półkrawędzi w otoczeniu
ostatniej kopii i-tego wierzchołka (w przykładzie kopia ta ma numer 12). Numer p pierwszej

910 31. ZAGĘSZCZANIE SIATEK

wychodzącej z niego półkrawędzi (27 w przykładzie) został ustalony w ostatnim przebiegu
pętli i trzeba go dopisać (w linii 49) do listy półkrawędzi ściany odpowiadającej i-temuwierz-
chołkowi. Ostatnie dwa przypisania (w liniach 53, 54) wpisują do listy półkrawędzi tej kopii
wierzchołka indeksy dwóch półkrawędzi z niego wychodzących.

Postępowanie dla ściany odpowiadającej wierzchołkowi wewnętrznemu siatki danej jest
prostsze, bo wszystkie wierzchołki tej ściany są wewnętrzne, czyli jednakowego rodzaju. Wy-
daje mi się, że zamieszczanie szczegółowego opisu instrukcji w liniach 57–76 jest zbędne, bo
po lekturze opisu postępowania ze ścianą dla i-tego wierzchołka brzegowego Czytelnik jest
w stanie poradzić sobie z rozszyfrowaniem działania tego fragmentu procedury. Może w tym
pomóc przykład: wierzchołkowi 0 siatki z rysunku 31.1 odpowiada ściana 13 siatki wyniko-
wej z rysunku 31.2. Podczas przetwarzania tej ściany zmienna v0 przyjmuje (w kolejnych
przebiegach pętli) wartości 0, 1, 2. Zmienna f przyjmuje wartści 0, 1, 3, a zmiennej ecnl
w linii 62 są nadawane kolejnowartości 0, 62, 20, a w linii 72wartości 8, 12, 50, identyfikujące
odpowiednie krawędzie siatki wynikowej.

31.9. Implementacja uśredniania

Listing 31.25 przedstawia procedurę w C, która wywołuje szader w celu zrealizowania ko-
lejno wszystkich etapów uśredniania. Numery tych etapów następują po numerach etapów
podwajania, a procedury i makrodefinicje realizujące poszczególne etapy są przedstawione
na kolejnych listingach.

Listing 31.25. Procedura uśredniania
C

1: char GPUmeshAveraging (GPUmesh *inmesh, GPUmesh *outmesh)

2: {

3: int inv, inhe, infac, invb, onv, onhe, onfac;

4: GLint bufsize, bs;

5: GLuint auxbuf = 0;

6:

7: glUseProgram (progid[0]);

8: glBindBufferBase (GL_UNIFORM_BUFFER, rbbp, rbuf);

9: inv = inmesh->nv; inhe = inmesh->nhe; infac = inmesh->nfac;

10: glBindBufferBase (SSB, 1, inmesh->MVFBUF);

11: glBindBufferBase (SSB, 2, inmesh->MHEBUF);

12: glBindBufferBase (SSB, 3, inmesh->VCBUF);

13: SETUVAR (1, GLint, inmesh->nsattr)

14: SETUVAR (2, GLint, inv)

15: SETUVAR (3, GLint, inhe)

16: SETUVAR (4, GLint, infac)

17: bs = inv > infac ? inv : infac;

18: bufsize = (2*inv+2*inhe+infac+bs)*sizeof(GLint);

19: glGenBuffers (1, &auxbuf);

20: glBindBufferBase (SSB, 0, auxbuf);

31.9. Implementacja uśredniania 911

21: glBufferData (SSB, bufsize, NULL, GL_DYNAMIC_DRAW);

22: ExecStage (uvofs, 2, inv); /* TagVertex */

23: SumUp (uvofs, 0, inv);

24: glGetBufferSubData (SSB, 0, sizeof(GLint), &invb);

25: onfac = inv - invb; SETUVAR (7, GLint, onfac)

26: if (invb == 0) {

27: onv = infac; onhe = inhe;

28: ExecStage (uvofs, 22, infac); /* ASetNvi1 */

29: ExecStage (uvofs, 23, inhe); /* ASetNhei1 */

30: ExecStage (uvofs, 24, inv); /* ASetNfi1 */

31: }

32: else {

33: ExecStage (uvofs, 25, infac); /* ASetNvi2 */

34: PrefixSum (uvofs, 0, infac);

35: SumUp (uvofs, 2*infac+inhe+inv, infac);

36: glGetBufferSubData (SSB, (2*infac+inhe+inv)*sizeof(GLint),

37: sizeof(GLint), &onv);

38: ExecStage (uvofs, 26, inv); /* ASetNfi2, true */

39: PrefixSum (uvofs, 2*infac+inhe, inv);

40: ExecStage (uvofs, 27, inhe); /* ASetNhei2 */

41: PrefixSum (uvofs, 2*infac, inhe);

42: glGetBufferSubData (SSB, (2*infac+inhe-1)*sizeof(GLint),

43: sizeof(GLint), &onhe);

44: ExecStage (uvofs, 28, infac); /* ASetNvi2, false */

45: ExecStage (uvofs, 29, inhe); /* ASetNhei3 */

46: ExecStage (uvofs, 30, inv); /* ASetNfi3 */

47: }

48: SETUVAR (5, GLint, onv)

49: SETUVAR (6, GLint, onhe)

50: if (!ReallocGPUmesh (outmesh, onv, onhe, onfac, inmesh->nsattr,

51: inmesh->pdim, inmesh->pofs, inmesh->nvofs))

52: goto failure;

53: glBindBufferBase (SSB, 4, outmesh->MVFBUF);

54: glBindBufferBase (SSB, 5, outmesh->MHEBUF);

55: glBindBufferBase (SSB, 6, outmesh->VCBUF);

56: ExecStage (uvofs, 31, inv); /* AClearFVd */

57: ExecStage (uvofs, 32, inv); /* ASetFVd1 */

58: PrefixSum (uvofs, 2*infac+inhe+inv, inv);

59: ExecStage (uvofs, 33, inv); /* ASetFVd2 */

60: ExecStage (uvofs, 34, infac); /* AClearFvd */

61: ExecStage (uvofs, 35, infac); /* ASetOMVert, true */

62: PrefixSum (uvofs, 2*infac+inhe+inv, infac);

63: ExecStage (uvofs, 36, infac); /* ASetOMVert, false */

64: ExecStage (uvofs, 37, inhe); /* ABindHe */

65: ExecStage (uvofs, 38, inv); /* ASetOMfacHe */

66: ExecStage (uvofs, 39, infac); /* Average */

67: glUseProgram (0);

912 31. ZAGĘSZCZANIE SIATEK

68: glDeleteBuffers (1, &auxbuf);

69: ExitIfGLError ("GPUmeshAveraging");

70: return true;

71:

72: failure:

73: glUseProgram (0);

74: glDeleteBuffers (1, &auxbuf);

75: return false;

76: } /*GPUMeshAveraging*/

Wchwili wywołania procedury uśredniania siatka dana jest reprezentowana przez zawar-
tość tablic umieszczonych w odpowiednich buforach w pamięci GPU; instrukcje w liniach
10–16 przywiązują te bufory do odpowiednich punktów dowiązania w celu GL_SHADER_-
STORAGE_BUFFER i przypisują zmiennym jednolitym nsattr, inv, inhe i infac liczbę
atrybutów wierzchołka i liczby wierzchołków, półkrawędzi i ścian siatki danej. W liniach 17–
18 jest obliczana potrzebna wielkość bufora pomocniczego, a następnie bufor ten jest rezer-
wowany i przywiązywany do punktu 0w celu GL_SHADER_STORAGE_BUFFER. W liniach 22–
23 szader zlicza wierzchołki (czyli także krawędzie) brzegowe siatki danej. Dalsze obliczenia
zależą od tego, czy liczba tych wierzchołków jest zerem (wtedy wykonywane są instrukcje
w liniach 27–30), czy też nie (i wtedy trzeba wykonać instrukcje w liniach 33–46).

Zmienne jednolite wykorzystywane przez procedurę uśredniania są przedstawione na
listingu 31.9, a ponadto podczas uśredniania jest potrzebnych pięć tablic liczb całkowitych
przechowywanych we wspomnianym wcześniej pomocniczym buforze magazynowym seq

dowiązanym do punktu dowiązania 0; odpowiednie makrodefinicje ułatwiające dostęp do
tych tablic są pokazane na listingu 31.26.

Listing 31.26. Tablice pomocnicze procedury uśredniania
GLSL

1: #define nvi(I) seq.a[I]

2: #define fvnum(I) seq.a[infac+(I)]

3: #define nhei(I) seq.a[2*infac+(I)]

4: #define nfi(I) seq.a[2*infac+inhe+(I)]

5: #define fvd(I) seq.a[2*infac+inhe+inv+(I)]

Listing 31.27 przedstawia instrukcje realizujące etapy 22–24, wykonywane, gdy siatka
dana nie ma brzegu, tj. gdy wszystkie jej wierzchołki i krawędzie są wewnętrzne. Wtedy każ-
dej ścianie odpowiada jeden wierzchołek siatki wynikowej (makro ASetNvi wpisuje do tab-
licy nvi, na i-tymmiejscu numer ściany, której odpowiada wierzchołek, równy i, a w tablicy
fvnum liczbę wierzchołków odpowiadających tej ścianie, czyli 1). Również każdej półkra-
wędzi siatki danej odpowiada jedna półkrawędź siatki wynikowej, może ona mieć ten sam
numer, wpisywany do tablicy nhei przez makro ASetNhei1. Ponadto i-temu wierzchoł-
kowi siatki danej odpowiada jedna, i-ta ściana siatki wynikowej, numer i jest wpisywany
przez makro ASetNfi1 do tablicy nfi.

31.9. Implementacja uśredniania 913

Listing 31.27. Początkowe etapy uśredniania dla siatek bez krawędzi brzegowych
GLSL

1: #define ASetNvi1(i) { nvi(i) = int(i); fvnum(i) = 1; } /* etap 22 */

2: #define ASetNhei1(i) nhei(i) = int(i); /* etap 23 */

3: #define ASetNfi1(i) nfi(i) = int(i); /* etap 24 */

Bardziej skomplikowane obliczenia są potrzebne podczas uśredniania siatek zawierają-
cych wierzchołki i krawędzie brzegowe. Zadaniem procedury ASetNvi2 (listing 31.28) jest
znalezienie, dla i-tej ściany siatki danej, liczby odpowiadających jej wierzchołków siatki wy-
nikowej. Procedura ta jest wywoływana dwukrotnie, w etapach 25 i 28, przy czym za pierw-
szym razem parametr firstmawartość true, a za drugim false (listing 31.12, linie 36 i 39).
Pętla w liniach 8–14 służy do zbadania, czy wszystkie wierzchołki ściany są wewnętrzne; jeśli
tak, to ścianie tej odpowiada jeden wierzchołek (co zostaje odnotowane w linii 16). W prze-
ciwnym razie instrukcje w liniach 19–27 znajdują liczbę spójnych podciągów wierzchołków
wewnętrznych półkrawędzi tej ściany.

Listing 31.28. Liczenie wierzchołków odpowiadających ścianie siatki z brzegiem
GLSL

1: void ASetNvi2 (uint i, bool first) /* etap 25, 28 */

2: {

3: int d, fhe, v0, v1, j, k, l;

4: bool s0, s1;

5:

6: d = imfac(i) >> DEGSHIFT;

7: fhe = imfac(i) & FHEMASK;

8: for (j = 0, s0 = true; j < d; j++) {

9: v0 = imhe(imfhei(fhe+j)).V0;

10: if ((imv(v0) & TAGMASK) != 0) {

11: s0 = false;

12: break;

13: }

14: }

15: if (s0)

16: k = 1;

17: else {

18: s0 = (imv(v0) & TAGMASK) != 0;

19: for (l = k = 0; l < d; l++) {

20: v1 = imhe(imfhei(fhe+j)).V1;

21: s1 = (imv(v1) & TAGMASK) != 0;

22: if (s0 && !s1)

23: k ++;

24: v0 = v1; s0 = s1;

25: j = j >= d-1 ? 0 : j+1;

26: }

27: }

28: if (first) {

914 31. ZAGĘSZCZANIE SIATEK

29: fvnum(i) = fvd(i) = k;

30: if (i == 0)

31: nvi(0) = 0;

32: if (i < infac-1)

33: nvi(i+1) = k;

34: }

35: else if (k == 0)

36: nvi(i) = -1;

37: } /*ASetNvi2*/

Podczas pierwszego wywołania procedura zapisuje liczbę k wierzchołków odpowiadają-
cych i-tej ścianie w tablicach fvnum i fvd, a w tablicy nvi, na pozycji i+1; ponadto następuje
przypisanie nvi[0] = 0;, po czym (listing 31.25, linie 34 i 35) w tablicy nvi jest obliczany
ciąg sum prefiksowych, a w tablicy fvd jest obliczana suma wszystkich liczb. Suma ta, od-
czytywana w liniach 36–37, jest całkowitą liczbą wierzchołków siatki wynikowej.

Jeśli i-tej ścianie odpowiada 0 wierzchołków, to podczas drugiego wywołania procedury
ASetNvi2 dla wyróżnienia tego faktu zmiennej nvi[i] jest przypisywana wartość -1.

Procedura ASetNfi2 (listing 31.29), wykonywana w etapie 26, wpisuje do tablicy nfi

ciąg zer i jedynek; zero odpowiada wierzchołkowi brzegowemu siatki danej, a jedynka we-
wnętrznemu, przy czym nfi[0] otrzymuje wartość 0, a dla i-tego wierzchołka odpowiada-
jąca mu liczba trafia do tablicy na miejsce i + 1. Następnie jest obliczany ciąg sum prefik-

Listing 31.29. Kolejne etapy wstępne uśredniania siatki z brzegiem
GLSL

1: void ASetNfi2 (uint i) /* etap 26 */

2: {

3: if (i == 0)

4: nfi(i) = 0;

5: else

6: nfi(i) = int((imv(i-1) & TAGMASK) == 0);

7: } /*ASetNfi2*/

8:

9: void ASetNhei2 (uint i) /* etap 27 */

10: {

11: if (i == 0)

12: nhei(i) = 0;

13: else

14: nhei(i) = int((imv(imhe(i-1).V1) & TAGMASK) == 0);

15: } /*ASetNhei2*/

16:

17: #define ASetNhei3(i) /* etap 29 */ \

18: { if ((imv(imhe(i).V1) & TAGMASK) != 0) nhei(i) = -1; }

19: #define ASetNfi3(i) /* etap 30 */ \

20: { if ((imv(i) & TAGMASK) != 0) nfi(i) = -1; }

31.9. Implementacja uśredniania 915

sowych w tej tablicy. Elementy tego ciągu przyporządkowują wierzchołkom wewnętrznym
siatki danej odpowiadające im numery ścian siatki wynikowej.

Podobnie procedura ASetNhei2 (etap 27) dla półkrawędzi i − 1 siatki danej przypisuje
zmiennej nhei[i] zero albo jedynkę; jedynkę wtedy, gdy końcowy wierzchołek półkrawę-
dzi nie jest brzegowy. Dla wpisanego do tablicy ciągu (z zerem na początku) jest obliczany
ciąg sum prefiksowych, który określa numery półkrawędzi siatki wynikowej odpowiada-
jące półkrawędziom siatki danej. W etapie 29 jest wykonywana instrukcja w makrodefinicji
ASetNhei3, która dla półkrawędzi zakończonych wierzchołkiem brzegowym wpisuje liczbę
-1 na miejsce obliczonej (i nieistotnej dla takiej półkrawędzi) sumy prefiksowej. Podobne
zadanie wykonujemakro ASetNfi3 (etap 30), które do tablicy nfiwpisuje -1 dla wierzchoł-
ków brzegowych—w siatce wynikowej nie ma ścian odpowiadających takimwierzchołkom.

Procedura GPUmeshAveraging po zakończeniu opisanych wyżej etapów ma obliczone
liczby wierzchołków, półkrawędzi i ścian siatki wynikowej i w linii 50 dokonuje rezerwacji
buforów w pamięci GPU, w których ma się znaleźć ta siatka. W liniach 53–55 procedura
przywiązuje te bufory do odpowiednich punktów dowiązania.

Listing 31.30. Tworzenie list półkrawędzi dla ścian siatki wynikowej
GLSL

1: #define AClearFVd(i) fvd(i) = 0; /* etapy 31 i 34 */

2:

3: void ASetFVd1 (uint i) /* etap 32 */

4: {

5: int k;

6:

7: if ((k = nfi(i)) >= 0)

8: fvd(k) = imv(i) >> DEGSHIFT;

9: } /*ASetFVd1*/

10:

11: void ASetFVd2 (uint i) /* etap 33 */

12: {

13: int k;

14:

15: if ((k = nfi(i)) >= 0)

16: omfac(k) = (imv(i) & DEGMASK) | (k > 0 ? fvd(k-1) : 0);

17: } /*ASetFVd2*/

Pokazane na listingu 31.30 procedury, wykonywane w etapach 31–33, znajdują, dla ścian
siatki wynikowej, pozycje początków ich list półkrawędzi w tablicy omfhei. W tym celu ma-
kro AClearFVd kasuje zawartość tablicy fvd, po czym procedura ASetFVd1, jeśli i-ty wierz-
chołek siatki danej jest wewnętrzny (czyli odpowiada mu pewna ściana siatki wynikowej,
ma ona numer k znaleziony wcześniej i zapisany w tablicy nfi), zmiennej fvd[k] przypi-
suje stopień tej ściany (który będzie stopniem tego wierzchołka). Po zakończeniu etapu 32

w tablicy fvd zostaje obliczony ciąg sum prefiksowych, określający pozycje początków list
półkrawędzi. Procedura ASetFVd2, wywołana dla i-tego wierzchołka, jeśli odpowiada mu

916 31. ZAGĘSZCZANIE SIATEK

ściana (o numerze k), zapisuje w tablicy omfac stopień tej ściany (który jest stopniem i-tego
wierzchołka) i pozycję początku jej listy półkrawędzi.

W etapie 34 tablica fvd jest ponownie kasowana za pomocą procedury AClearFVd (przy
czym teraz jej długość jest równa n f), po czym w etapie 35 następuje pierwsze wywołanie
(z parametrem first równym true) procedury ASetOMVert pokazanej na listingu 31.31.
Parametr i jest numerem ściany siatki danej.

Listing 31.31. Tworzenie wierzchołków siatki wynikowej
GLSL

1: void ASetOMVert (uint i, bool first) /* etap 35, 36 */

2: {

3: int n, d, fhe, r, s, t, j, k, l, v0, v1, m, e;

4:

5: if ((r = fvnum(i)) > 0) {

6: n = nvi(i);

7: d = imfac(i) >> DEGSHIFT;

8: fhe = imfac(i) & FHEMASK;

9: for (k = 0; k < d; k++) {

10: v1 = imhe(imfhei(fhe+k)).V1;

11: if ((imv(v1) & TAGMASK) != 0)

12: break;

13: }

14: if (!first)

15: j = i > 0 ? fvd(i-1) : 0;

16: for (s = 0; s < r; s++, n++) {

17: do {

18: k = k >= d-1 ? 0 : k+1;

19: v1 = imhe(imfhei(fhe+k)).V1;

20: } while ((imv(v1) & TAGMASK) != 0);

21: for (m = 0, t = (k+1) % d; m < d; m++, t = (t+1) % d) {

22: v0 = imhe(imfhei(fhe+t)).V0;

23: if ((imv(v0) & TAGMASK) != 0)

24: break;

25: }

26: if (first)

27: fvd(i) += m;

28: else {

29: omv(n) = (m << DEGSHIFT) | j;

30: for (l = m-1, t = k; l >= 0; l--, t = (t+1) % d) {

31: v1 = imhe(imfhei(fhe+t)).V1;

32: omvhei(j+l) = e = nhei(imfhei(fhe+t));

33: omhe(e).V0 = n;

34: omhe(e).FACN = nfi(v1);

35: }

36: j += m;

37: }

38: }

31.9. Implementacja uśredniania 917

39: }

40: } /*ASetOMVert*/

Pierwszą czynnością w procedurze jest sprawdzenie, czy liczba r wierzchołków siatki
wynikowej odpowiadających tej ścianie jest dodatnia (ta informacja jest obecna w tablicy
fvnum). Jeśli r = 0, to procedura nie ma nic do roboty. W przeciwnym razie w pętli w liniach
9–13 jest wyszukiwana (i zapamiętywana w zmiennej k) pozycja pierwszego identyfikatora
półkrawędzi, której końcowy wierzchołek jest brzegowy.

W pętli w liniach 16–38 lista półkrawędzi ściany jest przeglądana (cyklicznie) od tego
miejsca i dla każdego spójnego podciągu półkrawędzi, których końce są wierzchołkami we-
wnętrznymi, jest tworzony kolejnywierzchołek siatki wynikowej odpowiadający i-tej ścianie.
Pętla w liniach 17–20 ma na celu znalezienie pierwszej półkrawędzi w liście, której końcowy
wierzchołek jest wewnętrzny, a pętla w liniach 21–25 znajduje ostatnią taką półkrawędź. War-
tość zmiennej m po zakończeniu tej pętli jest liczbą półkrawędzi wychodzących z tworzonego
wierzchołka; liczby półkrawędzi wychodzących ze wszystkich wierzchołków utworzonych
dla i-tej ściany są (w pierwszym wywołaniu procedury) sumowane na i-tej pozycji w tab-
licy fvd.

Po zakończeniu etapu 35 obliczany jest ciąg sumprefiksowychw tablicy fvd. W etapie 36
proceduraASetOMVert (listing 31.31) jestwywoływana ponownie, z parametremfirst rów-
nym false. Podczas tego wywołania lista półkrawędzi i-tej ściany jest ponownie przeszuki-
wana. Liczba na i-tym miejscu w tablicy fvd określa miejsce w tablicy omvhei, od którego
zaczyna się lista półkrawędzi pierwszego wierzchołka siatki wynikowej odpowiadającego i-
tej ścianie; w linii 15 jest ona przypisywana zmiennej j. Instrukcje w liniach 29–36 tworzą
opisy wierzchołków. W linii 29 jest zapisywany stopień i pozycja początku listy kolejnego
wierzchołka (który ma numer n), a w pętli w liniach 30–35 numery półkrawędzi wychodzą-
cych z tego wierzchołka są zapisywane w liście (tj. wpisywane do tablicy omvhei). W re-
prezentacji każdej z tych półkrawędzi jest zapisywany numer jej wierzchołka początkowego
(czyli n) i numer jej ściany.

Listing 31.32. Łączenie półkrawędzi w pary
GLSL

1: void ABindHe (uint i) /* etap 37 */

2: {

3: int k;

4:

5: if ((k = nhei(i)) >= 0)

6: omhe(k).OTHE = nhei(imhe(i).OTHE);

7: } /*ABindHe*/

Zadaniem procedury ABindHe wykonywanej w etapie 37 (listing 31.32) jest połączenie
w pary półkrawędzi reprezentujących krawędzie wewnętrzne siatki wynikowej. Parametr i
jest numerempółkrawędzi w siatce danej, a zmiennej k jest przypisywany numer odpowiada-
jącej jej półkrawędzi siatki wynikowej, znaleziony i zapamiętany w tablicy nhei w etapie 23
(jeśli siatka dana nie ma brzegu) albo 27 (jeśli ma).

918 31. ZAGĘSZCZANIE SIATEK

Listing 31.33. Tworzenie list półkrawędzi ścian
GLSL

1: void ASetOMfacHe (uint i) /* etap 38 */

2: {

3: int k, d, j, l, m, v1;

4:

5: if ((k = nfi(i)) >= 0) {

6: d = imv(i) >> DEGSHIFT;

7: j = imv(i) & FHEMASK;

8: l = omfac(k) & FHEMASK;

9: for (m = 0; m < d; m++)

10: omfhei(l+m) = nhei(imhe(imvhei(j+d-1-m)).OTHE);

11: for (m = d-1, v1 = omhe(omfhei(l)).V0;

12: m >= 0;

13: v1 = omhe(omfhei(l+m)).V0, m--)

14: omhe(omfhei(l+m)).V1 = v1;

15: }

16: } /*ASetOMfacHe*/

W etapie 38 procedura ASetOMfacHe tworzy listy półkrawędzi ścian siatki wynikowej
i uzupełnia informacje w reprezentacji półkrawędzi, przypisując im numery wierzchołków
końcowych.

Wisienką na torcie jest ostatni etap uśredniania, czyli numeryczne obliczenie środków
ciężkości zbiorów wierzchołków ścian siatki danej. Wykonuje go procedura Average przed-
stawiona na listingu 31.34. Dla i-tej ściany, której odpowiada co najmniej jeden wierzchołek
siatki wynikowej (to sprawdzane jest w linii 6) procedura odczytuje z tablicy nvi numer n
pierwszego odpowiadającego jej wierzchołka oraz stopień ściany, czyli liczbę jej wierzchoł-
ków. Pętle w liniach 12–13 i 14–18 obliczają sumy poszczególnych atrybutów (np. współrzęd-
nych położeń) tychwierzchołków, a pętla w liniach 20–21dzieli obliczone sumy przez stopień.
Zadaniem pętli w liniach 22–23 jest wykonanie odpowiedniej liczby kopii obliczonych atry-
butów, dla wszystkich wierzchołków siatki wynikowej odpowiadających i-tej ścianie siatki
danej (zobacz opis etapów 24–27).

Listing 31.34. Obliczanie atrybutów wierzchołków
GLSL

1: void Average (uint i) /* etap 39 */

2: {

3: int r, n, d, j, iv, ov, k, l;

4: float id;

5:

6: if ((r = fvnum(i)) > 0) {

7: n = nvi(i);

8: ov = n*nsattr;

9: d = imfac(i) >> DEGSHIFT;

10: j = imfac(i) & FHEMASK;

11: iv = imhe(imfhei(j)).V0*nsattr;

31.10. Procedura zagęszczania siatki 919

12: for (l = 0; l < nsattr; l++)

13: omvc(ov+l) = imvc(iv+l);

14: for (k = 1; k < d; k++) {

15: iv = imhe(imfhei(j+k)).V0*nsattr;

16: for (l = 0; l < nsattr; l++)

17: omvc(ov+l) += imvc(iv+l);

18: }

19: id = 1.0/float(d);

20: for (l = 0; l < nsattr; l++)

21: omvc(ov+l) *= id;

22: for (l = 0; l < (r-1)*nsattr; l++)

23: omvc(ov+l+nsattr) = omvc(ov+l);

24: }

25: } /*Average*/

31.10. Procedura zagęszczania siatki

Listing 31.35 przedstawia procedurę, która posługując się opisanymi wcześniej procedurami
podwajania i uśredniania dokonuje zagęszczania siatki. Przed jej użyciem należy przygoto-
wać do pracy program szaderów, którego części są przedstawione na listingach 31.9, 31.12,
31.14–31.24 oraz 31.26–31.34 i G.8 i umieścić siatkę daną w pamięci GPU. Procedury, które to
robią, są przedstawione na listingach 31.10 i 31.8.

Uwaga: W przedstawionej tu implementacji zagęszczania brakuje sprawdzeń koniecznych
w oprogramowaniu ogólnoużytkowym. W wersji „komercyjnej” powinno być sprawdzenie,
czy operacja podwajania nie wytworzy siatki, która ma więcej niż 225 półkrawędzi, a także
sprawdzenia, czy siatka dana nie jest lub siatka otrzymana przez uśrednianie nie będzie pusta.

Pierwszy parametr procedury GPUmeshRefinement jest jest liczbą kroków uśredniania
po zagęszczaniu siatki, musi mieć wartość co najmniej 1 (i co najwyżej kilka). Drugi para-
metr jestwskaźnikiem struktury, w której są przechowywane informacje o siatce danej: liczby
wierzchołków, półkrawędzi i ścian, wymiar przestrzeni wierzchołków (tj. liczba współrzęd-
nych położenia każdego wierzchołka i innych atrybutów) oraz tablica z identyfikatorami bu-
forów OpenGL-a z tablicami zawierającymi reprezentację siatki. Parametr trzeci wskazuje
analogiczną strukturę, w której zostanie zapisana informacja o wyniku zagęszczania, przy
czym może w niej być albo poprawna reprezentacja innej siatki (która zostanie usunięta)
albo należy tę strukturę (np. przed pierwszym wywołaniem procedury zagęszczania) wypeł-
nić zerami.

ProceduraGPUmeshRefinementposługuje się dodatkową strukturą typu GPUmeshdo re-
prezentowania pośrednich wyników zagęszczania — wyniku podwajania i kolejnych uśred-
niań oprócz ostatniego. Wywołanie procedury glDeleteBuffersw linii 16 likwiduje repre-
zentację już niepotrzebnej siatki, która została poddana uśrednianiu. Kasowanie (w linii 17)
zmiennych, w których były pamiętane identyfikatory buforów, jest w zasadzie zbędne; proce-
dura ReallocGPUmesh, wywołana przez procedury podwajania i uśredniania (listing 31.13,

920 31. ZAGĘSZCZANIE SIATEK

linie 30–31 i listing 31.25, linie 50–51), ponownie wywołałaby procedurę glDeleteBuffers,
aby zwolnić bufory przed ich ponownym utworzeniem (i nadaniem nowej potrzebnej wiel-
kości), co nie jest szkodliwe12, ale zapobieganie temu przez odpowiednio napisany kod uwa-
żam za przejaw większej elegancji stylu programowania.

Listing 31.35. Procedura zagęszczania siatki
C

1: char GPUmeshRefinement (int n, GPUmesh *inmesh, GPUmesh *outmesh)

2: {

3: GPUmesh mmesh, *am, *bm, *cm;

4: int i;

5:

6: if (n < 1)

7: return false;

8: memset (&mmesh, 0, sizeof(GPUmesh));

9: if (n & 0x01) { am = &mmesh; bm = outmesh; }

10: else { am = outmesh; bm = &mmesh; }

11: if (!GPUmeshDoubling (inmesh, am))

12: goto failure;

13: for (i = 0; i < n; i++) {

14: if (!GPUmeshAveraging (am, bm))

15: goto failure;

16: glDeleteBuffers (4, am->mbuf);

17: memset (am->mbuf, 0, 4*sizeof(GLuint));

18: cm = am; am = bm; bm = cm;

19: }

20: return true;

21:

22: failure:

23: glDeleteBuffers (4, am->mbuf);

24: glDeleteBuffers (4, bm->mbuf);

25: return false;

26: } /*GPUmeshRefinement*/

Siatkę o stosunkowo niewielkiej liczbie wierzchołków i ścian możemy poddać zagęszcza-
niu, którego wynik możemy również zagęścić i powtórzyć to kilka razy — otrzymamy w ten
sposób kilka siatek, których możemy użyć do wybrania odpowiedniego poziomu szczegóło-
wości rysowanego modelu. Jeśli powierzchnia na obrazie jest mała, to wystarczy wyświetlić
obraz siatki omałej liczbie ścian, niemarnując czasu na niedostrzegalne na obrazie szczegóły.
Siatki gęste przydadzą się dowykonania obrazówprzedstawiających powierzchniew powięk-
szeniu.

12Podobnie zachowują się inne procedury gospodarowania zasobamiwOpenGL-u; jeśli przekazany procedu-
rze likwidacji identyfikator nie jest związany z istniejącymobiektem takim jak bufor, obraz, tekstura, programem

szaderów itd., to jest przez tę procedurę ignorowany, bez sygnalizowania błędu.

31.11. *Uzupełnienia 921

Czytelnik może zadawać sobie pytanie: jak szader o takiej wielkości jak opisany w tym
rozdziale szader do zagęszczania siatek napisać i doprowadzić do działania? Podstawową po-
mocą dlamnie były napisane wcześniej sekwencyjne implementacje algorytmów podwajania
i uśredniania działające na CPU. W roboczych wersjach procedur GPUmeshDoubling i GPU-
meshAveraging umieściłem po wywołaniach poszczególnych etapów obliczeń instrukcje
przepisujące zawartość buforów do tablicy w pamięci CPU, co umożliwiło mi porówny-
wanie wyników obliczeń w tych etapach z częściowymi wynikami obliczeń implementacji
sekwencyjnej. Podstawowa zasada jest taka, aby zabierać się do programowania kolejnego
etapu obliczeń dopiero po uruchomieniu etapów wcześniejszych. Trzeba się liczyć z tym, że
zaimplementowanie i uruchomienie algorytmu na GPU może zabrać dużo więcej czasu niż
napisanie algorytmu sekwencyjnego — tak było w tym przypadku.

31.11. *Uzupełnienia

Numeryczne obliczanie współrzędnych wierzchołków siatki będącej wynikiem podwajania
lub uśredniania jest tylko jednym z wielu etapów obliczeń; pozostałe etapy mają na celu
znalezienie list półkrawędzi wychodzących z poszczególnych wierzchołków lub otaczających
ściany oraz powiązań półkrawędzi w pary, co (nie bez powodu) będziemy nazywać topologią
siatki. Obliczanie współrzędnych zajmuje niewielką część czasu trwania całej operacji prze-
twarzania siatki13. Jeśli podczas działania aplikacji trzeba zagęszczać siatkę, której wierz-
chołki zmieniają położenia, ale topologia pozostaje niezmieniona, warto podzielić zagęsz-
czanie siatki na dwie procedury. Topologię siatki zagęszczonej wystarczy znaleźć tylko raz,
w preprocesingu, a później, podczas rysowania kolejnych klatek animacji, pozostaje tylko
obliczanie współrzędnych.

31.11.1. Macierz zagęszczania

Każdy wierzchołek siatki otrzymanej przez podwajanie jest kopią jednego, a każdy wierzcho-
łek wyniku uśredniania jest środkiem ciężkości (średnią arytmetyczną) kilku wierzchołków
ściany siatki danej. Można stąd udowodnić, że każdy wierzchołek siatki otrzymanej przez za-
gęszczanie jest kombinacją afiniczną (zobacz s. 108) wierzchołków siatki danej. Dzięki temu
obliczenie współrzędnych może być wykonane przez mnożenie macierzy

Y = RX .

Symbol X w powyższym wzorze oznacza macierz o wymiarach nv × d, której każdy wiersz
składa się z d współrzędnych kolejnego wierzchołka siatki danej; liczba nv jest liczbą tych
wierzchołków. Podobnie, wiersze macierzy Y o wymiarachmv × d reprezentują wierzchołki
siatki zagęszczonej. Macierz R o wymiarach mv × nv , którą nazwiemy macierzą zagęszcza-
nia, jest rzadka, tj. większość jej współczynników jest równa 0. Pozostałe współczynniki są
dodatnie, a w każdym wierszu ich suma jest równa 1.14

13Jaką dokładnie, to zależy od siatki i od procesora graficznego.
14Macierz o tej własności jest nazywana macierzą stochastyczną. Iloczyn takich macierzy też jest macierzą

stochastyczną.

922 31. ZAGĘSZCZANIE SIATEK

Macierz R = An . . .A1D jest iloczynemmacierzy podwajania D oraz n macierzy uśred-
niania Ak . Jeśli i-ty wierzchołek siatki otrzymanej przez podwajanie jest kopią j-tego wierz-
chołka siatki danej, to współczynnik di j macierzy D jest równy 1, a pozostałe współczynniki
w i-tym wierszu są zerem. Z kolei w i-tym wierszu macierzy Ak jest s niezerowych współ-
czynników; są one równe 1/s, gdzie s jest stopniem, tj. liczbą wierzchołków pewnej ściany
siatki poddawanej uśrednianiu. Współczynniki te znajdują się w kolumnach, których nu-
mery są numerami tych wierzchołków15. Zapewnia to, że i-ty wierzchołek siatki otrzymanej
przez uśrednianie jest środkiem ciężkości wierzchołków tej ściany.

Macierz R jest nieregularna, tj. jej niezerowe współczynniki są rozmieszczone dowol-
nie. Podrozdział G.4 zawiera opis sposobu reprezentowania takichmacierzy w pamięci GPU
i implementacji algorytmów ich przetwarzania, odpowiednich do naszych celów.

Listing 31.36. Opakowanie macierzy zagęszczania
C

1: typedef struct {

2: GPUmesh *cm, *fm;

3: GPUSparseMatrix mat;

4: } MeshRefineMatrix;

Na listingu 31.36 jest pokazana struktura służąca jako opakowanie macierzy zagęszcza-
nia. Ponieważ macierz jest związana z siatkami o ustalonych topologiach, struktura zawiera
wskaźniki cm i fm opakowań tych siatek. Pole mat jest opakowaniem samej macierzy; defi-
nicja typu GPUSparseMatrix jest zamieszczona na listingu G.13. W polu tym są przecho-
wywane wymiary macierzy, całkowita liczba niezerowych współczynników i identyfikatory
buforów w pamięci GPU, w których są przechowywane tablice z położeniami niezerowych
współczynników i te współczynniki.

31.11.2. Szader i procedura znajdowania macierzy zagęszczania

Aby otrzymać szader obliczeniowy i procedury, które znajdują tę samą topologię zagęszczo-
nej siatki, ale zamiast obliczać współrzędne wierzchołków znajdują macierz zagęszczania,
wystarczy szader i procedury opisane w podrozdziale 31.5–31.10 poddać niewielkim zmia-
nom. Wszystkie zmienne jednolite i tablice robocze używane przez szader zagęszczania są
niezmienione. Zamiast bloków magazynowych Invc i Outvc, przywiązanych do punktów
3 i 6, trzeba wprowadzić pokazane na listingu 31.37 bloki magazynowe, w których szader
ma pozostawić reprezentację macierzy podwajania lub uśredniania. Przeznaczyłem dla nich
punkty dowiązania 3 i 6.

Makrodefinicje rd i cd (linie 4 i 5) ułatwiają dostęp do przechowywanych w jednym bu-
forze tablic r i c tworzonej przez szader reprezentacji macierzy podwajania lub uśredniania.
Liczba wierszy macierzy jest liczbą wierzchołków siatki wynikowej, długość tablicy r jest
o 1 większa.

15Wiersze i kolumny macierzy numerujemy, zaczynając od 0.

31.11. *Uzupełnienia 923

Listing 31.37. Bloki magazynowe dla macierzy podwajania lub uśredniania
GLSL

1: layout(std430,binding=3) buffer Outrc { uint rc[]; } outrc;

2: layout(std430,binding=6) buffer Outa { float a[]; } outa;

3:

4: #define rd(I) outrc.rc[I]

5: #define cd(I) outrc.rc[outnv+1+(I)]

Procedurę DCopyVC z listingu 31.17, która kopiuje wierzchołki, trzeba zmienić na (tak
samo nazwaną) procedurę pokazaną na listingu 31.38. Jej zadaniem jest wypełnienie wierszy
macierzy podwajania, tj. wpisanie współczynnika 1 do wszystkich wierszy odpowiadających
kopiom i-tego wierzchołka siatki danej. Wiersze macierzy D odpowiadające kopiom wierz-
chołka są kolejne. W linii 10 w tablicy r reprezentacji macierzy (zobacz podrozdz. G.4) jest
wpisywany indeks miejsc w tablicach c i a, w których znajdą się numer kolumny i współ-
czynnik, zapamiętywane tam w liniach 11 i 12. W linii 18 jeden wątek szadera „zakańcza”
ciąg liczb w tablicy r, wpisując tam całkowitą liczbę niezerowych współczynnikówmacierzy,
równą liczbie jej wierszy.

Listing 31.38. Procedura tworzenia wierszy macierzy podwajania
GLSL

1: void DCopyVC (uint i)

2: {

3: int deg, p, j, k;

4:

5: deg = imv(i) >> DEGSHIFT;

6: if ((imv(i) & TAGMASK) != 0)

7: deg += 2;

8: p = vcn(i);

9: for (j = 0; j < deg; j++) {

10: rd(p+j) = p+j;

11: cd(p+j) = i;

12: outa.a[p+j] = 1.0;

13: omv(p+j) = 4 << DEGSHIFT;

14: }

15: if ((imv(i) & TAGMASK) != 0)

16: omv(p) = omv(p+deg-1) = 2 << DEGSHIFT;

17: if (i == 0)

18: rd(outnv) = outnv;

19: } /*DCopyVC*/

Zmienione procedury szadera związane z uśrednianiem są pokazane na listingu 31.39.
Ostatni etap uśredniania zamienił się w dwa etapy, w których są wykonywane procedury
Average0 i Average1, a między nimi jest jeszcze jedno obliczenie sum prefiksowych.

924 31. ZAGĘSZCZANIE SIATEK

Listing 31.39. Procedury znajdowania macierzy uśredniania
GLSL

1: #define Average0(i) fvd(i) = fvnum(i) * (imfac(i) >> DEGSHIFT);

2:

3: void Average1 (uint i) /* etap 40 */

4: {

5: int r, n, d, j, k, l, m, t;

6: float id;

7:

8: if ((r = fvnum(i)) > 0) {

9: n = nvi(i);

10: d = imfac(i) >> DEGSHIFT;

11: j = imfac(i) & FHEMASK;

12: id = 1.0/float(d);

13: l = n == 0 ? 0 : fvd(i-1);

14: for (k = t = 0; k < r; k++) {

15: rd(n+k) = l + t;

16: for (m = 0; m < d; m++, t++) {

17: cd(l+t) = imhe(imfhei(j+m)).V0;

18: outa.a[l+t] = id;

19: }

20: }

21: }

22: if (i == 0)

23: rd(outnv) = fvd(infac-1);

24: } /*Average1*/

Procedura (makro) Average0 wykonywana w etapie 39 ma za zadanie utworzyć ciąg
liczb niezerowych współczynnikówwwierszachmacierzy uśredniania odpowiadających po-
szczególnym ścianom siatki, przy czym jednej ścianie może odpowiadać więcej niż jeden
wiersz (czyli więcej niż jedenwierzchołek siatki wynikowej). Ciąg ten jest wpisywany do tab-
licy fvd w buforze roboczym. Tablica ta była potrzebna we wcześniejszych etapach, a teraz
jest do dyspozycji imawystarczającą długość. Po obliczeniu sumprefiksowych tego ciągu jest
wykonywany etap 40, czyli procedura Average1. W linii 13 zmienne l i n otrzymują wartość
indeksu miejsc w tablicach a i c reprezentacji macierzy, w których ma się znaleźć pierwszy
niezerowy współczynnik w pierwszym wierszu odpowiadającym danej ścianie. Zewnętrzna
pętla (w liniach 14–20) przebiega przez te wiersze. W linii 15 jest wypełniana tablica r, po
czymw pętli wewnętrznej w tablicy c są zapisywane numery kolumn, a do tablicy a jest wpi-
sywana liczba 1/s, obliczona w linii 12. Jeden wątek szadera, w linii 23, zakańcza ciąg liczb
w tablicy r, wpisując tam ostatni element ciągu sum prefiksowych, który jest liczbą niezero-
wych współczynników macierzy uśredniania.

Procedura main szadera wymaga tylko zamienienia linii 50 na listingu 31.12 na dwie linie:

case 39: Average0 (i); break;

case 40: Average1 (i); break;

31.11. *Uzupełnienia 925

Procedura kompilacji i łączenia programu z szaderem opisanym wyżej jest prawie iden-
tyczna z tą na listingu 31.10; ma tylko nową nazwę LoadMeshRefinementMatrixProgram
i napis "mdm.comp.glsl", który jest nazwą pliku źródłowego szadera.

Zobaczmy teraz zmiany procedur podwajania i uśredniania w C (listing 31.40) mających
znaleźć odpowiednie macierze. Poza zmienionymi nazwami procedury mają dodatkowy
parametr wskazujący opakowanie macierzy, którą mają znaleźć. Procedury te korzystają
z tych samychprocedurExecStage, PrefixSum i SumUp. Instrukcje przywiązujące bufory ze
współrzędnymiwierzchołków zostały usunięte. Zamiast tego proceduraGPUmeshDoubling-
Matrix tworzy dwa bufory, w których znajdą się tablice r, c i amacierzy podwajania. W li-
niach 12 i 15 są ustalane wielkości tych buforów. Instrukcje uruchamiające wszystkie etapy
podwajania są identyczne z instrukcjamiwprocedurze na listingu 31.13 (inna jest jedynie pro-
cedura DCopyVC wykonywana w etapie 5). Instrukcje w liniach 17–19 wypełniają wskazane
przez dodatkowy parametr opakowanie macierzy podwajania.

Listing 31.40. Procedury znajdowania macierzy podwajania i uśredniania
C

1: char GPUmeshDoublingMatrix (GPUmesh *inmesh, GPUmesh *outmesh,

2: MeshRefineMatrix *mm)

3: {

4: int inv, inhe, infac, invb, inei, onv, onhe, onfac, fvf, maxonv, fvhe;

5: GLint bufsize;

6: GLuint auxbuf = 0, drc = 0, da = 0;

7:

8: glUseProgram (progid[1]);

9: /* linie 8-11 i 13-34 z listingu 31.13 bez zmian */

10: glGenBuffers (1, &drc);

11: glBindBufferBase (SSB, 3, drc);

12: glBufferData (SSB, (onv+onv+1)*sizeof(GLint), NULL, GL_DYNAMIC_DRAW);

13: glGenBuffers (1, &da);

14: glBindBufferBase (SSB, 6, da);

15: glBufferData (SSB, onv*sizeof(GLfloat), NULL, GL_DYNAMIC_DRAW);

16: /* linie 36–72 z listingu 31.13 bez zmian */

17: mm->cm = inmesh; mm->fm = outmesh;

18: mm->mat.m = mm->mat.nnz = outmesh->nv; mm->mat.n = inmesh->nv;

19: mm->mat.buf[0] = drc; mm->mat.buf[1] = da;

20: ExitIfGLError ("GPUmeshDoublingMatrix");

21: return true;

22:

23: failure:

24: glDeleteBuffers (1, &auxbuf);

25: glDeleteBuffers (1, &drc);

26: glDeleteBuffers (1, &da);

27: memset (mm, 0, sizeof(MeshRefineMatrix));

28: glUseProgram (0);

29: return false;

30: } /*GPUmeshDoublingMatrix*/

926 31. ZAGĘSZCZANIE SIATEK

31:

32: char GPUmeshAveragingMatrix (GPUmesh *inmesh, GPUmesh *outmesh,

33: MeshRefineMatrix *mm)

34: {

35: int inv, inhe, infac, invb, onv, onhe, onfac, nnz;

36: GLint bufsize, bs;

37: GLuint auxbuf = 0, arc = 0, aa = 0;

38:

39: glUseProgram (progid[1]);

40: /* linie 8-11, 13-54 i 56-65 z listingu 31.25 bez zmian */

41: ExecStage (uvofs, 39, infac); /* Average0 */

42: PrefixSum (uvofs, 2*infac+inhe+inv, infac);

43: glBindBuffer (SSB, auxbuf);

44: glGetBufferSubData (SSB, (3*infac+inhe+inv-1)*sizeof(GLuint),

45: sizeof(GLuint), &nnz);

46: glGenBuffers (1, &arc);

47: glBindBufferBase (SSB, 3, arc);

48: glBufferData (SSB, (onv+nnz+1)*sizeof(GLuint), NULL, GL_DYNAMIC_DRAW);

49: glGenBuffers (1, &aa);

50: glBindBufferBase (SSB, 6, aa);

51: glBufferData (SSB, nnz*sizeof(GLfloat), NULL, GL_DYNAMIC_DRAW);

52: ExecStage (uvofs, 40, infac); /* Average1 */

53: glUseProgram (0);

54: glDeleteBuffers (1, &auxbuf);

55: ExitIfGLError ("GPUmeshAveragingMatrix");

56: mm->cm = inmesh; mm->fm = outmesh;

57: mm->mat.m = outmesh->nv; mm->mat.n = inmesh->nv; mm->mat.nnz = nnz;

58: mm->mat.buf[0] = arc; mm->mat.buf[1] = aa;

59: return true;

60:

61: failure:

62: glDeleteBuffers (1, &auxbuf);

63: glDeleteBuffers (1, &arc);

64: glDeleteBuffers (1, &aa);

65: memset (mm, 0, sizeof(MeshRefineMatrix));

66: glUseProgram (0);

67: return false;

68: } /*GPUMeshAveragingMatrix*/

Procedura GPUmeshAveragingMatrix w etapie 39 powoduje wywołanie procedury
Average0, a następnie oblicza sumy prefiksowe znalezionego w tym etapie ciągu. Ostatnia
suma jest odczytywana z bufora w liniach 44–45; jest to liczba niezerowych współczynników
konstruowanej macierzy uśredniania. Mając ją, można utworzyć bufory dla macierzy r, c
i a, co jest robione w liniach 46–51. W linii 52 jest uruchamiany etap 40 obliczeń, w którym
procedura Average1 z listingu 31.39 wypełnia te tablice. Opakowanie macierzy wskazywane
przez trzeci parametr jest wypełniane w liniach 56–58.

31.11. *Uzupełnienia 927

Listing 31.41. Procedura znajdowania macierzy zagęszczania
C

1: char GPUmeshRefinementMatrix (int n, GPUmesh *inmesh, GPUmesh *outmesh,

2: MeshRefineMatrix *mm)

3: {

4: GPUmesh mmesh, *am, *bm, *cm;

5: MeshRefineMatrix md, ma;

6: int i;

7:

8: if (n < 1)

9: return false;

10: memset (&mmesh, 0, sizeof(GPUmesh));

11: if (n & 0x01) { am = &mmesh; bm = outmesh; }

12: else { am = outmesh; bm = &mmesh; }

13: if (!GPUmeshDoublingMatrix (inmesh, am, &md))

14: goto failure;

15: for (i = 0; i < n; i++) {

16: if (!GPUmeshAveragingMatrix (am, bm, &ma))

17: goto failure;

18: if (!GPUMultSparseMatricesf (&mm->mat, &ma.mat, &md.mat);

19: goto failure;

20: glDeleteBuffers (4, am->mbuf);

21: memset (am->mbuf, 0, 4*sizeof(GLuint));

22: mm->m = ma.m; mm->n = md.n;

23: cm = am; am = bm; bm = cm;

24: GPUDeleteMeshRefineMatrix (&md);

25: GPUDeleteMeshRefineMatrix (&ma);

26: md = *mm;

27: }

28: mm->cm = inmesh; mm->fm = outmesh; mm->mat.lmax = 0;

29: return true;

30:

31: failure:

32: glDeleteBuffers (4, am->mbuf);

33: glDeleteBuffers (4, bm->mbuf);

34: return false;

35: } /*GPUmeshRefinementMatrix*/

36:

37: void GPUDeleteMeshRefineMatrix (MeshRefineMatrix *mm)

38: {

39: glDeleteBuffers (2, mm->mat.buf);

40: memset (mm, 0, sizeof(MeshRefineMatrix));

41: } /*GPUDeleteMeshRefineMatrix*/

Listing 31.41 przedstawia procedurę znajdującą topologię siatki zagęszczonej i macierz
zagęszczania z n krokami uśredniania. Powstała ona przez modyfikację procedury z lis-
tingu 31.35. Po znalezieniu macierzy podwajania, w pętli wykonywanej n razy procedura

928 31. ZAGĘSZCZANIE SIATEK

znajduje kolejną macierz uśredniania, po czym wykonuje mnożenie macierzy rzadkich za
pomocą procedury opisanej w p. G.4.3. W liniach 24 i 25 macierze te są kasowane; pozosta-
je ich iloczyn, który w następnym przebiegu pętli będzie z lewej strony pomnożony przez
kolejną macierz uśredniania, a po zakończeniu pętli będzie gotową macierzą zagęszczania.
W linii 28 opakowanie macierzy jest uzupełniane o brakujące informacje.

31.11.3. Obliczanie współrzędnych wierzchołków

Mając reprezentacje (topologie) siatek oryginalnej i zagęszczonej i macierz zagęszczania oraz
ustalone (bieżące) położenia wierzchołków siatki oryginalnej, wystarczy wywołać procedurę
z listingu 31.42, która obliczy współrzędne wierzchołków siatki zagęszczonej, mnożąc ma-
cierz zagęszczania przez wektor położeń wierzchołków. Procedura ta zawiera wywołanie
procedury pokazanej na listingu G.15 z parametrami wziętymi z opakowania macierzy za-
gęszczania przygotowanego przez procedurę GPUmeshRefinementMatrix.

Listing 31.42. Procedura obliczania współrzędnych wierzchołków zagęszczonej siatki
C

1: void GPUMatrixRefineMesh (MeshRefineMatrix *mm)

2: {

3: GPUMultSparseMatrixVectorf (mm->fm->VCBUF, &mm->mat,

4: mm->cm->nsattr, mm->cm->VCBUF);

5: } /*GPUMatrixRefineMesh*/

Co to wszystko daje? Opisany tu zestaw procedur wbudowałem w aplikację 3D (zo-
bacz podrozdz. 36.7), co umożliwiło ich przetestowanie i pomiary czasu. Przetwarzana przez
tę aplikację siatka (opisana w podrozdz. 32.1), która ma 144 wierzchołki, 564 półkrawędzie
i 140 ścian, była poddawana czterem zagęszczeniom z trzema krokami uśredniania.

Tabela 31.1. Wyniki zagęszczania przykładowej siatki

nv nh n f m × n N lmax B

144 564 140
566 × 144 3600 14 33336

566 2256 564
2258 × 566 14102 15 121888

2258 9024 2256
9026 × 2258 56402 15 487324

9026 36096 9024
36098 × 9026 225602 15 1949212

36098 144384 36096

W wierszach tabeli 31.1 są podane liczby nv , nh i n f wierzchołków, półkrawędzi i ścian
siatki danej i siatek otrzymanych przez kolejne zagęszczenia. Obok są podane wymiary
macierzy zagęszczania, liczby N ich niezerowych współczynników, maksymalne liczby lmax

współczynnikówwwierszach i liczby B bajtów zajmowanych przez reprezentacje tychmacie-
rzy, tj. tablice r, c i a. Jak widać, w sumie potrzeba na nie niecomniej niż 2.5MB.16 Łatwo jest

16Podane liczby bajtów nie uwzględniają narzutów potrzebnych do działania OpenGL-a. Wymiary bloków

rezerwowanych w pamięci GPU są zaokrąglane w górę do wielokrotności liczby zapewniającej szybki dostęp do
danych w buforze.

31.12. Ćwiczenia 929

też sprawdzić, że średnia liczba niezerowych współczynników w wierszach wszystkich tych
macierzy nie przekracza 6.5. Najmniejsza macierz ma mniej niż 4.4% niezerowych współ-
czynników, a największa ma ich mniej niż 0.07%.

Tabela 31.2. Czasy zagęszczania przykładowej siatki

RTX 3060 GTX 940M

T0 T1 T2 t0 t1 t2
0.001694 0.000939 0.000052 0.005362 0.020722 0.000082
0.002550 0.006018 0.000093 0.012763 0.038580 0.000288
0.005424 0.013674 0.000272 0.040882 0.166048 0.001127
0.017820 0.046080 0.001014 0.163901 0.697506 0.008372

W tabeli 31.2 są pokazane czasy obliczeń zmierzone17 na komputerze stacjonarnym i na
laptopie, wyposażonych w procesory graficzne o różnych mocach obliczeniowych. Podane
w kolejnych wierszach czasy T0 i t0 zajęły kolejne zagęszczania siatek przy użyciu szadera
wykonującego pełne obliczenie. Znalezienie macierzy zagęszczania trwało na tych kompu-
terach odpowiednio T1 i t1 sekund, a T2 i t2 to czasy obliczania współrzędnych wierzchołków
zagęszczonych siatek za pomocą tych macierzy.

Znajdowanie topologii siatki zagęszczonej imacierzy zagęszczania trwa dłużej niż zagęsz-
czanie, podczas którego znajduje się topologię i oblicza współrzędne wierzchołków. Jest tak
dlatego, bo mnożenie macierzy podwajania i uśredniania zabiera więcej czasu niż obliczanie
współrzędnych. Ale to nie jest istotne, jeśli macierze są znajdowane tylko raz, na początku
działania aplikacji albo podczas jej instalacji przez program, który topologie potrzebnych
siatek i macierze zagęszczania znajdzie i zapisze w pliku. Obliczanie współrzędnych za po-
mocą „gotowych”macierzy zagęszczania jest znacznie szybsze niż pełne zagęszczanie, dzięki
czemu płynna animacja siatki odkształcanej i zagęszczanej w czasie rzeczywistym staje się
wykonalna nawet na niezbyt potężnym laptopie — może z wyjątkiem siatki o największym
stopniu zagęszczenia, której rysowanie (a nie obliczanie położeń wierzchołków) trwa trochę
za długo.

31.12. Ćwiczenia

1. Napisz procedurę, która odwraca orientację siatki. Dla każdej półkrawędzi należy zamie-
nić indeksy końca i początku. Dla każdej ściany trzeba odwrócić kolejność indeksów jej
półkrawędzi, a dla każdego wierzchołka trzeba utworzyć zupełnie nowy ciąg indeksów
półkrawędzi wychodzących z niego.

2. Napisz procedurę, która łączy dwie siatki, tzn. kopiuje do wspólnych tablic jedną z nich
i przepisuje wierzchołki, półkrawędzie i ściany drugiej, odpowiednio je przenumerowu-
jąc.

17Ostatnia cyfra znacząca wyników tych pomiarów lub nawet ostatnie dwie cyfry są niepewne.

930 31. ZAGĘSZCZANIE SIATEK

3.*Napisz procedurę, która wybiera fragment siatki składający się z zaznaczonych wierz-
chołków, incydentnych z nimi półkrawędzi i składających się z tych półkrawędzi ścian.

Każdą z tych procedur napisz i uruchom w wersji działającej na CPU, a potem zaimple-
mentuj na GPU.

32
Trzecia aplikacja

— Dlaczego nie rysujesz?
— Bo nie mam ołówka.
— To rysuj odręcznie.

Usłyszane przez Annę w szkole na lekcji

Siatki reprezentowane w sposób przedstawiony w poprzednim rozdziale, opisujące rozmaite
obiekty, można projektować za pomocą jednego z programów demonstracyjnych pisanego
przeze mnie pakietu BSTools [42]. Prace nad nim zacząłem w roku 2003, a w latach 2005
i 2019 aktualne wersje pakietu dołączyłemdo drugiego i trzeciego wydaniamojej książki [41].
Obecnie pakiet składa się z kilkunastu bibliotek zawierających w sumie kilka tysięcy rozma-
itych procedur (napisanych w języku C) i garści programów demonstracyjnych. Głównym
jego przeznaczeniem jest przetwarzanie krzywych i powierzchni Béziera i B-sklejanych oraz
siatek w aplikacjach graficznych.

Program demonstracyjny pozwalaj jest aplikacją starego OpenGL-a (wersji 2.1), działa-
jącąw środowisku Linux/XWindow. Umożliwia onm.in. modelowanie siatek, które zapisuje
w plikach tekstowych łatwych do przetworzenia na odpowiednie fragmenty programówwC.
Programu tego użyłem do wymodelowania siatki reprezentującej powierzchnię wyglądającą
z grubsza jak ludzka dłoń. Aplikacja opisana w tym rozdziale wyświetla tę siatkę i powierzch-
nie otrzymane przez jej zagęszczanie. Ten model dłoni nie jest bardzo dokładny (zaprojekto-
wałem go odręcznie), ale nic nie stoi na przeszkodzie, by go udoskonalić w stopniu wystar-
czającym nawet na potrzeby pianistyki, kryminalistyki i chiromancji.

32.1. Model dłoni

Listing 32.1 przedstawia deklarację tablic zawierających reprezentację siatki będącej mode-
lem dłoni. Pominąłem prawie całą zawartość tych tablic, bo zajmuje ona ponad 300 linii
kodu w C, ale Czytelnik znajdzie jąw odpowiednim pliku źródłowym trzeciej aplikacji. Pro-
cedura EnterPalmToGPU odpowiada za przesłanie tych danych do buforów w pamięci GPU,
za pomocą procedury CPUmeshToGPU z listingu 31.8.

932 32. TRZECIA APLIKACJA

Listing 32.1. Siatka opisująca dłoń
C

1: #define PALM_NV 144

2: #define PALM_NHE 564

3: #define PALM_NFAC 140

4:

5: static BSMvertex mv[PALM_NV] = {{4,0},....,{5,559}};

6: static int mvhei[PALM_NHE] = {0,428,....,139,4};

7: static float vc[PALM_NV][3] =

8: {{-0.64428,-0.01967,0.10625},....,{0.16963,0.01677,0.10533}};

9: static BSMhalfedge mhe[PALM_NHE] = {{0,1,0,427},....,{143,4,134,562}};

10: static BSMfacet mfac[PALM_NFAC] = {{7,0},....,{4,560}};

11: static int mfhei[PALM_NHE] = {0,1,....,561,562};

12:

13: GPUmesh *EnterPalmToGPU (void)

14: {

15: CPUmesh cpalm;

16: GPUmesh *gpalm;

17:

18: if (!(gpalm = malloc (sizeof(GPUmesh))))

19: return NULL;

20: memset (gpalm, 0, sizeof(GPUmesh));

21: cpalm.nsattr = cpalm.pdim = 3; cpalm.pofs = 0; cpalm.nvofs = -1;

22: cpalm.nv = PALM_NV; cpalm.nhe = PALM_NHE; cpalm.nfac = PALM_NFAC;

23: cpalm.mv = mv; cpalm.mhe = mhe; cpalm.mfac = mfac;

24: cpalm.mvhei = mvhei; cpalm.mfhei = mfhei; cpalm.vc = &vc[0][0];

25: if (CPUmeshToGPU (&cpalm, gpalm))

26: return gpalm;

27: else {

28: free (gpalm);

29: return NULL;

30: }

31: } /*EnterPalmToGPU*/

32.2. Rysowanie siatki

Wpierwszej wersji trzeciej aplikacji użyjemy dwóch prostych programów do rysowania sia-
tek: pierwszy z nich rysuje krawędzie siatki, a drugi trójkąty otrzymane z podziału ścian. Aby
skupić się na sednie rzeczy, nie wprowadzimy żadnych wyrafinowanych modeli oświetlenia
(użyjemy tylko modelu Lamberta) ani efektów takich jak cienie. Zmiennej typu pokazanego
na listingu 32.2 użyjemy do opakowania obu programów rysujących. Przechowamy w nim
tylko identyfikatory programów.

Przed przystąpieniem do rysowania bufory z reprezentacją siatki muszą być przywiązane
do odpowiednich punktów dowiązania w celu GL_SHADER_STORAGE_BUFFER; deklaracje
odpowiednich bloków w treści szaderów rysujących są takie jak na listingu 31.4.

32.2. Rysowanie siatki 933

Listing 32.2. Opakowanie programów rysujących krawędzie i ściany siatki
C

1: typedef struct {

2: GLuint progid[2];

3: } MeshRenderPrograms;

Współrzędne otrzymane od etapu pobierania wierzchołków zostaną zignorowane; dane
te są potrzebne do uruchomienia potoku przetwarzania grafiki, ale zadanie wybrania właś-
ciwego wierzchołka wykona szader na podstawie numeru instancji rysowanego prymitywu
i danych opisujących siatkę. W pewnym sensie szadery w tych programach przejmują rolę
etapu pobierania wierzchołkówwprowadzającego do potoku atrybuty wierzchołków na pod-
stawie tablicy indeksów przywiązanej do celu GL_ELEMENT_ARRAY_BUFFER, który tomecha-
nizm jest niewystarczający w zastosowaniu do siatek reprezentowanych w sposób opisany
w rozdziale 31.1 Zatem procedura main szadera wierzchołków w obu programach zawiera
instrukcje będące treścią makrodefinicji FetchVertex przedstawionej na listingu 32.3. Jej
parametrem jest indeks pierwszej współrzędnej położeniaw tablicy atrybutówwierzchołków.
Instrukcje te przypisują zmiennej gl_Positionwspółrzędne jednorodne wierzchołka o nu-
merze obliczonym przez procedurę main, nadając współrzędnym z i w wartości domyślne 0
i 1, jeśli w tablicy mvc.mvc współrzędne te są nieobecne.

Listing 32.3. Makrodefinicja FetchVertex
GLSL

1: /* bloki magazynowe jak na listingu 31.4 */

2:

3: #define FetchVertex(I) \

4: switch (pdim) { \

5: case 2: \

6: gl_Position = vec4 (mvc.vc[I], mvc.vc[(I)+1], 0.0, 1.0); \

7: break; \

8: case 3: \

9: gl_Position = vec4 (mvc.vc[I], mvc.vc[(I)+1], mvc.vc[(I)+2], 1.0); \

10: break; \

11: default: \

12: gl_Position = vec4 (mvc.vc[I], mvc.vc[(I)+1], \

13: mvc.vc[(I)+2], mvc.vc[(I)+3]); \

14: break; \

15: }

Zadaniem pierwszego programu rysowania siatek, składającego się z szaderów pokaza-
nych na listingach 32.4–32.6, jest narysowanie krawędzi siatki w ustalonymkolorze. Program
będzie wywołany przez procedurę glDrawArraysInstanced, która ma narysować jeden
odcinek w liczbie instancji równej liczbie półkrawędzi siatki. Każda krawędź wewnętrzna

1Można na podstawie reprezentacji siatki utworzyć odpowiednie tablice z indeksami (za pomocą dodatko-
wego szadera obliczeniowego), aby następnie rysować siatki za pomocą procedury glDrawElements, ale chyba
szkoda miejsca w pamięci GPU na dodatkowe tablice. Niemniej, napisanie takiego szadera byłoby dobrym

ćwiczeniem z programowania w języku GLSL.

934 32. TRZECIA APLIKACJA

jest reprezentowana przez dwie półkrawędzie, a chcielibyśmy, aby była narysowana tylko raz.
Dlatego rysowany będzie odcinek odpowiadający tylko jednej półkrawędzi z pary; zadba o to
szader geometrii.

Listing 32.4. Szader wierzchołków pierwszego programu rysowania siatek
GLSL

1: #version 450 core

2:

3: layout(location=0) out int instance;

4: layout(location=1) out vec3 colour;

5:

6: /* tu treść listingu 32.3 */

7:

8: #define V0 x /* tak samo jak na listingu 31.9 */

9: #define V1 y

10:

11: void main (void)

12: {

13: int i, j, k;

14: vec4 vp;

15:

16: instance = i = gl_InstanceID;

17: j = gl_VertexID == 0 ? mhe.mhe[i].V0 : mhe.mhe[i].V1;

18: k = nsattr*j + pofs;

19: FetchVertex (k);

20: colour = Colour; /* kolor z bloku meshsurf */

21: } /*main*/

Szader wierzchołków wyprowadza (w zmiennej instance) numer instancji, który jest
numerem półkrawędzi. Na podstawiewartości zmiennej gl_VertexID szader określa, który
wierzchołek—początek, czy koniec półkrawędzi—ma przekazać dalej i pobiera jego współ-
rzędne z tablicy za pomocą makra FetchVertex. Przejściem do układu współrzędnych
kostki standardowej zajmie się szader geometrii. Wartość przypisana w linii 16 zmiennej i
jest numerem półkrawędzi do narysowania. W linii 17 jest znajdowany numer wierzchołka
końcowego tej półkrawędzi, a w linii 18 jest obliczany indeks pierwszej współrzędnej tego
wierzchołka.

Listing 32.5. Szader geometrii pierwszego programu rysowania siatek
GLSL

1: #version 450 core

2:

3: layout(lines) in;

4: layout(line_strip,max_vertices=2) out;

5:

6: layout(location=0) in int instance[];

7: layout(location=1) in vec3 Colour[];

8:

32.2. Rysowanie siatki 935

9: layout(location=0) out vec3 colour;

10:

11: layout(std430,binding=1) buffer meshhe { ivec4 mhe[]; } mhe;

12:

13: #define OTHE w /* tak samo jak na listingu 31.9 */

14:

15: uniform TransBlock {

16: mat4 mm, mmti, vm, pm, vpm;

17: vec4 eyepos;

18: } trb;

19:

20: void main (void)

21: {

22: int i;

23:

24: i = instance[0];

25: if (mhe.mhe[i].OTHE > i) {

26: for (i = 0; i < 2; i++) {

27: gl_Position = trb.vpm * (trb.mm * gl_in[i].gl_Position);

28: colour = Colour[i];

29: EmitVertex ();

30: }

31: EndPrimitive ();

32: }

33: } /*main*/

Szader geometrii jest przedstawiony na listingu 32.5; sposób przekształcania współrzęd-
nych wierzchołków (obu końców krawędzi) jest taki jak w wielu szaderach opisanych wcześ-
niej. Jedyny zatem nowy szczegół to warunek sprawdzany w linii 25: jeśli numer drugiej
półkrawędzi z pary jest mniejszy niż numer półkrawędzi przetwarzanej przez daną instan-
cję szadera, to szader nie wyprowadzi odcinka do dalszego przetwarzania. W ten sposób
są pomijane także nieistniejące (mające numer -1) półkrawędzie z „par” reprezentujących
krawędzie brzegowe siatki.

Listing 32.6. Szader fragmentów pierwszego programu rysowania siatek
GLSL

1: #version 450 core

2:

3: layout(location=0) in vec3 colour;

4:

5: out vec4 out_Colour;

6:

7: void main (void)

8: {

9: out_Colour = vec4 (colour, 1.0);

10: } /*main*/

936 32. TRZECIA APLIKACJA

Listing 32.7. Procedura rysowania krawędzi siatki
C

1: void SetMeshColour (GPUmesh *gmesh, GLfloat Colour[3])

2: {

3: glBindBuffer (SSB, gmesh->MSBUF);

4: glBufferSubData (SSB, mbofs[8], 3*sizeof(GLfloat), Colour);

5: ExitIfGLError ("SetMeshColour");

6: } /*SetMeshColour*/

7:

8: void DrawMeshEdges (MeshRenderPrograms *prog,

9: GPUmesh *mesh, GLfloat colour[4])

10: {

11: int i;

12:

13: glUseProgram (prog->progid[0]);

14: for (i = 0; i < 4; i++)

15: glBindBufferBase (SSB, i, mesh->mbuf[i]);

16: SetMeshColour (mesh, colour);

17: glBindVertexArray (empty_vao);

18: glDrawArraysInstanced (GL_LINES, 0, 2, mesh->nhe);

19: glBindVertexArray (0);

20: ExitIfGLError ("DrawMeshEdges");

21: } /*DrawMeshEdges*/

Szader fragmentów pierwszego programu (listing 32.6) jest tak prosty, że nie ma o czym
pisać. Procedura na CPU rysująca krawędzie siatki za pomocą programu składającego się
z szaderów opisanych wyżej jest pokazana na listingu 32.7. Procedura ta wybiera program,
przywiązuje bufory z reprezentacją siatki, przypisuje polu Colour bloku meshsurf repre-
zentującą kolor wartość parametru Colour, przywiązuje pusty obiekt tablicy wierzchołków
i rysuje jeden odcinek w odpowiedniej liczbie egzemplarzy (tj. instancji).

Listing 32.8. Szader wierzchołków drugiego programu rysowania siatek
GLSL

1: #version 450 core

2:

3: layout(location=0) out vec3 colour;

4:

5: /* tu treść listingu 32.3 */

6:

7: #define FHEMASK 0x01FFFFFF /* tak samo jak na listingu 31.3 */

8: #define mfac(I) mvf.mvf[nv+(I)]

9: #define mfhei(I) mvf.mvf[nv+nfac+nhe+(I)]

10: #define V0 x

11:

12: void main (void)

13: {

14: int i;

15:

32.2. Rysowanie siatki 937

16: i = mhe.mhe[mfhei((mfac(gl_InstanceID) & FHEMASK) + gl_VertexID)].V0;

17: i = nsattr*i + pofs;

18: FetchVertex (i);

19: colour = Colour;

20: } /*main*/

Szadery pokazane na listingach 32.8 i 32.9 są częściami drugiego programu, którego za-
daniem jest narysowanie ścian siatki. Program działa przy założeniu, że wszystkie ściany
siatki są czworokątne, co ma miejsce, jeśli siatka została otrzymana jako wynik zagęszczania
z nieparzystą liczbą kroków uśredniania. Dla każdej ściany zostaną narysowane dwa trójkąty.
Dokładniej, program jest wywoływany przez procedurę glDrawArraysInstanced, której
parametry opisują wachlarz złożony z dwóch trójkątów. Liczba instancji szadera jest równa
liczbie ścian siatki. Zadaniem szadera wierzchołków jest wyprowadzenie wierzchołka o nu-
merze ustalonymna podstawie numeru instancji (czyli numeru ściany) oraz numeru i wierz-
chołka w rysowanym wachlarzu. Numer ten, podany w zmiennej gl_VertexID (od 0 do 3),
jest początkiem i-tej półkrawędzi ściany.

Na listingu 32.9 jest pokazany szader geometrii, którego wejście stanowi tablica z trzema
wierzchołkami trójkąta. Współrzędne tych wierzchołków są podane w układzie modelu,
zatem szader geometrii dokonuje przejścia do układu świata — w linii 23 szader oblicza
współrzędne jednorodne wierzchołka w układzie świata, a w linii 24 oblicza współrzędne
kartezjańskie. Wektory współrzędnych kartezjańskich są używane (w liniach 26, 27) do obli-
czenia wektora normalnego płaszczyzny trójkąta oraz wyprowadzane (w bloku wyjściowym
FVertex) razem z wektorem normalnym do dalszych obliczeń oświetlenia przez szader
fragmentów.

Listing 32.9. Szader geometrii drugiego programu rysowania siatek
GLSL

1: #version 450 core

2:

3: layout(triangles) in;

4: layout(triangle_strip,max_vertices=3) out;

5:

6: layout(location=0) in vec3 Colour[];

7:

8: out FVertex {

9: vec3 Position;

10: vec3 Colour;

11: flat vec3 Normal;

12: } Out;

13:

14: uniform TransBlock {

15: mat4 mm, mmti, vm, pm, vpm;

16: vec4 eyepos;

17: } trb;

18:

938 32. TRZECIA APLIKACJA

19: void main (void)

20: {

21: int i;

22: vec4 p[3];

23: vec3 q[3], v1, v2, nv;

24:

25: for (i = 0; i < 3; i++) {

26: p[i] = trb.mm * gl_in[i].gl_Position;

27: q[i] = p[i].xyz/p[i].w;

28: }

29: v1 = q[1] - q[0]; v2 = q[2] - q[0];

30: nv = normalize (cross (v1, v2));

31: for (i = 0; i < 3; i++) {

32: gl_Position = trb.vpm * p[i];

33: Out.Colour = Colour[i];

34: Out.Position = q[i];

35: Out.Normal = i == 0 ? nv : vec3(0.0);

36: EmitVertex ();

37: }

38: EndPrimitive ();

39: } /*main*/

Szader fragmentów drugiego programu jest prawie identyczny z szaderem przedstawio-
nym na listingu 10.4, jedyne zmiany to dodanie kwalifikatora flat pola Normal w bloku
In oraz dodanie pola mmti do bloku zmiennych jednolitych TransBlock. Na listingu 32.10
jest pokazana procedura rysowania ścian siatki za pomocą opisanego wyżej programu sza-
derów. Procedura ta deklaruje, że zmienna wejściowa Normal z kwalifikatorem flat jest
podana z pierwszym wierzchołkiem trójkąta przekazanego przez szader geometrii, a potem
przywiązuje bufory z reprezentacją siatki, wybiera program szaderów, przypisuje kolor ścian,
przywiązuje pusty obiekt tablicy wierzchołków i uruchamia potok przetwarzania grafiki.

Listing 32.10. Procedura rysowania ścian siatki
C

1: void DrawMeshFacets (MeshRenderPrograms *prog,

2: GPUmesh *mesh, GLfloat colour[3])

3: {

4: int i;

5:

6: glProvokingVertex (GL_FIRST_VERTEX_CONVENTION);

7: for (i = 0; i < 4; i++)

8: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, i, mesh->mbuf[i]);

9: SetMeshColour (mesh, colour);

10: glUseProgram (prog->progid[1]);

11: glBindVertexArray (empty_vao);

12: glDrawArraysInstanced (GL_TRIANGLE_FAN, 0, 4, mesh->nfac);

13: glBindVertexArray (0);

32.2. Rysowanie siatki 939

14: ExitIfGLError ("DrawMeshFacets");

15: } /*DrawMeshFacets*/

Na początku działania aplikacji należy opisane wyżej programy przygotować do działa-
nia, wywołując procedurę LoadMeshRenderingPrograms z listingu 32.11 z parametrem —
wskaźnikiem zadeklarowanej w aplikacji zmiennej, która jest opakowaniem dla programów
rysujących. Po lekturze wcześniejszych rozdziałów działanie większości instrukcji w tej pro-
cedurze jest oczywiste.

Listing 32.11. Przygotowanie i likwidacja programów rysowania siatek
C

1: void LoadMeshRenderingPrograms (MeshRenderPrograms *prog)

2: {

3: static const GLchar *filename[] =

4: { "app3_0.vert.glsl", "app3_0.geom.glsl", "app3_0.frag.glsl",

5: "app3_1.vert.glsl", "app3_1.geom.glsl", "app3_1.frag.glsl"};

6: static const GLuint shtype[] =

7: { GL_VERTEX_SHADER, GL_GEOMETRY_SHADER, GL_FRAGMENT_SHADER,

8: GL_VERTEX_SHADER, GL_GEOMETRY_SHADER, GL_FRAGMENT_SHADER };

9: GLuint shader_id[6];

10: int i;

11:

12: for (i = 0; i < 6; i++)

13: shader_id[i] = CompileShaderFiles (shtype[i], 1, &filename[i]);

14: prog->progid[0] = LinkShaderProgram (3, &shader_id[0], "0");

15: prog->progid[1] = LinkShaderProgram (3, &shader_id[3], "1");

16: GetAccessToMeshSurfBlock (prog->progid[1]);

17: GetAccessToTransBlockUniform (prog->progid[0]);

18: AttachUniformTransBlockToBP (prog->progid[1]);

19: GetAccessToLightBlockUniform (prog->progid[1]);

20: for (i = 0; i < 6; i++)

21: glDeleteShader (shader_id[i]);

22: ExitIfGLError ("LoadMeshRenderingPrograms");

23: } /*LoadMeshRenderingPrograms*/

24:

25: void DeleteMeshRenderingPrograms (MeshRenderPrograms *prog)

26: {

27: int i;

28:

29: glUseProgram (0);

30: for (i = 0; i < 2; i++)

31: glDeleteProgram (prog->progid[i]);

32: ExitIfGLError ("DeleteMeshRenderingPrograms");

33: } /*DeleteMeshRenderingPrograms*/

Siatki będące wynikiem zagęszczania z parzystą liczbą n kroków uśredniania mogąmieć
ściany o innej niż 4 liczbie krawędzi i procedura DrawMeshFacets nie może wykonać po-

940 32. TRZECIA APLIKACJA

prawnego obrazu takiej siatki. Najprostszy sposób poradzenia sobie z tymproblemempolega
na wykonaniu jeszcze jednego kroku uśredniania, którego wynikiem będzie siatka z wszyst-
kimi ścianami czworokątnymi.

Uwaga: Jeśli w siatce występują krawędzie brzegowe (w siatce dłoni takich krawędzi nie ma),
to lepiej jest pominąć na obrazie niektóre ściany. Mianowicie dla nieparzystego n należy
pominąć (n − 1)/2 „warstw” ścian przyległych do brzegu. Na przykład dla n = 3 pominięte
powinny być ściany, które mają pewien wierzchołek brzegowy, a dla n = 5 trzeba dodatkowo
pominąć ściany mające wspólny wierzchołek ze ścianą mającą wierzchołek brzegowy. Aby
narysować siatkę otrzymaną przez zagęszczanie z parzystą liczbą n, powinniśmy wykonać
wspomniane wyżej dodatkowe uśrednianie, a potem odrzucić n/2 − 1 „warstw” ścian przy
brzegu siatki. Reguła ta wynika stąd, że powierzchnia graniczna (tj. granica nieskończonego
ciągu siatek otrzymanych przez zagęszczanie) jest lepiej przybliżana przez ściany pozostałe.

32.3. Część graficzna trzeciej aplikacji

Podobnie jak w aplikacji pierwszej i drugiej, część okienkowa nie wywołuje bezpośrednio
żadnych procedur OpenGL-a (tylko procedury z biblioteki GLX w celu utworzenia i zlik-
widowania kontekstu oraz obsługi podwójnego buforowania). Przetwarzanie komunikatów
wejściowych powoduje wywoływanie (niewielu) procedur, które stanowią interfejs części
graficznej; ta z kolei jest całkowicie niezależna od środowiska, dzięki czemu mogłaby stać
się na przykład częścią aplikacji systemu Windows bez żadnych zmian. Utworzone i obsłu-
giwane przez część okienkową wihajstry (w tej wersji aplikacji tylko przełączniki) służą do
wydawania poleceń dla części graficznej. Dane części graficznej są niewidoczne dla części
okienkowej, z wyjątkiem zmiennych, które muszą być widoczne dla obu części aplikacji, na
przykład tych, którym wihajstry wmenumają przypisywać wartości2. Zmienne te są polami
zmiennej typu AppWidgets.

Plik nagłówkowy interfejsu między częściami graficzną a okienkową jest przedstawiony
na listingu 32.12; makrodefinicje w liniach 3–9 są identyfikatorami wihajstrów (wihajstra ob-
razu, guzika zatrzymania i przełączników), przy czym identyfikatory przełączników są jedno-
cześnie identyfikatorami poleceń dla części graficznej wydawanych przez te wihajstry. Proce-
dura InitMyWorld, wywoływana po utworzeniu okien, przekazuje wskaźnik wspomnianej
zmiennej typu AppWidgets; wihajstry są tworzone po powrocie z tej procedury i są „przy-
czepiane” do pól tej zmiennej.

Listing 32.12. Interfejs części okienkowej i części graficznej trzeciej aplikacji
C

2Zmiana stanu wihajstra może spowodować zmianę stanu innych wihajstrów, o czym decyduje część gra-
ficzna. Dlatego budowa struktury AppWidgets i jej pola są widoczne dla obu części aplikacji. Oczywiście,
można uczynić zmienne każdej części aplikacji niewidocznymi dla drugiej części, odpowiednio rozbudowu-

jąc procedury interfejsu (w tym przypadku procedura ProcessWorldRequest mogłaby wykonywać polecenie
ustawiania przełączników w części okienkowej), ale kod w C byłby sporo dłuższy, a to jest książka o OpenGL-u

i GLSL-u.

32.3. Część graficzna trzeciej aplikacji 941

1: #define NPALMMESHES 4

2:

3: #define GLWIN_ID_VIEW 1

4: #define BTN_ID_EXIT 2

5: #define SW_ID_MESH0 3

6: #define SW_ID_MESH1 4

7: #define SW_ID_MESH2 5

8: #define SW_ID_MESH3 6

9: #define SW_ID_MESH4 7

10:

11: #define WMSG_ANIMATION_ON 1

12: #define WMSG_ANIMATION_OFF 2

13:

14: typedef struct {

15: char sw[NPALMMESHES+1];

16: char animation;

17: } AppWidgets;

18:

19: AppWidgets *InitMyWorld (int argc, char *argv[], int width, int height);

20: void ResizeMyWorld (int width, int height);

21: void RedrawMyWorld (void);

22: void RotateViewer (double delta_xi, double delta_eta);

23: void DeleteMyWorld (void);

24: char ProcessCharCommand (char charcode);

25: char ProcessSwitchCommand (int wdg_id);

26: char MoveOn (void);

27:

28: char ProcessWorldRequest (int msg, void *data, void *reply);

Opisana dalej procedura obsługi komunikatów wihajstrów w części okienkowej wywo-
łuje odpowiednie procedury części graficznej; reakcje na zmianę stanu przełączników wy-
konuje procedura ProcessSwitchCommand. Obszar okna z obrazem też jest wihajstrem;
wprowadzone w pierwszej i drugiej aplikacji procedury ResizeMyWorld, RedrawMyWorld,
RotateViewer, ProcessCharCommand i MoveOn są wywoływane przez procedury obsługi
komunikatów tego wihajstra.

Procedura ProcessWorldRequest należy do części okienkowej; jest ona wywoływana
z części graficznej w odpowiedzi na polecenia uruchomienia i zatrzymania animacji; identy-
fikatory tych poleceń są wprowadzone w liniach 11 i 12.

Listing 32.13 przedstawia deklaracje typów strukturalnych opakowujących dane części
graficznej aplikacji. Pierwsze pole struktury AppData zawiera przełączniki, tj. zmienne, któ-
rym wartości nadają wihajstry w części okienkowej. Struktura typu KLMesh zawiera tablicę
wskaźników do reprezentacji siatek dłoni; pierwsza siatka jest wprowadzana do pamięci GPU
przez procedurę z listingu 32.1, a każda następna jest otrzymana z poprzedniej przez zagęsz-
czanie z trzema krokami uśredniania. Oprócz tego są podane kolory, w których mają być
rysowane krawędzie i ściany siatki. Deklaracja typu Camera jest pokazana na listingu 15.13.

942 32. TRZECIA APLIKACJA

Listing 32.13. Struktury danych części graficznej
C

1: typedef struct {

2: GPUmesh *mesh[NPALMMESHES+1];

3: GLfloat ecolour[3], fcolour[3];

4: } KLMesh;

5:

6: typedef struct {

7: AppWidgets wdg;

8: KLMesh palm;

9: Camera camera;

10: TransBl trans;

11: LightBl light;

12: char lod, edges;

13: float speed;

14: float model_rot_axis[3];

15: double model_rot_angle;

16: MeshRenderPrograms mrprog;

17: } AppData;

Pola trans i light są strukturami przechowującymimacierze przekształceń i opisy źró-
deł światła.

Wartość pola lod określa, która siatka ma być wyświetlana — kolejne siatki mają co-
raz więcej ścian, dzięki czemu coraz lepiej przybliżają gładką powierzchnę, ale coraz więcej
czasu zajmuje ich rysowanie. Pole edges jest przełącznikiem, którego wartość true powo-
duje wyświetlanie krawędzi (zamiast wypełnionych ścian) zagęszczonej siatki. Pola speed,
model_rot_axis i model_rot_angle przechowują prędkość kątową obracającej się siatki,
wektor kierunku osi i bieżący kąt tego obrotu. W polu mrprog są przechowywane idntyfika-
tory programów szaderów używanych do rysowania.

Listing 32.14 przedstawia procedurę inicjalizacji danych. W kolejnych instrukcjach
zmienna appdata jest wypełniana zerami, po czym następuje wywołanie procedur kom-
pilujących i łączących programy szaderów, tworzenie pustego obiektu tablicy wierzchołków,
tworzenie buforów z blokami zmiennych jednolitych TransBlock i LightBlock, inicjaliza-
cja zegara, określanie osi i prędkości kątowej ruchu obrotowego modelu, inicjalizacja macie-
rzy modelu, inicjalizacja rzutowania perspektywicznego i źródeł światła, wybór początkowo
wyświetlanych siatek (krawędzie siatki oryginalnej i ściany siatki po dwóch zagęszczeniach),
a potem do pamięci GPU siatka dłoni jest wprowadzana i poddawana kolejnym zagęszcze-
niom. Przekazanie adresu zmiennej wdg (będącej polem zmiennej appdata) w instrukcji
return umożliwia części okienkowej „doczepienie” wihajstrów (przełączników) do odpo-
wiednich pól tej zmiennej.

Listing 32.14. Procedura InitMyWorld
C

1: static AppData appdata;

2:

32.3. Część graficzna trzeciej aplikacji 943

3: AppWidgets *InitMyWorld (int argc, char *argv[], int width, int height)

4: {

5: static const float model_rot_axis[3] = {0.0,1.0,0.0};

6:

7: memset (&appdata, 0, sizeof(AppData));

8: LoadMeshRefinementPrograms (true, false);

9: LoadMeshRenderingPrograms (&appdata.mrprog);

10: ConstructEmptyVAO ();

11: appdata.trans.trbuf = NewUniformTransBlock ();

12: appdata.light.lsbuf = NewUniformLightBlock ();

13: TimerInit ();

14: memcpy (appdata.model_rot_axis, model_rot_axis, 3*sizeof(float));

15: appdata.speed = 0.5*3.1415926;

16: SetupModelMatrix (&appdata);

17: InitCamera (&appdata, width, height);

18: InitLights (&appdata);

19: appdata.wdg.sw[0] = appdata.wdg.sw[2] = true;

20: appdata.lod = 2;

21: appdata.edges = appdata.wdg.animation = false;

22: InitPalmMeshes (&appdata);

23: ExitIfGLError ("InitMyObject");

24: return &appdata.wdg;

25: } /*InitMyWorld*/

Procedury LoadMeshRefinementProgram i LoadMeshRenderingPrograms z listin-
gów 31.10 i 32.11 przygotowują programy zagęszczania i rysowania siatek. Do rysowania
jest potrzebny pusty obiekt tablicy wierzchołków tworzony w linii 10. Bufory w pamięci
GPU przechowujące macierze przekształceń i opisy źródeł światła są tworzone przez pro-
cedury z listingów 10.7 i 10.9. Macierze widoku i rzutowania przygotowuje procedura
InitCamera z listingu 15.16, na którym jest też pokazana wywoływana przez nią procedura
_ResizeMyWorld i procedura InitLights, wprowadzająca oświetlenie.

Listing 32.15. Procedury inicjalizacji części graficznej
C

1: void SetupModelMatrix (AppData *ad)

2: {

3: M4x4RotateVfv (ad->trans.mm, ad->model_rot_axis, ad->model_rot_angle);

4: LoadMMatrix (&ad->trans, NULL);

5: } /*SetupModelMatrix*/

6:

7: void InitPalmMeshes (AppData *ad)

8: {

9: static const GLfloat edges_colour[3] = {0.0,0.5,0.7};

10: static const GLfloat facets_colour[3] = {0.91,0.65,0.5};

11: KLMesh *palm;

12: int i;

944 32. TRZECIA APLIKACJA

13:

14: palm = &ad->palm;

15: if ((palm->mesh[0] = EnterPalmToGPU ())) {

16: for (i = 1; i <= NPALMMESHES; i++) {

17: if (!(palm->mesh[i] = malloc (sizeof(GPUmesh))))

18: ExitOnError ("InitPalmMeshes 0");

19: memset (palm->mesh[i], 0, sizeof(GPUmesh));

20: if (!GPUmeshRefinement (MESHDEG,

21: palm->mesh[i-1], palm->mesh[i]))

22: ExitOnError ("InitPalmMeshes 1");

23: printf ("%d: nv = %d, nhe = %d, nfac = %d\n", i,

24: palm->mesh[i]->nv, palm->mesh[i]->nhe, palm->mesh[i]->nfac);

25: }

26: memcpy (palm->ecolour, edges_colour, 3*sizeof(GLfloat));

27: memcpy (palm->fcolour, facets_colour, 3*sizeof(GLfloat));

28: }

29: else

30: ExitOnError ("InitPalmMeshes");

31: } /*InitPalmMeshes*/

Rysowane przedmioty, tj. siatki dłoni, przygotowuje procedura InitPalmMeshes, która
w linii 15 przesyła do pamięci GPU siatkę opisaną w podrozdziale 32.1, a następnie, w pętli,
wywołuje (w linii 20) procedurę zagęszczania siatki opisaną w poprzednim rozdziale. W ten
sposób powstają cztery siatki będące coraz dokładniejszymi przybliżeniami powierzchni
gładkiej reprezentującej dłoń. W każdej chwili aplikacja będzie wyświetlać co najwyżej jedną
z tych powierzchni. W liniach 26 i 27 są określane kolory krawędzi i ścian siatek.

Procedury ResizeMyWorld i RotateViewer są takie same jak w drugiej aplikacji (zo-
bacz listing 15.17).

Listing 32.16 przedstawia procedury rysowania sceny i sprzątania podczas zatrzymania
aplikacji. Procedura RedrawMyWorld wywołuje procedurę DrawMyScene, która na począ-
tek kasuje tło, a potem jest wywoływana procedura z listingu 32.7. Pętla w liniach 10–16 ma
za zadanie wyszukanie pierwszej zagęszczonej siatki, której przełącznik jest włączony, i na-
rysowanie jej, za pomocą procedury z listingu 32.10. Jeśli użytkownik wyłączy wszystkie te
przełączniki, to na obrazie może zobaczyć tylko siatkę niezagęszczoną3.

Procedura DeleteMyWorld likwiduje programy szaderów, reprezentacje siatek, bufory
z macierzami i światłami i pusty obiekt tablicy wierzchołków, zostawiając porządek po części
graficznej aplikacji.

Listing 32.17 przedstawia pozostałe procedury części graficznej wywoływane z części
okienkowej aplikacji. Procedura ProcessSwitchCommand jest wywoływana po każdej

Listing 32.16. Procedury rysowania i sprzątania
C

1: void DrawMyScene (AppData *ad, AppWidgets *wdg)

2: {

3lub tylko tło, jeśli jej rysowanie też wyłączył

32.3. Część graficzna trzeciej aplikacji 945

3: int i;

4:

5: glClearColor (1.0, 1.0, 1.0, 1.0);

6: glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

7: glEnable (GL_DEPTH_TEST);

8: if (wdg->sw[0])

9: DrawMeshEdges (&ad->mrprog, ad->palm.mesh[0], ad->palm.ecolour);

10: for (i = 1; i <= NPALMMESHES; i++)

11: if (wdg->sw[i]) {

12: if (ad->edges)

13: DrawMeshEdges (&ad->mrprog, ad->palm.mesh[i], ad->palm.fcolour);

14: else

15: DrawMeshFacets (&ad->mrprog, ad->palm.mesh[i], ad->palm.fcolour);

16: }

17: } /*DrawMyScene*/

18:

19: void RedrawMyWorld (void)

20: {

21: DrawMyScene (&appdata, &appdata.wdg);

22: glFlush ();

23: } /*RedrawMyWorld*/

24:

25: void DeleteMyWorld (void)

26: {

27: int i;

28:

29: DeleteMeshRefinementPrograms ();

30: DeleteMeshRenderingPrograms (&appdata.mrprog);

31: for (i = 0; i <= NPALMMESHES; i++)

32: DeleteGPUmesh (appdata.palm.mesh[i]);

33: glDeleteBuffers (1, &appdata.trans.trbuf);

34: glDeleteBuffers (1, &appdata.light.lsbuf);

35: DeleteEmptyVAO ();

36: ExitIfGLError ("DeleteMyWorld");

37: } /*DeleteMyWorld*/

zmianie stanu któregoś przełącznika w menu. Pierwszy przełącznik steruje wyświetlaniem
siatki niezagęszczonej i działa niezależnie od pozostałych. Z pozostałych przełącznikówmo-
że być włączony tylko jeden naraz, zatem włączenie dowolnego z nich powoduje wyłączenie
pozostałych.

Procedura ProcessCharCommand jest wywoływana po napisaniu dowolnego znaku na
klawiaturze, gdy kursor jest w obszarze okna z obrazem. Napisanie litery K zmienia war-

Listing 32.17. Procedury ProcessSwitchCommand, ProcessCharCommand i MoveOn
C

1: char ProcessSwitchCommand (int wdg_id)

2: {

946 32. TRZECIA APLIKACJA

3: switch (wdg_id) {

4: case SW_ID_MESH1: case SW_ID_MESH2: case SW_ID_MESH3: case SW_ID_MESH4:

5: if (appdata.wdg.sw[wdg_id-SW_ID_MESH0]) {

6: memset (&appdata.wdg.sw[1], false, NPALMMESHES);

7: appdata.wdg.sw[(int)(appdata.lod = wdg_id-SW_ID_MESH0)] = true;

8: }

9: return true;

10: case SW_ID_MESH0:

11: return true;

12: default:

13: return false;

14: }

15: } /*ProcessSwitchCommand*/

16:

17: void ToggleAnimation (AppData *ad)

18: {

19: if ((ad->wdg.animation = !ad->wdg.animation)) {

20: ProcessWorldRequest (WMSG_ANIMATION_ON, NULL, NULL);

21: TimerTic ();

22: }

23: else

24: ProcessWorldRequest (WMSG_ANIMATION_OFF, NULL, NULL);

25: } /*ToggleAnimation */

26:

27: char ProcessCharCommand (char charcode)

28: {

29: switch (toupper (charcode)) {

30: case ’ ’:

31: ToggleAnimation (&appdata);

32: return true;

33: case ’K’:

34: appdata.edges = !appdata.edges;

35: return true;

36: default:

37: return false;

38: }

39: } /*ProcessCharCommand*/

40:

41: char MoveOn (void)

42: {

43: if (appdata.wdg.animation) {

44: if ((appdata.model_rot_angle += appdata.speed * TimerTocTic ()) >= PI)

45: appdata.model_rot_angle -= 2.0*PI;

46: SetupModelMatrix (&appdata);

47: }

48: return appdata.wdg.animation;

49: } /*MoveOn*/

32.4. Okna trzeciej aplikacji 947

tość zmiennej edges, czyli przełącznie między rysowaniem trójkątów (ścian siatki) wypeł-
nionych a rysowaniem krawędzi siatki. Naciśnięcie klawisza spacji jest poleceniemwłączenia
albo wyłączenia animacji, która polega na obracaniu przedmiotu wokół ustalonej osi ze stałą
prędkością kątową. W obu przypadkach pomocnicza procedura ToggleAnimation wywo-
łuje procedurę ProcessWorldRequest, która, jeśli animacja została włączona, powoduje
wywoływanie co chwila procedury MoveOn; ta ostatnia na podstawie odczytu zegara oblicza
fazę ruchu (tj. bieżący kąt obrotu), konstruuje macierz modelu i przesyła ją do pamięci GPU.
Niezerowawartośćpowrotna opisanych tu procedur jest zawiadomieniemczęści okienkowej,
że należy wykonać nowy obraz.

32.4. Okna trzeciej aplikacji

Graficzny interfejs użytkownika jest tworzony przy użyciu procedur opisanych w rozdzia-
le 30. Aplikacja tworzy jedno okno z dwoma podoknami, z których pierwsze zawiera menu
z guzikiem i przełącznikami, a w drugim jest wyświetlany obraz dłoni, tj. powierzchni zbudo-
wanej z trójkątówodpowiednio zagęszczonej siatki opisanej w podrozdziale 32.1. Listing 32.18
przedstawia procedurę main oraz wywoływane przez nią procedury inicjalizacji i sprząta-
nia. Nazwy kolejno wywoływanych procedur powinny dostatecznie objaśniać wykonywane
przez nie zadania4, z jednym wyjątkiem. Procedura XInternAtom otrzymuje od systemu
X Window atom, który będzie identyfikatorem komunikatów używanych do zrealizowania
animacji. W zasadzie można do tego użyć dowolnej liczby całkowitej, ale otrzymany atom
będzie inny niż identyfikatory wszelkich własności (properties) określonych przez system,
menedżera okien i aplikacje — chyba że któraś z nich została nazwana "aAnimate", co też
nie wyrządzi żadnych szkód.

Ostatnie dwa parametry procedury InitApp3Windows w linii 14 określają numer po-
trzebnej wersji OpenGL-a. Ponieważ jest to pierwsza opisana tu aplikacja biblioteki X11, ko-
lejne listingi przedstawiają kompletny opis jej procedur (z pominięciem tych, które zostały
wzięte z poprzednich aplikacji bez zmian).

Listing 32.18. Procedura main i dwie inne procedury
C

1: static Window window[3];

2: static GLXContext glxcontext;

3: static char terminate;

4: static Atom aAnimate;

5:

6: static int window0_width, window0_height;

7: static xwinmenu *wm1, *wm2;

8: static xwidget *mywdg;

4Procedury, których nazwy zaczynają się od litery X, należą do biblioteki X11. Informacje na ich temat naj-

prościej jest uzyskać za pomocą programu man.

948 32. TRZECIA APLIKACJA

9: static AppWidgets *appwdg;

10:

11: void Initialise (int argc, char **argv)

12: {

13: InitXServerConnection (argc, argv, false);

14: InitApp3Windows (argc, argv, APP3_GL_MAJOR, APP3_GL_MINOR);

15: aAnimate = XInternAtom (xdisplay, "aAnimate", False);

16: appwdg = InitMyWorld (argc, argv, WIN0_WIDTH-MENU_WIDTH, WIN0_HEIGHT);

17: wm1 = SetupApp3Menu ();

18: wm2 = SetupApp3GLWindow ();

19: } /*Initialise*/

20:

21: void Cleanup (void)

22: {

23: DeleteMyWorld (&myglwdata, &appdata);

24: DeleteWinMenu (wm1);

25: DeleteWinMenu (wm2);

26: XDestroySubwindows (xdisplay, window[0]);

27: XDestroyWindow (xdisplay, window[0]);

28: XFreeGC (xdisplay, xgc);

29: XCloseDisplay (xdisplay);

30: } /*Cleanup*/

31:

32: int main (int argc, char **argv)

33: {

34: Initialise (argc, argv);

35: MessageLoop ();

36: Cleanup ();

37: exit (0);

38: } /*main*/

Listing 32.19 przedstawia procedurę, która tworzy okna aplikacji. Dalej będzie mowa
o oknie głównym, oknie menu i oknie obrazu. Podane przez system X Window identyfi-
katory tych okien zostaną zapamiętane odpowiednio w zmiennych window[0], window[1]
i window[2].

Okna menu i obrazu są podoknami okna głównego i w całości wypełniają jego obszar.
Zawartość okna menu ma być rysowana przez procedury z biblioteki X11, z kolei zawartość
okna obrazu wyprodukuje OpenGL. Procedura pokazana na listingu 32.19 powstała przez
modyfikację procedury InitMyGLXWindow z listingu 3.7; niezmienione instrukcje powinny
być (i są) jasne.

W aplikacji OpenGL-a przeznaczonej do działania w systemie XWindow możemy rów-
nież użyć wielokrotnego próbkowania w celu przeprowadzania antyaliasingu. W tym celu,
wywołując procedurę InitGLXContext, trzeba podać tablicę potrzebnych atrybutów wizu-
alu z dodanymi liniami 14 i 15 (porównaj tablicę visattr z tablicą vattr na listingu 3.6).
Liczba próbek na piksel ma być w tablicy podana po stałej symbolicznej GLX_SAMPLES.

32.4. Okna trzeciej aplikacji 949

Listing 32.19. Tworzenie okien trzeciej aplikacji
C

1: #define WIN0_WIDTH 480

2: #define WIN0_HEIGHT 360

3: #define MENU_WIDTH 120

4:

5: void InitApp3Windows (int argc, char **argv, int major, int minor)

6: {

7: int vattr[] =

8: { GLX_RGBA, True,

9: GLX_DOUBLEBUFFER, True,

10: GLX_RED_SIZE, 8,

11: GLX_GREEN_SIZE, 8,

12: GLX_BLUE_SIZE, 8,

13: GLX_DEPTH_SIZE, 24,

14: GLX_SAMPLE_BUFFERS, True,

15: GLX_SAMPLES, 8,

16: None };

17: static const int wx[3] = { 0, 0, MENU_WIDTH };

18: static const int wh[3] = { WIN0_WIDTH, MENU_WIDTH,

19: WIN0_WIDTH-MENU_WIDTH };

20: XSetWindowAttributes swa;

21: Colormap xcolormap;

22: XVisualInfo *xvii;

23: Window upw;

24: int i;

25:

26: InitGLXContext (major, minor, vattr, &xvii, &glxcontext);

27: if (!(xcolormap = XCreateColormap (xdisplay, xrootwin,

28: xvii->visual, AllocNone)))

29: ExitOnError ("InitApp3Windows 1");

30: swa.colormap = xcolormap;

31: swa.event_mask = ExposureMask | StructureNotifyMask| ButtonPressMask |

32: ButtonReleaseMask | PointerMotionMask | KeyPressMask;

33: for (i = 0, upw = xrootwin; i < 3; i++, upw = window[0]) {

34: window[i] = XCreateWindow (xdisplay, upw, wx[i], 0, wh[i], WIN0_HEIGHT,

35: 0, xvii->depth, InputOutput, xvii->visual,

36: CWColormap | CWEventMask, &swa);

37: XMapWindow (xdisplay, window[i]);

38: }

39: XFreeColormap (xdisplay, xcolormap);

40: XFree (xvii);

41: XSetWMProtocols (xdisplay, window[0], &DeleteWindow, 1);

42: XStoreName (xdisplay, window[0], "Trzecia aplikacja");

43: xgc = XCreateGC (xdisplay, window[1], 0, 0);

44: InitRGBXColourmap ();

45: InitWinMenuPalette ();

950 32. TRZECIA APLIKACJA

46: if (!glXMakeCurrent (xdisplay, window[2], glxcontext))

47: ExitOnError ("InitApp3Windows 2");

48: GetGLProcAddresses (major, minor);

49: PrintGLVersion ();

50: window0_width = WIN0_WIDTH;

51: window0_height = WIN0_HEIGHT;

52: } /*InitApp3Windows*/

Przodkiem głównego okna aplikacji jest pulpit lub inne okno wskazane przez mene-
dżera okien; jego identyfikator jest otrzymywany za pomocą procedury RootWindow. Okno
główne jest zgłoszone jako przodek okna menu oraz okna aplikacji, a zatem są one pod-
oknami okna głównego. Relacje między oknami są ustalane przez drugi parametr procedury
XCreateWindow.

Listing 32.20 przedstawia procedury obsługi menu aplikacji. Po utworzeniu menu w li-
nii 42 jest tworzony guzik, a potem w pętli przełączniki. Adres zmiennej, której przełącznik
ma nadawaćwartości, jest polem struktury wskazywanej przez zmienną appwdg; wartość tej
zmiennej została nadana przez instrukcję w linii 16 na listingu 32.18.

Listing 32.20. Tworzenie i obsługa menu
C

1: char str_EXIT[] = "Exit"; /* napis na guziku */

2:

3: void Win1Callback (struct xwidget *wdg, int msg, int key, int x, int y)

4: {

5: switch (msg) {

6: case WDGMSG_BUTTON_PRESS:

7: switch (wdg->id) {

8: case BTN_ID_EXIT:

9: terminate = true; /* powoduje zakończenie działania */

10: break;

11: default:

12: break;

13: }

14: break;

15:

16: case WDGMSG_SWITCH_CHANGE:

17: if (ProcessSwitchCommand (wdg->id)) {

18: wm2->changed = true;

19: PostMenuExposeEvent (wm2);

20: }

21: break;

22:

23: case XWMSG_KEY_PRESS:

24: mywdg->input (mywdg, msg, key, x, y);

25: if (wm2->changed)

26: PostMenuExposeEvent (wm2);

27: break;

32.4. Okna trzeciej aplikacji 951

28:

29: default:

30: break;

31: }

32: } /*Win1CallBack*/

33:

34: xwinmenu* SetupApp3Menu (void)

35: {

36: xwinmenu *wm;

37: int i;

38:

39: if (!(wm = NewWinMenu (window[1], MENU_WIDTH, WIN0_HEIGHT, 0, 0,

40: NULL, NULL, Win1Callback)))

41: ExitOnError ("SetupApp3Menu");

42: NewButton (wm, BTN_ID_EXIT, 60, 18, 2, 2, str_EXIT);

43: for (i = 0; i < NPALMMESHES; i++)

44: NewSwitch (wm, SW_ID_MESH0+i, 16, 16, 2+20*i, 22, NULL,

45: &appwdg->meshsw[i]);

46: return wm;

47: } /*SetupApp3Menu*/

Procedura Win1Callback, wywołana po pstryknięciu guzika, w linii 9 nadaje zmien-
nej terminatewartość powodującą zakończenie pętli komunikatów i zatrzymanie aplikacji.
Po pstryknięciu przełącznika procedura ta wywołuje procedurę ProcessSwitchCommand
z części graficznej. Jej parametr jest identyfikatoremprzełącznika, którymaw tymmomencie
nadaną nową wartość. Procedura ProcessSwitchCommandmoże zmienić wartości innych
przełączników; gdy tak się stanie, przekaże wartość powrotną true. Instrukcje w liniach 18

i 19 spowodują wykonanie w oknie menu uaktualnionego obrazu wszystkich wihajstrów.
W liniach 23–27 następuje przekazanie wszystkich komunikatów o naciśnięciu klawisza,

nieobsłużonych przez wihajstry wmenu pierwszego podokna, wihajstrowi wyświetlającemu
obraz sceny w drugim podoknie. Dzięki temu na przykład naciśnięcie spacji uruchamia lub
zatrzymuje obracanie obiektu niezależnie od położenia kursora w głównym oknie aplikacji.
Jeśli obraz sceny ma zostać zmieniony, to instrukcja w linii 26 powoduje wykonanie nowego
obrazu.

Listing 32.21 przedstawia procedurę SetupApp3GLWindow, która tworzy menu dla okna
z obrazem; menu to zawiera jeden wihajster, wyświetlający obraz i przyjmujący polecenia
wydawane za pomocą klawiatury i myszy, oraz procedury reagujące na zdarzenia związane
z tym oknem. Metody wihajstra są podane dalej.

Struktura typu widget3d zawiera dane wihajstra obrazu; pole data0 wihajstra wskazuje
taką strukturę, utworzoną przez procedurę konstrukcji wihajstra. Są w niej pola do prze-

Listing 32.21. Procedury przetwarzania wejścia okna z obrazem
C

1: typedef struct {

2: int last_x, last_y;

3: char opti;

952 32. TRZECIA APLIKACJA

4: } widget3d;

5:

6: void RedrawWin2 (xwinmenu *wm)

7: {

8: widget3d *ww;

9:

10: ww = (widget3d*)mywdg->data0;

11: if (ww->opti > 0) {

12: ww->opti --;

13: PostExposeEvent (wm->window, wm->r.width, wm->r.height);

14: }

15: else {

16: for (wdg = wm->wlist.next; wdg; wdg = wdg->link.next)

17: wdg->redraw (wdg);

18: glFlush ();

19: }

20: glXSwapBuffers (xdisplay, wm->window);

21: } /*RedrawWin2*/

22:

23: void Win2Callback (struct xwidget *wdg, int msg, int key, int x, int y)

24: {

25: widget3d *ww;

26:

27: ww = (widget3d*)mywdg->data0;

28: switch (msg) {

29: case WDGMSG_RECONFIGURE:

30: mywdg->input (mywdg, WDGMSG_RECONFIGURE, 0, x, y);

31: ww->opti = 4;

32: PostMenuExposeEvent (wdg->wm);

33: break;

34: case XWMSG_CLIENT_MESSAGE:

35: mywdg->input (mywdg, msg, key, x, y);

36: break;

37: default:

38: break;

39: }

40: } /*Win2Callback*/

41:

42: xwinmenu *SetupApp3GLWindow (void)

43: {

44: xwinmenu *wm;

45:

46: if (!(wm = NewWinMenu (window[2], WIN0_WIDTH-MENU_WIDTH, WIN0_HEIGHT,

47: 0, 0, NULL, RedrawWin2, Win2Callback)))

48: ExitOnError ("SetupApp3GLWindow 0");

49: if (!(mywdg = New3DWidget (wm, GLWIN_ID_VIEW,

50: wm->r.width, wm->r.height)))

32.4. Okna trzeciej aplikacji 953

51: ExitOnError ("SetupApp3GLWindow 1");

52: return wm;

53: } /*SetupApp3GLWindow*/

chowywania poprzedniego położenia kursora w oknie (na potrzeby obracania obserwatora
wokół obiektu) i zmienną opti, której rola jest wyjaśniona w p. 3.5.2.

W liniach 46–47 jest tworzone menu, a w liniach 49–50 jedyny wihajster tego menu, wy-
świetlający obraz i umożliwiający oglądanie przedstawionych na nim obiektów z różnych
stron. Wskaźnik do tego wihajstra jest przypisywany zmiennej mywdg. Procedura Redraw-
Win2 wykonuje obraz. Procedura Win2Callback jest wywoływana po otrzymaniu przez
okno komunikatów ConfigureNotify i ClientMessage; w pierwszym przypadku zawia-
damia wihajster o zmianie wymiarów i żąda wykonania nowego obrazu, a w drugim przeka-
zuje wihajstrowi komunikat wysłany w celu kontynuowania animacji.

Listing 32.22 przedstawia procedurę tworzenia wihajstra z obrazem i jego metody. Pro-
cedura My3DWidgetRedraw wywołuje procedurę z części graficznej, która wykonuje obraz.

Procedura My3DWidgetInput przetwarza komunikaty wejściowe. Wihajster ma dwa
stany, nazwane WDGSTATE_DEFAULT i WDGSTATE_VIEW_TURNING; przełączanie między nimi
następuje po naciśnięciu i zwolnieniu lewego przycisku myszy, podobnie jak w aplikacjach
pierwszej i drugiej. W tym drugim stanie przesuwanie myszy powoduje wywoływanie pro-
cedury RotateViewer.

W obu stanach wihajster tak samo reaguje na pisanie znaków na klawiaturze (wywołując
procedurę ProcessCharCommand z części graficznej) i na komunikaty ClientMessage. Po
sprawdzeniu (w linii 64), że komunikat ClientMessage jest związany z animacją, jest wywo-
ływana procedura MoveOn z części graficznej, która odczytuje zegar i oblicza nowe położenia
obiektów. Instrukcje w liniach 66 i 67 zawiadamiają o konieczności wykonania nowego ob-
razu, a instrukcja w linii 69 wysyła kolejny komunikat ClientMessage dla podtrzymania
ruchu.

Listing 32.22. Metody wihajstra z obrazem
C

1: void My3DWidgetRedraw (struct xwidget *wdg)

2: {

3: RedrawMyWorld ();

4: } /*My3DWidgetRedraw*/

5:

6: char My3DWidgetInput (struct xwidget *wdg, int msg, int key, int x, int y)

7: {

8: XClientMessageEvent *xclient;

9: widget3d ww;

10:

11: ww = (widget3d*)wdg->data0;

12: switch (wdg->state) {

13: case WDGSTATE_DEFAULT:

14: switch (msg) {

954 32. TRZECIA APLIKACJA

15: case XWMSG_BUTTON_PRESS:

16: if (key == Button1) {

17: wdg->last_x = x; wdg->last_y = y;

18: wdg->state = WDGSTATE_VIEW_TURNING;

19: GrabInput (wdg);

20: return true;

21: }

22: break;

23: case XWMSG_KEY_PRESS:

24: goto process_key;

25: case WDGMSG_RECONFIGURE:

26: ResizeMyWorld (wdg->r.width = x, wdg->r.height = y);

27: break;

28: case XWMSG_CLIENT_MESSAGE:

29: goto process_client_message;

30: case XWMSG_DELETE:

31: goto process_delete_message;

32: default:

33: break;

34: }

35: break;

36:

37: case WDGSTATE_VIEW_TURNING:

38: switch (msg) {

39: case XWMSG_MOUSE_MOTION:

40: if (((XMotionEvent*)wdg->wm->ev)->state & Button1Mask) {

41: RotateViewer ((double)(x - ww->last_x), (double)(y - ww->last_y));

42: ww->last_x = x; ww->last_y = y;

43: wdg->wm->changed = true;

44: }

45: else

46: goto release;

47: break;

48: case XWMSG_BUTTON_RELEASE:

49: if (key == Button1) {

50: release:

51: wdg->state = WDGSTATE_DEFAULT;

52: UngrabInput (wdg);

53: return true;

54: }

55: break;

56: case XWMSG_KEY_PRESS:

57: process_key:

58: if (ProcessCharCommand (key))

59: return wdg->wm->changed = true;

60: break;

61: case XWMSG_CLIENT_MESSAGE:

32.4. Okna trzeciej aplikacji 955

62: process_client_message:

63: xclient = (XClientMessageEvent*)wdg->wm->ev;

64: if (xclient->message_type == aAnimate && appwdg->animation) {

65: if (MoveOn ()) {

66: wm2->changed = true;

67: PostMenuExposeEvent (wm2);

68: }

69: PostClientMessageEvent (window[2], aAnimate, 8, NULL);

70: }

71: break;

72: case XWMSG_DELETE:

73: process_delete_message:

74: free (wdg->data0);

75: return true;

76: default:

77: break;

78: }

79: break;

80:

81: default:

82: break;

83: }

84: return false;

85: } /*My3DWidgetInput*/

86:

87: xwidget *New3DWidget (struct xwinmenu *wm, int id, int w, int h)

88: {

89: widget3d *ww;

90:

91: if (!(ww = malloc (sizeof(widget3d))))

92: ExitOnError ("New3DWidget");

93: ww->opti = 0;

94: return NewWidget (wm, sizeof(xwidget), id, w, h, 0, 0,

95: My3DWidgetInput, My3DWidgetRedraw, ww, NULL);

96: } /*New3DWidget*/

Procedura New3DWidget jest konstruktorem wihajstra obrazu; rezerwuje ona pamięć na
dane dodatkowe i nadaje początkową wartość polu opti, a następnie wywołuje procedurę
NewWidget, która tworzy wihajster, włącza go do menu, przypisuje wskaźniki metod input
i redraw tego wihajstra i przypisuje polu data0 adres bloku pamięci z danymi dodatko-
wymi. Blok ten jest zwalniany po otrzymaniu przez wihajster komunikatu XWMDG_DELETE,
wysyłanego przez menu w trakcie jego likwidacji.

Listing 32.23 przedstawia procedurę ProcessWorldRequest, wywoływaną przez część
graficzną, gdy polecnie wydane przez naciśnięcie klawisza spacji ma uruchomić albo za-
trzymać animację. Włączenie animacji polega na wysłaniu pierwszego z serii komunikatu
ClientMessage do okna obrazu. Wyłączenie animacji nie wymaga żadnych działań; war-

956 32. TRZECIA APLIKACJA

tość false zmiennej appwdg->animation (nadana przez część graficzną) zatrzyma wysy-
łanie komunikatów ClientMessage „napędzających” animację5.

Listing 32.23. Procedura ProcessWorldRequest
C

1: char ProcessWorldRequest (int msg, void *data, void *reply)

2: {

3: switch (msg) {

4: case WMSG_ANIMATION_ON:

5: PostClientMessageEvent (window[2], aAnimate, 8, NULL);

6: return true;

7: case WMSG_ANIMATION_OFF:

8: return true;

9: default:

10: return false;

11: }

12: } /*ProcessWorldRequest*/

Pozostałe procedury części okienkowej przedstawia listing 32.24. Procedura Message-
Loop realizuje główną pętlę komunikatów, w której dla każdego komunikatu otrzymanego
od systemu X Window ustala adresata, tj. jedno z trzech okien aplikacji i wywołuje odpo-
wiednią procedurę, aby przetworzyła ten komunikat. Procedura przetwarzania komunika-
tów okna głównego reaguje na dwa zdarzenia: komunikat ConfigureNotify, otrzymany po
zmianie wymiarów okna przez użytkownika, powoduje obliczenie nowych wymiarów pod-
okien, tj. okna menu i okna obrazu. Oba podokna mają wysokość taką jak okno główne.
Okno menu ma stałą szerokość MENU_WIDTH pikseli i zajmuje obszar z lewej strony okna
głównego, a okno obrazu zajmuje pozostały obszar okna głównego. Wywołania procedury
XMoveResizeWindoww liniach 7–10 spowodująwysłanie komunikatów ConfigureNotify

do podokien, a obsługą tych komunikatów zajmą sięmetody obiektów menu.

Listing 32.24. Procedury Win0MessageProc i MessageLoop
C

1: void Win0MessageProc (XEvent *ev)

2: {

3: XClientMessageEvent *xclient;

4:

5: switch (ev->xany.type) {

6: case ConfigureNotify:

7: XMoveResizeWindow (xdisplay, window[1], 0, 0,

8: MENU_WIDTH, window0_height = ev->xconfigure.height);

9: XMoveResizeWindow (xdisplay, window[2], MENU_WIDTH, 0,

5Gdyby część okienkowa była zrealizowana na przykład przy użyciu biblioteki FreeGLUT, animacja mogłaby
być wyłączana przez wykonanie instrukcji glutIdleFunc (NULL);. Interfejs między częściami okienkową
a graficzną zawiera polecenie wyłączenia animacji po to, aby to umożliwić bez uzależniania części graficznej od
biblioteki okienkowej.

32.5. Ćwiczenia 957

10: (window0_width = ev->xconfigure.width)-MENU_WIDTH, window0_height);

11: break;

12: case ClientMessage:

13: xclient = (XClientMessageEvent*)ev;

14: if (xclient->message_type == WMProtocols &&

15: (Atom)xclient->data.l[0] == DeleteWindow) {

16: terminate = true;

17: break;

18: }

19: default:

20: break;

21: }

22: } /*Win0MessageProc*/

23:

24: void MessageLoop (void)

25: {

26: XEvent ev;

27:

28: terminate = false;

29: do {

30: XNextEvent (xdisplay, &ev);

31: if (ev.xany.window == window[0])

32: Win0MessageProc (&ev);

33: else if (ev.xany.window == window[1])

34: WinMenuInput (wm1, &ev);

35: else if (ev.xany.window == window[2])

36: WinMenuInput (wm2, &ev);

37: } while (!terminate);

38: } /*MessageLoop*/

Użytkownik, za pośrednictwemmenedżera okien, może wysłać do aplikacji polecenie za-
trzymania jej. Wtedy w komunikacie ClientMessage jest przekazany atom DeleteWindow;
zmienna terminate otrzymuje wartość true i aplikacja kończy działanie.

32.5. Ćwiczenia

1. Dodaj suwak umożliwiający zmienianie prędkości obracania dłoni podczas animacji.

2.*Napisz szader obliczeniowy, który dla siatki przechowywanej w pamięci GPU wpisze do
tablicy w odpowiednim buforze pary indeksów wierzchołków końcowych krawędzi, aby
można było te krawędzie narysować za pomocą procedury glDrawElements. W wersji
łatwiejszej szader ma wpisywać do tablicy dane dla wszystkich półkrawędzi, a w wersji
trudniejszej tylko dla półkrawędzi brzegowych i dla jednej półkrawędzi z pary reprezen-
tującej krawędź wewnętrzną— trzeba zatem dla każdej półkrawędzi wyznaczyćmiejsce
w tablicy, w którym mają być zapamiętane indeksy jej końców, obliczając odpowiedni
ciąg sum prefiksowych (zobacz rozdz. 31).

958 32. TRZECIA APLIKACJA

Rysunek 32.1. Siatki wyświetlane przez trzecią aplikację

3.*Napisz szader obliczeniowy, który do tablicy w pamięci GPU wpisze indeksy trójkątów
otrzymanych z podziału ścian, aby umożliwić jej narysowanie za pomocą procedury
glDrawElements. W wersji łatwiejszej można przyjąć, że wszystkie ściany są czwo-
rokątne. W wersji trudniejszej należy dopuścić dowolne siatki, co wymaga obliczenia
wieloetapowego, z obliczaniem sum prefiksowych.

4.*Napisz i uruchom szader obliczeniowy, który „oznaczy” ściany siatki w „warstwie brze-
gowej” (nadając odpowiednią wartość bitowi określonemu przez maskę TAGMASK na lis-
tingu 31.3).

5.*Napisz i uruchom program szaderów, który narysuje ściany nie „oznaczone” na przykład
przez szader będący rozwiązaniem poprzedniego ćwiczenia.

33
Aplikacja trzecia A

Dodamy szader obliczeniowy, którego zadaniem jest obliczenie, dla każdego wierzchołka
siatki, wektora normalnego. Siatki otrzymane przez zagęszczanie przybliżają gładką po-
wierzchnię graniczną, której obraz chcemy uzyskać. Obliczonewektory normalne będą przy-
bliżaćwektory normalne powierzchni granicznej, a ich interpolacja doprowadzi do otrzyma-
nia obrazu cieniowanego, który wygląda jak obraz gładkiej powierzchni. Do dzieła.

33.1. Obliczanie wektorów normalnych

Współrzędne wierzchołków siatki są upakowane w tablicy liczb zmiennopozycyjnych, przy
czym dopuszczamy 2, 3 lub 4 współrzędne wierzchołków — w pierwszym przypadku siatka
leży w płaszczyźnie xy i dla wszystkich wierzchołków mamy wektor normalny (0, 0, 1), za-
tem wszelkie jego obliczenia są zbędne, a w trzecim przypadku mamy współrzędne jedno-
rodne wierzchołków. Obliczone wektory normalne umieścimy w tej samej tablicy. W tym
celu utworzymy dodatkowy bufor z tablicą na wyniki; dla każdego wierzchołka szader sko-
piuje współrzędne wierzchołka i dopisze do nich współrzędne wektora normalnego. Ale to
wymaga „porozsuwania” wierzchołków w tablicy, bo zamiast trzech lub czterech liczb mamy
ich dla każdego wierzchołka sześć lub siedem. Możemy też zarezerwować w tablicy miejsce
na dodatkowe atrybuty, takie jak kolor lub współrzędne tekstury1.

Szader obliczeniowy, którego zadaniem jest obliczenie wektora normalnego, zastąpi
tablicę, w której są tylko współrzędne położeń wierzchołków, przez tablicę, w której są
także współrzędne wektorów normalnych i ewentualnie miejsce na współrzędne tekstury.
Rozmieszczenie atrybutów wierzchołków siatki danej i siatki wynikowej opiszemy za po-
mocą zmiennych jednolitych umieszczonych w bloku o nazwie MeshNV. Zmienne innsattr
i outnsattr opisują liczbę wszystkich skalarnych atrybutów wierzchołka siatki w tablicy
danej i wynikowej. Zmienna pdim określa liczbę współrzędnych wierzchołka (2, 3 lub 4).

1To wymaga odpowiedniego rozbudowania struktur typu CPUmesh i GPUmesh oraz bloku magazynowego

meshsurf o pola opisujące położenia tych atrybutów w tablicy. Na przykład pola przechowujące liczbę współ-
rzędnych tekstury i numer pierwszej z nich dla wierzchołka można nazwać tdim i tofs.

960 33. APLIKACJA TRZECIA A

Zmienne inpofs i outpofs opisują, który atrybut jest pierwszą współrzędną położenia
wierzchołkaw siatce danej i wynikowej. Zmienna outnvofs określamiejsce, od którego sza-
der ma umieścić w tablicy wynikowej obliczone współrzędne wektora normalnego. Jeśli na
przykład wierzchołki mają podane tylko 3 współrzędne swojego położenia, to zmienne pdim
oraz innsattr mają wartość 3, a inpofs ma wartość 0. Jeśli wtedy w tablicy z wynikami
mają być tylko współrzędne położenia i współrzędne wektora normalnego, to przypiszemy
outnsattr = 6, outpofs = 0 i outnvofs = 3.

Do punktów dowiązania 0, 1, 2 i 3 celu GL_SHADER_STORAGE_BUFFER przywiążemy od-
powiednio bufory, z których pierwszy zawiera tablice wierzchołków i ścian oraz tablice z lis-
tami indeksów ich półkrawędzi, drugi zawiera tablicę półkrawędzi, trzeci tablicę z danymi
współrzędnymi wierzchołków, a ostatni tablicę na wynik. Makrodefinicje w liniach 18–24 na
listingu 33.1 ułatwiają dostęp do tablic w tych buforach.

Listing 33.1. Szader obliczeniowy wektorów normalnych wierzchołków siatki
GLSL

1: #version 450 core

2:

3: /* tu makrodefinicje FHEMASK i DEGSHIFT jak na listingu 31.3 */

4: /* oraz makrodefinicje V0, V1, FACN i OTHE jak na listingu 31.9 */

5:

6: layout(local_size_x=1) in;

7:

8: layout(std430,binding=0) buffer Inmvf { int mvf[]; } mvf;

9: layout(std430,binding=1) buffer Inmhe { ivec4 mhe[]; } mhe;

10: layout(std430,binding=2) buffer Invc { float vc[]; } inmvc;

11: layout(std430,binding=3) buffer Outvc { float vc[]; } outmvc;

12:

13: uniform MeshNV {

14: int innsattr, pdim, inpofs, inv, inhe, infac,

15: outnsattr, outpofs, outnvofs;

16: };

17:

18: #define mv(I) mvf.mvf[I]

19: #define mfac(I) mvf.mvf[inv+(I)]

20: #define mvhei(I) mvf.mvf[inv+infac+(I)]

21: #define mfhei(I) mvf.mvf[inv+infac+inhe+(I)]

22: #define mhe(I) mhe.mhe[I]

23: #define imvc(I) inmvc.vc[I]

24: #define omvc(I) outmvc.vc[I]

25:

26: vec3 GetVertexPos3f (int i)

27: {

28: i = innsattr*i + inpofs;

29: return vec3 (imvc(i), imvc(i+1), imvc(i+2));

30: } /*GetVertexPos3f*/

31:

33.1. Obliczanie wektorów normalnych 961

32: void MeshVertexNormal3f (int i)

33: {

34: int d, fhe, j, m, f, fd, ffhe;

35: vec3 p0, p1, p2, v1, v2, nv;

36:

37: fhe = mv(i) & FHEMASK;

38: d = mv(i) >> DEGSHIFT;

39: p0 = GetVertexPos3f (i);

40: m = outnsattr*i + outpofs;

41: omvc(m) = p0.x; omvc(m+1) = p0.y; omvc(m+2) = p0.z;

42: nv = vec3 (0.0);

43: if (mhe(mvhei(fhe+d-1)).OTHE < 0) {

44: f = mhe(mvhei(fhe)).FACN;

45: ffhe = mfac(f) & FHEMASK;

46: fd = mfac(f) >> DEGSHIFT;

47: for (j = 0; j < fd; j++)

48: if (mhe(mfhei(ffhe+j)).V1 == i)

49: break;

50: v1 = GetVertexPos3f (mhe(mfhei(ffhe+j)).V0) - p0;

51: }

52: else

53: v1 = GetVertexPos3f (mhe(mvhei(fhe+d-1)).V1) - p0;

54: for (j = 0; j < d; j++) {

55: v2 = GetVertexPos3f (mhe(mvhei(fhe+j)).V1) - p0;

56: nv += cross (v1, v2);

57: v1 = v2;

58: }

59: nv = normalize (nv);

60: m = outnsattr*i + outnvofs;

61: omvc(m) = nv.x; omvc(m+1) = nv.y; omvc(m+2) = nv.z;

62: } /*MeshVertexNormal3f*/

63:

64: void main (void)

65: {

66: switch (pdim) {

67: case 3: MeshVertexNormal3f (int(gl_GlobalInvocationID.x)); break;

68: case 4: break; /* procedura do napisania jako ćwiczenie */

69: default: break;

70: }

71: } /*main*/

Pomocnicza procedura GetVertexPos3f ma pobrać trzy współrzędne (kartezjańskie)
położenia i-tego wierzchołka. Zasadnicze obliczenie wykonuje procedura MeshVertex-
Normal3f, która w linii 40 przepisuje współrzędne i-tego wierzchołka do tablicy wynikowej.
Algorytm obliczania wektora normalnego jest następujący: i-ty wierzchołek jest końcem co
najmniej dwóch (jeśli jest brzegowy) albo co najmniej trzech (jeśli jest wewnętrzny) krawę-
dzi, które oby nie były równoległe. W każdej ścianie, która ma ten wierzchołek, znajdowane

962 33. APLIKACJA TRZECIA A

są dwie półkrawędzie, takie że i-ty wierzchołek jest końcem pierwszej i początkiem dru-
giej z nich. Po odjęciu i-tego wierzchołka od pozostałych wierzchołków tych półkrawędzi
otrzymujemy dwa wektory, v1 i v2, których iloczyn wektorowy jest wektorem normalnym
płaszczyzny zawierającej krawędzie siatki reprezentowane przez te półkrawędzie. Wektory
normalne płaszczyzn dla kolejnych ścian są sumowane (w celu uśrednienia kierunków), po
czym suma jest poddawana normalizacji (tj. dzielona przez swoją długość) i oto mamy jed-
nostkowy wektor normalny odpowiadający i-temu wierzchołkowi. Wystarczy jego współ-
rzędne wpisać do tablicy wynikowej, co wykonują instrukcje w linii 61.

Dla wierzchołków brzegowych i wewnętrznych trzeba wykonać trochę inne instrukcje.
Warunek w linii 43 jest spełniony dla wierzchołka brzegowego. Dla każdego wierzchołka
mamy tylko listę indeksów półkrawędzi, których ten wierzchołek jest początkiem, nie ma
w niej więc indeksu półkrawędzi brzegowej, której ten wierzchołek jest końcem. Dlatego dla
wierzchołka brzegowego trzeba odnaleźć kończącą się w nim półkrawędź brzegową, prze-
szukując (w pętli w liniach 47–49) listę półkrawędzi ściany pierwszej półkrawędzi wychodzącej
z wierzchołka. W linii 50 jest obliczany wektor v1 dla znalezionej półkrawędzi brzegowej
wchodzącej do wierzchołka.

Jeśli wierzchołek jest wewnętrzny, to obliczenie jest znacznie prostsze; wektor v1 obli-
czony w linii 53 odpowiada ostatniej półkrawędzi wychodzącej z wierzchołka. W pętli w li-
niach 54–58 obliczane sąwektory v2 dla kolejnych półkrawędzi wychodzących z i-tego wierz-
chołka, po czym iloczyn wektorowy v1 ∧ v2 jest dodawany do zmiennej nv w celu obliczenia
sumy. Wektor v2 w następnym przebiegu pętli staje się wektorem v1.

Podobną parę procedur, o nazwach na przykład GetVertexPos4f i MeshVertex-
Normal4f należy napisać w celu umożliwienia obliczeń dla siatek, których wierzchołki mają
położenia reprezentowane przez współrzędne jednorodne (linia 68). Nie napisałem tych pro-
cedur celowo, zostawiając to jako ćwiczenie dla Czytelników. Potrzebne do odnajdywania
numerów odpowiednich wierzchołków w siatce instukcje mogą być takie same, a współ-
rzędne wektora normalnego płaszczyzny w R3, w której leżą punkty (wierzchołki siatki) re-
prezentowane przez wektory współrzędnych jednorodnych Pi , Pj, Pk są pierwszymi trzema
współrzędnymi iloczynu wektorowego tych trzech wektorów w R4, Pi ∧ Pk ∧ Pj. Można do
jego obliczenia użyć funkcji cross4 z listingu 15.1.

Inna możliwość, to zamiana współrzędnych jednorodnych na kartezjańskie. Mogłoby
to dać oszczędność miejsca w pamięci GPU zajmowanego przez wynikową reprezentację
i trochę przyspieszyć rysowanie, ale trzeba pamiętać, że wynik ewentualnego dalszego za-
gęszczania siatki, której wierzchołki mają różne współrzędne wagowe byłby inny niż wynik
zagęszczania siatki, której wierzchołki mają w R3 te same położenia reprezentowane przez
współrzędne kartezjańskie (albo równoważnie przez współrzędne jednorodne z tą samą
współrzędną wagową dla wszystkich wierzchołków).

Listing 33.2 przedstawia procedury, które przygotowują do pracy i likwidują program
z opisanymwcześniej szaderemobliczeniowym. Identyfikator programu, bufor bloku zmien-
nych jednolitych i tablica przesunięć zmiennych względem początku bufora są pamiętane
w globalnych zmiennych statycznych, niewidocznych poza plikiem źródłowym zawierają-
cym te procedury i procedurę wywołującą szader z listingu 33.1.

33.1. Obliczanie wektorów normalnych 963

Listing 33.2. Procedury kompilacji i likwidacji programu obliczania wektorów normalnych
C

1: static GLuint nvprogid;

2: static GLuint nvbuf, nvbbp;

3: static GLint nvuvofs[9];

4:

5: void LoadMeshNormalVectorProgram (void)

6: {

7: const GLchar *filename[] =

8: { "mnv.comp.glsl" };

9: const GLchar *uvnames[] =

10: { "MeshNV", "innsattr", "pdim", "inpofs", "inv", "inhe", "infac",

11: "outnsattr", "outpofs", "outnvofs" };

12: GLuint shader_id;

13: GLint size;

14:

15: shader_id = CompileShaderFiles (GL_COMPUTE_SHADER, 1, &filename[0]);

16: nvprogid = LinkShaderProgram (1, &shader_id, "meshes normal");

17: GetAccessToUniformBlock (nvprogid, 9, uvnames, &size, nvuvofs,

18: &nvbbp);

19: glGenBuffers (1, &nvbuf);

20: glBindBufferBase (GL_UNIFORM_BUFFER, nvbbp, nvbuf);

21: glBufferData (GL_UNIFORM_BUFFER, size, NULL, GL_DYNAMIC_DRAW);

22: glDeleteShader (shader_id);

23: ExitIfGLError ("LoadMeshNormalVectorProgram");

24: } /*LoadMeshNormalVectorProgram*/

25:

26: void DeleteMeshNormalVectorProgram (void)

27: {

28: glUseProgram (0);

29: glDeleteProgram (nvprogid);

30: glDeleteBuffers (1, &nvbuf);

31: ExitIfGLError ("DeleteMeshNormalVectorProgram");

32: } /*DeleteMeshNormalVectorProgram*/

Procedura LoadMeshNormalVectorProgram wykonuje rutynowe działania: kompiluje
szader i łączy program oraz odczytuje z niego przesunięcia pól w bloku zmiennych jedno-
litych MeshNV; informacje te są zapamiętywane w opakowaniu wskazywanym przez para-
metr. Ponadto procedura rezerwuje numer punktu dowiązania i tworzy bufor dla tego bloku
zmiennych jednolitych; numer punktu i identyfikator bufora są również zapisywane w opa-
kowaniu.

Procedura wywołująca program obliczający wektory normalne dla wierzchołków siatki
jest pokazana na listingu 33.3. W liniach 11–14 dokonywana jest rezerwacja bufora na nową
tablicę atrybutówwierzchołków siatki. W liniach 18–26 zmiennym jednolitymw bloku Mesh-
NV są nadawane odpowiednie wartości, po czym program szaderów przystępuje do pracy
— liczba uruchamianych wątków jest liczbą wierzchołków siatki. Po zakończeniu obliczeń

964 33. APLIKACJA TRZECIA A

nowy bufor ze współrzędnymi położeń i wektorów normalnych jest „instalowany” w repre-
zentacji siatki w miejscu bufora dotychczasowego, który w linii 29 zostaje oddany do re-
cyklingu.

Listing 33.3. Procedura obliczania wektorów normalnych
C

1: #define SETUVAR(n,type,x)

2: glBufferSubData (GL_UNIFORM_BUFFER, uvofs[n], sizeof(type), &x);

3:

4: void ComputeMeshNormalVectors (GPUmesh *mesh, int nsattr, GLint nvofs)

5: {

6: GLuint vcbuf;

7:

8: glBindBufferBase (SSB, 0, mesh->MVFBUF);

9: glBindBufferBase (SSB, 1, mesh->MHEBUF);

10: glBindBufferBase (SSB, 2, mesh->VCBUF);

11: glGenBuffers (1, &vcbuf);

12: glBindBufferBase (SSB, 3, vcbuf);

13: glBufferData (SSB, mesh->nv*nsattr*sizeof(GLfloat), NULL,

14: GL_DYNAMIC_DRAW);

15: ExitIfGLError ("ComputeMeshNormalVectors 0");

16: glUseProgram (nvprogid);

17: glBindBufferBase (GL_UNIFORM_BUFFER, nvbbp, nvbuf);

18: SETUVAR (0, GLint, mesh->nsattr);

19: SETUVAR (1, GLint, mesh->pdim);

20: SETUVAR (2, GLint, mesh->pofs);

21: SETUVAR (3, GLint, mesh->nv);

22: SETUVAR (4, GLint, mesh->nhe);

23: SETUVAR (5, GLint, mesh->nfac);

24: SETUVAR (6, GLint, nsattr);

25: SETUVAR (7, GLint, mesh->pofs);

26: mesh->nvofs = nvofs; SETUVAR (8, GLint, nvofs);

27: COMPUTE (mesh->nv, 1, 1)

28: ExitIfGLError ("ComputeMeshNormalVectors 1");

29: glDeleteBuffers (1, &mesh->VCBUF);

30: mesh->VCBUF = vcbuf;

31: mesh->nsattr = nsattr;

32: UploadMeshParams (mesh);

33: ExitIfGLError ("ComputeMeshNormalVectors");

34: } /*ComputeMeshNormalVectors*/

33.2. Rysowanie siatki

Opisane w poprzednim rozdziale szadery rysowania siatek trzeba dostosować do zmiany re-
prezentacji siatki z dodatkowymi atrybutami wierzchołków; chcemy zachować możliwość
otrzymania takich samych obrazów jak poprzednio, ale jeśli są podane wektory normalne

33.2. Rysowanie siatki 965

wierzchołków, to chcemy ich używać podczas rysowania ścian siatki. Pierwszy program ry-
sowania siatki, którego zadaniem jest wyświetlenie krawędzi, nie wymaga żadnych zmian.

Niezbędna modyfikacja szadera wierzchołków programu rysowania podzielonych na
trójkąty ścian siatki jest również niewielka; prawie cała treść szadera jest pokazana na lis-
tingu 33.4. Oprócz położenia wierzchołka (w zawsze obecnej zmiennej gl_Position) i ko-
loru szader wyprowadza wektor normalny w zmiennej Normal. Dla siatki płaskiej, leżącej
w płaszczyźnie xy jest to zawsze wektor (0, 0, 1). Jeśli liczba współrzędnych wierzchołka
jest równa 3 albo 4, to wyprowadzany jest wektor normalny wzięty z tablicy, ale jeśli war-
tość zmiennej nvofs jest ujemna (co sygnalizuje nieobecność atrybutu — wektora normal-
nego), to wyprowadzony zostanie wektor zerowy. Nakłada to na szader geometrii dodatkowy
obowiązek zbadania, czy wektor normalny jest zerowy, który w takim przypadku powinien
w miejscu wektora normalnego powierzchni wyprowadzić wektor normalny płaszczyzny
przetwarzanego trójkąta (takiego rozwiązania użyliśmy już w drugiej aplikacji, zobacz lis-
ting 15.5).

Listing 33.4. Szader wierzchołków programu rysowania ścian siatki
C

1: /* dyrektywę #version i wcześniej opisane makrodefinicje pominąłem */

2:

3: layout(location=0) out vec3 Normal;

4: layout(location=1) out vec3 colour;

5:

6: /* bloki magazynowe jak na listingu 31.4 */

7:

8: #define mfac(I) mmvf.mvf[nv+(I)]

9: #define mfhei(I) mmvf.mvf[nv+nfac+nhe+(I)]

10: #define mhe(I) mmhe.mhe[I]

11: #define mvc(I) mmvc.vc[I]

12:

13: void main (void)

14: {

15: int i, j;

16:

17: i = mhe(mfhei((mfac(gl_InstanceID) & FHEMASK) + gl_VertexID)).V0;

18: j = nsattr*i + pofs;

19: switch (pdim) {

20: case 2:

21: gl_Position = vec4 (mvc(j), mvc(j+1), 0.0, 1.0);

22: Normal = vec3 (0.0, 0.0, 1.0);

23: return;

24: case 3:

25: gl_Position = vec4 (mvc(j), mvc(j+1), mvc(j+2), 1.0);

26: break;

27: default:

28: gl_Position = vec4 (mvc(j), mvc(j+1), mvc(j+2), mvc(j+3));

29: break;

966 33. APLIKACJA TRZECIA A

30: }

31: if (nvofs >= 0) {

32: j = nsattr*i + nvofs;

33: Normal = vec3 (mvc(j), mvc(j+1), mvc(j+2));

34: }

35: else

36: Normal = vec3 (0.0);

37: colour = Colour;

38: } /*main*/

Szader geometrii (przetwarzający jeden trójkąt) jest pokazany na listingu 33.5, przed-
stawiającym różnice między tym szaderem a szaderem z listingu 32.9. Kolejne pola bloku
wyjściowego Out reprezentują położenie wierzchołka w układzie współrzędnych świata, ko-
lor, wektor normalny otrzymany od szadera wierzchołków i wektor normalny płaszczyzny
trójkąta. W linii 29 następuje obliczanie i normalizacja współrzędnych w układzie świata
otrzymanego na wejściu wektora normalnego (danego w układzie modelu). W linii 32 jest
obliczany wektor normalny płaszczyzny trójkąta, który później jest przekazywany na wyjście
szadera w linii 37. Jeśli otrzymany od szadera wierzchołków wektor normalny jest zerowy (tj.
ma długość znikomą, a nie równą 1), to w jego miejscu jest również wyprowadzany wektor
normalny płaszczyzny trójkąta. W linii 42może być zmodyfikowany zwrot tego wektora, aby
kąt między oboma wektorami normalnymi był ostry.

Listing 33.5. Szader geometrii programu rysowania ścian siatki
GLSL

1: #version 450 core

2:

3: layout(triangles) in;

4: layout(triangle_strip,max_vertices=3) out;

5:

6: layout(location=0) in vec3 Normal[];

7: layout(location=1) in vec3 colour[];

8:

9: out FVertex {

10: vec3 Colour;

11: vec3 Position;

12: vec3 Normal, TNormal;

13: } Out;

14:

15: uniform TransBlock {

16: mat4 mm, mmti, vm, pm, vpm;

17: vec4 eyepos;

18: } trb;

19:

20: void main (void)

21: {

22: int i;

33.2. Rysowanie siatki 967

23: vec4 p[3];

24: vec3 q[3], nvec[3], v1, v2, tnv;

25:

26: for (i = 0; i < 3; i++) {

27: p[i] = trb.mm * gl_in[i].gl_Position;

28: q[i] = p[i].xyz/p[i].w;

29: nvec[i] = normalize (mat3(trb.mmti) * Normal[i]);

30: }

31: v1 = q[1] - q[0]; v2 = q[2] - q[0];

32: tnv = normalize (cross (v2, v1));

33: for (i = 0; i < 3; i++) {

34: gl_Position = trb.vpm * p[i];

35: Out.Position = q[i];

36: Out.Colour = colour[i];

37: Out.tnv = tnv;

38: if (Normal[i], Normal[i]) < 1.0e-10)

39: Out.Normal = Out.TNormal = tnv;

40: else {

41: Out.Normal = nvec[i];

42: Out.TNormal = dot (nvec[i], tnv) > 0.0 ? tnv : -tnv;

43: }

44: EmitVertex ();

45: }

46: EndPrimitive ();

47: } /*main*/

Do rysowania ścian siatki jest użyty szader fragmentów pokazany na listingu 12.8.
Mamy zatem dwa wektory normalne: jednostkowy wektor normalny płaszczyzny trój-
kąta (In.TNormal) i wektor normalny powierzchni gładkiej reprezentowanej przez siatkę
(In.Normal), który trzeba unormować, bo jest on wynikiem interpolacji wektorów jednost-
kowych o różnych kierunkach. Do rozstrzygnięcia, czy obserwator jest po tej samej stronie
powierzchni co źródło światła, trzeba użyć wektora normalnego płaszczyzny trójkąta, a do
modelu oświetlenia powierzchni (tj. do wzoru opisującego tenmodel) trzeba podstawićwek-
tor normalny powierzchni (zobacz s. 287).

Dostosowanie procedury LoadMeshRenderingShaders polega na zmienieniu nazw pli-
ków z tekstami źródłowymi szaderów, z których składa się program rysujący ściany siatki.
Aby móc wybierać, czy w modelu oświetlenia mają być używane wektory normalne podane
jako atrybuty wierzchołków siatki (czego skutkiem jest powstanie obrazu powierzchni gład-
kiej), czywektory normalne trójkątów, trzeba zmienićproceduręDrawMeshFacetswsposób
pokazany na listingu 33.6—dodatkowy parametr steruje wybieraniemwektorów. Procedura
SetMeshNVS przypisuje jego wartość polu MeshNormals bloku magazynowego meshsurf

opisującego siatkę. Wywołanie procedury glProvokingVertex usunąłem, ale można je zo-
stawić i nadać kwalifikator flat polu TNormal bloku interfejsu FVertex, aby wyeliminować
niepotrzebne obliczenia związane z interpolacją wektora normalnego płaszczyzny trójkąta.

968 33. APLIKACJA TRZECIA A

Listing 33.6. Zmiany w procedurze rysowania ścian siatki
C

1: void DrawMeshFacets (MeshRenderPrograms *prog,

2: GPUmesh *mesh, GLfloat colour[3], char nvs)

3: {

4: int i;

5:

6: for (i = 0; i < 4; i++)

7: glBindBufferBase (SSB, i, mesh->mbuf[i]);

8: SetMeshColour (mesh, colour);

9: SetMeshNVS (mesh, (GLint)nvs);

10: glUseProgram (prog->progid[1]);

11: glBindVertexArray (empty_vao);

12: glDrawArraysInstanced (GL_TRIANGLE_FAN, 0, 4, mesh->nfac);

13: glBindVertexArray (0);

14: ExitIfGLError ("DrawMeshFacets");

15: } /*DrawMeshFacets*/

16:

17: void SetMeshNVS (GPUmesh *gmesh, GLint nvs)

18: {

19: glBindBuffer (SSB, gmesh->MSBUF);

20: glBufferSubData (SSB, mbofs[7], sizeof(GLint), &nvs);

21: ExitIfGLError ("SetMeshNVS");

22: } /*SetMeshNVS*/

33.3. Zmiany w aplikacji

Do procedury InitMyWorld pokazanej na listingu 32.14 trzeba dodaćwywołanie procedury
LoadMeshNormalVectorShader z listingu 33.2, z kolei procedura sprzątająca DeleteMy-
World ma wywołać procedurę DeleteMeshNormalVectorProgram. Procedurę przygoto-
wującą siatki trzeba uzupełnić o instrukcję, która oblicza wektory normalne dla wierzchoł-
ków siatek (listing 33.7). Zwróćmy uwagę, że procedurę ComputeMeshNormalVectors wy-
konujemy po otrzymaniu przez zagęszczanie wszystkich siatek — w ten sposób zagęszczamy
siatkę, której wierzchołki mają tylko atrybut położenia opisany przez trójkę liczb (współ-
rzędnych kartezjańskich), a obliczenie wektorów normalnych (które wprowadza dodatkowe
atrybuty) jest przeprowadzane, gdy reprezentacja siatki w pamięci GPU jest potrzebna już
tylko do wykonywania obrazów.

Pozostałe zmiany, które aplikację 3 zamieniły w 3A, to dodanie pola mnv typu char do
struktury AppData, instrukcji (w procedurze ProcessCharCommand) nadających temu polu
wartości true i falsew odpowiedzi na naciskanie klawisza z literą N i przekazanie wartości
tego pola jako dodatkowego parametru w wywołaniu procedury DrawMeshFacets.

33.4. Ćwiczenia 969

Listing 33.7. Zmiany w procedurze InitPalmMeshes
C

1: void InitPalmMeshes (AppData *ad)

2: {

3: static const GLfloat edges_colour[3] = {0.0,0.5,0.7};

4: static const GLfloat facets_colour[3] = {0.91,0.65,0.5};

5: KLMesh *palm;

6: int i;

7:

8: palm = &ad->palm;

9: if ((palm->mesh[0] = EnterPalmToGPU ())) {

10: for (i = 1; i < NPALMMESHES; i++) {

11: /* tu instrukcje bez zmian */

12: }

13: for (i = 1; i < NPALMMESHES; i++)

14: ComputeMeshNormalVectors (palm->mesh[i]);

15: }

16: else

17: ExitOnError ("InitPalmMeshes");

18: } /*InitPalmMeshes*/

Rysunek 33.1. Okno aplikacji trzeciej A

33.4. Ćwiczenia

1. Wykonaj obliczenie wektorów normalnych dla pewnej siatki, a następnie dokonaj zagęsz-
czenia tej siatki prowadzącego do obliczenia wektorów normalnych przez interpolację
(tak jak obliczane są położenia wierzchołków podczas zagęszczania). Porównaj obrazy
otrzymane przy użyciu tych wektorów z obrazami wyświetlanymi przez aplikację opisa-
ną w tym rozdziale.

970 33. APLIKACJA TRZECIA A

2. Rozszerz zestaw możliwych atrybutów wierzchołków siatki o kolor, zmień aplikację tak,
by radziła sobie z siatkami, w których wektor normalny i kolor są obecne lub nieobecne
i użyj do wykonywania obrazów atrybutów dowolnie wybieranych spośród atrybutów
obecnych w danej reprezentacji siatki.

34
Aplikacja trzecia B

Utworzymy łańcuch kinematyczny, z którego członami zwiążemy punkty kontrolne siatki
dłoni, umożliwiając poruszanie palcami. Po zmianie dowolnego parametru artykulacji apli-
kacja przy użyciu szadera obliczeniowego z listingu 23.1 obliczy wierzchołki odkształconej
siatki, po czym zagęści tę siatkę i narysuje powierzchnię.

34.1. Łańcuch kinematyczny

Graf łańcucha kinematycznego dłoni jest drzewem, którego „gałęzie” reprezentują palce.
Gałęzie na rysunku 34.1 od prawej do lewej reprezentują kolejno kciuk, palec wskazujący,
środkowy, serdeczny i mały. Każda gałąźma cztery krawędzie — pary kinematyczne odpo-
wiadające poszczególnym stawom, przy czym pierwsze dwie pary wszystkich palców oprócz
kciuka (np. pary J4 i J5 palcawskazującego) odpowiadają temu samemu stawowi;dzięki temu,
choć wszystkie pary w łańcuchu są proste, pierwszy staw każdego z tych palców ma dwa
stopnie swobody.

Wszystkie pary kinematyczne w tym łańcuchu są obrotowe; razem z siatką na rysunku
są uwidocznione osie obrotów realizowanych przez te pary, a przy każdej osi jest podany
numer pary. Ponadto wierzchołki siatki związane z poszczególnymi członami łańcucha są
oznaczone kolorami użytymi także do przedstawienia członów—wierzchołków grafu z lewej
strony. Zbiór wierzchołków związanych z członami L5, L9, L13 i L17 jest pusty.

Listing 34.1 przedstawia makrodefinicje i definicje typów strukturalnych potrzebne do
zbudowania łańcucha kinematycznego w aplikacji. Struktura typu KLMesh opisuje obiekt —
reprezentowaną przez siatkę powierzchnię będącąmodelem dłoni. W nowym polu tribuf
tej struktury będzie pamiętany identyfikator bufora z tablicą, w której dla każdego wierz-
chołka siatki znajduje się numer przekształcenia (indeks do tablicy macierzy przekształceń
opisujących przejście od układu współrzędnych członu łańcucha do układu modelu), któ-
remu ma być poddany ten wierzchołek, aby odkształcić siatkę.

Struktura typu KLAppData opisuje dane stanowiące część opisu łańcucha kinematycz-
nego i umożliwiające narysowanie odkształconego za jego pomocą obiektu. Jej pole wdg,

972 34. APLIKACJA TRZECIA B

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

L15

L16

L17

L18

L19

L20

J0

J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11

J12

J13

J14

J15

J16

J17

J18

J19
13

17

19

.

4

.

4

..

12

15

.

12

15

. 0

1

2

3

5

6

7

8
9

10

11

14

16

18

Rysunek 34.1. Łańcuch kinematyczny dłoni

będące strukturą typu AppWidgets, zostało rozszerzona o tablicę artp, której elementy są
„podłączone” do suwaków wmenu. Zmienne te, przyjmujące wartości z przedziału [0, 1], są
używane do obliczenia parametrów artykulacji łańcucha, tj. kątów ugięcia poszczególnych
stawów.

Tablica mesh została wydłużona o jedno miejsce. Pierwszy jej element będzie wskazywał
strukturę reprezentującą siatkę nieodkształconą, a drugi siatkę odkształconą, tj. otrzymaną
wwyniku artykulacji. Zagęszczaniu będzie poddawana siatka odkształcona, otrzymanew ten
sposób siatki będą wskazywane przez pozostałe elementy tablicy.

Do struktury typu AppData zostały dodane pola linkage, lktrbuf i artprog. Pierwsze
z nich jest wskaźnikiem struktury łańcucha, której pole usrdata będzie wskazywać zmienną
typu AppData. Pole lktrbuf służy do przechowania identyfikatora bufora z macierzami
przekształceń, którym będą poddawane poszczególne wierzchołki siatki. Pole artprog jest
opakowaniem programu artykulacji łańcucha kinematycznego, tego samego, który był użyty
w aplikacji 2H (zobacz listingi 23.1, 23.2 i 23.3).

Listing 34.1. Makrodefinicje i struktura reprezentująca scenę
C

1: #define MESHDEG 3 /* liczba kroków uśredniania */

2: #define NPALMMESHES 4 /* liczba zagęszczonych siatek */

3: #define NKLOBJ 1 /* liczba obiektów w łańcuchu */

4: #define NKLINKS 21 /* liczba członów */

5: #define NKLREFS 17 /* liczba referencji */

34.1. Łańcuch kinematyczny 973

6: #define NKLJOINTS 20 /* liczba par kinematycznych */

7: #define NKLARTPARAMS 20 /* liczba parametrów artykulacji */

8:

9: typedef struct {

10: char sw[NPALMMESHES+1];

11: float artp[NKLARTPARAMS];

12: char animation;

13: } AppWidgets;

14:

15: typedef struct {

16: GPUmesh *mesh[NPALMMESHES+2];

17: GLfloat ecolour[3], fcolour[3];

18: GLuint tribuf;

19: } KLMesh;

20:

21: typedef struct {

22: AppWidgets wdg;

23: KLMesh palm;

24: kl_linkage *linkage;

25: Camera camera;

26: TransBl trans;

27: LightBl light;

28: GLuint lktrbuf;

29: char lod, edges, mnv;

30: float speed;

31: float model_rot_axis[3];

32: double model_rot_angle;

33: MeshRenderPrograms mrprog;

34: KLArticulationProgram artprog;

35: } AppData;

Listing 34.2 przedstawia w skrócie procedurę ConstructPalmLinkage. Jej zadaniem
jest skonstruowanie łańcucha kinematycznego opisującego chwytną dłoń. Wywoływane
przez nią procedury pomocnicze i metody obiektu — dłoni są przedstawione na kolejnych
listingach. Parametr procedury ConstructPalmLinkage jest adresem struktury opisującej
scenę.

Wywołana w liniach 22–23 procedura kl_NewLinkage rezerwuje pamięć na łańcuch ki-
nematyczny o podanych limitach liczb tworzących go elementów. W linii 24do tablicy zmien-
nych sterowanych przez suwaki są wpisywane liczby (zapisane w tablicy palmartp0), które
określą wartości początkowe parametrów artykulacji.

Człony łańcucha są wprowadzane w pętli w liniach 25–26, po czym procedura kl_New-
Object wprowadza obiekt — siatkę dłoni, rejestrując podane jako parametry metody tego
obiektu i wywołując procedurę KLInitPalmMesh, czyli konstruktor, który przesyła repre-
zentację siatki do pamięci GPU i inicjalizuje dane potrzebne do jej przetwarzania (tj. zagęsz-
czania i rysowania).

974 34. APLIKACJA TRZECIA B

Listing 34.2. Procedura ConstructPalmLinkage
C

1: kl_linkage *ConstructPalmLinkage (AppData *ad)

2: {

3: static int jtype[NKLJOINTS] =

4: { KL_ART_ROT_Y, KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X,

5: KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X, KL_ART_ROT_X,

6: KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X, KL_ART_ROT_X,

7: KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X, KL_ART_ROT_X,

8: KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X, KL_ART_ROT_X };

9: static int jpnum[NKLARTPARAMS] =

10: {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};

11: static float artp0[NKLARTPARAMS] =

12: {0.0,0.0,0.0,0.0,0.2,0.0,0.0,0.0,0.5,0.0,0.0,

13: 0.0,0.5,0.0,0.0,0.0,0.8,0.0,0.0};

14: static float pp0[3] = {-0.2, -0.86, 0.5},

15: vp0[3] = {0.0,1.0,0.0}, vp1[3] = {0.22,0.83,0.1};

16:

17: kl_linkage *lkg;

18: int lnk[NKLINKS], jnt[NKLJOINTS];

19: GLfloat tra[16];

20: int i, j, k, l;

21:

22: if ((ad->linkage = lkg = kl_NewLinkage (NKLOBJ, NKLINKS, NKLREFS,

23: NKLJOINTS, NKLARTPARAMS, (void*)ad))) {

24: memcpy (ad->artp, artp0, NKLARTPARAMS*sizeof(float));

25: for (i = 0; i < NKLINKS; i++)

26: lnk[i] = kl_NewLink (lkg);

27: kl_NewObject (lkg, 0, 3, PALM_NV, NULL, (void*)&ad->palm,

28: KLInitPalmMesh, KLTransformVertices,

29: KLPostprocessMesh, KLRedrawMesh, KLDeletePalmMesh);

30: for (k = j = 0; k < 5; k++)

31: for (i = 0, l = -1; i < 4; i++, l = j++)

32: jnt[j] = kl_NewJoint (lkg, lnk[l+1], lnk[j+1],

33: jtype[j], jpnum[j]);

34: /* kciuk */

35: M4x4RotateP2Vf (tra, pp0, vp0, vp1);

36: kl_SetJointFtr (lkg, jnt[0], tra, true);

37: M4x4Translatef (tra, 0.125, -0.842, 0.0);

38: kl_SetJointFtr (lkg, jnt[1], tra, true);

39: M4x4Translatef (tra, 0.329, -0.275, 0.05);

40: M4x4MRotateZf (tra, -0.1*PI);

41: M4x4MRotateYf (tra, -0.2*PI);

42: kl_SetJointFtr (lkg, jnt[2], tra, true);

43: M4x4Translatef (tra, 0.4, -0.05, 0.05);

44: M4x4MRotateZf (tra, -0.1*PI);

45: M4x4MRotateYf(tra, -0.2*PI);

34.1. Łańcuch kinematyczny 975

46: kl_SetJointFtr (lkg, jnt[3], tra, true);

47: /* wskazujący */

48: M4x4Translatef (tra, 0.070, 0.05, 0.08);

49: kl_SetJointFtr (lkg, jnt[4], tra, true);

50: kl_SetJointFtr (lkg, jnt[5], tra, true);

51: M4x4Translatef (tra, 0.094, 0.324, 0.08);

52: kl_SetJointFtr (lkg, jnt[6], tra, true);

53: M4x4Translatef (tra, 0.1, 0.591, 0.08);

54: kl_SetJointFtr (lkg, jnt[7], tra, true);

55: /* podobnie środkowy, serdeczny i mały */

56:

57: glGenBuffers (1, &ad->lktrbuf);

58: glBindBuffer (GL_SHADER_STORAGE_BUFFER, ad->lktrbuf);

59: glBufferData (GL_SHADER_STORAGE_BUFFER, lkg->norefs*16*sizeof(GLfloat),

60: NULL, GL_DYNAMIC_DRAW);

61: }

62: return lkg;

63: } /*ConstructPalmLinkage*/

W liniach 30–33 do łańcucha są dodawane pary kinematyczne; z uwagi na dosyć prostą
budowę grafu łańcucha (wszystkie „gałęzie” mają w nim tyle samo par), zamiast „wyliczać”
każdą parę osobno, można to zrobićw podwójnej pętli. Rodzaje kolejnych par (tj. określenia
osi obrotu dla każdej pary) są brane z tablicy jtype, z kolei w tablicy jpnum są podane nu-
mery parametrów artykulacji. W tymprzypadku, ponieważwszystkie pary są proste, numery
te są kolejnymi liczbami całkowitymi.

Po utworzeniu par kinematycznych trzeba jeszcze dla każdej z nich określić macierze
stałe, Fi oraz Bi . W każdym przypadku jest Bi = F−1i , dzięki czemu w położeniu wyjścio-
wym (w którym kąty obrotów wszystkich par są równe 0) układy współrzędnych wszystkich
członów pokrywają się i siatka nie jest odkształcona (zobacz podrozdz. 13.1). Przekształcenia
opisane przez te macierze mają na celu końcowe określenie osi obrotu pary, przez podanie
(dowolnego) punktu tej osi i ewentualne zmodyfikowanie jej kierunku. Dla wszystkich pal-
ców zwyjątkiem kciuka osie obrotów są równoległe do osi z i x, a odpowiedniemacierze Fi są
macierzami przesunięć. Na przykład dla palca wskazującego osie obrotów par J4 i J5 przecho-
dzą przez punkt (0.07, 0.05, 0.08), oś pary J6 przechodzi przez punkt (0.094, 0.324, 0.08),
a para J7 realizuje obrót wokół osi przechodzącej przez punkt (0.1, 0.591, 0.08). Macierze
F4 = F5, F6 i F7 są konstruowane przez instrukcje w liniach 48, 51 i 53.

Osie obrotów niektórych par kinematycznych kciuka nie są równoległe do osi układów
współrzędnych. Na przykład kierunek osi obrotu pary J0 jest wyznaczony przez macierz F0,
która opisuje obrót wokół przechodzącej przez punkt p0 = (−0.2,−0.86, 0.5) osi prostopad-
łej do wektorów v0 = (0, 1, 0) i v1 = (0.22, 0.83, 0.1), przy czym kąt tego obrotu jest dobrany
tak, aby obraz wektora v0 miał kierunek i zwrot wektora v1. Użyta w linii 35 do obliczenia tej
macierzy procedura M4x4RotateP2Vf jest zamieszczona na listingu 5.3. Macierz F1 repre-
zentuje tylko przesunięcie, z kolei macierz F2 = TR1R2 opisuje złożenie trzech przekształceń:
przesunięcia T o wektor (0.329,−0.275, 0.05), obrotu R1 wokół osi z i obrotu R2 wokół osi y.

976 34. APLIKACJA TRZECIA B

W liniach 57–60 jest tworzony bufor w pamięci GPU z tablicą, do której procedura KL-
TransformVertices, będąca metodą obiektu — siatki, będzie wpisywać macierze prze-
kształceń obliczone przez procedurę artykulacji łańcucha.

Listing 34.3 przedstawia metody siatki. Konstruktor obiektu, czyli procedura KLInit-
PalmMesh, ma przygotowaćwszystkie dane potrzebne do artykulacji i do rysowania obiektu.
Zatem, w linii 26 (oryginalna) siatka dłoni jest przesyłana do pamięci GPU. Pętla w liniach
27–31 wprowadza referencje obiektu, wiążące odpowiednie podzbiory zbioru wierzchołków
z członami łańcucha, oraz zapisuje (w roboczej tablicy cpi) dla każdego wierzchołka nu-
mer referencji tego wierzchołka — jest to numer przekształcenia, któremu wierzchołek bę-
dzie poddany w procesie artykulacji. Parametr procedury kl_NewObjRef określający liczbę
wierzchołków tworzonej referencji jest równy 0, ponieważ przekstałcanie wierzchołków wy-
kona szader obliczeniowywywołany przez proceduręKLPostprocessMesh. W liniach 32–34
jest tworzony bufor, do którego przesyłana jest zawartość tablicy roboczej.

W liniach 36–40 jest rezerwowana pamięć na opisy siatki odkształconej i siatek zagęsz-
czonych. Ponieważ siatka oryginalna i siatka odkształcona będą różnić się tylko położeniami
wierzchołków, w linii 41 dane opisujące siatkę oryginalną są kopiowane do struktury siatki
odkształconej, po czym w liniach 42–45 jest rezerwowany nowy bufor, w którym będą prze-
chowywane wierzchołki siatki odkształconej. W liniach 46 i 47 w strukturze opisującej siatkę
są zapisywane kolory, jakimimają być rysowane krawędzie siatki odkształconej i ściany siatek
otrzymanych z jej zagęszczania.

Listing 34.3. Metody obiektu — siatki dłoni
C

1: static char KLInitPalmMesh (kl_linkage *lkg, kl_object *obj)

2: {

3: static const GLfloat edges_colour[3] = {0.0,0.5,0.7};

4: static const GLfloat facets_colour[3] = {0.91,0.65,0.5};

5: static GLint r0[144] =

6: {0,1,2,3,6,7,8,9,10,13,16,17,135,138,139,140,141,142,143,

7: 4,11,134,136,137, 5,12,14,15,18,19,20,21, 22,23,24,25,26,27,28,29,

8: 30,31,32,33,34,35,36,37, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,

9: 53,54,55,56,57,58,59,60,61, 62,63,64,65,66,67,68,69, 70,71,72,73,74,75,

10: 76,77,78,79,80,81,82,83,84,85, 86,87,88,89,90,91,92,93, 94,95,96,97,98,

11: 99,100,101,102,103,104,105,106,107,108,109, 110,111,112,113,114,115,116,

12: 117,118,119,120,121,122,123,124,125, 126,127,128,129,130,131,132,133};

13: static const int r1[17] = {19,5,8,8,8,8,8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8};

14: static const int r2[17] = { 0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20};

15: KLMesh *md;

16: GPUmesh **palms;

17: GLuint *cpi;

18: int on, rn, nv, i, j, k;

19:

20: on = obj - lkg->obj;

21: nv = obj->nvert;

22: if ((cpi = malloc (nv*sizeof(GLuint)))) {

34.1. Łańcuch kinematyczny 977

23: memset (cpi, 0, nv*sizeof(GLuint));

24: md = (KLMesh*)obj->usrdata;

25: palms = md->mesh;

26: palms[0] = EnterPalmToGPU ();

27: for (j = k = 0; j < 17; k += r1[j++]) {

28: rn = kl_NewObjRef (lkg, r2[j], on, 0, NULL);

29: for (i = 0; i < r1[j]; i++)

30: cpi[r0[k+i]] = rn;

31: }

32: md->tribuf = NewStorageBuffer (nv*sizeof(GLuint),

33: ad->artprog.ctribp);

34: glBufferData (SSB, nv*sizeof(GLuint), cpi, GL_STATIC_DRAW);

35: free (cpi);

36: for (i = 1; i <= NPALMMESHES+1; i++) {

37: if (!(palms[i] = malloc (sizeof(GPUmesh))))

38: ExitOnError ("KLInitPalmMesh");

39: memset (palms[i], 0, sizeof(GPUmesh));

40: }

41: memcpy (palms[1], palms[0], sizeof(GPUmesh));

42: glGenBuffers (1, &palms[1]->mbuf[2]);

43: glBindBuffer (SSB, palms[1]->mbuf[2]);

44: glBufferData (SSB, PALM_NV*3*sizeof(GLfloat),

45: NULL, GL_DYNAMIC_DRAW);

46: memcpy (md->ecolour, edges_colour, 3*sizeof(GLfloat));

47: memcpy (md->fcolour, facets_colour, 3*sizeof(GLfloat));

48: }

49: else

50: ExitOnError ("KLInitPalmMesh");

51: return true;

52: } /*KLInitPalmMesh*/

53:

54: static void KLDeletePalmMesh (kl_linkage *lkg, kl_object *obj)

55: {

56: KLMesh *md;

57: int i;

58:

59: md = (KLMesh*)obj->usrdata;

60: for (i = 0; i <= NPALMMESHES+1; i++)

61: DeleteGPUmesh (md->mesh[i]);

62: glDeleteBuffers (1, &md->tribuf);

63: } /*KLDeletePalmMesh*/

64:

65: static void KLTransformVertices (kl_linkage *lkg, kl_object *obj,

66: int refn, GLfloat *tr, int nv, int *vn)

67: {

68: AppData *ad;

69:

978 34. APLIKACJA TRZECIA B

70: ad = (AppData*)lkg->usrdata;

71: glBindBuffer (GL_UNIFORM_BUFFER, ad->lktrbuf);

72: glBufferSubData (GL_UNIFORM_BUFFER, refn*16*sizeof(GLfloat),

73: 16*sizeof(GLfloat), tr);

74: ExitIfGLError ("KLTransformVertices");

75: } /*KLTransformVertices*/

76:

77: static void KLPostprocessMesh (kl_linkage *lkg, kl_object *obj)

78: {

79: AppData *ad;

80: KLMesh *md;

81: KLArticulationProgram *prog;

82: GPUmesh **mesh;

83: int i;

84:

85: ad = (AppData*)lkg->usrdata;

86: prog = &ad->artprog;

87: md = (KLMesh*)obj->usrdata;

88: mesh = md->mesh;

89: glUseProgram (prog->progid);

90: glBindBufferBase (SSB, prog->ctrbp, ad->lktrbuf);

91: glBindBufferBase (SSB, prog->ctribp, md->tribuf);

92: glBindBufferBase (SSB, prog->cpibp, mesh[0]->mbuf[2]);

93: glBindBufferBase (SSB, prog->cpobp, mesh[1]->mbuf[2]);

94: glUniform1i (prog->dim_loc, obj->nvc);

95: glUniform1i (prog->trnum_loc, -1);

96: glUniform1i (prog->ncp_loc, (GLint)obj->nvert);

97: COMPUTE (obj->nvert, 1, 1)

98: if (ad->lod >= 1) {

99: for (i = 1; i <= ad->lod; i++) {

100: if (!GPUmeshRefinement (MESHDEG, mesh[i], mesh[i+1]))

101: ExitOnError ("KLPostprocessMesh");

102: }

103: ComputeMeshNormalVectors (&ad->mcnprog, mesh[ad->lod+1], 6, 3);

104: }

105: ExitIfGLError ("KLPostprocessMesh");

106: } /*KLPostprocessMesh*/

107:

108: static void KLRedrawMesh (kl_linkage *lkg, kl_object *obj)

109: {

110: AppData *ad;

111: KLMesh *md;

112:

113: ad = (AppData*)lkg->usrdata;

114: md = (KLMesh*)obj->usrdata;

115: if (ad->meshsw[0])

116: DrawMeshEdges (&ad->mrprog, md->mesh[1], md->ecolour);

34.1. Łańcuch kinematyczny 979

117: if (ad->lod >= 1) {

118: if (ad->edges)

119: DrawMeshEdges (&ad->mrprog, md->mesh[ad->lod+1], md->fcolour);

120: else

121: DrawMeshFacets (&ad->mrprog, md->mesh[ad->lod+1], md->fcolour,

122: ad->mnv);

123: }

124: } /*KLRedrawMesh*/

Procedura KLDeletePalmMesh będzie wywoływana podczas sprzątania — jej zadaniem
jest likwidacja reprezentacji siatek w pamięci GPU (i opisujących je struktur w pamięci GPU)
oraz zwolnienie bufora z numerami przekształceń wierzchołków.

Procedura KLTransformVertices, wywoływana przez procedurę artykulacji łańcucha,
zamiast przekształcać wierzchołki siatki, przesyła podanąmacierz przekształcenia do bufora
zarezerwowanego przez procedurę ConstructPalmLinkage (listing 34.2, linie 57–60). Prze-
kształcaniem wierzchołków zajmuje się procedura KLPostprocessMesh, która (podobnie
jak procedura KLPostprocessBP z listingu 23.7) przywiązuje do odpowiednich punktów
dowiązania bufor z macierzami przekształceń (linia 90), bufor z numerami przekształceń dla
poszczególnych wierzchołków (linia 91), bufor ze współrzędnymi wierzchołków siatki orygi-
nalnej (linia 92) i bufor na przekształcone wierzchołki (linia 93). W liniach 94–96 zmiennym
jednolitym dim, trnum i ncp zostają nadane odpowiednie wartości, po czym wykonywany
jest program artykulacji.

Po zakończeniu jego działania (czyli po powrocie z procedury glMemoryBarrier wy-
wołanej przez makrodefinicję COMPUTE) następuje zagęszczanie odkształconej siatki. War-
tość pola lod struktury *ad, jeśli jest dodatnia, jest wybranym przez użytkownika pozio-
mem szczegółowości obrazu, tj. liczbą iteracji zagęszczania. Ściany siatki będącej wynikiem
ostatniego zagęszczania mają być narysowane; opisana w poprzednim rozdziale procedura
ComputeMeshNormalVectors oblicza wektory normalne, które będą użyte do „optycznego
wygładzenia” powierzchni na obrazie.

Ostatnia metoda, KLRedrawMesh, jest wywoływana przez procedurę kl_Redraw (lis-
ting 13.9). Procedura ta, zależnie od stanu przełączników w menu, rysuje krawędzie siatki
odkształconej i krawędzie albo ściany siatki zagęszczonej określonej przez wartość pola lod.

Procedury na listingu 34.4 służą do wprowadzenia jednego lub wszystkich paramet-
rów artykulacji. Każdy staw w dłoni ma pewien, w ogólności inny, zakres kątów, a su-
waki (opisane w rozdziale 30) „dostarczają” liczby z przedziału [0, 1] (przechowywane
w tablicy ad->wdg.artp, której elementy są „podłączone” do poszczególnych suwaków).
Dlatego każda z tych procedur odwzorowuje ten przedział na odpowiednie przedziały
dla poszczególnych stawów (par kinematycznych), na podstawie liczb podanych w tablicy
palmartprange. Drugim parametrem procedury SetArticulationParameter jest nu-
mer (jednego) parametru artykulacji. Procedura ArticulatePalmLinkage po obliczeniu
wartości wszystkich parametrów artykulacji dokonuje artykulacji łańcucha, wywołując pro-
cedurę kl_Articulate.

980 34. APLIKACJA TRZECIA B

Listing 34.4. Procedury obsługi parametrów artykulacji
C

1: static float palmartprange[NKLARTPARAMS][2] =

2: {{0.0,-0.5*PI},{0.0,-0.5},{0.0,0.4*PI},{0.0,0.4*PI},

3: {0.025*PI,-0.1*PI},{0.0,0.5*PI},{0.0,0.5*PI},{0.0,0.5*PI},

4: {0.025*PI,-0.025*PI},{0.0,0.5*PI},{0.0,0.5*PI},{0.0,0.5*PI},

5: {0.025*PI,-0.025*PI},{0.0,0.5*PI},{0.0,0.5*PI},{0.0,0.5*PI},

6: {0.12*PI,-0.03*PI},{0.0,0.5*PI},{0.0,0.5*PI},{0.0,0.5*PI}};

7:

8: void SetArticulationParameter (AppData *ad, int pnum)

9: {

10: float x, par;

11:

12: x = ad->artp[pnum];

13: par = (1.0-x)*artprange[pnum][0] + x*artprange[pnum][1];

14: kl_SetArtParam (ad->linkage, pnum, 1, &par);

15: } /*SetArticulationParameter*/

16:

17: void ArticulatePalmLinkage (AppData *ad)

18: {

19: float x;

20: GLfloat par[NKLARTPARAMS];

21: int i;

22:

23: for (i = 0; i < NKLARTPARAMS; i++) {

24: x = ad->artp[i];

25: par[i] = (1.0-x)*artprange[i][0] + x*artprange[i][1];

26: }

27: kl_SetArtParam (ad->linkage, 0, NKLARTPARAMS, par);

28: kl_Articulate (ad->linkage);

29: } /*ArticulatePalmLinkage*/

34.2. Przygotowanie i rysowanie sceny

Wprocedurze InitMyWorld potrzebne są tylko dwie zmiany (porównaj listing 34.5 z 32.14):
trzeba dodać wywołanie procedury LoadLinkageArticulationProgram, która kompi-
luje program artykulacji łańcucha kinematycznego i zastąpić wywołanie procedury Init-
PalmMeshes wywołaniem procedury ConstructPalmLinkage, a po niej Articulate-
PalmLinkage. Aby poprawić czytelność kodu, przeniosłemwywołania wszystkich procedur
kompilujących szadery do osobnej procedury LoadMyShaders.

Inaczej niż w aplikacjach 2H–2K, które wyświetlają obiekty (czajnik, torus i lustro)
„z pominięciem” procedury kl_Redraw, aplikacja 3B wywołuje tę procedurę, a ona w pętli
wywołuje metody rysowania wszystkich obiektów (czyli jednego; metodą tą jest procedura
KLRedrawMesh z listingu 34.3). Przedtem trzeba tylko skasować tło i uaktywnić test widocz-
ności.

34.2. Przygotowanie i rysowanie sceny 981

Listing 34.5. Procedury InitMyWorld i RedrawMyWorld
C

1: void LoadMyShaders (AppData *ad)

2: {

3: LoadMeshRefinementProgram (true, false);

4: LoadMeshNormalVectorProgram ();

5: LoadMeshRenderingPrograms (&ad->mrprog);

6: LoadLinkageArticulationProgram (&ad->artprog);

7: } /*LoadMyShaders*/

8:

9: AppWidgets *InitMyWorld (int argc, char *argv[], int width, int height)

10: {

11: static const float model_rot_axis[3] = {0.0,1.0,0.0};

12:

13: memset (&appdata, 0, sizeof(AppData));

14: LoadMyShaders (&appdata);

15: ConstructEmptyVAO ();

16: appdata.trans.trbuf = NewUniformTransBlock ();

17: appdata.light.lsbuf = NewUniformLightBlock ();

18: TimerInit ();

19: memcpy (appdata.model_rot_axis, model_rot_axis, 3*sizeof(float));

20: appdata.speed = 0.5*3.1415926;

21: SetupModelMatrix (&appdata);

22: InitCamera (&appdata, width, height);

23: InitLights (&appdata);

24: appdata.mnv = true;

25: appdata.wdg.sw[0] = appdata.wdg.sw[2] = true;

26: appdata.lod = 2;

27: appdata.edges = appdata.wdg.animation = false;

28: if (ConstructPalmLinkage (&appdata))

29: ArticulatePalmLinkage (&appdata);

30: else

31: ExitOnError ("InitMyWorld");

32: return &appdata.wdg;

33: } /*InitMyWorld*/

34:

35: void DrawMyScene (AppData *ad)

36: {

37: glClearColor (1.0, 1.0, 1.0, 1.0);

38: glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

39: glEnable (GL_DEPTH_TEST);

40: kl_Redraw (ad->lkg);

41: } /*DrawMyScene*/

42:

43: void RedrawMyWorld (void)

44: {

45: DrawMyScene (&appdata);

982 34. APLIKACJA TRZECIA B

46: } /*RedrawMyWorld*/

Listing 34.6 przedstawia procedurę dodaną do interfejsu części graficznej i okienkowej;
jest ona wywoływana po zmianie położenia suwaka. Procedura wywołuje procedurę obli-
czającą nową wartość parametru artykulacji i procedurę dokonującą artykulacji łańcucha,
a potem przekazuje wartość true, wskazującą, że należy wykonać nowy obraz.

Listing 34.6. Procedura ProcessSlidebarCommand
C

1: char ProcessSlidebarCommand (int sln)

2: {

3: if (sln >= SL_ID_ARTP0 && sln < SL_ID_ARTP0+NKLARTPARAMS) {

4: SetArticulationParameter (&appdata, sln-SL_ID_ARTP0);

5: kl_Articulate (appdata.linkage);

6: return true;

7: }

8: else

9: return false;

10: } /*ProcessSlidebarCommand*/

Oczywiście, do procedury DeleteMyWorld trzeba dodać instrukcje likwidujące prog-
ram szaderów dokonujący artykulacji oraz bufor z indeksami przekształceń i cały łańcuch
kinematyczny.

34.3. Interfejs użytkownika

Listing 34.7 przedstawia zmiany dokonane w procedurach tworzenia menu i obsługi komu-
nikatów wysyłanych do aplikacji przez wihajstry. Wihajstrów tych jest więcej, bo do guzika
zatrzymującego program i przełączników wybierających wyświetlaną siatkę doszły suwaki
umożliwiające nadawanie wartości parametrom artykulacji.

W linii 4 jest makrodefinicja wprowadzająca identyfikator pierwszego z tych suwaków.
Suwaków jest 20 (tyle, ile parametrów artykulacji, zobacz listing 34.1).

Procedura inicjalizacji menu ma nową nazwę i trzy nowe linie, 41–43, które opisują pę-
tlę tworzącą suwaki. Do poszczególnych suwaków są przywiązywane zmienne typu float

przechowywane w tablicy appwdg->artp. Komunikaty przysyłane przez te suwaki są ob-
sługiwane przez instrukcje w liniach 17–22.

Po otrzymaniu komunikatu od suwaka procedura Win1CallBack wywołuje procedurę
ProcessSlidebarCommand, która realizuje odpowiednią reakcję części graficznej na to zda-
rzenie. Zarówno po zmianie stanu przełącznika, jak i suwaka, wysyłany jest komunikat po-
wodujący wykonanie nowego obrazu.

34.3. Interfejs użytkownika 983

Listing 34.7. Procedury tworzenia menu i obsługi jego komunikatów
C

1: #define GLWIN_ID_VIEW 1

2: #define BTN_ID_EXIT 2

3: /* identyfikatory przełączników bez zmian */

4: #define SL_ID_ARTP0 8

5:

6: void Win1Callback (struct xwidget *wdg, int msg, int key, int x, int y)

7: {

8: switch (msg) {

9: case WDGMSG_BUTTON_PRESS:

10: /* zatrzymywanie programu po naciśnięciu guzika bez zmian */

11: break;

12:

13: case WDGMSG_SWITCH_CHANGE:

14: ProcessSwitchCommand (wdg->id);

15: goto redraw_win2;

16:

17: case WDGMSG_SLIDEBAR_CHANGE:

18: ProcessSlidebarCommand (wdg->id);

19: redraw_win2:

20: wm2->changed = true;

21: PostMenuExposeEvent (wm2);

22: break;

23:

24: default:

25: break;

26: }

27: } /*Win1CallBack*/

28:

29: xwinmenu *SetupApp3BMenu (void)

30: {

31: xwinmenu *wm;

32: int i;

33:

34: if (!(wm = NewWinMenu (window[1], MENU_WIDTH, WIN0_HEIGHT, 0, 0,

35: NULL, NULL, Win1Callback)))

36: ExitOnError ("SetupApp3BMenu");

37: NewButton (wm, BTN_ID_EXIT, 60, 18, 2, 2, str_EXIT);

38: for (i = 0; i < NPALMMESHES; i++)

39: NewSwitch (wm, SW_ID_MESH0+i, 16, 16, 2+20*i, 22, NULL,

40: &appwdg->sw[i]);

41: for (i = 0; i < NARTPARAMS; i++)

42: NewSlidebarf (wm, SL_ID_ARTP0+i, 116, 10, 2, 46+15*i,

43: &appwdg->artp[i]);

44: return wm;

45: } /*SetupApp3BMenu*/

984 34. APLIKACJA TRZECIA B

Rysunek 34.2. Okno aplikacji trzeciej B

34.4. Ćwiczenia

1. Zastanów się, jak skrócić procedurę ConstructPalmLinkage, zastępując instrukcje
w liniach 34–55 instrukcjami wywoływanymi w pętli. Po zastanowieniu weź się do dzieła.

2.*Zastanów się nad możliwością napisania procedury, która skonstruuje kompletny łań-
cuch kinematyczny (z wieloma obiektami) na podstawie danych opisanych przez swoje
parametry, zastępując procedury takie jak ConstructPalmLinkage lub Construct-
MyLinkage z aplikacji 2H i 2I. Niektóre parametry muszą być wskaźnikami procedur
(metod wirtualnych) wykonujących obliczenia specyficzne dla obiektów poszczególnych
rodzajów.

Motywacją do tych ćwiczeń jest umożliwienie konstruowania różnych łańcuchów kine-
matycznych na podstawie danych odczytanych przez aplikację z plików.

35
Aplikacja trzecia C

Aplikacja 3C pokaże pazurki (zrobione z płatów Béziera). Ponadto użyjemy w niej wypróbo-
wanego wcześniej modelu oświetlenia Blinna-Phonga i sprawimy, by na obrazach pojawiły
się cienie.

35.1. Łańcuch kinematyczny

Rozbudujemy łańcuch kinematyczny z aplikacji 3B — dodamy do niego 5 nowych członów
i par kinematycznych (które wydłużą każdą z „gałęzi” drzewa— grafu opisującego łańcuch).
Będą teraz dwa obiekty: siatka dłoni i zestaw pięciu płatów Béziera będących modelami
paznokci.

Na rysunku 35.1 jest pokazany graf łańcucha i płat Béziera będący modelem paznokcia.
Każda „gałąź” łańcucha jest wydłużona o jedną krawędź i jeden wierzchołek (czyli o jedną
parę kinematyczną i jeden człon). Płat ma stopień (5, 4), zatemw każdymwierszu jego siatki
jest 6 punktów kontrolnych, a w każdej kolumnie jest ich 5. Wszystkie punkty kontrol-
ne z pierwszych trzech wierszy oraz wszystkie z pierwszej i ostatniej kolumny są związane
z przedostatnim członem odpowiedniej gałęzi (np. członem L4 w przypadku kciuka), a po-
zostałe punkty będą miały położenia ustalone w układzie współrzędnych ostatniego członu
(L21 dla kciuka).

Na listingu 35.1 są pokazane makrodefinicje opisujące nowe liczby elementów łańcucha
i typ struktury AppData, do której zostało dodane pole nails, nowe zmienne shadows

i final, potrzebne podczas wykonywania obrazów sceny, oraz pole brprog, które jest opi-
sanym dalej opakowaniem programów szaderów używanych do rysowania płatów Béziera,
tj. paznokci. Zamiast jednego obiektu są dwa (siatka dłoni i paznokcie), a że każdy paznokieć
jest związany z dwoma członami łańcucha, liczba referencji obiektów wzrosła o 10.

Pole nails jest strukturą, w której są przechowywane wskaźniki reprezentacji dwóch ze-
stawówpięciu płatówBéziera (oryginalnego i odkształconego), identyfikatory buforów z opi-
sem materiału i z macierzami przekształceń artykulacji oraz kolor siatki kontrolnej.

986 35. APLIKACJA TRZECIA C

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

L15

L16

L17

L18

L19

L20

L21

L22
L23L24

L25

J0

J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11

J12

J13

J14

J15

J16

J17

J18

J19

J20

J21
J22J23

J24

Rysunek 35.1. Łańcuch kinematyczny aplikacji 3C i model paznokcia

Listing 35.1. Nowe liczby elementów łańcucha i zmieniona struktura AppData
C

1: #define MESHDEG 3 /* liczba kroków uśredniania */

2: #define NPALMMESHES 4 /* liczba zagęszczonych siatek */

3: #define NKLOBJ 2 /* liczba obiektów w łańcuchu */

4: #define NKLINKS 26 /* liczba członów */

5: #define NKLREFS 27 /* liczba referencji */

6: #define NKLJOINTS 25 /* liczba par kinematycznych */

7: #define NKLARTPARAMS 21 /* liczba parametrów artykulacji */

8:

9: typedef struct {

10: GPUmesh *mesh[NPALMMESHES+2];

11: GLfloat ecolour[3], fcolour[3];

12: GLuint tribuf, mtn;

13: } KLMesh;

14:

15: typedef struct {

16: BezierPatchObjf *bpatches[2];

17: GLuint tribuf, mtn;

18: } KLBezPatches;

19:

20: typedef struct {

21: AppWidgets wdg;

22: KLMesh palm;

35.1. Łańcuch kinematyczny 987

23: KLBezPatches nails;

24: kl_linkage *linkage;

25: Camera camera;

26: TransBl trans;

27: LightBl light;

28: MatBl mat;

29: GLuint lktrbuf;

30: char lod, edges, mnv, shadows, final;

31: float speed;

32: float model_rot_axis[3];

33: double model_rot_angle;

34: MeshRenderPrograms mrprog;

35: BPRenderPrograms brprog;

36: KLArticulationProgram artprog;

37: } AppData;

Listing 35.2 przedstawia procedurę wprowadzającą reprezentację paznokci do pamięci
GPU.Makrodefinicje w liniach 1–5 określają stopień płata, liczbę palców, a także liczby punk-
tów kontrolnych jednego płata (paznokcia) i wszystkich paznokci jednej dłoni.

Listing 35.2. Procedura EnterFingernailsToGPU
C

1: #define FINGERNAIL_UDEG 5 /* stopień płata ze względu na parametr u */

2: #define FINGERNAIL_VDEG 4 /* stopień płata ze względu na parametr v */

3: #define FINGER_NUM 5 /* liczba palców */

4: #define FINGERNAIL_NCP ((FINGERNAIL_UDEG+1)*(FINGERNAIL_VDEG+1))

5: #define FINGERNAIL_NV (FINGERNAIL_NCP*FINGER_NUM)

6:

7: static GLfloat fingernail_cp[][3] = {

8: {-0.65655,-0.54132,-0.62502}, {-0.65655,-0.40329,-0.48714},

9: /* z 30 punktów kontrolnych 27 tu pominąłem */

10: { 0.68104, 0.28418,-0.52111}};

11:

12: void EnterFingernailsToGPU (BezierPatchObjf *nails[2], GLfloat colour[3])

13: {

14: GLfloat *nailcp;

15: int i, j, k;

16: GLfloat nsc[FINGER_NUM] = {0.09,0.09,0.095,0.085,0.075};

17: GLfloat nrot[FINGER_NUM][3] =

18: {{-0.05*PI,0.85*PI,-0.07*PI},{-0.03*PI,PI,0.0},{-0.03*PI,PI,0.02*PI},

19: {-0.03*PI,PI,0.02*PI},{-0.03*PI,PI,0.02*PI}};

20: GLfloat ntrv[FINGER_NUM][3] =

21: {{0.48,0.095,-0.088},{0.105,0.75,-0.12},{-0.15,0.8,-0.12},

22: {-0.38,0.7,-0.12},{-0.61,0.5,-0.12}};

23: GLfloat tr[16];

24:

25: if (!(nailcp = malloc (FINGERNAIL_NV*3*sizeof(GLfloat))))

988 35. APLIKACJA TRZECIA C

26: ExitOnError ("EnterFingernailsToGPU 0");

27: for (i = k = 0; i < FINGER_NUM; i++) {

28: M4x4Translatef (tr, ntrv[i][0], ntrv[i][1], ntrv[i][2]);

29: M4x4MRotateZf (tr, nrot[i][2]);

30: M4x4MRotateYf (tr, nrot[i][1]);

31: M4x4MRotateXf (tr, nrot[i][0]);

32: M4x4MScalef (tr, nsc[i], nsc[i], nsc[i]);

33: for (j = 0; j < FINGERNAIL_NCP; j++, k += 3)

34: M4x4MultMP3f (&nailcp[k], tra, fingernail_cp[j]);

35: }

36: nails[0] = EnterBezierPatches (FINGERNAIL_UDEG, FINGERNAIL_VDEG, 3,

37: FINGER_NUM, 1, FINGERNAIL_NV, nailcp,

38: (FINGERNAIL_UDEG+1)*(FINGERNAIL_VDEG+1)*3, 0,

39: (FINGERNAIL_VDEG+1)*3, 3, colour);

40: free (nailcp);

41: if ((nails[1] = malloc (sizeof(BezierPatchObjf)))) {

42: memcpy (nails[1], nails[0], sizeof(BezierPatchObjf));

43: glGenBuffers (1, &nails[1]->buf[1]);

44: glBindBuffer (GL_SHADER_STORAGE_BUFFER, nails[1]->buf[1]);

45: glBufferData (GL_SHADER_STORAGE_BUFFER,

46: FINGERNAIL_NV*3*sizeof(GLfloat), NULL, GL_DYNAMIC_DRAW);

47: ExitIfGLError ("EnterFingernailsToGPU");

48: }

49: else

50: ExitOnError ("EnterFingernailsToGPU");

51: } /*EnterFingernailsToGPU*/

Wszystkie paznokcie są obrazami jednego płata Béziera w odpowiednio dobranych (in-
dywidualnie dla każdego palca) przekształceniach afinicznych. Punkty kontrolne tego płata
są podane w tablicy fingernail_cp. W linii 25 procedura EnterFingernailsToGPU re-
zerwuje bufor, w którym zapisze punkty kontrolne wszystkich paznokci, po czym w pętli
w liniach 27–35 konstruuje odpowiednie przekształcenie dla każdego palca i (w wewnętrznej
pętli w liniach 33–34) poddaje mu punkty z tablicy fingernail_cp.

Przekształcenia są konstruowane przez instrukcje w liniach 28–32; każde z nich jest opi-
sane przez macierz Ai = TiRziRyiRxiSi — iloczyn macierzy przesunięcia Ti , trzech macie-
rzy obrotów (wokół osi z, y, x) i macierzy skalowania Si . Parametry tych przekształceń są
zapisane w tablicach ntrv, nrot i nsc; może warto zwrócić uwagę, że wielkości poszcze-
gólnych paznokci są różne, za co odpowiadają współczynniki skalowania (równomiernego
dla wszystkich osi) w tablicy nsc.

Po zakończeniu zewnętrznej pętli tablica nailcp zawiera współrzędne punktów, które
procedura EnterBezierPatches (z listingu 15.8) razem z pozostałymi elementami opisu
płatów przesyła do pamięci GPU.W linii 40pamięć zajmowana przez niepotrzebną już tablicę
jest zwalniana, po czym w liniach 41–46 konstruowana jest struktura danych przeznaczona
do reprezentowania paznokci po artykulacji.

Listing 35.3 przedstawia zmiany w procedurze ConstructPalmLinkage. W liniach 6–7
są dodatkowe elementy opisujące rodzaj nowych par kinematycznych—wszystkie one reali-

35.1. Łańcuch kinematyczny 989

Listing 35.3. Zmiany w procedurze ConstructPalmLinkage
C

1: kl_linkage *ConstructPalmLinkage (mypalmscene *scene)

2: {

3: static int jtype[NKLJOINTS] =

4: { KL_ART_ROT_Y, KL_ART_ROT_Z, KL_ART_ROT_X, KL_ART_ROT_X,

5:

6: KL_ART_TRANS_Y, KL_ART_TRANS_Y, KL_ART_TRANS_Y, KL_ART_TRANS_Y,

7: KL_ART_TRANS_Y };

8: static int jpnum[NKLJOINTS] =

9: {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,20,20,20,20};

10: static float pp0[3] = { ... }, vp0[3] = { ... }, vp1[3] = { ... };

11: kl_linkage *lkg;

12: int lnk[NKLINKS], jnt[NKLJOINTS];

13: GLfloat tra[16];

14: int i, j, k, l;

15:

16: if ((lkg = kl_NewLinkage (NKLOBJ, NKLINKS, NKLREFS, NKLJOINTS,

17: NKLARTPARAMS, (void*)scene))) {

18: memcpy (scene->palmartp, palmartp0, NKLARTPARAMS*sizeof(float));

19: for (i = 0; i < NKLINKS; i++)

20: lnk[i] = kl_NewLink (lkg);

21: kl_NewObject (lkg, 0, 3, PALM_NV, NULL, (void*)&ad->palm,

22: KLInitPalmMesh, KLTransformVertices,

23: KLPostprocessMesh, KLRedrawMesh, KLDeletePalmMesh);

24: kl_NewObject (lkg, 0, 3, FINGERNAIL_NV, NULL, (void*)&ad->nails,

25: KLInitFingernails, KLTransformVertices, KLPostprocessFingernails,

26: KLRedrawBezPatches, KLDeleteFingernails);

27: for (k = j = 0; k < 5; k++) {

28: for (i = 0, l = -1; i < 4; i++, l = j++)

29: jnt[j] = kl_NewJoint (lkg, lnk[l+1], lnk[j+1],

30: jtype[j], jpnum[j]);

31: }

32: for (k = 0; k < 5; k++, j++)

33: jnt[j] = kl_NewJoint (lkg, lnk[4*(k+1)], lnk[j+1],

34: jtype[j], jpnum[j]);

35: /* kciuk */

36: M4x4RotateP2Vf (tra, pp0, vp0, vp1);

37:

38: kl_SetJointFtr (lkg, jnt[3], tra, true);

39: M4x4RotateZf (tra, -0.1*PI);

40: kl_SetJointFtr (lkg, jnt[20], tra, true);

41:

42: glGenBuffers (1, &ad->lktrbuf);

43: glBindBuffer (GL_SHADER_STORAGE_BUFFER, ad->lktrbuf);

44: glBufferData (GL_SHADER_STORAGE_BUFFER, lkg->norefs*16*sizeof(GLfloat),

45: NULL, GL_DYNAMIC_DRAW);

990 35. APLIKACJA TRZECIA C

46: }

47: return scene->lkg = lkg;

48: } /*ConstructPalmLinkage*/

zują przesunięcia wzdłuż osi y. W linii 9 jest wydłużona tablica z numerami parametrów
artykulacji dla poszczególnych par — wszystkie nowe pary mają jeden wspólny parametr
artykulacji, który określa wielkość przesunięcia. Początkowa wartość tego parametru to 0.

Metody obiektu — siatki dłoni — zostały tylko rozszerzone o instrukcje wprowadzające
opis materiału używanego do obliczeń oświetlenia. Jego numer jest zapamiętywany w polu
mtn struktury typu KLMesh. W liniach 24–26 jest dodane wywołanie procedury kl_New-
Object, której celem jest utworzenie i dołączenie do łańcucha obiektu paznokci. Metody
tego obiektu są przedstawione na listingu 35.4. Pętla w liniach 27–28, wprowadzająca pary
kinematyczne obecnew aplikacji 3B, teżnie uległa zmianie, natomiast nowepary, J20 , . . . , J24,
wprowadzane są w pętli dodanej w liniach 32–34.

Prawie każda z nowych par kinematycznych realizuje przesunięcie wzdłuż osi y przed-
ostatniego członu odpowiedniego palca, przy czym w położeniu początkowym oś ta ma kie-
runek osi y układu związanego z członem L0. W związku z tym macierze stałe F21, . . . , F24
tych par są macierzą jednostkową — taka macierz jest przyjmowana domyślnie dla każdej
pary przez procedurę kl_NewJoint i nie trzeba jej zmieniać. W wyjątkowy sposób trzeba
potraktować kciuk, którego paznokieć w położeniu wyjściowym jest obrócony inaczej niż
pozostałe i przesunięcia punktów kontrolnych jego siatki też powinny mieć inny kierunek.
Odpowiednia macierz, F20, jest konstruowana przez instrukcję w linii 39.

Procedura KLInitFingernails, która jest konstruktorem obiektu paznokci, w linii 8
oblicza numer obiektu1. W linii 10następuje rezerwacja tablicy roboczej, w której dla każdego
punktu kontrolnego zostanie (w liniach 13–24) obliczony numer przekształcenia artykulacji
dla tego wierzchołka i z której numery te (w liniach 25–26) zostaną przesłane do utworzonego
w linii 11 bufora w pamięci GPU. W linii 28 jest wywołana procedura z listingu 35.2. W li-
niach 29–30 zostaje utworzony opis materiału, którego kolor będzie ustalany bezpośrednio
przed rysowaniem (zmiany parametrów artykulacji będą powodować zmiany tego koloru).
W linii 31 w opisie paznokci zostaje zapamiętany kolor siatek kontrolnych płatów Béziera na
obrazie.

Procedura KLDeleteFingernails, czyli destruktor wywoływany podczas likwidacji
łańcucha, zwalnia pamięć CPU i GPU zajmowaną przez reprezentację paznokci. Drugi ze-
staw płatów ma z pierwszym wspólny bufor z blokiem BezPatch, więc jego likwidacja wy-
maga tylko zwolnienia bufora z blokiem CPoints i struktury w pamięci CPU (linie 43–44).

Metodą transform obiektu paznokci jest ta sama procedura KLTransformVertices
co dla powierzchni siatkowej (listing 34.3). Otrzymaną jako parametr macierz przesyła ona
do bufora, którego identyfikator jest pamiętany w polu lktrbuf struktury typu AppData

opakowującej całą reprezentację sceny do narysowania.

1Drugi obiekt wprowadzony do łańcucha ma oczywiście numer 1, ale lepiej jest obliczyć go w taki sposób,

aby łatwiej było rozbudować aplikację dalej.

35.1. Łańcuch kinematyczny 991

Listing 35.4. Metody obiektu paznokci
C

1: static char KLInitFingernails (kl_linkage *lkg, kl_object *obj)

2: {

3: static const GLfloat cnetcolour[3] = { 0.0, 1.0, 0.0 };

4: KLBezPatches *pd;

5: int i, j, l, m, on, rn;

6: GLuint *cpi;

7:

8: on = obj - lkg->obj;

9: pd = (KLBezPatches*)obj->usrdata;

10: if ((cpi = malloc (FINGERNAIL_NV*sizeof(GLuint)))) {

11: glGenBuffers (1, &pd->tribuf);

12: glBindBuffer (SSB, pd->tribuf);

13: for (l = 0; l < FINGER_NUM; l++) { /* kolejno dla każdego palca */

14: rn = kl_NewObjRef (lkg, 4*(l+1), on, 0, NULL);

15: for (i = 0; i <= FINGERNAIL_UDEG; i++) {

16: m = i == 0 || i == FINGERNAIL_UDEG ? FINGERNAIL_VDEG : 2;

17: for (j = 0; j <= m; j++)

18: cpi[l*FINGERNAIL_NCP + (FINGERNAIL_VDEG+1)*i + j] = rn;

19: }

20: rn = kl_NewObjRef (lkg, 21+l, on, 0, NULL);

21: for (i = 1; i < FINGERNAIL_UDEG; i++)

22: for (j = 3; j <= FINGERNAIL_VDEG; j++)

23: cpi[l*FINGERNAIL_NCP + (FINGERNAIL_VDEG+1)*i + j] = rn;

24: }

25: glBufferData (SSB, FINGERNAIL_NV*sizeof(GLuint),

26: cpi, GL_STATIC_DRAW);

27: free (cpi);

28: EnterFingernailsToGPU (pd->bpatches, cnetcolour);

29: pd->mtn = SetupMaterial (&ad->mat, -1, cnetcolour, cnetcolour,

30: 1.0, 1.0, 1.0);

31: }

32: else

33: ExitOnError ("KLInitFingernails");

34: return true;

35: } /*KLInitFingernails*/

36:

37: static void KLDeleteFingernails (kl_linkage *lkg, kl_object *obj)

38: {

39: KLBezPatches *pd;

40:

41: pd = (KLBezPatches*)obj->usrdata;

42: DeleteBezierPatches (pd->bpatches[0]);

43: glDeleteBuffers (1, &pd->bpatches[1]->buf[1]);

44: free (pd->bpatches[1]);

45: glDeleteBuffers (1, &pd->tribuf);

992 35. APLIKACJA TRZECIA C

46: } /*KLDeleteFingernails*/

47:

48: static void V4Interpolatef (GLfloat v[4],

49: const GLfloat v0[4], const GLfloat v1[4], float t)

50: {

51: int i;

52: float s;

53:

54: for (i = 0, s = 1.0-t; i < 3; i++)

55: v[i] = s*v0[i] + t*v1[i];

56: } /*V4Interpolatef*/

57:

58: static void KLPostprocessFingernails (kl_linkage *lkg, kl_object *obj)

59: {

60: const GLfloat diffr0[4] = { 0.91, 0.65, 0.5, 1.0 };

61: const GLfloat specr0[4] = { 0.15, 0.1, 0.12, 1.0 };

62: const GLfloat diffr1[4] = { 0.7, 0.1, 0.25, 1.0 };

63: const GLfloat specr1[4] = { 0.4, 0.4, 0.4, 1.0 };

64: const GLfloat shn = 60.0, wa = 5.0, we = 5.0;

65: AppData *ad;

66: KLArticulationProgram *prog;

67: KLBezPatches *pd;

68: BezierPatchObjf **nails;

69: GLfloat diffr[4], specr[4];

70: float t;

71:

72: ad = (AppData*)lkg->usrdata;

73: prog = &ad->artprog;

74: pd = (KLBezPatches*)obj->usrdata;

75: nails = pd->bpatches;

76: glUseProgram (ad->artprog.progid);

77: glBindBufferBase (SSB, prog->ctrbp, ad->lktrbuf);

78: glBindBufferBase (SSB, prog->ctribp, pd->tribuf);

79: glBindBufferBase (SSB, prog->cpibp, nails[0]->buf[1]);

80: glBindBufferBase (SSB, prog->cpobp, nails[1]->buf[1]);

81: glUniform1i (prog->dim_loc, obj->nvc);

82: glUniform1i (prog->trnum_loc, -1);

83: glUniform1i (prog->ncp_loc, (GLint)obj->nvert);

84: glDispatchCompute (obj->nvert, 1, 1);

85: t = ad->artp[NKLARTPARAMS-1];

86: t = t > 0.2 ? 1 : 5.0*t;

87: V4Interpolatef (diffr, diffr0, diffr1, t);

88: V4Interpolatef (specr, specr0, specr1, t);

89: SetupMaterial (&ad->mat, mt->mtn, diffr, specr, shn, wa, we);

90: glMemoryBarrier (GL_UNIFORM_BARRIER_BIT);

91: ExitIfGLError ("KLPostprocessFingernails");

92: } /*KLPostprocessFingernails*/

35.1. Łańcuch kinematyczny 993

93:

94: typedef struct {

95: GLuint progid[3];

96: GLint LightingModelLoc;

97: } BPRenderPrograms;

98:

99: static void KLRedrawBezPatches (kl_linkage *lkg, kl_object *obj)

100: {

101: static const int TessLevel[4] = {4,8,16,32};

102: AppData *ad;

103: KLBezPatches *bezp;

104:

105: ad = (AppData*)lkg->usrdata;

106: bezp = (KLBezPatches*)obj->usrdata;

107: glPolygonMode (GL_FRONT_AND_BACK, GL_FILL);

108: SetBezierPatchTessLevel (bezp->bpatches[1], TessLevel[ad->lod-1]);

109: SetBezierPatchNVS (bezp->bpatches[1], (GLint)ad->mnv);

110: if (ad->edges)

111: glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

112: else

113: glPolygonMode (GL_FRONT_AND_BACK, GL_FILL);

114: if (ad->final) {

115: glUseProgram (ad->brprog.progid[1]);

116: ChooseMaterial (&bezp->mat, bezp->mtn);

117: }

118: else

119: glUseProgram (ad->brprog.progid[2]);

120: DrawBezierPatches (bezp->bpatches[1]);

121: if (ad->meshsw[0]) {

122: glUseProgram (ad->brprog.progid[0]);

123: DrawBezierNets (bezp->bpatches[1]);

124: }

125: ExitIfGLError ("KLRedrawBezPatches");

126: } /*KLRedrawBezPatches*/

Procedura KLPostprocessFingernails dokonuje artykulacji paznokci przy użyciu
szadera obliczeniowego z listingu 23.1, który dokonuje też artykulacji siatki dłoni. Metody
artykulacji siatki i płatów Béziera są oczywiście różne, ale w każdej z nich do odpowied-
nich punktów dowiązania (w celu GL_SHADER_STORAGE_BUFFER) są przywiązywane bufory
z tablicamimacierzy przekształceń, numerówprzekształceńposzczególnych punktów, wierz-
chołków, które trzeba przekształcić, i miejsc, w których przekształcone punkty mają być za-
pisane, a potem uruchamiany jest program szaderów.

Artykulacja paznokci oprócz przekształcania punktów kontrolnych określa kolor. Obli-
czenie wykonywane w liniach 86–88 polega na interpolacji parametrówmateriału za pomocą
procedury V4Interpolatef2. Opis materiału jest przesyłany do pamięci GPU, gdzie będzie

2będącej odpowiednikiem procedury mix w GLSL-u

994 35. APLIKACJA TRZECIA C

gotowy do użycia podczas rysowania. Zauważmy, że te obliczenia nie kolidują z działaniami
szadera uruchomionego w linii 84, zatem procedura glMemoryBarrier, która czeka na za-
kończenie tych działań, może być wywołana na końcu postprocesingu.

Procedura KLRedrawBezPatches jest metodą rysowania płatów Béziera, której wywo-
łanie może mieć na celu znalezienie obszaru cienia lub wykonanie końcowego obrazu. Pole
brprog jest strukturą typu BPRenderPrograms, tj. opakowaniem trzech programów szade-
rów, których identyfikatory są pamiętane w tablicy progid. Pierwszy z nich (progid[0])
służy w obu przypadkach do rysowania siatki kontrolnej. Drugi program (progid[1]) służy
do znajdowania obszaru cienia, a trzeci (progid[2]) rysuje końcowy obraz. Kolor odcinków
siatki kontrolnej na obrazie jest brany z pola Colour w opisie płatów, a pole w linii 96 służy
do wyboru modelu oświetlenia (Lamberta lub Blinna-Phonga) używanego podczas rysowa-
nia płatów Béziera3. Procedury kompilujące programy rysowania płatów Béziera i siatek są
opisane dalej.

Metoda rysowania obiektu paznokci, KLRedrawBezPatches, zależnie od wartości
zmiennej ad->lod określa stopień rozdrobnienia płatówBéziera dostosowany do stopnia za-
gęszczenia wyświetlanej siatki, wywołując procedurę SetBezierPatchOptions. Zmienna
ta określa poziom szczegółowości wyświetlanej siatki, tj. liczbę iteracji rozdrabniania. Liczba
ścian podczas każdego rozdrabniania siatki rośnie czterokrotnie, zatem liczba trójkątów pła-
tów Béziera, na każdym następnym poziomie szczegółowości, powinna być dobrana zgod-
nie z tą samą regułą. Zatem, liczby podane w tablicy TessLevel powodują, że zależnie od
poziomu każdy płat Béziera (czyli każdy paznokieć) będzie podzielony na to 2 ⋅ 42 = 32,
2 ⋅ 82 = 128, 2 ⋅ 162 = 512 albo 2 ⋅ 322 = 2048 trójkąty.

Podczas znajdowania obszaru cienia procedurawykonuje instrukcjęw linii 119, a podczas
rysowania obrazu końcowego instrukcje w liniach 115–116; w obu przypadkach sąwybierane
różne programy szaderów, a dla końcowego obrazu jest także przyczepiany bufor z opisem
materiału. Jeśli zmienna ad->meshsw[0]ma wartość niezerową, to następuje jeszcze ryso-
wanie siatki kontrolnej.

35.2. Szadery rysujące i ich przygotowanie

Aplikacja wykonuje obrazy przy użyciu sześciu programów szaderów: trzech dla obiektu
siatki i trzech dla paznokci. Wszystkie szadery używane do wykonywania obrazu przez apli-
kację 3C były wypróbowane wcześniej, choć do niektórych z nich trzeba było wprowadzić
drobne modyfikacje. Identyfikatory tych programów razem z położeniami zmiennych jed-
nolitych są pamiętane w tablicach progid w strukturach typu MeshRenderPrograms dla
siatek i BPRenderPrograms dla płatów Béziera.

Listing 35.5 przedstawia zmiany wprowadzone do szadera wierzchołków z listingu 33.4,
w celu otrzymania cieni na końcowym obrazie siatki. W liniach 29–31 następuje oblicze-
nie współrzędnych wierzchołka w układach związanych z wszystkimi włączonymi źródłami

3Takie samo pole zostało dodane do struktury MeshRenderPrograms, tj. opakowania trzech programów do

rysowania siatek.

35.2. Szadery rysujące i ich przygotowanie 995

światła. Do szadera geometrii trzeba dodać przekazywanie tych współrzędnych z wejścia na
wyjście; uznałem, że listing tego szadera jest zbędny.

Listing 35.5. Szader wierzchołków programu rysowania ścian siatki z cieniami
GLSL

1: /* początek szadera bez zmian */

2:

3: out GVertex {

4: vec4 Normal;

5: vec4 ShadowPos[MAX_NLIGHTS];

6: } Out;

7:

8: /* bloki magazynowe z reprezentacją siatki jak na listingu 31.4 */

9:

10: uniform TransBlock { } trb; /* tak, jak na listingu 12.3 */

11: struct LSPar { }; /* tak, jak na listingu 22.3 */

12: uniform LSBlock { } light; /* tak, jak na listingu 22.3 */

13:

14:

15: void main (void)

16: {

17: vec4 pos, wpos;

18: uint i, j, l, mask;

19:

20: i = mhe(mfhei((mfac(gl_InstanceID) & FHEMASK) + gl_VertexID)).V0;

21: j = nsattr*i + pofs;

22: switch (pdim) {

23: /* odczytywanie położenia wierzchołka bez zmian, */

24: /* ale przypisujemy je zmiennej pos */

25: }

26: gl_Position = pos;

27: /* obliczanie wektora normalnego bez zmian */

28: wpos = trb.mm * pos;

29: for (l = 0, mask = 0x00000001; l < light.nls; l++, mask <<= 1)

30: if ((light.mask & mask) != 0)

31: Out.ShadowPos[l] = light.ls[l].shadow_vpm * wpos;

32: } /*main*/

Nie zamieściłem tu również listingu szadera fragmentów wykonującego końcowy ob-
raz płatów Béziera i powierzchni siatkowej; szader ten powstał z przedstawionego na lis-
tingu 22.5 szadera aplikacji 2G przez usunięcie instrukcji związanych z nakładaniem tekstury
na powierzchnie4. Bez zmian pozostawiłemmodele oświetlenia (Lamberta i Blinna-Phonga)
i opisy świateł oraz własności materiału używane do obliczania kolorów fragmentów.

4Powierzchnia reprezentowana przez siatkę nieregularną zazwyczaj nie jest płatem (tj. powierzchnią o pa-

rametryzacji, której dziedzina jest obszarem płaskim), przez co wygenerowanie sensownych współrzędnych
tekstury dwuwymiarowej dla jej wierzchołków, choćwykonalne, jest zadaniem dosyć trudnym. Pozostawiam je

jako przedmiot dalszych studiów.

996 35. APLIKACJA TRZECIA C

Program do znajdowania obszaru cienia rzucanego przez powierzchnię siatkową jest
znacznie uproszczony, bo nie ma w nim potrzeby przetwarzania wektora normalnego po-
wierzchni. Program ten składa się z dwóch szaderów, wierzchołków i fragmentów. Szader
wierzchołków powstał przez uproszczenie szadera z listingu 33.4 — instrukcje odczytujące
z tablic wektor normalny zostały usunięte. Ponieważ w tym programie szader geometrii jest
nieobecny, szader wierzchołków musi wykonać dodatkowe zadanie — dokonać przejścia do
układu kostki standardowej i przypisać zmiennej gl_Position współrzędne wierzchołka
w tym układzie. Macierze przejścia od układu modelu do układu świata i dalej do układu
kostki standardowej są brane z bloku zmiennych jednolitych TransBlock, przy czym zawsze,
gdy ten program jest wykonywany, układ kostki standardowej jest związany ze źródłem
światła.

Listing 35.6 przedstawia procedury, których zadaniem jest przygotowanie do pracy prog-
ramów rysujących. W celu poprawienia czytelności kodu aplikacji programy rysujące siatki
i płaty Béziera są przygotowywane przez osobne procedury, LinkMeshRenderingProgams
i LinkBPRenderingPrograms, ale programy temająwiele szaderówwspólnych. W związku
z tympomocnicza proceduraLoadRenderingShadersdokonuje kompilacji wszystkich sza-
derów, z których składają się te programy; trzeba ją wywołać przed wspomnianymi proce-
durami, a po złączeniu programów można sprzątnąć szadery, aby nie zajmowały miejsca.

Pomocnicza procedura LinkMyShaderProgram umożliwia skrócenie kodu aplikacji;
pierwszym jej parametrem jest tablica liczb całkowitych, z których pierwsza jest liczbą sza-
derów do połączenia w program, a kolejne liczby są indeksami do tablicy shader zawie-
rającej identyfikatory skompilowanych szaderów. W liniach 28–29 identyfikatory szaderów,
które mają być połączone w program, są przepisywane do pomocniczej tablicy, która jest na-
stępnie przekazywana procedurze LinkShaderProgram z listingu 4.7. Ostatni parametr jest
napisem, który zostanie wyświetlony w razie wystąpienia błędu łączenia programu, w celu
ułatwienia znalezienia jego przyczyny.

Listing 35.6. Procedury kompilacji i łączenia programów rysujących
C

1: void LoadRenderingShaders (GLuint *shid)

2: {

3: static const GLchar *filename[] =

4: { "app3C0.vert.glsl", "app3C1.vert.glsl", "app3C2.vert.glsl",

5: "app3C3.vert.glsl", "app3C4.vert.glsl", "app2.tesc.glsl",

6: "app3C0.tese.glsl", "app3C1.tese.glsl", "app3C0.geom.glsl",

7: "app3C1.geom.glsl", "app3C2.geom.glsl", "app3C0.frag.glsl",

8: "app3C1.frag.glsl" };

9: static const GLuint shtype[] =

10: { GL_VERTEX_SHADER, GL_VERTEX_SHADER, GL_VERTEX_SHADER,

11: GL_VERTEX_SHADER, GL_VERTEX_SHADER, GL_TESS_CONTROL_SHADER,

12: GL_TESS_EVALUATION_SHADER, GL_TESS_EVALUATION_SHADER,

13: GL_GEOMETRY_SHADER, GL_GEOMETRY_SHADER, GL_GEOMETRY_SHADER,

14: GL_FRAGMENT_SHADER, GL_FRAGMENT_SHADER };

15: int i;

35.2. Szadery rysujące i ich przygotowanie 997

16:

17: for (i = 0; i < 13; i++)

18: shid[i] = CompileShaderFiles (shtype[i], 1, &filename[i]);

19: } /*LoadRenderingShaders*/

20:

21: static const GLchar *UVNames[] = { "LightingModel" };

22:

23: static GLuint LinkMyShaderProgram (const int *shn, const GLuint *shaders,

24: const char *name)

25: {

26: GLuint sh[5], i;

27:

28: for (i = 0; i < shn[0]; i++)

29: sh[i] = shaders[shn[i+1]];

30: return LinkShaderProgram (shn[0], sh, name);

31: } /*LinkMyShaderProgram*/

32:

33: void LinkMeshRenderingPrograms (MeshRenderPrograms *prog, GLuint *shid)

34: {

35: static const int p0sh[] = {3,0,8,11};

36: static const int p1sh[] = {3,1,9,12};

37: static const int p2sh[] = {2,2,11};

38: int i;

39:

40: prog->progid[0] = LinkMyShaderProgram (p0sh, shid, "0");

41: prog->progid[1] = LinkMyShaderProgram (p1sh, shid, "1");

42: prog->progid[2] = LinkMyShaderProgram (p2sh, shid, "2");

43: GetAccessToMeshSurfBlock (prog->progid[1]);

44: prog->LightingModelLoc =

45: glGetUniformLocation (prog->progid[1], UVNames[0]);

46: GetAccessToTransBlockUniform (prog->progid[0]);

47: GetAccessToLightMatUniformBlocks (prog->progid[1]);

48: for (i = 1; i < 3; i++)

49: AttachUniformTransBlockToBP (prog->progid[i]);

50: ExitIfGLError ("LinkMeshRenderingShaders");

51: } /*LinkMeshRenderingPrograms*/

52:

53: void LinkBPRenderingPrograms (BPRenderPrograms *prog, GLuint *shid)

54: {

55: static const int p3sh[] = {2,4,11};

56: static const int p4sh[] = {5,3,5,6,10,12};

57: static const int p5sh[] = {4,3,5,7,11};

58: static const GLchar *UVnames[] = { "colour" };

59: int i;

60:

61: prog->progid[0] = LinkMyShaderProgram (p3sh, shid, "3");

62: prog->progid[1] = LinkMyShaderProgram (p4sh, shid, "4");

998 35. APLIKACJA TRZECIA C

63: prog->progid[2] = LinkMyShaderProgram (p5sh, shid, "5");

64: GetAccessToBezPatchStorageBlocks (prog->progid[1], false, false);

65: prog->LightingModelLoc =

66: glGetUniformLocation (prog->progid[1], UVNames[0]);

67: GetAccessToTransBlockUniform (prog->progid[0]);

68: for (i = 1; i < 3; i++)

69: AttachUniformTransBlockToBP (prog->progid[i]);

70: GetAccessToLightMatUniformBlocks (prog->progid[1]);

71: prog->ucolour_loc = glGetUniformLocation (prog->progid[0], UVnames[0]);

72: ExitIfGLError ("LoadBPRenderingPrograms");

73: } /*LinkBPRenderingPrograms*/

Obie procedury przygotowania programów rysujących dla aplikacji wykonują rutynowe
działania, tzn. łączą programy ze skompilowanych szaderów i odczytują z nich położenia
zmiennych jednolitych i informacje o przesunięciach pól w blokach zmiennych jednolitych
TransBlock, LSBlock i MatBlock. We wszystkich programach rysujących bloki te mają
identyczą budowę.

Listing 35.7 przedstawia procedury likwidujące programy używane do rysowania siatek
i płatów Béziera. Wywołanie tych procedur trzeba dopisać do procedury sprzątającej po za-
trzymaniu aplikacji przez użytkownika.

Listing 35.7. Procedury likwidacji programów rysujących
C

1: void DeleteMeshRenderingPrograms (MeshRenderPrograms *prog)

2: {

3: int i;

4:

5: glUseProgram (0);

6: for (i = 0; i < 3; i++)

7: glDeleteProgram (prog->progid[i]);

8: ExitIfGLError ("DeleteMeshRenderingPrograms");

9: } /*DeleteMeshRenderingPrograms*/

10:

11: void DeleteBPRenderingPrograms (BPRenderPrograms *prog)

12: {

13: int i;

14:

15: glUseProgram (0);

16: for (i = 0; i < 3; i++)

17: glDeleteProgram (prog->progid[i]);

18: ExitIfGLError ("DeleteBPRenderingPrograms");

19: } /*DeleteBPRenderingPrograms*/

Listing 35.8 przedstawia nową procedurę rysowania ścian siatki. Procedura ta przy-
wiązuje bufory z reprezentacją siatki do odpowiednich punktów dowiązania w celu GL_-
SHADER_STORAGE_BUFFER, a następnie zależnie od wartości parametru final procedura

35.2. Szadery rysujące i ich przygotowanie 999

wybiera program szaderów dla obrazu końcowego (rprog_id[1]) albo dla wyznaczania
obszaru cienia (rprog_id[2]). Przed wykonywaniem końcowego obrazu procedura wy-
biera materiał, przywiązuje pusty obiekt tablicy wierzchołków, po czym, wywołując proce-
durę glDrawArraysInstanced, uruchamia potok przetwarzania grafiki.

Listing 35.8. Procedura rysowania ścian siatki
C

1: void DrawMeshFacets (MeshRenderPrograms *prog, GPUmesh *mesh,

2: MatBl *mat, GLint mtn, char nvs, char final)

3: {

4: int i;

5:

6: for (i = 0; i < 4; i++)

7: glBindBufferBase (SSB, i, mesh->mbuf[i]);

8: if (final) {

9: glUseProgram (prog->progid[1]);

10: SetMeshNVS (mesh, (GLint)nvs);

11: ChooseMaterial (mat, mtn);

12: }

13: else

14: glUseProgram (prog->progid[2]);

15: glBindVertexArray (empty_vao);

16: glDrawArraysInstanced (GL_TRIANGLE_FAN, 0, 4, mesh->nfac);

17: glBindVertexArray (0);

18: ExitIfGLError ("DrawMeshFacets");

19: } /*DrawMeshFacets*/

Listing 35.9 przedstawia procedurę RedrawMyWorld i procedury wywoływane przez nią
w celu znalezienia obszarów cienia i wykonania obrazu końcowego. Nadanie (na polece-
nie użytkownika) wartości false polu shadows powoduje pominięcie znajdowania cieni,
jeśli jednak mają one być na obrazie, to procedura DrawSceneToShadows nadaje wartość
false polu final, powodując wybranie (przez procedury rysujące siatkę i płaty Béziera)
odpowiednich programów szaderów. Działanie tej procedury i procedur OpenGL-a przez
nią wywoływanych jest opisane szczegółowo w rozdziale 22.

Listing 35.9. Procedury rysowania sceny
C

1: void DrawMyScene (AppData *ad)

2: {

3: kl_Redraw (ad->linkage);

4: } /*DrawMyScene*/

5:

6: void DrawSceneToShadows (AppData *ad)

7: {

8: int l;

9: GLuint mask;

1000 35. APLIKACJA TRZECIA C

10:

11: appdata.final = false;

12: glViewport (0, 0, SHADOW_MAP_SIZE, SHADOW_MAP_SIZE);

13: glEnable (GL_POLYGON_OFFSET_FILL);

14: glPolygonOffset (2.0f, 4.0f);

15: for (l = 0, mask = 0x00000001; l < ad->light.nls; l++, mask <<= 1)

16: if (ad->light.shmask & mask) {

17: BindShadowTxtFBO (&ad->trans, &ad->light, l);

18: glClear (GL_DEPTH_BUFFER_BIT);

19: DrawMyScene (ad);

20: }

21: glBindFramebuffer (GL_FRAMEBUFFER, 0);

22: glDisable (GL_POLYGON_OFFSET_FILL);

23: for (l = 0, mask = 0x00000001; l < ad->light.nls; l++, mask <<= 1)

24: if (ad->light.shmask & mask) {

25: glActiveTexture (GL_TEXTURE0+l);

26: glBindTexture (GL_TEXTURE_2D, ad->light.ls[l].shadow_txt);

27: }

28: } /*DrawSceneToShadows*/

29:

30: void DrawSceneToWindow (AppData *ad)

31: {

32: appdata.final = true;

33: glViewport (0, 0, ad->camera.win_width, ad->camera.win_height);

34: glClearColor (1.0, 1.0, 1.0, 1.0);

35: glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

36: LoadVPMatrix (&ad->trans);

37: DrawMyScene (&appdata);

38: } /*DrawSceneToWindow*/

39:

40: void RedrawMyWorld (void)

41: {

42: glEnable (GL_DEPTH_TEST);

43: if (appdata.shadows)

44: DrawSceneToShadows (&appdata);

45: DrawSceneToWindow (&appdata);

46: glFlush ();

47: } /*RedrawMyWorld*/

48:

49: void ToggleLightModel (AppData *ad)

50: {

51: ad->lighting_model = !ad->lighting_model;

52: glUseProgram (ad->mrprog.progid[1]);

53: glUniform1i (ad->mrprog.LightingModelLoc, ad->lighting_model);

54: glUseProgram (ad->brprog.progid[1]);

55: glUniform1i (ad->brprog.LightingModelLoc, ad->lighting_model);

56: } /*ToggleLightModel*/

35.3. Pozostałe zmiany w aplikacji 1001

Procedura ToggleLightModel na polecenie użytkownika przełącza model oświetlenia.
Identyfikator bieżącego modelu (liczba 0 albo 1) jest pamiętany w dodanym do struktury
AppData polu lighting_model. Jego nowawartośćmusi byćnadana zmiennym jednolitym
LightingModel w obu programach rysujących: dla siatek i dla płatów Béziera.

35.3. Pozostałe zmiany w aplikacji

Pozostałe zmiany w aplikacji są drobne i nieliczne. W części okienkowej trzeba utworzyć
dodatkowy suwak, do sterowania długością paznokci, ale to wymaga tylko zmiany makro-
definicji NKLARTPARAMS (listing 35.1) opisującej liczbę parametrów artykulacji, zatem (poza
drobnąmodyfikacją nazw procedur odzwierciedlającą zmianę nazwy aplikacji) część okien-
kowa pozostała niezmieniona.

Procedura ProcessCharCommand w części graficznej reaguje na polecenia wydawane
przez napisanie liter B i U, które wybierająmodel oświetlenia (wywołując procedurę Toggle-

Rysunek 35.2. Sceny wyświetlane przez aplikację trzecią C

1002 35. APLIKACJA TRZECIA C

LightModel, listing 35.9) i przełączają obecność cieni na obrazie. Wreszcie, do procedury
sprzątającej DeleteMyWorld są dodane instrukcje likwidujące dodatkowe programy szade-
rów. Zamieszczenie listingów tych procedur uznałem za zbędne.

35.4. Ćwiczenia

1. Zrób drugą (lewą) dłoń do kompletu i skonstruuj łańcuch kinematyczny umożliwiający
niezależną artykulację palców obu dłoni. Paznokcie obu dłonimogąmiećwkażdej chwili
tę samą długość.

W menu nie ma miejsca na większą liczbę suwaków. Aby je pomieścić, najprościej jest
utworzyć jeszcze jedno okno (podokno oknamenu) o odpowiedniej wielkości i wyświet-
lać jego część wybieraną na przykład przy użyciu pionowego suwaka (a więc trzeba by
dorobić taki rodzaj wihajstra).

2. Powierzchnia zbudowana ze ścian siatki jest zamknięta — jest brzegiem bryły. Korzysta-
jąc z wiadomości podanychw podrozdziale 7.6, włącz przed rysowaniem siatki pomijanie
ścian odwróconych tyłem do obserwatora (a przed rysowaniem paznokci je wyłącz).

35.5. Uzupełnienia — określanie parametrów tekstury

Rozważmy przykład nałożonej na dłoń tekstury. Szader fragmentów potrzebuje współrzęd-
nych tekstury, aby obliczyć jej wartość. Jeśli te współrzędne określimy na podstawie współ-
rzędnych punktu powierzchni w przestrzeni (np. w układzie świata), to po odkształceniu
i zagęszczeniu siatki otrzymamy efekt taki jak na rysunku 35.3b: tekstura „przepłynie” po
powierzchni, która będzie inaczej „pomalowana” niż przed odkształceniem.

a) b) c)

Rysunek 35.3. Tekstura jednowymiarowa na powierzchni

35.5. Uzupełnienia — określanie parametrów tekstury 1003

Aby związać teksturę z powierzchnią tak jak farbę, trzeba określić współrzędne tekstury
na podstawie współrzędnych punktów powierzchni nieodkształconej. W przykładzie poka-
zanym na rysunku 35.3 jest użyta tekstura jednowymiarowa, której argument (współrzędna
tekstury) jest określony na podstawie współrzędnej y punktu powierzchni odkształconej na
rysunku b i nieodkształconej na rysunku c. W przedstawionym tu eksperymencie każdy
wierzchołek siatki miał 7 współrzędnych (tj. atrybutów skalarnych): trzy współrzędne wierz-
chołka siatki odkształconej w wyniku artykulacji, trzy współrzędne wektora normalnego
i jedną dodatkową liczbę, która dla siatki niezagęszczonej (wygenerowanej przez szader ar-
tykulacji) była współrzędną y wierzchołka siatki oryginalnej, interpolowaną (tak samo jak
współrzędne wierzchołków siatki) w kolejnych operacjach zagęszczania.

Pozostawiając Czytelnikowi do „rozgryzienia” modyfikacje szaderów wytwarzających
reprezentację siatki do narysowania z wszystkimi potrzebnymi atrybutami wierzchołków,
przedstawię sposób przygotowania i użycia tekstury jednowymiarowej. Tekstura użytawopi-
sanym tu eksperymencie została utworzona za pomocą instrukcji

glGenTextures (1, &mytxt);

glActiveTexture (GL_TEXTURE0);

glBindTexture (GL_TEXTURE_1D, mytxt);

glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexImage1D (GL_TEXTURE_1D, 0, GL_RGBA, 64, 0, GL_RGBA,

GL_FLOAT, mytexture);

Wzmiennej mytxt jest zapamiętany identyfikator tekstury, natomiast tablica mytexture
zawiera 64 liczby zmiennopozycyjne opisujące 16 tekseli; 8 w kolorze żółtym i 8 niebies-
kich. Argumentem tekstury jednowymiarowej jest jedna współrzędna, oznaczana literą s,
przy czym podany parametr GL_REPEAT wybiera okresowe rozszerzenie tekstury określonej
w przedziale [0, 1) na całą oś rzeczywistą5. Nie zastosowałem tu mipmapingu, choć to jest
możliwe (i byłoby wskazane dla większych tekstur).

Szader fragmentów zawiera deklaracje

in FVertex {

vec3 Position;

....

float txtc;

} In;

layout(binding=0) uniform sampler1D mytxt;

a obliczenie tekstury wykonuje dodana do niego instrukcja

mm.dirref = texture (mytxt, 5.0*In.txtc);

5W ten sposób powstały paski na obrazach.

1004 35. APLIKACJA TRZECIA C

która zapamiętuje kolor farby (tj. wartość tekstury) w odpowiednich polach zmiennej mm opi-
sującej materiał (zobacz listing 18.1) na potrzeby obliczeń koloru oświetlonej powierzchni.
Polu txtc bloku FVertex nadał wartość szader wierzchołków, wybierając odpowiednią
współrzędną na podstawie wartości zmiennej jednolitej (a następnie etap rasteryzacji ob-
liczyłwartość tego pola dla każdego fragmentu). Nie należy zapomnieć o przywiązaniu teks-
tury do celu GL_TEXTURE_1D przed rysowaniem powierzchni i o posprzątaniu, gdy aplikacja
kończy działanie.

36
Aplikacja trzecia D

Ostatnim tematemdo przerabianiaw tymkursie jest aplikacja 3D. Powstała ona z aplikacji 3C
przez dodanie bardziej zaawansowanej animacji; na podstawie zadanych wartości paramet-
rów artykulacji w wybranych chwilach aplikacja umożliwia określenie funkcji interpolacyj-
nej, której argumentem jest czas. Funkcję tęmożna „odgrywać”, otrzymując ruch obiektu.

Nie ma w tej aplikacji nowych elementów OpenGL-a, ale za to jest bardziej rozbudowany
interfejs użytkownika — konieczny element większości niebanalnych projektów. Dla części
Czytelników będzie to przykład, jakmożna zrealizować taki interfejs, a dla innych, byćmoże,
będzie to przykład, jak tego robić nie należy. W ten sposób każdy znajdzie tu coś dla siebie.

36.1. Działanie interfejsu użytkownika

Inaczej niż poprzednio, widok okna aplikacji umieściłem na początku rozdziału (rys. 36.1),
aby najpierw przedstawić scenariusz działania interfejsu użytkownika, a implementację opi-
sać dalej. Obszar głównego okna jest podzielony między trzy podokna, z których pierwsze
i trzecie zawierająwihajstry rysowane przez procedury biblioteki X11, a okno drugie zawiera
wihajster z obrazem wygenerowanym przy użyciu OpenGL-a. Wihajstry w pierwszym i dru-
gim podoknie są przeniesione bez zmian z aplikacji 3C. Wihajstry w podoknie trzecim (zaj-
mującym dolną część okna głównego) służą do konstruowania i odtwarzania animacji.

Guziki i przełączniki z lewej strony są „standardowymi” wihajstrami obsługiwanymi
przez procedury opisane w podrozdziale 30.4, przy czym jeden z guzików ma podmienioną
procedurę rysowania, bo zamiast opisu tekstowego ma na nim widnieć ikona (trójkąt lub
dwa prostokąty) wskazująca na możliwość uruchomienia albo zatrzymania animacji. Prawą
część podokna (poniżej obrazu sceny trójwymiarowej) zajmujewihajster realizujący oś czasu
aplikacji. Wihajster ten jest zaprojektowany specjalnie dla tej aplikacji i ma kilka trybów
działania.

Obraz wihajstra składa się z linii poziomej (będącej wizualizacją osi czasu), zaznaczo-
nych węzłów, w których są zadane wartości parametrów artykulacji1, i dwóch pionowych

1W terminologii filmów animowanych chwilom tym odpowiadają tzw. klatki kluczowe animacji.

1006 36. APLIKACJA TRZECIAD

Rysunek 36.1. Okno aplikacji trzeciej D

kresek, z których jedna uwidocznia wybrany węzeł, a druga, opatrzona liczbą, określa chwilę
wskazywaną przez położenie kursora lub bieżący czas odtwarzanej animacji.

Dwa przełączniki opatrzone napisami edit i pan/zoom włączają tryby edycji i zmiany
zakresu. W trybie edycji użytkownik może wskazać kursorem węzeł i nacisnąć lewy przy-
cisk myszy, co spowoduje przejście wihajstra do stanu, w którym przesuwanie myszy będzie
powodować odpowiednie zmiany węzła. Wyjście z tego stanu następuje po zwolnieniu przy-
cisku. Użytkownik może też nacisnąć prawy przycisk, co spowoduje dodanie nowego węzła
w miejscu wskazanym przez kursor. Wihajster również wtedy wchodzi w stan przesuwania
(nowego) węzła i pozostaje w tym stanie, dopóki prawy przycisk jest naciśnięty.

Naciśnięcie lewego przycisku w trybie zmiany zakresu powoduje wejście w stan przesu-
wania osi czasu—przesuwaniemyszy w tym stanie powoduje przesuwanie w oknie początku
układu współrzędnych (czyli zera na osi czasu). Naciśnięcie prawego przycisku wprowadza
wihajster w stan najeżdżania lub odjeżdżania, czyli zmiany skali osi czasu. Można w ten spo-
sób wybrać widoczny przedział osi czasu, aby w nim porozmieszczać węzły odpowiednio
do potrzeb.

W trybie edycji, w stanie przesuwania węzła, użytkownik może spowodować usunięcie
tego węzła, naciskając klawisz Del. Nie można w ten sposób pozostawićmniej niż czterech
węzłów, ponieważ jest tominimalna liczba wymagana w używanych w tej aplikacji konstruk-
cjach interpolacyjnych krzywych sklejanych, opisanych w dodatku B.

Jeśli użytkownik nacisnął lewy przycisk, nie wskazując (wystarczająco dokładnie) węzła
w trybie edycji lub gdy wihajster osi czasu nie jest w żadnym z opisanychwyżej trybów, to wi-
hajsterwchodziw stan przesuwania chwili. W tym stanie aplikacjama obliczaćwartości para-
metrów artykulacji dla chwili odpowiadającej położeniu kursora i wyświetlać obraz obiektu
odpowiadającego tej chwili. Przesuwając mysz, użytkownik może oglądać ruch w dowolnym
tempie, w tym także cofać go.

36.2. Wihajster osi czasu 1007

Trzy guziki z napisami <-, Set i -> służą do zadawania warunków interpolacyjnych. Gu-
ziki ze strzałkami umożliwiająwybranie węzła. Po wybraniu go użytkownik powinien nadać
(za pomocą suwaków w pierwszym podoknie) odpowiednie wartości parametrów artyku-
lacji, a następnie pstryknąć guzik Set, co spowoduje zapamiętanie tych wartości dla bieżą-
cegowęzła. Dla chwili odpowiadającej temuwęzłowi oprócz parametrów artykulacji zostanie
zapamiętany bieżący obrót obserwatora wokół sceny.

Obok guzika uruchamiającego i zatrzymującego animację znajdują się trzy przełączniki.
Służą one do niezależnego wybierania trzech animowanych elementów sceny: łańcucha ki-
nematycznego, macierzy modelu i położenia obserwatora wokół sceny. Animacja łańcucha
kinematycznego polega na obliczaniu, dla kolejnych chwil, wartości parametrów artykulacji
i dokonywaniu artykulacji łańcucha. Parametry te opisuje wektorowa sklejana krzywa inter-
polacyjna trzeciego stopnia. Macierzmodelu jestmacierzą obrotu, którego kąt jest zmieniany
ze stałą szybkością, jednej ósmej obrotu na sekundę. Animacja położenia obserwatora polega
na interpolacji kwaternionów reprezentujących obroty w chwilach odpowiadającychwęzłom
(zobacz podrozdz. A.4 i B.4).

36.2. Wihajster osi czasu

Wihajster osi czasu należy do części okienkowej aplikacji; przetwarza komunikaty otrzy-
mywane od systemu X Window i jest rysowany za pomocą procedur z biblioteki X11. Aby
przeniesienie aplikacji do innego systemu, na przykładWindows, było łatwiejsze, ciąg punk-
tów na osi czasu oraz sposób jego zmieniania przez użytkownika nie powinien zależeć od
środowiska. Uniezależnieniu części graficznej aplikacji, która musi mieć dostęp do danych
i pewnych metod wihajstra, służy wprowadzenie dwóch plików nagłówkowych wihajstra,
z których pierwszy (listing 36.1) zawiera dane widoczne dla części graficznej (w tym makro-
definicje wprowadzające nazwy i numery poleceń wydawanych przez wihajster osi czasu),
a w drugim (listing 36.2) są zdefiniowane stany wihajstra, jego struktura danych związana ze
środowiskiem i prototyp konstruktora (wywoływanego przez część okienkową).

Kolejne pola struktury KnotsWidgetf na listingu 36.1 przechowują odpowiednio mini-
malną i maksymalną dopuszczalną oraz bieżącą liczbę węzłów, numer węzła przesuwanego
w danej chwili oraz numer poprzedniego przesuwanego węzła, poprzednią i bieżącą współ-
rzędną położenia kursora w oknie, wskaźnik tablicy węzłów, odpowiadające sobie zakresy
współrzędnych „świata”, tj. osi czasu i okna, punkt osi czasu odpowiadający bieżącemu po-
łożeniu kursora i wreszcie objaśnione dalej przełączniki trybu działania wihajstra.

Struktura typu KnotsWidgetf będzie widocznymdla części okienkowej polem struktury
AppWidgets, która jest opakowaniemwszystkich danych części graficznej. Struktura danych
wihajstra osi czasu, xKnotsWidgetf zawiera wskaźnik tej struktury, a oprócz tego pole wdg
typu xwidget, które umożliwia funkcjonowanie wihajstra wmenu opisanymw rozdziale 30,
i pole thebutton, które jest (stosowanym w systemie XWindow) identyfikatorem aktualnie
naciśniętego przycisku myszy2.

2W języku C++ typ xKnotsWidgetf powinien być podklasą klasy xwidget, ale napisanie takiej implemen-

tacji pozostawiam amatorom tego języka.

1008 36. APLIKACJA TRZECIAD

Listing 36.1. Plik knotswidget.h
C

1: #define WDGMSG_KNOT_CHANGE 20

2: #define WDGMSG_KNOT_INSERT 21

3: #define WDGMSG_KNOT_DELETE 22

4: #define WDGMSG_KNOT_MCLICK 23

5: #define WDGMSG_KNOT_MMOVE 24

6: #define WDGMSG_KNOT_CHANGE_MAPPING 25

7: #define WDGMSG_KNOT_ERROR 26

8:

9: typedef struct {

10: int minknots, maxknots, nknots, current, prevc;

11: int prevxi, curxi;

12: float *knots;

13: float xmin, xmax, ximin, ximax, xc;

14: char editswitch, panswitch, motion_off;

15: } KnotsWidgetf;

16:

17: int KnotsWidgetXtoXi (KnotsWidgetf *knw, float x);

18: float KnotsWidgetXitoX (KnotsWidgetf *knw, int xi);

19: int FindKnotInterval (int n, float *knots, float x);

Listing 36.2. Plik xknotswidget.h
C

1: #define WDGSTATE_KW_MOVING_KNOT 10

2: #define WDGSTATE_KW_MOVING_MOUSE 11

3: #define WDGSTATE_KW_PANNING 12

4: #define WDGSTATE_KW_ZOOMING 13

5:

6: typedef struct xKnotsWidgetf {

7: xwidget wdg;

8: int thebutton;

9: KnotsWidgetf *knw;

10: } xKnotsWidgetf;

11:

12: xKnotsWidgetf *NewKnotsWidget (xwinmenu *wm, KnotsWidgetf *knw,

13: int id, int w, int h, int x, int y,

14: int minknots, int maxknots,

15: int nknots, float *knots, float xmin, float xmax);

Dane „podłączone” do wihajstra osi czasu reprezentują rosnący ciąg (tzw. węzłów) liczb
i przedziałmiędzy najmniejszą a największą z nich, przy czym powiązanie liczb z tego prze-
działu z czasem jest pozostawione aplikacji. Liczby są typu float; pojedyncza precyzja jest
wystarczająca, ponieważ czas będzie mierzony od początku animacji (która ma trwać od
kilku sekund do najwyżej kilku minut), a nie od początku działania aplikacji, czego imple-
mentacja wymagałaby użycia podwójnej precyzji (zobacz uwagi na s. 77).

36.2. Wihajster osi czasu 1009

Liczby przechowywane xmin, xmax, ξmin i ξmax w polach xmin, xmax, ximin i ximax
określają przejścia między układami współrzędnych węzłów i okna. Przejścia te są opisane
wzorami

ξ = ξmin +
ξmax − ξmin

xmax − xmin
(x − xmin), (36.1)

x = xmin +
xmax − xmin

ξmax − ξmin
(ξ − ξmin). (36.2)

Listingi 36.3 i 36.4 przedstawiają procedurę przetwarzania komunikatów wihajstra osi
czasu oraz (ze skrótami) wywoływane przez tę procedurę podprogramy pomocnicze. Ob-
liczenie wykonane przez procedurę KnotsWidgetInput zależy od jednego z pięciu stanów
wihajstra, rodzaju zdarzenia i trybu. Przyjrzyjmy się temu po kolei.

Listing 36.3. Procedura KnotsWidgetInput
C

1: static char KnotsWidgetInput (struct xwidget *wdg,

2: int msg, int key, int x, int y)

3: {

4: KnotsWidgetf *knw;

5: xKnotsWidgetf *xknw;

6: int dxi;

7: float dx;

8:

9: xknw = (xKnotsWidgetf*)wdg;

10: knw = xknw->knw;

11: switch (wdg->state) {

12: case WDGSTATE_KW_MOVING_MOUSE:

13: switch (msg) {

14: case XWMSG_BUTTON_RELEASE:

15: if (key == xknw->thebutton)

16: goto exit_active_state;

17: break;

18: case XWMSG_MOUSE_MOTION:

19: knw->xc = XitoX (knw, knw->curxi = x);

20: wdg->wm->callback (wdg, WDGMSG_KNOT_MMOVE, knw->current, x, y);

21: wdg->wm->changed = true;

22: break;

23: default:

24: break;

25: }

26: break;

W stanie podstawowym, jeśli przełącznik editswitchma wartość true i kursor wska-
zuje pewien węzeł na osi czasu, to po naciśnięciu lewego przycisku myszy wihajster przecho-
dzi w stan przesuwania węzła (linia 128), a w przeciwnym razie przechodzi w stan przesuwa-
nia myszy (linia 132 lub 148).

1010 36. APLIKACJA TRZECIAD

Instrukcje przetwarzania komunikatów w stanie przesuwania myszy są w liniach 12–26;
zwolnienie przycisku powoduje powrót do stanu podstawowego, a przemieszczenie kursora
powoduje, w linii 20, przekazanie aplikacji polecenia WDGMSG_KNOT_MMOVE. Część graficzna
aplikacji reaguje na to polecenie, dokonując artykulacji łańcucha kinematycznego dla chwili
odpowiadającej nowemu położeniu kursora i wyświetlając nowy obraz.

Listing 36.3. (cd.) Procedura KnotsWidgetInput
C

27: case WDGSTATE_KW_MOVING_KNOT:

28: switch (msg) {

29: case XWMSG_BUTTON_RELEASE:

30: if (key == xknw->thebutton)

31: goto exit_active_state;

32: break;

33: case XWMSG_MOUSE_MOTION:

34: knw->xc = XitoX (knw, knw->curxi = x);

35: UpdateTheKnot (knw, x);

36: wdg->wm->callback (wdg, WDGMSG_KNOT_CHANGE, knw->current, x, y);

37: wdg->wm->changed = true;

38: break;

39: case XWMSG_KEY_PRESS:

40: switch (key) {

41: case 0x007f: /* ASCII Del, not defined in keysymdef.h */

42: goto delete_knot;

43: default:

44: break;

45: }

46: break;

47: case XWMSG_SPECIAL_KEY_PRESS:

48: switch (key) {

49: case XK_KP_Delete:

50: delete_knot:

51: if (DeleteTheKnot (knw)) {

52: wdg->wm->callback (wdg, WDGMSG_KNOT_DELETE, knw->current, x, y);

53: goto exit_active_state;

54: }

55: break;

56: default:

57: break;

58: }

59: break;

60: }

61: break;

Wihajstermoże przejśćw stan przesuwania węzła także po naciśnięciu prawego przycisku
(linia 141); wtedy w miejscu wskazywanym przez kursor jest wstawiany nowy węzeł (przez

36.2. Wihajster osi czasu 1011

procedurę InsertKnot, linia 138) i ten węzeł staje się bieżący. Instrukcje przetwarzające ko-
munikaty wejściowe są zapisane w liniach 27–61. Zwolnienie przycisku powoduje powrót
do stanu podstawowego (linia 31). Przemieszczenie kursora powoduje przesunięcie węz-
ła przez procedurę UpdateTheKnot i wysłanie aplikacji polecenia WDGMSG_KNOT_CHANGE
(linie 35, 36). Naciśnięcie klawisza Del lub Delete (które może spowodować wysłanie kodu
ASCII Del lub komunikatu o naciśnięciu klawisza specjalnego) powoduje usunięcie bieżą-
cego węzła (przez procedurę DeleteKnot), zawiadomienie aplikacji (poleceniem WDGMSG_-
KNOT_DELETE) i powrót wihajstra do stanu podstawowego. Procedura DeleteTheKnot nie
usuwa węzła, jeśli miałoby to spowodować zmniejszenie liczby węzłów poniżej dopuszczal-
nego minimum.

Listing 36.3. (cd.) Procedura KnotsWidgetInput
C

62: case WDGSTATE_KW_PANNING:

63: switch (msg) {

64: case XWMSG_MOUSE_MOTION:

65: if ((dxi = x - knw->prevxi)) {

66: knw->prevxi = x;

67: dx = dxi*(knw->xmax-knw->xmin)/(knw->ximax-knw->ximin);

68: knw->xmin -= dx; knw->xmax -= dx;

69: wdg->wm->callback (wdg, WDGMSG_KNOT_CHANGE_MAPPING, 0, x, y);

70: wdg->wm->changed = true;

71: }

72: break;

73: case XWMSG_BUTTON_RELEASE:

74: if (key == xknw->thebutton)

75: goto exit_active_state;

76: break;

77: default:

78: break;

79: }

80: break;

Pozostałym dwóm stanom aktywnym wihajstra dałem nazwy WDGSTATE_KW_PANNING

i WDGSTATE_KW_ZOOMING. Stany te umożliwiają zmianę widocznego w obrazie wihajstra
przedziału na osi czasu. Wihajster wchodzi w te stany odpowiednio po naciśnięciu lewego
i prawego przycisku myszy, gdy przełącznik panswitchma wartość true. Zwolnienie przy-
cisku powoduje powrót do stanu podstawowego. Przesunięcie kursora w stanie WDGSTATE_-
KW_PANNING powoduje dodanie do obu końców widocznego przedziału przyrostu odpowia-
dającego przyrostowi współrzędnej ξ położenia kursora (linia 68). Skutkiem przesunięcia
kursora w stanie WDGSTATE_KW_ZOOMING jest zmiana długości przedziału o czynnik obli-
czany w linii 86 na podstawie przyrostu współrzędnej ξ oraz bieżącej szerokości obrazu wi-
hajstra. W obu przypadkach aplikacja jest zawiadamiana o zmianie odwzorowania współ-
rzędnych ekranowych na czas, przez wysłanie polecenia WDGMSG_KNOT_CHANGE_MAPPING.

1012 36. APLIKACJA TRZECIAD

Listing 36.3. (cd.) Procedura KnotsWidgetInput
C

81: case WDGSTATE_KW_ZOOMING:

82: switch (msg) {

83: case XWMSG_MOUSE_MOTION:

84: if ((dxi = knw->prevxi - x)) {

85: knw->prevxi = x;

86: dx = exp ((float)dxi/(knw->ximax-knw->ximin));

87: knw->xmax = knw->xmin + dx*(knw->xmax-knw->xmin);

88: wdg->wm->callback (wdg, WDGMSG_KNOT_CHANGE_MAPPING, 1, x, y);

89: wdg->wm->changed = true;

90: }

91: break;

92: case XWMSG_BUTTON_RELEASE:

93: if (key == xknw->thebutton) {

94: exit_active_state:

95: wdg->state = WDGSTATE_DEFAULT;

96: UngrabInput (wdg);

97: wdg->wm->changed = true;

98: }

99: break;

100: default:

101: break;

102: }

103: break;

Przejście ze stanu podstawowego do każdego z czterech stanów aktywnych wiąże się
z przejęciem komunikatów przez wihajster (za pomocą procedury GrabInput, linia 152).
Podczas powrotu do stanu podstawowego jest wywoływana procedura UngrabInput (li-
nia 96). W stanie podstawowym wihajster reaguje na naciśnięcie klawisza z literą R, przy-
wracając wyświetlanie domyślnego przedziału [0, 10], i klawisza z literą F, które powoduje
wyświetlanie przedziału między pierwszym a ostatnim węzłem.

Przesuwanie kursora w stanie podstawowym powoduje zmiany obrazu wihajstra, w któ-
rym zmienia się pionowa linia i liczba opisująca wskazywaną chwilę czasową. Ale ta reakcja
na przesuwanie kursowa może być wyłączona przez aplikację (przez przypisanie wartości
true przełącznikowy motion_off), co jest pożądane podczas „odgrywania” animacji.

Listing 36.3. (cd.) Procedura KnotsWidgetInput
C

104: default:

105: switch (msg) {

106: case XWMSG_MOUSE_MOTION:

107: if (!knw->motion_off) {

108: knw->xc = XitoX (knw, knw->curxi = x);

109: wdg->wm->changed = true;

110: }

36.2. Wihajster osi czasu 1013

111: break;

112: case XWMSG_BUTTON_PRESS:

113: knw->xc = XitoX (knw, knw->curxi = x);

114: xknw->thebutton = key;

115: if (knw->panswitch) {

116: if (key == Button1)

117: wdg->state = WDGSTATE_KW_PANNING;

118: else if (key == Button3)

119: wdg->state = WDGSTATE_KW_ZOOMING;

120: else

121: break;

122: goto enter_active_state;

123: }

124: else if (knw->editswitch) {

125: if (key == Button1) {

126: wdg->wm->callback (wdg, WDGMSG_KNOT_MCLICK, 0, x, y);

127: if (FindNearestKnot (knw, x)) {

128: wdg->state = WDGSTATE_KW_MOVING_KNOT;

129: goto enter_active_state;

130: }

131: else {

132: wdg->state = WDGSTATE_KW_MOVING_MOUSE;

133: goto enter_active_state;

134: }

135: }

136: else if (key == Button3) {

137: wdg->wm->callback (wdg, WDGMSG_KNOT_MCLICK, 1, x, y);

138: if (InsertKnot (knw, x)) {

139: wdg->wm->callback (wdg, WDGMSG_KNOT_INSERT,

140: knw->current, x, y);

141: wdg->state = WDGSTATE_KW_MOVING_KNOT;

142: goto enter_active_state;

143: }

144: }

145: }

146: else {

147: if (key == Button1) {

148: wdg->state = WDGSTATE_KW_MOVING_MOUSE;

149: wdg->wm->callback (wdg, WDGMSG_KNOT_MCLICK, 2, x, y);

150: enter_active_state:

151: knw->prevxi = x;

152: GrabInput (wdg);

153: wdg->wm->changed = true;

154: }

155: }

156: break;

157: case XWMSG_KEY_PRESS:

1014 36. APLIKACJA TRZECIAD

158: switch (key) {

159: case ’R’: case ’r’:

160: knw->xmin = 0.0; knw->xmax = 10.0;

161: wdg->wm->callback (wdg, WDGMSG_KNOT_CHANGE_MAPPING, 1, x, y);

162: wdg->wm->changed = true;

163: break;

164: case ’F’: case ’f’:

165: if (knw->knots[knw->nknots-1] != knw->knots[0]) {

166: knw->xmin = knw->knots[0]; knw->xmax = knw->knots[knw->nknots-1];

167: wdg->wm->callback (wdg, WDGMSG_KNOT_CHANGE_MAPPING, 1, x, y);

168: wdg->wm->changed = true;

169: }

170: break;

171: default:

172: return false;

173: }

174: break;

175: case WDGMSG_RECONFIGURE:

176: if (key)

177: { wdg->r.x = x; wdg->r.y = y; }

178: else

179: { wdg->r.width = x; wdg->r.height = y; }

180: knw->ximin = wdg->r.x + 3; knw->ximax = wdg->r.x + wdg->r.width - 4;

181: wdg->wm->changed = true;

182: }

183: break;

184: }

185: return true;

186: } /*KnotsWidgetInput*/

W stanie podstawowym wihajster reaguje na komunikat WDGMSG_RECONFIGURE, który
zawiadamia o zmianie wymiarów— zależnie odwartości (true albo false) parametru key,
parametry x i y określają współrzędne górnego lewego narożnika albo nowe wymiary wi-
hajstra.

Zobaczmy teraz podprogramy pomocnicze wihajstra pokazane na listingu 36.4. Funkcje
KnotsWidgetXtoXi i KnotsWidgetXitoX (listing 36.4) realizują odpowiedniowzory (36.1)
i (36.2), przy czym w pierwszym przypadku wynik jest zaokrąglany do najbliższej liczby cał-
kowitej. Lokalnie (w procedurze KnotsWidgetInput) funkcje te występują pod krótszymi
nazwami XtoXi i XitoX.

Funkcja FindKnotInterval dla tablicy knots o długości n+1, zawierającej rosnący ciąg
liczb x0, . . . , xn, i liczby x znajduje (metodą bisekcji) liczbę i, taką że xi ⩽ x < xi+1, przy czym
jeśli x < x0, to i = −1, a jeśli x ⩾ xn, to i = n.

Procedura FindNearestKnot znajdujewęzeł, którego obraz (wyświetlony przez wihajst-
er) znajduje się najbliżej kursora. Jeśli różnica współrzędnych ξ kursora i obrazu węzła nie
jest większa niż próg tolerancji 5 pikseli, to procedura zapamiętuje numer tego węzła w polu

36.2. Wihajster osi czasu 1015

Listing 36.4. Pomocnicze procedury wihajstra osi czasu
C

1: int KnotsWidgetXtoXi (xKnotsWidgetf *knw, float x) { }

2: float KnotsWidgetXitoX (xKnotsWidgetf *knw, int xi) { }

3: #define XtoXi KnotsWidgetXtoXi

4: #define XitoX KnotsWidgetXitoX

5:

6: int FindKnotInterval (float n, float *knots, float x) { }

7:

8: static char FindNearestKnot (xKnotsWidgetf *knw, int xi)

9: {

10: #define TOL 5

11: int i;

12: float x, *knots;

13:

14: i = FindKnotInterval (knw->nknots, knots = knw->knots,

15: x = XitoX (knw, xi));

16: if (i < 0)

17: i = 0;

18: if (i < knw->nknots-1)

19: if (x-knots[i] > knots[i+1]-x)

20: i++;

21: if (fabs (x-knots[i])*

22: (knw->ximax-knw->ximin)/(knw->xmax-knw->xmin) <= TOL) {

23: knw->current = i;

24: return true;

25: }

26: return false;

27: #undef TOL

28: } /*FindNearestKnot*/

29:

30: static void ModifyTheKnot (int nknots, float *knots, int i)

31: {

32: #define TOL 0.02

33: float x, x0, x1, h;

34:

35: x = knots[i];

36: x0 = i == 0 ? x : knots[i-1];

37: x1 = i == nknots-1 ? x : knots[i+1];

38: h = x1-x0;

39: if (x < x0+TOL*h) knots[i] = x0+TOL*h;

40: else if (x > x1-TOL*h) knots[i] = x1-TOL*h;

41: #undef TOL

42: } /*ModifyTheKnot*/

43:

44: static void UpdateTheKnot (xKnotsWidgetf *knw, int xi)

45: {

1016 36. APLIKACJA TRZECIAD

46: float x, px, *knots;

47: int n, c;

48:

49: knots = knw->knots;

50: x = XitoX (knw, xi);

51: px = knots[c = knw->prevc = knw->current];

52: if (x < px) {

53: while (c > 0 && x < knots[c-1]) {

54: knots[c] = knots[c-1];

55: c --;

56: }

57: }

58: else if (x > px) {

59: n = knw->nknots;

60: while (c < n-1 && x > knots[c+1]) {

61: knots[c] = knots[c+1];

62: c ++;

63: }

64: }

65: knots[knw->current = c] = x;

66: ModifyTheKnot (knw->nknots, knots, c);

67: } /*UpdateTheKnot*/

68:

69: static char InsertKnot (xKnotsWidgetf *knw, int xi)

70: {

71: float x, *knots;

72: int i;

73:

74: if (knw->nknots >= knw->maxknots)

75: return false;

76: i = FindKnotInterval (knw->nknots, knots = knw->knots,

77: x = XitoX (knw, xi));

78: if (i < knw->nknots-1)

79: memmove (&knots[i+2], &knots[i+1], (knw->nknots-1-i)*sizeof(float));

80: knots[knw->prevc = knw->current = i+1] = x;

81: ModifyTheKnot (++knw->nknots, knots, i+1);

82: return true;

83: } /*InsertKnot*/

84:

85: static char DeleteTheKnot (xKnotsWidgetf *knw)

86: {

87: float *knots;

88:

89: if (knw->nknots > knw->minknots &&

90: knw->current >= 0 && knw->current < knw->nknots) {

91: if (knw->current < knw->nknots-1) {

92: knots = knw->knots;

36.2. Wihajster osi czasu 1017

93: memmove (&knots[knw->current], &knots[knw->current+1],

94: (knw->nknots-1-knw->current)*sizeof(float));

95: }

96: knw->nknots --;

97: return true;

98: }

99: return false;

100: } /*DeleteTheKnot*/

current i zawiadamia procedurę KnotsWidgetInput, że węzeł został wkazany wystarcza-
jąco dokładnie, co umożliwi wejście w stan przesuwania węzła.

Procedura UpdateTheKnot oblicza liczbę x odpowiadającą współrzędnej ξ punktu
w oknie i wpisuje ją do tablicy węzłów z zachowaniem uporządkowania ciągu liczb w tej tab-
licy. W tym celu, w liniach 53–56 albo 59–63może przesunąć liczby w tablicy w odpowiednią
stronę. Zadaniem procedury ModifyTheKnot, wywoływanej po wpisaniu węzła do tablicy,
jest niedopuszczenie do nałożenia się węzłów, ponieważ ciąg węzłów interpolacyjnych musi
być ściśle rosnący. Co więcej, długości sąsiednich przedziałów między węzłami nie powinny
zbytnio się różnić. Dlatego procedura ModifyTheKnot dokonuje takiej modyfikacji, aby od-
ległość węzła od jego sąsiadów nie była mniejsza niż 0.02 długości przedziału między tymi
sąsiadami.

Procedura InsertKnot wstawia węzeł do ciągu, a DeleteTheKnot usuwa węzeł, do-
konując odpowiednich przesunięć w tablicy. Procedura InsertKnot dodatkowo wywołuje
procedurę ModifyTheKnot, aby uniknąć sytuacji, w której węzły pokrywają się lub są poło-
żone zbyt blisko siebie.

Listing 36.5 przedstawia nagłówek procedury rysowania wihajstra osi czasu i jego kon-
struktor, przy czym treść procedury rysowania pominąłem; procedura ta kolejno wywo-
łuje procedury z biblioteki X11, które wyświetlają wihajster (w tym obrazy węzłów) w trybie
natychmiastowym. Ewentualną ciekawośćmożna zaspokoić, czytając plik źródłowy.

Listing 36.5. Procedury KnotsWidgetRedraw i NewKnotsWidget
C

1: static void KnotsWidgetRedraw (struct xwidget *wdg) { }

2:

3: xKnotsWidgetf *NewKnotsWidget (xwinmenu *wm, KnotsWidgetf *knw,

4: int id, int w, int h, int x, int y,

5: int minknots, int maxknots, int nknots,

6: float *knots, float xmin, float xmax)

7: {

8: xKnotsWidgetf *wdg;

9:

10: wdg = (xKnotsWidgetf*)NewWidget (wm, sizeof(xKnotsWidgetf), id, w, h,

11: x, y, KnotsWidgetInput, KnotsWidgetRedraw, NULL, NULL);

12: wdg->knw = knw;

13: knw->minknots = minknots;

14: knw->maxknots = maxknots;

1018 36. APLIKACJA TRZECIAD

15: knw->nknots = nknots;

16: knw->knots = knots;

17: knw->xmin = xmin;

18: knw->xmax = xmax;

19: knw->ximin = x+3;

20: knw->ximax = x+w-4;

21: knw->panswitch = knw->motion_off = false;

22: return wdg;

23: } /*NewKnotsWidget*/

Procedura NewKnotsWidget, czyli konstruktor wihajstra, za pomocą procedury New-
Widget tworzy i włączawihajster domenu przekazanego jako parametr. Parametr knwwska-
zuje strukturę typu KnotsWidget, która jest widoczną dla części graficznej aplikacji i nieza-
leżną od środowiska okienkowego częściąwihajstra osi czasu. Po zarezerwowaniu pamięci na
wihajster działający w menu, wartości początkowe określone przez parametry, w tym adres
i długość tablicy z węzłami, są przypisywane polom tej struktury.

36.3. Procedury obsługi animacji

Listing 36.6 przedstawia zmiany struktur AppWidgets i AppData części graficznej apli-
kacji 3C, w wyniku których powstały struktury aplikacji 3D. Do struktury AppWidgets,
widocznej w części okienkowej, są dodane przełączniki elementów animacji oraz pole kw,
przechowujące dane wihajstra osi czasu. Struktura AppData ma nowe pola lastkeyframe
i lastbsknot, których wartości to numer M ostatniego węzła interpolacyjnego i numer N
ostatniego węzła krzywej sklejanej skonstruowanej w celu interpolowania parametrów arty-
kulacji. Pola keyknots, keyparams i qparams wskazują tablice węzłów interpolacyjnych,
wyznaczających chwile klatek kluczowych, i tablice parametrów artykulacji łańcucha kine-
matycznego i kwaternionówopisujących obroty obserwatoraw tych chwilach. Pola bsknots,
bsparams i qbsparams wskazują tablice węzłów krzywych sklejanych i punktów kontrol-
nych tych krzywych, konstruowanych na podstawie danych przechowywanych we wcześniej
opisanych tablicach.

Pola animate_mm, animate_vp i animate_kl struktury AppWidgets mają wartości
nadawane przez przełączniki w menu. Jeśli pierwsze z nich ma wartość true, to będzie ani-
mowana macierz przekształcenia modelu (czyli ruch obrotowy sceny w układzie świata ze
stałą prędkością kątową). Wartość true pola animate_vp oznacza życzenie animowania
ruchu obserwatora wokół sceny, a jeśli pole animate_kl ma wartość true, to będzie ani-
mowany łańcuch kinematyczny.

Procedury obsługi animacji aplikacji 3D są odpowiedzialne za przetwarzanie paramet-
rów artykulacji łańcucha kinematycznego i (reprezentowanych przez kwaterniony) obrotów
obserwatora wokół sceny odpowiadających klatkom kluczowym, a także za konstruowanie
sklejanych funkcji interpolacyjnych i obliczanie, dla podanego czasu, wartości tych funk-

36.3. Procedury obsługi animacji 1019

Listing 36.6. Struktury danych aplikacji 3D
C

1: #define MAXKEYFRAMES 100

2:

3: typedef struct {

4: char sw[NPALMMESHES+1];

5: float artp[NKLARTPARAMS];

6: char animate_mm, animate_vp, animate_kl;

7: KnotsWidgetf kw;

8: char animation;

9: } AppWidgets;

10:

11: typedef struct {

12: /* pola takie, jak w liniach 16–27 na listingu 35.1 */

13: int lastkeyframe, lastbsknot;

14: float *keyknots, *keyparams, *qparams,

15: *bsknots, *bsparams, *qbsparams;

16: char bs_ok, qs_ok;

17: /* opakowania programów szaderów */

18: /* identyczne jak w liniach 28–30 na listingu 35.1 */

19: } AppData;

cji, czyli parametrów artykulacji podczas animacji. Procedury te są niezależne zarówno od
środowiska okienkowego, jak i od sposobu tworzenia grafiki; ich głównym zadaniem jest
przechowywanie danych i zorganizowanie odpowiednich obliczeń numerycznych3.

Listing 36.7 przedstawia procedury wywoływane (za pośrednictwemmenu) w odpowie-
dzi na komunikaty przesyłane przez wihajster osi czasu. Procedury UpdateKeyInterp-
Spline i UpdateKeyInterpQSpline, wywoływane po zmianie węzłów lub warunków
interpolacyjnych, konstruują (przy użyciu procedur opisanych w podrozdz. B.3 i B.4) re-
prezentacje krzywych interpolacyjnych: B-sklejanej i kwaternionowej. Zwróćmy uwagę, że
konstruowana krzywa B-sklejana leży w przestrzeni o wymiarze równym liczbie parametrów
artykulacji łańcucha kinematycznego (NKLARTPARAMS, czyli 21). Taką liczbę współrzędnych
mają zarówno punkty tej krzywej (czyli wektory parametrów artykulacji), jak i punkty
kontrolne obliczane przez procedurę ConstructCubicInterpBSplinef.

Instrukcje w liniach 12–15 mają na celu sprawienie, aby kąty między wektorami (kwater-
nionami) reprezentującymi kolejne zadane położenia w ruchu obrotowym nie przekraczały
π/2; w tym celu zwroty pewnych wektorów mogą być zamienione na przeciwne. Dowolny
obrót w przestrzeni jest reprezentowany przez dwa kwaterniony o przeciwnych znakach. Do-
konany wybór znaków ma na celu określenie ruchu tak, aby obiekt między kolejnymi zada-
nymi położeniami obracał się o mniejszy kąt (zobacz rys. A.4 i uwagę na s. 1053).

Procedura InitKeyFrames, wywołana na początku działania aplikacji, rezerwuje pa-
mięć i nadaje wartości początkowe zmiennym opisującym węzły i warunki interpolacyjne.

3Dlatego procedury te są umieszczone w osobnym pliku źródłowym, w którym podczas dostosowania apli-

kacji do standardu Vulkan lub DirectX nie trzeba byłoby wprowadzać żadnych zmian.

1020 36. APLIKACJA TRZECIAD

Listing 36.7. Procedury edycji klatek kluczowych
C

1: void UpdateKeyInterpSpline (AppData *ad)

2: {

3: ad->bs_ok = ConstructCubicInterpBSplinef (&ad->lastbsknot,

4: ad->bsknots, ad->bsparams, ad->lastkeyframe,

5: ad->keyknots, NKLARTPARAMS, ad->keyparams);

6: } /*UpdateKeyInterpSpline*/

7:

8: void UpdateKeyInterpQSpline (AppData *ad)

9: {

10: int i, j, k;

11:

12: for (i = 1, k = 4; i <= ad->lastkeyframe; i++, k += 4)

13: if (V4DotProductf (&ad->qparams[k-4], &ad->qparams[k]) < 0.0)

14: for (j = k; j < k+4; j++)

15: ad->qparams[j] = -ad->qparams[j];

16: ad->qs_ok = ConstructQuaternionInterpSplinef (&ad->lastbsknot,

17: ad->bsknots, ad->qbsparams, ad->lastkeyframe,

18: ad->keyknots, ad->qparams);

19: } /*UpdateKeyInterpQSpline*/

20:

21: char InitKeyFrames (AppData *ad)

22: {

23: int i;

24:

25: ad->keyknots = malloc (MAXKEYFRAMES*sizeof(float));

26: ad->keyparams = malloc (MAXKEYFRAMES*NKLARTPARAMS*sizeof(float));

27: ad->bsknots = malloc ((MAXKEYFRAMES+6)*sizeof(float));

28: ad->bsparams = malloc ((MAXKEYFRAMES+2)*NKLARTPARAMS*sizeof(float));

29: ad->qparams = malloc (MAXKEYFRAMES*4*sizeof(float));

30: ad->qbsparams = malloc ((MAXKEYFRAMES+2)*4*sizeof(float));

31: if (ad->keyknots && ad->keyparams && ad->qparams &&

32: ad->bsknots && ad->bsparams && ad->qbsparams) {

33: ad->keyknots[0] = 0.0;

34: ad->keyknots[1] = 10.0/3.0;

35: ad->keyknots[2] = 20.0/3.0;

36: ad->keyknots[3] = 10.0;

37: ad->wdg.kw.nknots = (ad->lastkeyframe = 3) + 1;

38: ad->wdg.kw.knots = ad->keyknots;

39: for (i = 0; i <= ad->lastkeyframe; i++)

40: memcpy (&ad->keyparams[i*NKLARTPARAMS], ad->wdg.artp,

41: NKLARTPARAMS*sizeof(float));

42: memset (ad->qparams, 0, (ad->lastkeyframe+1)*4*sizeof(float));

43: for (i = 0; i <= ad->lastkeyframe; i++)

44: ad->qparams[4*i] = 1.0;

45: UpdateKeyInterpSpline (ad);

36.3. Procedury obsługi animacji 1021

46: UpdateKeyInterpQSpline (ad);

47: ad->wdg.animate_mm = ad->wdg.animate_kl = true;

48: ad->wdg.animate_vp = false;

49: return true;

50: }

51: else {

52: CleanupKeyFrames (ad);

53: return false;

54: }

55: } /*InitKeyFrames*/

56:

57: void CleanupKeyFrames (AppData *ad)

58: {

59: /* zwolnij wszystkie 6 tablic */

60: } /*CleanupKeyFrames*/

61:

62: void FindKeyFrame (AppData *ad, char right)

63: {

64: AppWidgets *aw;

65: KnotsWidgetf *kw;

66: int c;

67: float v[3];

68: double a;

69:

70: aw = &ad->wdg;

71: kw = &aw->kw;

72: c = FindKnotInterval (kw->nknots, ad->keyknots, kw->xc);

73: if (c < 0)

74: c = 0;

75: else if (c >= kw->nknots)

76: c = kw->nknots-1;

77: if (!right && c > 0 && kw->xc == ad->keyknots[c])

78: c --;

79: else if (right && c < kw->nknots-1)

80: c ++;

81: kw->current = c;

82: kw->curxi = KnotsWidgetXtoXi (kw, kw->xc = ad->keyknots[c]);

83: memcpy (aw->artp, &ad->keyparams[c*NKLARTPARAMS],

84: NKLARTPARAMS*sizeof(float));

85: ArticulatePalmLinkage (ad);

86: RotVQuatf (v, &a, &ad->qparams[c*4]);

87: SetupViewMatrix (ad, v, a);

88: } /*FindKeyFrame*/

89:

90: void SetKeyFrame (AppData *ad)

91: {

92: AppWidgets *aw;

1022 36. APLIKACJA TRZECIAD

93: KnotsWidgetf *kw;

94: int c;

95:

96: aw = &ad->wdg;

97: kw = &aw->kw;

98: c = kw->current;

99: if ((c = kw->current) >= 0 && c < kw->nknots) {

100: memcpy (&ad->keyparams[c*NKLARTPARAMS], aw->artp,

101: NKLARTPARAMS*sizeof(float));

102: UpdateKeyInterpSpline (ad);

103: QuatRotVf (&ad->qparams[c*4],

104: ad->camera.viewer_rvec, ad->camera.viewer_rangle);

105: UpdateKeyInterpQSpline (ad);

106: }

107: } /*SetKeyFrame*/

108:

109: void ClampArtParams (float *params)

110: {

111: int i;

112:

113: for (i = 0; i < NKLARTPARAMS; i++)

114: if (params[i] < 0.0) params[i] = 0.0;

115: else if (params[i] > 1.0) params[i] = 1.0;

116: } /*ClampArtParams*/

117:

118: void InsertKeyFrame (AppData *ad)

119: {

120: AppWidgets *aw;

121: KnotsWidgetf *kw;

122: int c, n;

123:

124: aw = &ad->wdg;

125: kw = &aw->kw;

126: ad->lastkeyframe = kw->nknots-1;

127: if ((c = kw->current) < (n = kw->nknots)-1) {

128: memmove (&ad->keyparams[(c+1)*NKLARTPARAMS],

129: &ad->keyparams[c*NKLARTPARAMS],

130: (n-c-1)*NKLARTPARAMS*sizeof(float));

131: BSCdeBoorf (3, ad->lastbsknot, ad->bsknots, NKLARTPARAMS,

132: ad->bsparams, ad->keyknots[c], aw->artp);

133: ClampArtParams (aw->artp);

134: memcpy (&ad->keyparams[c*NKLARTPARAMS], aw->artp,

135: NKLARTPARAMS*sizeof(float));

136: memmove (&ad->qparams[(c+1)*4], &ad->qparams[c*4],

137: (n-c-1)*4*sizeof(float));

138: if (ad->qs_ok)

139: QuatSlerpdeBoorf (3, ad->lastbsknot, ad->bsknots, ad->qbsparams,

36.3. Procedury obsługi animacji 1023

140: ad->keyknots[c], &ad->qparams[c*4]);

141: }

142: else {

143: memcpy (&ad->keyparams[c*NKLARTPARAMS],

144: &ad->keyparams[(c-1)*NKLARTPARAMS], NKLARTPARAMS*sizeof(float));

145: memcpy (&ad->qparams[c*4], &ad->qparams[(c-1)*4], 4*sizeof(float));

146: }

147: UpdateKeyInterpSpline (ad);

148: ArticulatePalmLinkage (ad);

149: QuatRotVf (&ad->qparams[c*4],

150: ad->camera.viewer_rvec, ad->camera.viewer_rangle);

151: UpdateKeyInterpQSpline (ad);

152: } /*InsertKeyFrame*/

153:

154: void SwapKeyFrames (AppData *ad, int i, int j)

155: {

156: int k, l, m;

157: float *kp, a;

158:

159: for (l = i*NKLARTPARAMS, m = j*NKLARTPARAMS, k = 0;

160: k < NKLARTPARAMS;

161: k ++)

162: { a = kp[l+k]; kp[l+k] = kp[m+k]; kp[m+k] = a; }

163: kp = ad->qparams;

164: for (l = i*4, m = j*4, k = 0; k < 4; k++)

165: { a = kp[l+k]; kp[l+k] = kp[m+k]; kp[m+k] = a; }

166: } /*SwapKeyFrames*/

167:

168: void ChangeKeyFrame (AppData *ad)

169: {

170: AppWidgets *aw;

171: KnotsWidgetf *kw;

172: int i, p, c;

173:

174: aw = &ad->wdg;

175: kw = &aw->kw;

176: if ((p = kw->prevc) < (c = kw->current)) {

177: for (i = p; i < c; i++)

178: SwapKeyFrames (ad, i, i+1);

179: }

180: else if (p > c) {

181: for (i = p; i > c; i--)

182: SwapKeyFrames (ad, i, i-1);

183: }

184: UpdateKeyInterpSpline (ad);

185: UpdateKeyInterpQSpline (ad);

186: } /*ChangeKeyFrame*/

1024 36. APLIKACJA TRZECIAD

187:

188: void DeleteKeyFrame (AppData *ad)

189: {

190: AppWidgets *aw;

191: KnotsWidgetf *kw;

192: int c, n;

193:

194: aw = &ad->wdg;

195: kw = &aw->kw;

196: ad->lastkeyframe = kw->nknots-1;

197: if ((c = kw->current) < (n = kw->nknots)-1) {

198: memmove (&ad->keyparams[c*NKLARTPARAMS],

199: &ad->keyparams[(c+1)*NKLARTPARAMS],

200: (n-c-1)*NKLARTPARAMS*sizeof(float));

201: memmove (&ad->qparams[c*4], &ad->qparams[(c+1)*4],

202: (n-c-1)*4*sizeof(float));

203: }

204: UpdateKeyInterpSpline (ad);

205: UpdateKeyInterpQSpline (ad);

206: } /*DeleteKeyFrame*/

Początkowo są 4 węzły (t0, . . . , t3) dzielące na równe części przedział o długości 10 s. Dla
wszystkich tych węzłów, w liniach 39–41, warunki interpolacyjne mają nadawane wartoś-
ci wcześniej (przez procedurę konstruującą łańcuch kinematyczny) przepisane do tablicy
ad->wdg.artp z tablicy palmartp0 zadeklarowanej z procedurami obsługi łańcucha kine-
matycznego dłoni. Elementy tej tablicy są liczbami z przedziału [0, 1], podobnie jak wartości
nadawane przez suwaki w menu.

W liniach 42–44, dla wszystkich czterech węzłów, w tablicy qparams jest zapamiętywana
jedynka kwaternionowa, która reprezentuje przekształcenie tożsamościowe (tj. obrót obser-
watora do położenia początkowego). W liniach 45 i 46 są konstruowane obie krzywe inter-
polacyjne, które dla początkowych warunków interpolacyjnych będą funkcjami stałymi.

Procedura CleanupKeyFrames zwalnia pamięć zarezerwowaną przez procedurę Init-
KeyFrames na tablice i należy jąwywołać podczas sprzątania przed zatrzymaniem aplikacji.

Procedura FindKeyFrame (linie 62–88) jest wywoływana w odpowiedzi na pstryknięcie
guzika ze strzałką <- lub ->. Procedura ta znajduje pierwszy węzeł na lewo albo na prawo od
liczby x pamiętanej w polu xc wihajstra osi czasu. Węzeł ten zostaje przypisany wihajstrowi
jako bieżący, a następnie jest dokonywana artykulacja łańcucha kinematycznego, przy czym
parametry artykulacji są brane z warunków interpolacyjnych dla bieżącego węzła. Również
macierz przejścia do układu obserwatora jest (w linii 86) obliczana na podstawie kwaternionu
będącego warunkiem interpolacyjnym obrotu obserwatora dla tego węzła.

Procedura SetKeyFrame (linie 90–107) jest wywoływana po pstryknięciu guzika Set

w menu. Jej zadaniem jest przypisanie nowych warunków interpolacyjnych związanych
z bieżącym węzłem — wektora parametrów artykulacji (w liniach 100–101) i kwaternionu
określającego bieżące położenie obserwatora (w liniach 103–104). Obie krzywe interpolacyjne
są niezwłocznie rekonstruowane.

36.3. Procedury obsługi animacji 1025

Procedura InsertKeyFrame (linie 118–152) jest wywoływana po dodaniu nowego węzła
za pomocą wihajstra osi czasu. Jeśli nowy węzeł nie jest większy niż dotychczasowy ostatni,
to wykonywane są instrukcje w liniach 128–140. Dla nowego węzła, na podstawie dotych-
czasowych krzywych interpolacyjnych, jest obliczany wektor parametrów artykulacji, które
następnie są ograniczane (przez procedurę ClampArtParams) do przedziału [0, 1] i (w li-
niach 134–135)wpisywane do tablicywarunków interpolacyjnych. W liniach 149–150 jest obli-
czany odpowiedni punkt na krzywej kwaternionowej, a jego współrzędne są zapamiętywane
jako warunek interpolacyjny nowej krzywej, która zostanie skonstruowana dla wydłużonego
ciągu węzłów.

Procedura ChangeKeyFrame jest wywoływana po przesunięciu węzła. Jeśli nastąpiła
zmiana kolejności węzłów, to odpowiadające tymwęzłomwarunki interpolacyjne są przesta-
wiane, czym zajmuje się procedura SwapKeyFrames. Przestawia ona odpowiednie wektory
parametrów artykulacji łańcucha i kwaterniony.

Procedura DeleteKeyFrame, wywoływana po usunięciuwęzła, dokonuje odpowiednich
przemieszczeń warunków interpolacyjnych w tablicach, po czym konstruuje krzywe inter-
polacyjne na podstawie danych, które zostały po tej operacji.

Listing 36.8 przedstawia procedury, które realizują artykulację łańcucha i przemieszcza-
nie obserwatora na potrzeby animacji. Drugim parametrem procedury ArticulateKLAtX
jest czas, tj. argument krzywej sklejanej, której punkty są wektorami zmiennych artykula-
cji. Po obliczeniu punktu (przez procedurę BSCdeBoorf) jego współrzędne są obcinane do
przedziału [0, 1], po czym procedura ArticulatePalmLinkage odpowiednio zgina stawy
poszczególnych palców. Podobnie procedura ArticulateVPosAtX oblicza punkt krzywej
kwaternionowej, zamienia go na obrót (tj. oblicza wektor osi i kąt obrotu) i wywołuje proce-
durę SetupViewMatrix w celu skonstruowania (i zapamiętania w pamięci GPU) macierzy
przejścia do układu obserwatora.

Listing 36.8. Procedury pomocnicze animacji
C

1: void ArticulateKLAtX (AppData *ad, float x)

2: {

3: AppWidgets *aw;

4:

5: aw = &ad->wdg;

6: if (x <= ad->keyknots[0] || !ad->bs_ok)

7: memcpy (aw->artp, ad->keyparams, NKLARTPARAMS*sizeof(float));

8: else if (x >= ad->keyknots[ad->lastkeyframe])

9: memcpy (aw->artp, &ad->keyparams[(ad->lastkeyframe)*NKLARTPARAMS],

10: NKLARTPARAMS*sizeof(float));

11: else {

12: BSCdeBoorf (3, ad->lastbsknot, ad->bsknots, NKLARTPARAMS,

13: ad->bsparams, x, aw->artp);

14: ClampArtParams (aw->artp);

15: }

16: ArticulatePalmLinkage (ad);

17: } /*ArticulateKLAtX*/

1026 36. APLIKACJA TRZECIAD

18:

19: void ArticulateVPosAtX (AppData *ad, float x)

20: {

21: float q[4], v[3];

22: double a;

23:

24: if (x <= ad->keyknots[0] || !ad->qs_ok)

25: memcpy (q, ad->qparams, 4*sizeof(float));

26: else if (x >= ad->keyknots[ad->lastkeyframe])

27: memcpy (q, &ad->qparams[4*ad->lastkeyframe], 4*sizeof(float));

28: else

29: QuatSlerpdeBoorf (3, ad->lastbsknot, ad->bsknots,

30: ad->qbsparams, x, q);

31: RotVQuatf (v, &a, q);

32: SetupViewMatrix (ad, v, a);

33: } /*ArticulateVPosAtX*/

34:

35: void KnotWidgetPoint (AppData *ad, int xi)

36: {

37: AppWidgets *aw;

38: float x;

39:

40: aw = &ad->wdg;

41: x = KnotsWidgetXitoX (&aw->kw, xi);

42: ArticulateKLAtX (ad, x);

43: if (aw->animate_vp)

44: ArticulateVPosAtX (ad, x);

45: } /*KnotWidgetPoint*/

Procedura KnotWidgetPoint jest wywoływana, gdy wihajster osi czasu jest w stanie
przesuwania chwili (XGESTATE_KW_MOVING_MOUSE) i użytkownik wskazał nowy punkt na
osi czasu. Dla tego punktu jest obliczany argument funkcji sklejanych i wywoływane są opi-
sane wcześniej procedury artykulacji.

36.4. Menu trzeciego podokna

Nowe wihajstry w menu trzeciego podokna mają kolejne numery, opatrzone nazwami (zob.
listing 36.9) widocznymi w obu częściach aplikacji, okienkowej i graficznej, w której są iden-
tyfikatorami obsługiwanych poleceń.

Listing 36.10 przedstawia procedury związane z menu trzeciego podokna. Procedura
SetupApp3dWin3Menu (linie 87–117) tworzymenu i jego wihajstry. W liniach 96–98 powstaje
wihajster osi czasu; wcześniej była wywołana procedura InitKeyFrames, która zarezerwo-
wałam.in. tablicęwęzłów, obecnie „przyczepianą” do tworzonego wihajstra. Guzik tworzony
przez instrukcję w linii 104 służy do włączania i wyłączania animacji. W linii 105 jest mu
przypisywana nowa procedura rysowania. Przełączniki tworzone w liniach 106–115 będą

36.4. Menu trzeciego podokna 1027

Listing 36.9. Nazwy i numery nowych wihajstrów
C

1: #define KNOTWD_ID 29 /* SL_ID_ARTP0 + NKLARTPARAMS */

2: #define BTN_ID_PLAY 30

3: #define BTN_ID_LEFT 31

4: #define BTN_ID_SET 32

5: #define BTN_ID_RIGHT 33

6: #define SW_ID_EDIT_KNOTS 34

7: #define SW_ID_KNW_PANZOOM 35

8: #define SW_ID_ANIMATE_KL 36

9: #define SW_ID_ANIMATE_MM 37

10: #define SW_ID_ANIMATE_VP 38

nadawać wartości polom editswitch i panswitch określającym tryb działania wihajstra
osi czasu, dlatego muszą być utworzone po utworzeniu tego wihajstra.

Tło i ramka guzika włączania i wyłączania animacji są rysowane tak samo jak dla zwyk-
łego guzika, z kolei obrazek wyświetlany zamiast napisu na tym guziku wykonują instrukcje
w liniach 69–84. Guzik jest w stanie podstawowym (WDGSTATE_DEFAULT), gdy animacja jest
wyłączona, i w stanie innym niż podstawowy, gdy jest włączona; stan przypisuje temu guzi-
kowi procedura ToggleAnimation.

Listing 36.10. Procedury tworzenia i obsługi menu
C

1: char str_SET[] = "Set";

2: char str_LEFT[] = "<-";

3: char str_RIGHT[] = "->";

4: char str_PANZOOM[] = "pan/zoom";

5: char str_EDIT[] = "edit";

6:

7: void Win3Reshape (xwinmenu *wm, short w, short h)

8: {

9: myknotwdg->wdg.input (&myknotwdg->wdg, WDGMSG_RECONFIGURE, 0,

10: w-MENU1_WIDTH, MENU3_HEIGHT-1);

11: PostExposeEvent (wm->window, w, h);

12: } /*Win3Reshape*/

13:

14: void Win3Callback (struct xwidget *wdg, int msg, int key, int x, int y)

15: {

16: switch (msg) {

17: case WDGMSG_RECONFIGURE:

18: Win3Reshape (wdg->wm, x, y);

19: break;

20:

21: case WDGMSG_BUTTON_PRESS:

22: wm3->changed |= ProcessButtonCommand (wdg->id);

23: break;

1028 36. APLIKACJA TRZECIAD

24:

25: case WDGMSG_SWITCH_CHANGE:

26: ProcessSwitchCommand (wdg->id);

27: break;

28:

29: case WDGMSG_KNOT_MCLICK:

30: if (key == 0 || key == 2) {

31: ProcessKnotWidgetCommand (wdg->id, msg, x);

32: goto let_redraw_it;

33: }

34: break;

35:

36: case WDGMSG_KNOT_MMOVE:

37: case WDGMSG_KNOT_CHANGE:

38: case WDGMSG_KNOT_INSERT:

39: case WDGMSG_KNOT_DELETE:

40: ProcessKnotWidgetCommand (wdg->id, msg, x);

41: let_redraw_it:

42: wm1->changed = wm2->changed = wm3->changed = true;

43: PostMenuExposeEvent (wm1);

44: PostMenuExposeEvent (wm2);

45: break;

46:

47: case XWMSG_KEY_PRESS:

48: mywdg->input (mywdg, msg, key, x, y);

49: if (wm2->changed)

50: PostMenuExposeEvent (wm2);

51: break;

52:

53: default:

54: break;

55: }

56: } /*Win3Callback*/

57:

58: void MyButtonRedraw (struct xwidget *wdg)

59: {

60: XRectangle rect[2];

61: XPoint tr[3];

62:

63: XSetForeground (xdisplay, xgc, XWP_BUTTON_COLOUR);

64: XFillRectangle (xdisplay, wdg->wm->pixmap, xgc,

65: wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1);

66: XSetForeground (xdisplay, xgc, XWP_TEXT_COLOUR);

67: XDrawRectangle (xdisplay, wdg->wm->pixmap, xgc,

68: wdg->r.x, wdg->r.y, wdg->r.width-1, wdg->r.height-1);

69: if (wdg->state == WDGSTATE_DEFAULT) {

70: tr[0].x = tr[1].x = wdg->r.x+wdg->r.width/2-4;

36.4. Menu trzeciego podokna 1029

71: tr[2].x = wdg->r.x+wdg->r.width/2+4;

72: tr[0].y = wdg->r.y+4; tr[1].y = wdg->r.y+wdg->r.height-4;

73: tr[2].y = wdg->r.y+wdg->r.height/2;

74: XFillPolygon (xdisplay, wdg->wm->pixmap, xgc, tr, 3,

75: Convex, CoordModeOrigin);

76: }

77: else {

78: rect[0].width = rect[1].width = 3;

79: rect[0].height = rect[1].height = wdg->r.height-8;

80: rect[0].y = rect[1].y = wdg->r.y+4;

81: rect[0].x = wdg->r.x+wdg->r.width/2-4;

82: rect[1].x = wdg->r.x+wdg->r.width/2+3;

83: XFillRectangles (xdisplay, wdg->wm->pixmap, xgc, rect, 2);

84: }

85: } /*MyButtonRedraw*/

86:

87: xwinmenu *SetupApp3dWin3Menu (void)

88: {

89: KnotsWidgetf *kw;

90: xwinmenu *wm;

91:

92: if (!(wm = NewWinMenu (window[3], WIN0_WIDTH, MENU3_HEIGHT,

93: 0, WIN0_HEIGHT-MENU3_HEIGHT, NULL, NULL, Win3Callback)))

94: ExitOnError ("SetupApp3dWin3Menu");

95: kw = &appwdg->kw;

96: myknotwdg = NewKnotsWidget (wm, kw, KNOTWD_ID, WIN0_WIDTH-MENU1_WIDTH,

97: MENU3_HEIGHT-4, MENU1_WIDTH, 4, 4, MAXKEYFRAMES, kw->nknots,

98: kw->knots, kw->knots[0], kw->knots[kw->nknots-1]);

99: kw->editswitch = true;

100: kw->panswitch = kw->motion_off = false;

101: NewButton (wm, BTN_ID_LEFT, 16, 18, 0, 0, str_LEFT);

102: NewButton (wm, BTN_ID_SET, 22, 18, 19, 0, str_SET);

103: NewButton (wm, BTN_ID_RIGHT, 16, 18, 44, 0, str_RIGHT);

104: playbtn = NewButton (wm, BTN_ID_PLAY, 60, 18, 0, 20, NULL);

105: playbtn->redraw = MyButtonRedraw;

106: NewSwitch (wm, SW_ID_ANIMATE_KL, 16, 16, 63, 20, NULL,

107: &appwdg->animate_kl);

108: NewSwitch (wm, SW_ID_ANIMATE_MM, 16, 16, 82, 20, NULL,

109: &appwdg->animate_mm);

110: NewSwitch (wm, SW_ID_ANIMATE_VP, 16, 16, 101, 20, NULL,

111: &appwdg->animate_vp);

112: NewSwitch (wm, SW_ID_EDIT_KNOTS, 16, 16, 0, 40, str_EDIT,

113: &kw->editswitch);

114: NewSwitch (wm, SW_ID_KNW_PANZOOM, 16, 16, 44, 40, str_PANZOOM,

115: &kw->panswitch);

116: return wm;

117: } /*SetupApp3dWin3Menu*/

1030 36. APLIKACJA TRZECIAD

Wihajstry w menu trzeciego podokna wywołują procedurę Win3Callback (linie 14–56),
której działanie chyba nie wymaga wyjaśnień.

36.5. Część graficzna aplikacji

Procedury pokazane na listingach 36.11–36.14 należą do części graficznej i zajmują sięwyko-
nywaniem poleceń otrzymywanych od części okienkowej, w tym edycją warunków interpo-
lacyjnych i realizacją animacji. Włączaniem i wyłączaniem animacji zajmuje się procedura
ToggleAnimation (listing 32.17), wywoływana po naciśnięciu klawisza spacji i po pstryk-
nięciu odpowiedniego guzika w menu. Wywoływana przez nią procedura ProcessWorld-
Request w części okienkowej zajmuje się zapewnieniem, że będzie wywoływana procedura
MoveOn, ale też zmianą wyglądu guzika włączającego i wyłączającego animację.

Procedura ProcessSwitchCommand w dodatku do przełączników wybierających ryso-
wane siatki obsługuje przełączniki wybierające tryb działania wihajstra osi czasu (zależnie
od niego, po naciśnięciu przycisku wihajster umożliwia przesuwanie węzłów albo zmienianie
przedziału czasowego) oraz przełączniki wyboru elementów animacji. Z trzech elementów
co najmniej jeden powinien być włączony, aby aplikacja reagowała na polecenie uruchamia-
nia animacji, dlatego wyłączenie ostatniego przełącznika powoduje włączenie jednego z po-
zostałych dwóch. Ale, takie reakcje aplikacji mogą być dla użytkownika niezrozumiałe, więc
zawsze trzeba się zastanowić, czy warto je programować.

Listing 36.11. Procedura ProcessSwitchCommand
C

1: char ProcessSwitchCommand (int wdg_id)

2: {

3: switch (wdg_id) {

4: case SW_ID_MESH0:

5: return true;

6: case SW_ID_MESH1: case SW_ID_MESH2: case SW_ID_MESH3: case SW_ID_MESH4:

7: if (appdata.wdg.sw[wdg_id-SW_ID_MESH0]) {

8: memset (&appdata.wdg.sw[1], false, NPALMMESHES);

9: appdata.wdg.sw[(int)(appdata.lod = wdg_id-SW_ID_MESH0)] = true;

10: kl_Articulate (appdata.linkage);

11: }

12: else

13: appdata.lod = -1;

14: return true;

15: case SW_ID_ANIMATE_KL:

16: if (!appdata.wdg.animate_kl && !appdata.wdg.animate_vp)

17: appdata.wdg.animate_mm = true;

18: return true;

19: case SW_ID_ANIMATE_MM:

20: if (!appdata.wdg.animate_mm && !appdata.wdg.animate_vp)

21: appdata.wdg.animate_kl = true;

36.5. Część graficzna aplikacji 1031

22: return true;

23: case SW_ID_ANIMATE_VP:

24: if (!appdata.wdg.animate_vp && !appdata.wdg.animate_kl)

25: appdata.wdg.animate_mm = true;

26: return true;

27: case SW_ID_EDIT_KNOTS:

28: if (appdata.wdg.kw.editswitch)

29: appdata.wdg.kw.panswitch = false;

30: return true;

31: case SW_ID_KNW_PANZOOM:

32: if (appdata.wdg.kw.panswitch)

33: appdata.wdg.kw.editswitch = false;

34: return true;

35: default:

36: return false;

37: }

38: } /*ProcessSwitchCommand*/

Procedura ProcessSlidebarCommand, wywoływana po przesunięciu suwaka, jest iden-
tyczna jak w aplikacji 3B (listing 34.6). Listing 36.12 przedstawia procedurę wywoływaną po
pstryknięciu guzika — zależnie od jego identyfikatora (czyli identyfikatora polecenia wyda-
wanego przez ten guzik) procedura włącza lub wyłącza animację, odnajduje węzeł, który ma
stać się bieżącym dla wihajstra osi czasu albo zapamiętuje położenia suwaków wyznaczające
parametry artykulacji dla bieżącego węzła.

Listing 36.12. Procedura ProcessButtonCommand
C

1: char ProcessButtonCommand (int wdg_id)

2: {

3: switch (wdg_id) {

4: case BTN_ID_PLAY:

5: ToggleAnimation (&appdata);

6: return appdata.wdg.animation;

7: case BTN_ID_LEFT:

8: if (appdata.wdg.animation)

9: ToggleAnimation (&appdata);

10: FindKeyFrame (&appdata, false);

11: return true;

12: case BTN_ID_RIGHT:

13: if (appdata.wdg.animation)

14: ToggleAnimation (&appdata);

15: FindKeyFrame (&appdata, true);

16: return true;

17: case BTN_ID_SET:

18: SetKeyFrame (&appdata);

19: return false;

20: default:

1032 36. APLIKACJA TRZECIAD

21: return false;

22: }

23: } /*ProcessButtonCommand*/

Procedura ProcessCharCommand, wykonująca polecenia wydawane za pomocą klawia-
tury, gdy kursor jest w obszarze obrazu, jest identyczna jakw aplikacji 3C. Jej listing pomijam,
natomiast na listingu 36.13 przedstawiam proceduręwykonującą polecenia wydawane przez
wihajster osi czasu. Jej zadaniem jest wywołanie odpowiedniej procedury z listingu 36.7.

Listing 36.13. Procedura ProcessKnotWidgetCommand
C

1: char ProcessKnotWidgetCommand (int wdg_id, int msg, int x)

2: {

3: switch (msg) {

4: case WDGMSG_KNOT_MCLICK:

5: KnotWidgetPoint (&appdata, x);

6: return true;

7: case WDGMSG_KNOT_MMOVE:

8: if (!appdata.wdg.animation)

9: KnotWidgetPoint (&appdata, x);

10: return true;

11: case WDGMSG_KNOT_CHANGE:

12: ChangeKeyFrame (&appdata);

13: return true;

14: case WDGMSG_KNOT_INSERT:

15: InsertKeyFrame (&appdata);

16: return true;

17: case WDGMSG_KNOT_DELETE:

18: DeleteKeyFrame (&appdata);

19: return true;

20: default:

21: return false;

22: }

23: } /*ProcessKnotWidgetCommand*/

Procedura MoveOn (listing 36.14) „posuwa do przodu” wybrane elementy animacji: w li-
niach 8–10 oblicza nową macierz przekształcenia modelu wykonującego ruch obrotowy ze
stałą prędkością. W liniach 12–14 procedura dodaje do czasu pamiętanego w polu xc wi-
hajstra osi czasu przyrost zmierzony przez stoper i jeśli ten czas przekracza ostatni węzeł,
to „wraca na początek”, tj. do pierwszego węzła, dzięki czemu ruch jest okresowy. Zależnie
od stanu przełączników procedura dokonuje artykulacji łańcucha kinematycznego i oblicza
nowe położenie obserwatora w ruchu obrotowym na podstawie krzywej kwaternionowej.

36.5. Część graficzna aplikacji 1033

Listing 36.14. Procedura MoveOn
C

1: char MoveOn (void)

2: {

3: double dt;

4:

5: if (appdata.wdg.animation) {

6: dt = TimerTocTic ();

7: if (appdata.wdg.animate_mm) {

8: if ((appdata.model_rot_angle += appdata.speed * dt) >= PI)

9: appdata.model_rot_angle -= 2.0*PI;

10: SetupModelMatrix (&appdata);

11: }

12: appdata.wdg.kw.xc += dt;

13: if (appdata.wdg.kw.xc > appdata.keyknots[appdata.wdg.kw.nknots-1])

14: appdata.wdg.kw.xc = appdata.keyknots[0];

15: if (appdata.wdg.animate_kl)

16: ArticulateKLAtX (&appdata, appdata.wdg.kw.xc);

17: if (appdata.wdg.animate_vp)

18: ArticulateVPosAtX (&appdata, appdata.wdg.kw.xc);

19: }

20: return appdata.wdg.animation;

21: } /*MoveOn*/

Na listingu 36.15 jest pokazana zmiana w procedurze inicjalizacji danych części graficznej
aplikacji; dodane zostało wywołanie procedury InitKeyFrames po skonstruowaniu łańcu-
cha kinematycznego. Menu i wihajstry w oknach są tworzone po powrocie z tej procedury,
która polu appdata.wdg.kw.knots przypisała adres tablicy węzłów (listing 36.7, linia 38)
— w ten sposób tablica ta jest udostępniana części okienkowej, co umożliwia utworzenie
wihajstra osi czasu, który będzie manipulował węzłami w tej tablicy.

Listing 36.15. Zmiany w procedurze InitMyWorld
C

1: AppWidgets *InitMyWorld (int argc, char *argv[], int width, int height)

2: {

3: /* instrukcje z linii 3-22, listing 34.5 */

4: if (ConstructPalmLinkage (&appdata)) {

5: ArticulatePalmLinkage (&appdata);

6: if (InitKeyFrames (&appdata))

7: return &appdata.wdg;

8: }

9: ExitOnError ("InitMyWorld");

10: return NULL;

11: } /*InitMyWorld*/

1034 36. APLIKACJA TRZECIAD

36.6. Pozostałe zmiany w aplikacji

Listing 36.16 przedstawia proceduręwywoływaną po otrzymaniu przez okno główne komu-
nikatu o zmianie wymiarów (wywołanie tej procedury zastępuje instrukcje w liniach 7–10
na listingu 32.24); obszar okna głównego jest teraz podzielony między trzy podokna, któ-
rych wymiary trzeba obliczyć i wysłać do nich komunikat o zmianie wymiarów. Procedury
obsługi tych komunikatów w oknach zajmą się odpowiednim nadawaniem wymiarów i roz-
mieszczaniem wihajstrów.

Listing 36.16. Procedura Win0ConfigureNotify
C

1: #define WIN0_WIDTH 560 /* wymiary początkowe okna głównego */

2: #define WIN0_HEIGHT 420

3: #define MENU1_WIDTH 120

4: #define MENU3_HEIGHT 60

5:

6: Window window[4];

7:

8: void Win0ConfigureNotify (int width, int height)

9: {

10: window0_width = width;

11: window0_height = height;

12: XMoveResizeWindow (xdisplay, window[1], 0, 0,

13: MENU1_WIDTH, height-MENU3_HEIGHT);

14: XMoveResizeWindow (xdisplay, window[2], MENU1_WIDTH, 0,

15: width-MENU1_WIDTH, height-MENU3_HEIGHT);

16: XMoveResizeWindow (xdisplay, window[3], 0, height-MENU3_HEIGHT,

17: width, MENU3_HEIGHT);

18: } /*Win0ConfigureNotify*/

Pozostałe zmiany to dodanie instrukcji, które na początku działania aplikacji tworzą trze-
cie podokno i wywołują opisaną wcześniej procedurę SetupApp3dWin3Menu, dodanie do
procedury MessageLoop przesyłania komunikatów do tego podokna oraz dodanie instruk-
cji wykonujących dodatkowe sprzątanie podczas zatrzymania aplikacji.

36.7. *Uzupełnienia — użycie macierzy zagęszczania siatek

Zastąpienie procedury zagęszczania, która wykonuje pełne obliczenie niezmieniającej się to-
pologii siatki i współrzędnych wierzchołków, przez procedurę obliczającą tylko współrzędne
przy użyciu macierzy zagęszczania (zobacz podrozdz. 31.11) wymaga niewielu zmian w ko-
dzie aplikacji. Do struktury typu KLMesh trzeba dodać opakowania macierzy zagęszcza-
nia — tablicę o długości NPALMMESHES struktur typu MeshRefineMatrix pokazanych na
listingu 31.36 (tablica ta otrzymała nazwę refm). Zamiast procedur z listingu 31.10, kom-
pilujących i sprzątających pełny program zagęszczania siatek, trzeba wywołać procedury

36.7. *Uzupełnienia — użycie macierzy zagęszczania siatek 1035

LoadMeshRefinementMatrixProgram i DeleteMeshRefinementMatrixProgram, kom-
pilujące i sprzątające program znajdujący macierze zagęszczania. Dodatkowo trzeba dołą-
czyć do aplikacji i wywołać procedury, które na początku przygotowują do pracy, a na końcu
likwidują programy mnożenia na GPU macierzy rzadkich i macierzy rzadkiej przez wektor.
Programy te zawierają szadery opisane w p. G.4.3 i G.4.1.

Listing 36.17 przedstawia zmienione instrukcje metod obiektu dłoni. Konstruktor, tj.
procedura KLInitPalmMesh, w pętli wywołuje przedstawioną na listingu 31.41 procedurę
GPUmeshRefinementMatrix, która znajduje topologie kolejnych zagęszczonych siatek i od-
powiednie macierze zagęszczania. Dodatkowym zadaniem destruktora obiektu, tj. pro-
cedury KLDeletePalmMesh, jest zwolnienie pamięci GPU zajmowanej przez te macierze.
Procedura KLPostprocessMesh dokonuje artykulacji siatki niezagęszczonej tak samo jak
dotąd. Następnie zamiast procedury GPUmeshRefinement wywołuje szybszą procedurę
GPUMatrixRefineMesh, tyle razy, ilu kolejnych zagęszczań wynik ma być narysowany.
Przed wywołaniem tej procedury, w linii 31, zmiennej opisującej liczbę skalarnych atrybutów
wierzchołka siatki jest przypisywana wartość 3, bo tyle ich mają wierzchołki siatki oryginal-
nej i tyle samo będą początkowo mieć wierzchołki siatek zagęszczonych (ponieważ liczba
atrybutów w tym miejscu może tylko się zmniejszyć, nie trzeba rezerwować nowego bufora
na współrzędne wierzchołków). Ta, która ma być narysowana, zostaje potem przetworzona
przez procedurę ComputeMeshNormalVectors, która rozszerza zestaw atrybutów o współ-
rzędne wektora normalnego.

Listing 36.17. Zmiany w konstruktorze, destruktorze i metodzie postprocesingu obiektu dłoni
C

1: static char KLInitPalmMesh (kl_linkage *lkg, kl_object *obj)

2: {

3: /* linie 3–45 z listingu 34.3 bez zmian */

4: for (i = 1; i <= NPALMMESHES; i++) {

5: if (!GPUmeshRefinementMatrix (3, palms[i], palms[i+1],

6: &md->refm[i-1]))

7: ExitOnError ("KLInitPalmMesh 1");

8: }

9: md->mtn = SetupMaterial (&ad->mat, -1, diffr, specr, shn, wa, we);

10: /* dalsze instrukcje bez zmian */

11: } /*KLInitPalmMesh*/

12:

13: static void KLDeletePalmMesh (kl_linkage *lkg, kl_object *obj)

14: {

15: KLMesh *md;

16: int i;

17:

18: md = (KLMesh*)obj->usrdata;

19: for (i = 0; i <= NPALMMESHES+1; i++)

20: DeleteGPUmesh (md->mesh[i]);

21: for (i = 0; i < NPALMMESHES; i++)

22: GPUDeleteMeshRefinementMatrix (&md->refm[i]);

1036 36. APLIKACJA TRZECIAD

23: glDeleteBuffers (1, &md->tribuf);

24: } /*KLDeletePalmMesh*/

25:

26: static void KLPostprocessMesh (kl_linkage *lkg, kl_object *obj)

27: {

28: /* linie 79-98 na listingu 34.3 bez zmian */

29: if (ad->lod >= 1) {

30: for (i = 1; i <= ad->lod; i++) {

31: mesh[i+1]->nsattr = mesh[i+1]->pdim = 3;

32: GPUMatrixRefineMesh (&md->refm[i-1]);

33: }

34: ComputeMeshNormalVectors (mesh[ad->lod+1], 6, 3);

35: }

36: ExitIfGLError ("KLPostprocessMesh");

37: } /*KLPostprocessMesh*/

36.8. *Ćwiczenia

W tym miejscu kurs, choć nie taki krótki, zakończył się i ufam, że Czytelnik, który go prze-
szedł, jest dobrze przygotowany do prawdziwej nauki programowania grafiki. Polega ona
na samodzielnym formułowaniu problemów, studiowaniu źródeł, wymyślaniu ćwiczeń i roz-
wiązywaniu ich. Wszystkim Czytelnikom życzę udanych projektów, podziwu innych osób
i końcowej satysfakcji.

A
Jeszcze trochę algebry z geometrią

Idę na hamak — z nienawistną
Książką, bodaj ją dunder świsnął,
Mistyczną, apokaliptyczną,
Z abrakadabrą liter greckich,
Szatańskich szyfrów, cięć zdradzieckich:
Z kabałą trygonometryczną.

Julian Tuwim: Kwiaty polskie

A.1. Załamanie światła

Wyprowadzimy wzór (9.1), na podstawie którego dostępna w GLSL-u funkcja refract ob-
licza wektor kierunku załamania światła na granicy przezroczystych ośrodków. Współczyn-
nik załamania światła jest ilorazem prędkości światła w próżni i w danym ośrodku— jest to
zawsze liczba większa lub równa 1.

.

η1

η2

n

−n

l

t

r

α

β
.

η1

η2

n

−n

l

t

r

α

β
.

Rysunek A.1. Geometria załamania światła

Przyjmiemy oznaczenia z rysunku A.1; symbol n oznacza jednostkowy wektor normalny
powierzchni rozgraniczającej ośrodki (np. powietrze i szkło lub wodę), a l oznacza jednost-

1038 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

kowy wektor kierunku padania światła na tę powierzchnię1. Symbolem r oznaczymy wektor
kierunku, w jakim światło porusza się po przejściu granicy ośrodków, a literami α i β odpo-
wiednio kąty między wektorami l i r a wektorem −n.

Literą η oznaczymy iloraz współczynników załamania światła ośrodka, z którego światło
pada na granicę ośrodków i ośrodka po drugiej stronie (jeśli zatem światłowpada do ośrodka
gęstszego, to η < 1). Znane ze szkoły prawo załamania światła głosi, że

sin β

sin α
=
η1
η2
= η.

Możemy na tej podstawie obliczyć

sin β = η sin α oraz cos β =
√

1 − sin2 β =
√

1 − η2 sin2 α =
√

1 − η2(1 − cos2 α).
Mamy też cos α = ⟨−n, l⟩. Niech

t =
1

sin α
(l − ⟨n, l⟩n);

jest to jednostkowywektor styczny do granicy ośrodków, który umożliwia obliczeniewektora
jednostkowego

r = −n cos β + t sin β = −n cos β + tη sinα = −n
√
1 − η2(1 − ⟨n, l⟩2) + η(l − ⟨n, l⟩n)

= ηl − (√1 − η2(1 − ⟨n, l⟩2) + η⟨n, l⟩)n.
Symbol k we wzorze (9.1) oznacza cos2 β — jest to wyrażenie pod pierwiastkiem w wy-

prowadzeniu powyżej. Jeśli światło pada na granicę z wnętrza ośrodka gęstszego (owiększym
współczynniku załamania światła), to może zdarzyć się, że k < 0. W takim przypadku świat-
ło nie przechodzi przez granicę ośrodków — następuje tzw. całkowite odbicie wewnętrzne
światła. Wartością funkcji refract jest wtedy wektor zerowy.

Należy pamiętać, że współczynniki załamania światła (i ich ilorazy) zależą od długości
fali świetlnej i podczas tworzenia obrazów o bardzo wysokiej jakości scen, w których wystę-
puje pryzmat, może być potrzebne wykonanie osobnego obrazu dla kilku (więcej niż trzech)
długości fali, a potem połączenie tych obrazów w jeden.

A.2. Konstrukcje obrotów do ustalonego położenia

Rozwiążemynastępujące zadanie: mając dane dwie trójki punktów, p0, p1 i p2 oraz q0, q1 i q2,
z których żadna nie leży na jednej prostej, należy skonstruować przekształcenie afiniczne —
obrót z przesunięciem — które punkt p0 przekształci na q0, półprostą p0p1 (o początku p0,
przechodzącą przez p1) na półprostą q0q1 i wreszcie zawierającą punkt p2 półpłaszczyznę,

1Tu wektor l jest zorientowany przeciwnie do wektorów obliczanych przez szadery używane przez opisane
w książce aplikacje i do wektorów rozważanych w podrozdziale 28.1.

A.2. Konstrukcje obrotów do ustalonego położenia 1039

0

e1

e2

e3

a1

u1

a2

u2

u3

p0

p1p2

ũ2

b1

v1

b2

v2

v3

q0

q1

q2

ṽ2

Rysunek A.2. Konstrukcja obrotu z przesunięciem do zadanego położenia

której brzegiem jest prosta p0p1, na zawierającą punkt q2 półpłaszczyznę, której brzegiem
jest prosta q0q1. Wszystkie punkty reprezentujemy za pomocąwspółrzędnych kartezjańskich
w ustalonym układzie (np. świata). Rozwiązanie tego zadania może się przydać, gdy trzeba
rozmieścić obiekty w zadany sposób, na przykład ustawić samochód na nierównym terenie.

Zaczniemy od skonstruowania macierzy R opisującej część liniową tego przekształcenia;
jest to macierz poszukiwanego obrotu. Niech

a1 = p1 − p0 , a2 = p2 − p0 oraz b1 = q1 − q0, b2 = q2 − q0.

Na podstawie tych wektorów skonstruujemy kolejne (rys. A.2):

u1 =
1∥a1∥a1, ũ2 = a2 − u1⟨u1, a2⟩, u2 =

1∥ũ2∥ ũ2, u3 = u1 ∧ u2,

v1 =
1∥b1∥b1, ṽ2 = b2 − v1⟨v1, b2⟩, v2 =

1∥ṽ2∥ ṽ2, v3 = v1 ∧ v2.

Macierze U = [u1 , u2, u3] i V = [v1, v2, v3] są ortogonalne i reprezentują pewne obro-
ty w przestrzeni R3; obrót reprezentowany przez macierz U przeprowadza wektory e1 =(1, 0, 0), e2 = (0, 1, 0) i e3 = (0, 0, 1) na wektory u1, u2 i u3, a zatem obrót reprezentowany
przezmacierzU−1 = UT przeprowadza wektory u1, u2 i u3 na e1, e2 i e3. Z kolei macierzV re-
prezentuje obrót przeprowadzający wektory e1, e2 i e3 na v1, v2 i v3. Obrót przeprowadzający
wektory u1, u2 i u3 na v1, v2 i v3 jest więc reprezentowany przez macierz R = VUT . Zna-
lezienie wektora przesunięcia t konstruowanego przekształcenia afinicznego jest już łatwe:
ma być Rp0 + t = q0, a zatem t = q0 − Rp0.

Procedura M4x4RotationFromPointsf na listingu A.1 wykonuje według powyższych
wzorów obliczenie, którego wynikiem jest macierz 4 × 4 będąca jednorodną reprezentacją
poszukiwanego przekształcenia. Pomocnicza procedura M4x4AuxOrtf na podstawie danych
trójek punktów konstruuje macierze U i V . W linii 23 jest znajdowana transpozycja macie-
rzyU ; w tym celu wystarczy przestawić trzy pary wpółczynników. W liniach 26–28 obliczane

1040 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

są kolumnymacierzy R— iloczyny macierzy V i kolejnych kolumnmacierzyUT . Instrukcje
w liniach 29–30 obliczają wektor przesunięcia t.

Listing A.1. Procedura wyznaczania macierzy obrotu z przesunięciem
C

1: void M4x4AuxOrtf (GLfloat u[16], float p0[3], float p1[3], float p2[3])

2: {

3: float sp;

4:

5: memset (u, 0, 16*sizeof(GLfloat));

6: u[0] = p1[0]-p0[0]; u[1] = p1[1]-p0[1]; u[2] = p1[2]-p0[2];

7: V3Normalisef (&u[0]);

8: u[4] = p2[0]-p0[0]; u[5] = p2[1]-p0[1]; u[6] = p2[2]-p0[2];

9: sp = V3DotProductf (&u[0], &u[4]);

10: u[4] -= sp*u[0]; u[5] -= sp*u[1]; u[6] -= sp*u[2];

11: V3Normalisef (&u[4]);

12: V3CrossProductf (&u[8], &u[0], &u[4]);

13: } /*M4x4AuxOrtf*/

14:

15: void M4x4RotationFromPointsf (GLfloat a[16],

16: float p0[3], float p1[3], float p2[3],

17: float q0[3], float q1[3], float q2[3])

18: {

19: #define SWAP(x,y) { s = x; x = y; y = s; }

20: GLfloat u[16], v[16], s;

21:

22: M4x4AuxOrtf (u, p0, p1, p2);

23: SWAP (u[1], u[4]) SWAP (u[2], u[8]) SWAP (u[6], u[9])

24: M4x4AuxOrtf (v, q0, q1, q2);

25: memset (a, 0, 16*sizeof(GLfloat));

26: M4x4MultMV3f (&a[0], v, &u[0]);

27: M4x4MultMV3f (&a[4], v, &u[4]);

28: M4x4MultMV3f (&a[8], v, &u[8]);

29: M4x4MultMV3f (&u[0], a, p0);

30: a[12] = q0[0]-u[0]; a[13] = q0[1]-u[1]; a[14] = q0[2]-u[2];

31: a[15] = 1.0;

32: #undef SWAP

33: } /*M4x4RotationFromPointsf*/

Zobaczmy jeszcze jedną konstrukcję obrotu z przesunięciem, która może się przydać
w aplikacjach OpenGL-a: przekształcenie to określa przejście od układu współrzędnych
świata do układu umieszczonego w punkcie e obserwatora, który „patrzy” na punkt c znaj-
dujący się na ujemnej półosi z (układu obserwatora, rys. A.3). Do jednoznacznego określenia
tego układu potrzebny jest jeszcze jeden punkt lub wektor; podamywektor u określający kie-
runek „do góry”. Wektory e − c i u musząmieć różne kierunki. Konstrukcja2 zaczyna się od

2W bibliotece GLU jest procedura gluLookAt realizująca równoważną konstrukcję, ale ta procedura jest

przeznaczona dla aplikacji starego OpenGL-a.

A.2. Konstrukcje obrotów do ustalonego położenia 1041

x

y

z

u

e

.

c

.

c

.

x′

y′

z′

Rysunek A.3. Określenie układu obserwatora patrzącego na dany punkt

znalezienia wersorów osi układu obserwatora: wektor z′ (wersor osi z) jest unormowaną (tj.
podzieloną przez długość) różnicą e − c. Wersor y′ osi y otrzymamy, normując rzut wek-
tora u na płaszczyznę prostopadłą do wektora z′, czyli biorąc u′ = u− ⟨z′, u⟩z′, y′ = u′/∥u′∥,
a wersor osi x jest równy x′ = y′ ∧ z′. Macierz ortogonalna [x′, y′, z′] opisuje część liniową
przejścia od układu obserwatora do układu świata, zatem do przejścia w drugą stronę jest
potrzebna transpozycja tej macierzy. Wektor przesunięcia trzeba dobrać tak, aby punkt e
był początkiem układu obserwatora. Procedura realizująca tę konstrukcję jest pokazana na
listingu A.2.

Listing A.2. Procedura M4x4LookAtf
C

1: void M4x4LookAtf (GLfloat a[16], float eye[3], float c[3], float up[3])

2: {

3: float x[3], y[3], z[3], d;

4: int i;

5:

6: V3Subtractf (z, eye, c);

7: V3Normalisef (z);

8: d = V3DotProductf (z, up);

9: for (i = 0; i < 3; i++)

10: y[i] = up[i] - d*z[i];

11: V3Normalisef (y);

12: V3CrossProductf (x, y, z);

13: a[0] = x[0]; a[1] = y[0]; a[2] = z[0]; a[3] = 0.0;

14: a[4] = x[1]; a[5] = y[1]; a[6] = z[1]; a[7] = 0.0;

15: a[8] = x[2]; a[9] = y[2]; a[10] = z[2]; a[11] = 0.0;

16: a[12] = -V3DotProductf (x, eye);

17: a[13] = -V3DotProductf (y, eye);

1042 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

18: a[14] = -V3DotProductf (z, eye);

19: a[15] = 1.0;

20: } /*M4x4LookAtf*/

A.3. Rozkładanie przekształceń afinicznych

Wwielu książkach można przeczytać, że dowolne przekształcenie afiniczne przestrzeni trój-
wymiarowej3 jest złożeniem opisanych w rozdziale 5 przekształceń elementarnych: przesu-
nięć, obrotów i skalowań. Znacznie rzadziej można znaleźć informację, jak znaleźć takie
przekształcenia elementarne, aby ich złożenie było przekształceniemdanym, czyli jak znaleźć
macierze przesunięcia, obrotów i skalowania, których iloczyn jest danąmacierzą 4×4, będącą
jednorodną reprezentacją tego przekształcenia. Znalezienie odpowiedniego przesunięcia jest
łatwe, skupimy się zatem na przedstawieniu opisującej część liniową przekształcenia macie-
rzy A jako iloczynu macierzy obrotów i skalowania.

WartośćwłasnamacierzyA jest to liczba λ spełniająca równośćAx = λx razemzpewnym
niezerowym wektorem x, zwanym wektorem własnym. Pomnożenie wektora własnego x

przez macierz A daje zatem ten sam wynik, co pomnożenie go przez liczbę λ.
Macierz n× nma n wartości własnych, które mogą się nakładać4. Wartości własne mogą

być liczbami rzeczywistymi lub zespolonymi, ale jeśli macierz jest rzeczywista, to jej zespo-
lone wartości własne występują w parach sprzężonych, a związane z nimi wektory własne
mają przynajmniej niektóre współrzędne zespolone (a więc w przestrzeni Rn ich nie znaj-
dziemy). Iloczyn wszystkich wartości własnych macierzy jest jej wyznacznikiem.

Jeśli macierz A jest symetryczna, tj. A = AT , to istnieje ortogonalna macierz X i diago-
nalna macierz Λ, takie że A = XΛX−1; współczynniki na diagonali macierzy Λ są wartoś-
ciami własnymi macierzy A. Kolumny macierzy X są jednostkowymi wektorami własnymi
macierzy A, przy czymmożemy przyjąć, że wyznacznik macierzy X jest dodatni (równy +1).
Dla n = 3 taka macierz X reprezentuje pewien obrót przestrzeni R3 (o czym niżej) i jedno-
cześnie reprezentuje zmianę układu współrzędnych. Przekształcenie reprezentowane przez
symetryczną macierz A jest zatem złożeniem trzech przekształceń: reprezentowanego przez
macierz X−1 obrotu, skalowania osi x, y i z (wartości własne macierzy A sąwspółczynnikami
tego skalowania) i przekształcenia odwrotnego do wcześniej wykonanego obrotu. Macierz
symetryczna jest więc macierzą skalowania (w ogólności nierównomiernego) wzdłuż wza-
jemnie prostopadłych osi pewnego układu współrzędnych5.

Rozważmy teraz macierze ortogonalne Q o wymiarach 3 × 3. Wszystkie ich wartości
własne mająwartość bezwzględną 1, przy czym są dwie możliwości: albo wszystkie trzy war-
tości własne są rzeczywiste (równe 1 albo −1), albo jedna wartość własna jest rzeczywista,

3a właściwie, przestrzeni n-wymiarowej dla dowolnego n ⩾ 2
4Mówi się o tzw. krotnościach algebraicznych wartości własnych; suma tych krotności jest równa n, jeśli

zatem pewna wartość własna ma krotność większą niż 1, to macierz ma mniej niż n różnych wartości własnych.
5Jeśli macierz Anie jest symetryczna, tomacierz X spełniająca równość A = XΛX−1 zmacierzą diagonalnąΛ

nie istnieje albo nie jest ortogonalna. Nie rozwijam tego tematu, ale zachęcam Czytelników do zajrzenia do

notatek z wykładu lub do podręcznika algebry liniowej.

A.3. Rozkładanie przekształceń afinicznych 1043

±1, a pozostałe dwie są sprzężonymi ze sobą liczbami zespolonymi, (c, s) i (c,−s), których
iloczyn c2 + s2 = 1. W pierwszym przypadku macierz jest symetryczna. Opisane przez nią
przekształcenie jest skalowaniem trzech wzajemnie prostopadłych osi (o kierunkach wekto-
rów własnych) o czynniki ±1. Jeśli macierz Q ma wartość własną 1 o krotności 3, to jest to
macierz jednostkowa. Jeśli wartość własna −1 ma krotność 1, to macierz Q opisuje odbicie
symetryczne względem płaszczyzny, jeśli 2, to jest to macierz odbicia symetrycznego wzglę-
dem prostej (jest to także obrót o kąt π wokół tej prostej), a jeśli 3, to Q = −I, a zatem dla
dowolnego wektora w jest Qw = −w. Reprezentowane przez macierz −I przekształcenie jest
odbiciem symetrycznym względem punktu (wektora 0).

Macierz ortogonalna Q, która ma zespolone wartości własne, reprezentuje obrót albo
złożenie obrotu z odbiciem. Jeśli jej rzeczywista wartość własna jest równa 1, to macierz Q
reprezentuje obrót, którego oś ma kierunek wektora własnego związanego z tą wartością
własną6. Części rzeczywista c i urojona s zespolonej wartości własnej to kosinus i sinus
kąta φ tego obrotu. JeślimacierzQmawartośćwłasną−1 i dwie zespolonewartości własne, to
przekształcenie reprezentowane przez tęmacierz jest złożeniemdwóch przekształceń: obrotu
o kąt φ wokół osi o kierunku wektora własnego związanego z wartością własną −1 i odbicia
symetrycznego względem płaszczyzny prostopadłej do tej osi.

Znając dowolną rzeczywistą wartość własną λ macierzy A, możemy znaleźć związane
z nią wektory własne; są nimi wszystkie (oprócz zerowego) wektory prostopadłe do wierszy
macierzy A − λI. Ich znalezienie jest szczególnie łatwe w przypadku macierzy ortogonalnej
3 × 3, bo jej wartością własną jest zawsze liczba rzeczywista 1 lub −1.

Dowolnamacierz 3×3ma pewnąwartośćwłasną rzeczywistą, której znalezienie wymaga
rozwiązania równania trzeciego stopnia det(A−λI) = 0. Znane odXVIwiekuwzoryCardana
są niezbyt praktycznąmetodą rozwiązywania takich równań, dlatego lepiej jest użyć którejś
z uniwersalnych metod numerycznych rozwiązywania równań nieliniowych. Rzeczywiste
wartości własne macierzy A o współczynnikach ai j należą do przedziału [a, b], który można
znaleźć w taki sposób: niech {i , j, k} = {1, 2, 3} i niech ri = ∣ai j∣ + ∣aik ∣. Można przyjąć
a = mini∈{1,2,3}(ai i − ri), b = maxi∈{1,2,3}(ai i + ri), i jeśli funkcja f (λ) = det(A − λI)
w punktach a i b ma wartości różne od zera, to mają one przeciwne znaki, co umożliwia
użycie metody bisekcji7. Wartości własne macierzy A o wymiarach 3 × 3 spełniają równości
λ1 + λ2 + λ3 = a11 + a22 + a33 oraz λ1λ2λ3 = detA. Na tej podstawie, znając jedną wartość
własną, λ1, można (jeśli λ1 ≠ 0) otrzymać równanie kwadratowe

λ2 + (λ1 − a11 − a22 − a33)λ + detA/λ1 = 0,
którego rozwiązaniami są pozostałe dwie wartości własne macierzy A. Opracowanie szcze-
gółów i implementację algorytmu znajdowania wartości i wektorów własnych macierzy 3×3
pozostawiam jako ćwiczenie.

Na podstawie znanego twierdzenia algebry liniowej, dla dowolnej (także prostokątnej)
macierzy A o współczynnikach rzeczywistych istnieje jej rozkład względem wartości szcze-
gólnych (singular value decomposition, SVD), tj. macierze ortogonalneU iV oraz diagonalna

6Wektor v jest związanym z wartością własną 1 wektorem własnymmacierzy Rv ,φ określonej wzorem (5.18).
7Inne metody, na przykład metoda siecznych, mogą działać szybciej (i warto je wypróbować), ale nie gwa-

rantują znalezienia rozwiązania dla każdej macierzy.

1044 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

macierz Σ o nieujemnych współczynnikach8, takie że A = UΣVT . Zobaczmy związek tych
macierzy z postawionym problemem.

Wyznacznik każdej macierzy ortogonalnej jest równy +1 albo −1. Macierz ortogonalna
3 × 3 o dodatnim wyznaczniku jest macierzą obrotu w przestrzeni R3. Zatem rozkład SVD,
w którym macierze U i V mają wyznacznik +1, jest potrzebnym rozkładem macierzy A, bo
macierz diagonalna Σ jest macierzą skalowania. Jeśli obie macierze U i V mają wyznaczniki
ujemne, to możemy je zastąpić przez −U i −V . Jeśli zaś tylko jedna z nich, na przykładU ma
wyznacznik −1, to zamiastU i Σmożemy przyjąćmacierzeUD i DΣ, otrzymane przy użyciu
macierzy diagonalnej D, która ma na diagonali współczynniki 1, 1 i −1. Zmienimy w ten
sposób zwrot ostatniej kolumny macierzy U i znak ostatniego współczynnika (skalowania
osi z) na diagonali macierzy Σ.

Łatwiej niż rozkład SVDmożna znaleźć tzw. rozkład biegunowymacierzy kwadratowej,
tj. macierz ortogonalną Q i symetryczną S, takie że A = QS. Przekształcając rozkład SVD,
możemy napisać A = UΣVT = UVTVΣVT . Iloczyn UVT macierzy ortogonalnych jest
macierzą ortogonalną, a macierz VΣVT jest symetryczna. Możemy zatem przyjąć Q = UVT

oraz S = VΣVT .
Jeśli macierz A jest nieosobliwa, to jej rozkład biegunowy można znaleźć przy użyciu

następującego algorytmu Highama: po przyjęciu macierzy A0 = A obliczamy w kolejnych
iteracjach macierze

Ak =
1

2
(Ak−1 + A

−T
k−1), k = 1, 2, . . .

W każdej iteracji trzeba obliczyćmacierz A−Tk−1, tj. transpozycję odwrotności macierzy Ak−1.
9

Otrzymany ciągmacierzy zbiega do macierzy ortogonalnej Q, przy czym zbieżność jest dość
szybka i w wielu przypadkach wystarczy wykonać tylko kilka iteracji. Możemy następnie
znaleźćmacierz symetryczną S = QTA.

Wartości i wektory własne macierzy S można znaleźć metodą wspomnianą wcześniej.
Wektory własne są kolumnami macierzy V ; znając ją, można obliczyć macierz U = QV .
W typowych zastosowaniach w grafice komputerowej dokładność algorytmu opartego na
tym opisie powinna być wystarczająca10.

Jednym z etapów rejestrowania ruchu (motion capture, zobacz [34]) jest określenie poło-
żenia i zorientowania w przestrzeni używanych w tej technice kamer. W tym celu na pod-

8Współczynniki na diagonali macierzy Σ są nazywane wartościami szczególnymimacierzy A.
9Aby rozwiązać układ równań liniowych Ax = b, nie trzeba znać macierzy A−1; wystarczy znać rozkład

macierzy A na czynniki trójkątne. Co więcej, algorytm polegający na znalezieniu macierzy A−1 i pomnożeniu
przez niąwektora b jest bardziej kosztowny imniej dokładny niż rozwiązanie układów zmacierzami trójkątnymi

(np. znalezionymi przez procedurę M4x4LUDecompf, zobacz podrozdz. 5.7). Algorytm Highama jest jednym
z nielicznych algorytmów numerycznych, w których jawne wyznaczanie odwrotności macierzy jest konieczne.

10Przypomnę, żewobliczeniach przy użyciu arytmetyki zmiennopozycyjnej występują błędy zaokrągleń, któ-
rych skutkiem są niedokładnewyniki. Opisane tu rozkładymacierzy owymiarachwiększych niż 3×3, potrzebne
w różnych zastosowaniach, trzeba wyznaczać bardziej wyrafinowanymi metodami.

A.4. Kwaterniony i obroty 1045

stawie zarejestrowanych przez te kamery obrazów, na których są widoczne rozmieszczone
w przestrzeni znaczniki, układane są równania, których rozwiązanie prowadzi do znalezienia
macierzy opisujących rozmieszczenie (przesunięcia i obroty) poszczególnych kamer. Skut-
kiem ograniczonej dokładności obrazów i popełnionych w obliczeniach błędów zaokrągleń
jest otrzymanie przekształcenia, którego część liniowa jest opisana przez nieortogonalnąma-
cierz A. Właśnie w tym zastosowaniu algorytm Highama może pomóc: będąca czynnikiem
rozkładu biegunowego macierz Q „najlepiej ze wszystkich macierzy ortogonalnych” przy-
bliża macierz A.11 Z istnienia rozkładu biegunowego wynika, że macierz A opisuje złożenie
skalowania z izometrią (obrotem). Zastąpienie jej przez czynnik Q eliminuje niepożądane
skalowanie, kompensując wspomniane błędy.

Rozkładanie macierzy na czynniki reprezentujące przekształcenia elementarne może się
przydać w animacji. Przypuśćmy, że ruch pewnego obiektu jest otrzymany przez animo-
wanie macierzy przekształcenia modelu; mamy dane macierze Mi , z których każda opisuje
przekształcenie nadające obiektowi położenie w chwili ti . Znalezienie przekształceń nadają-
cych położenia pośrednie wymaga interpolacji położeń danych, ale dokonanie interpolacji
poszczególnych współczynnikówmacierzy w przypadku, gdy zadane przekształcenia opisują
obroty z przesunięciami, prowadzi do otrzymania przekształceń nieizometrycznych. Obiekt
sztywny w tak otrzymanym ruchu zmieniałby kształt, więc trzeba postępować inaczej.

Dla uproszczenia rozważmy dane macierze M0 i M1 o wymiarach 4 × 4, opisujące po-
łożenia obiektu w chwilach 0 i 1. Macierz Mt nadającą obiektowi położenie odpowiednie
w chwili tmożemy otrzymać po rozłożeniu macierzy danych: niech macierz Ti opisuje prze-
sunięcie, Qi obrót, a Si skalowanie, takie że Mi = TiQiSi . Obie macierze Qi są ortogonalne,
a Si symetryczne. Możemy przyjąć macierze Tt = (1 − t)T0 + tT1 oraz St = (1 − t)S0 + tS1,
ponieważ pierwsza z nich opisuje (interpolowane) przesunięcie, a druga, symetryczna dla
każdego t, opisuje skalowanie obiektu wzdłuż pewnych wzajemnie prostopadłych osi (zależ-
nych od t); jeśli przekształcenie ma być izometrią (w animacji bryły sztywnej), to macierze
S0, S1 i St sąmacierzą jednostkową.

Aby dokonać interpolacji obrotów, możemy znaleźć wektory osi i kąty obrotów repre-
zentowanych przez macierze ortogonalne Q0 iQ1, utworzyć reprezentujące te obroty kwater-
niony, dokonać interpolacji łukowej kwaternionów i skonstruowaćmacierz Qt na podstawie
reprezentacji kwaternionowej obrotu w chwili t. Podrozdział A.4 zawiera dokładny opis tej
reprezentacji. Mając macierze Tt , Qt i St , możemy za macierz Mt przyjąć ich iloczyn.

A.4. Kwaterniony i obroty

Kwaterniony są wektorami w przestrzeni R4 z określonymi działaniami dodawania (zwyk-
łego) i mnożenia, którego definicja jest niżej. Kwaternion q = (a, x , y, z)możemy przedsta-
wićw postaci q = (a, b), w której wyróżniamy część skalarną a ∈ R (pierwsząwspółrzędną)
i część wektorową b = (x , y, z) ∈ R3. Korzystając z tego zapisu, można definicję mnożenia

11Miarą błędu przybliżenia jest w tym przypadku tzw. norma druga indukowana macierzy, ∥ ⋅ ∥2 . Jeśli
W oznacza macierz ortogonalną 3 × 3, to liczba ∥A−W∥2 jest najmniejsza, gdyW = Q.

1046 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

kwaternionów przedstawić wzorem

(a1, b1) ⋅ (a2, b2) = (a1a2 − ⟨b1, b2⟩, a1b2 + b1a2 + b1 ∧ b2). (A.1)

Wzór ten przypomina definicjęmnożenia liczb zespolonych (F.1); najbardziej widoczna róż-
nica to składnik b1 ∧b2 (iloczyn wektorowy wektorów b1 i b2) w części wektorowej iloczynu.
Z powodu tego składnika, który zmienia zwrot po przestawieniu argumentów, mnożenie
kwaternionów jest nieprzemienne.

Aby ułatwić zbadanie własności mnożenia, kwaternionowi q = (a, x , y, z) = (a, b) przy-
porządkujemy macierz

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a −x −y −z

x a −z y

y z a −x
z −y x a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a −bT

b aI3 + b ∧ I3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Oczywiście, każdej macierzy utworzonej z czterech liczb zgodnie z tym schematem odpo-
wiada pewien kwaternion, który jest jej pierwszą kolumną. Wykonując stosowne rachunki,
możemy sprawdzić, że sumie kwaternionów q1 i q2 odpowiada suma przyporządkowanych
immacierzy, Q1 +Q2, a ponadto q1 ⋅ q2 = Q1q2, skąd dalej wynika, że iloczyn macierzy Q1Q2

odpowiada iloczynowi kwaternionów q1 ⋅ q2. Mnożenie macierzy jest łączne i rozdzielne
względem dodawania, zatem także mnożenie kwaternionów ma te własności12.

Z punktu widzenia algebry zbiór kwaternionów z opisanymi wyżej działaniami jest cia-
łem nieprzemiennym. Tradycyjnie oznacza się je symbolem H, dla uczczenia sir Williama
R. Hamiltona, który 16 października 1843 r. odkrył je w Dublinie [43]13. Hamilton wymyślił
wtedy opisany tu sposób mnożenia czwórek liczb rzeczywistych. Razem ze zwykłym doda-
waniem wektorów w R4 spełnia on wszystkie warunki potrzebne do otrzymania ciała, z wy-
jątkiem przemienności. Kwintesencją tegomnożenia są cztery, a właściwie dziesięć równości

i2 = j2 = k2 = i ⋅ j ⋅ k = −1,

zapisanych przy użyciu symboli i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1) oraz −1 =(−1, 0, 0, 0).
Kwaternion sprzężony z q = (a, b) to kwaternion (a,−b), który oznaczamy symbolem q;

wartość bezwzględna kwaternionu q = (a, b) = (a, x , y, z) jest liczbą rzeczywistą
∣q∣ =√a2 + ⟨b, b⟩ =√a2 + x2 + y2 + z2 .

Wartość bezwzględna kwaternionu jest więc euklidesową długościąwektora (a, x , y, z) i jest
spełniona równość ∣q∣ = ∣q∣. Kwaternion zerowy, (0, 0), jest jedynymkwaternionem, którego
wartość bezwzględna jest równa 0.

12Zwróćmy uwagę, że łączność mnożenia kwaternionów nie jest sprzeczna z faktem, że iloczyn wektorowy

w R3, użyty w definicji tego mnożenia, nie jest działaniem łącznym.
13Byłem w tamtym miejscu; kwaterniony cały czas tam są, ale można je też dostrzec wszędzie indziej.

A.4. Kwaterniony i obroty 1047

Zobaczmy, jak to wygląda w notacji macierzowej. Jeśli kwaternion q jest związany z ma-
cierzą Q, to sprzężonemu z nim kwaternionowi q odpowiada macierz transponowana QT .
Możemy sprawdzić, że iloczynowi q ⋅ q odpowiada macierz QQT = ∣q∣2I4. Macierz Q jest
więc iloczynem pewnej macierzy ortogonalnej i liczby ∣q∣. Wyznacznik macierzy Q jest nie-
ujemny: detQ = (a2+x2+ y2+z2)2 = ∣q∣4, a stąd (i z twierdzenia Cauchy’ego, s. 107) wynika,
że dla dowolnych kwaternionów q1, q2 zachodzi równość

∣q1 ⋅ q2∣ = ∣q1∣∣q2∣.
Ponadto z równości (Q1Q2)T = QT

2 Q
T
1 dla dowolnych macierzy Q1, Q2, których iloczyn ist-

nieje (zobacz podrozdz. 5.1), wynika równość q1 ⋅ q2 = q2 ⋅ q1 dla dowolnych kwaternionów
q1, q2.

Kwaternion niemy ma część wektorową równą 0 (odpowiada mu macierz diagonalna
aI4). Zauważmy, że mnożenie kwaternionów niemych daje w wyniku kwaternion niemy,
o części skalarnej równej iloczynowi części skalarnych czynników; można więc utożsamić
kwaterniony nieme z liczbami rzeczywistymi i wtedy dodawanie oraz mnożenie kwaternio-
nów i liczb dają takie same wyniki14. Zauważmy jeszcze dwie rzeczy: jeśli dowolny argument
mnożenia jest kwaternionem niemym, to kolejność tych argumentów można zmienić, a po-
nadto wzór opisujący wartość bezwzględną dowolnego kwaternionu możemy teraz zapisać
w postaci ∣q∣ = √q ⋅ q (bo pod pierwiastkiem jest kwaternion niemy utożsamiony z liczbą
rzeczywistą nieujemną).

Jedynka kwaternionowa to kwaternion (1, 0). Odpowiada jej macierz jednostkowa 4×4.
Jedynka jest elementem neutralnym mnożenia, tj. (1, 0) ⋅ q = q ⋅ (1, 0) = q dla każdego q

i jest to jedyny kwaternion o tej własności. Dla skrótu kwaternion zerowy i jedynkę można
zapisywać symbolami 0 i 1, pamiętając, że to kwaterniony.

Kwaternion odwrotny do q to q−1, taki że q ⋅ q−1 = q−1 ⋅ q = (1, 0). Dla każdego niezero-
wego kwaternionu istnieje (jeden) kwaternion odwrotny, opisany wzorem

q−1 =
1∣q∣2 q,

który przypomina wzór na odwrotność liczby zespolonej. W notacji macierzowej kwaternio-
nowi q−1 odpowiadamacierz Q−1 = 1

∣q∣2
QT . Z łączności mnożenia kwaternionów wynika, że

jeśli kwaterniony q1 i q2 nie są zerowe, to

(q1 ⋅ q2)−1 = q−12 ⋅ q−11 .

Mając pojęcie odwrotności, można określić dzielenie kwaternionów, a właściwie dwa
dzielenia, określone wzorami

q1/q2 = q1 ⋅ q−12 i q2/q1 = q−12 ⋅ q1.
14Odnotujmy jako ciekawostkę, że dodawanie i mnożenie kwaternionów, których części wektorowe mają

ten sam kierunek, jest zgodne z działaniami na liczbach zespolonych. W szczególności jeśli v jest dowolnym

wektorem jednostkowym w R3 oraz (a1 , b1)(a2 , b2) = (a, b) ∈ C, to (a1 , b1v) ⋅ (a2 , b2v) = (a, bv) ∈ H.

1048 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

Rzecz w tym, że na ogół q1 ⋅q−12 ≠ q
−1
2 ⋅q1 (równość zachodzi wtedy, gdy części wektorowe obu

kwaternionów są liniowo zależne). Dlatego nie będziemy pisać kwaternionowych wyrażeń
z poziomą kreską ułamkową, chyba że mianownik (lub licznik) jest liczbą rzeczywistą (albo
kwaternionem niemym).

Kwaternion, którego część skalarna jest równa 0, nazywamy kwaternionem czystym,
a kwaternion jednostkowy to taki, którego wartość bezwzględna jest równa 1. Ponieważ
wartość bezwzględna iloczynu kwaternionów jest iloczynem ich wartości bezwzględnych,
iloczyn kwaternionów jednostkowych jest kwaternionem jednostkowym. Co więcej, od-
wrotnością kwaternionu jednostkowego jest jego kwaternion sprzężony. Kwaternionom jed-
nostkowym odpowiadająmacierze ortogonalne 4 × 4.

Dowolny kwaternion można przedstawić w postaci trygonometrycznej: dla każdego
kwaternionu q istnieje wektor jednostkowy v i liczba α, takie że

q = ∣q∣(cos α, v sin α). (A.2)

Czynnik (cos α, v sin α) jest kwaternionem jednostkowym. Dla kwaternionów niemych
liczba α jest całkowitą wielokrotnością liczby π, a kierunek wektora v jest nieokreślony.
Dla każdego kwaternionu q i każdej liczby naturalnej n zachodzi równość

qn = ∣q∣n(cos nα, v sin nα).
Dzięki temu możemy określić potęgowanie kwaternionów wzorem

qt = ∣q∣t(cos tα, v sin tα), (A.3)

w którym może wystąpić dowolny wykładnik rzeczywisty t.15

Obroty w przestrzeni R3 są reprezentowane przez kwaterniony jednostkowe. Weźmy
dowolny wektor jednostkowy v ∈ R3 i liczbę φ. Obrotowi o kąt φ wokół prostej o kierunku
wektora v przyporządkujemy kwaternion q = (cos φ

2
, v sin φ

2
). Jest on oczywiście jednost-

kowy. Wektorowi w ∈ R3, który zamierzamy obrócić, przyporządkujemy kwaternion czysty
w = (0,w). Udowodnimy, że kwaternion

u = q ⋅w ⋅ q−1 (A.4)

jest czysty, tj. u = (0, u), a jego część wektorowa jest obrazem wektora w w rozpatrywanym
obrocie.

Oznaczmy s = sin φ
2
i c = cos φ

2
. Liczymy

q ⋅w ⋅ q−1 = (c, sv) ⋅ (0,w) ⋅ (c,−sv) = (−s⟨v ,w⟩, cw + sv ∧w) ⋅ (c,−sv)
= (−cs⟨v ,w⟩ + cs⟨w, v⟩ + s⟨v ∧w, v⟩,

s2⟨v ,w⟩v + c2w + csv ∧w − csw ∧ v − s2(v ∧w) ∧ v).
15Ale aby to działanie było dobrze określone (tj. miało jednoznaczny wynik) dla każdego t ∈ R, liczbę α

należy wybierać z przedziału (−π, π). Wtedy jeśli t1α, t2α ∈ (−π, π), to zachodzą równości qt1 ⋅ qt2 = qt1+t2

i (qt1)t2 = qt1 t2 . Jeśli q = (a, 0) i a < 0 (czyli α = π), to qt jest określone tylko dla całkowitych wykładników t.

A.4. Kwaterniony i obroty 1049

Zgodnie z zapowiedzią, część skalarna powyższego iloczynu jest równa 0: dwa pierwsze
składniki opisującego ją wyrażenia mają przeciwne znaki, a w trzecim składniku mamy
iloczyn skalarny wektorów v ∧w i v, które są wzajemnie prostopadłe. Obliczmy zatem część
wektorową,

u = s2⟨v ,w⟩v + c2w + csv ∧w − csw ∧ v − s2(v ∧w) ∧ v .
Zauważmy, że s2 = 1 − c2; stąd mamy

s2⟨v ,w⟩v + c2w = ⟨v ,w⟩v + c2(w − ⟨v ,w⟩v).
W otrzymanych wzorach występują wektory ⟨v ,w⟩v = a, v ∧w = c i c ∧ v = w − ⟨v ,w⟩v = b
(zobacz rys. 5.616). Stąd na podstawie znanych tożsamości trygonometrycznych 2cs = sinφ
i c2 − s2 = cosφ otrzymujemy

u = v⟨v ,w⟩ + cosφ(w − ⟨v ,w⟩v) + sinφv ∧w,
czyli wzór (5.17), co kończy dowód. ◻

v

−v

φ

2π − φ

Rysunek A.4. Dwa obroty będące tym samym obrotem

Zauważmy, że reprezentacja kwaternionowa obrotu nie jest jednoznaczna: kwaternion
−q reprezentuje ten sam obrót co q. Mamy bowiem

−q = (−cos φ
2
,−v sin

φ

2
) = (cos 2π − φ

2
,−v sin

2π − φ

2
),

16Rachunek dowodzący, że (v ∧w) ∧ v = w − ⟨v,w⟩v jest taki: przypominamy sobie, że v ∧w = −w ∧ v oraz
⟨v, v⟩ = 1 i obliczamy iloczyny kwaternionów

((0, v) ⋅ (0, v)) ⋅ (0,−w) = (−⟨v, v⟩, 0) ⋅ (0,−w) = (0, ⟨v, v⟩w) = (0,w),

(0, v) ⋅ ((0, v) ⋅ (0,−w)) = (0, v) ⋅ (⟨v,w⟩,−v ∧w) = (0, v⟨v,w⟩ − v ∧ (v ∧w)).

Mnożenie kwaternionów jest łączne, więc w obu przypadkach wynik jest ten sam. Pozostaje zbadać wyrażenia
opisujące jego część wektorową.

1050 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

czyli reprezentację obrotu o kąt 2π−φwdrugą stronę, tj. wokół osi zorientowanej przeciwnie
(rys. A.4). Ponadto jedynka kwaternionowa (a także kwaternion (−1, 0)) reprezentuje prze-
kształcenie tożsamościowe, czyli obrót o kąt φ = 0 wokół osi, której kierunek nie jest (i nie
musi być) określony.

Powołując się na łącznośćmnożenia kwaternionów, możemy napisać

q2 ⋅ (q1 ⋅ (0,w) ⋅ q−11) ⋅ q−12 = (q2 ⋅ q1) ⋅ (0,w) ⋅ (q−11 ⋅ q−12)
= (q2 ⋅ q1) ⋅ (0,w) ⋅ (q2 ⋅ q1)−1 .

Stąd złożenie kolejno wykonanych obrotów reprezentowanych przez kwaterniony q1 i q2
jest obrotem reprezentowanym przez iloczyn tych kwaternionów. Powyższy rachunek od-
powiada sytuacji, gdy oba obroty są określone w układzie nieruchomym (np. świata) i wtedy
ich złożenie jest reprezentowane przez iloczyn q2 ⋅ q1. Obliczając część skalarną i wektorową
tego iloczynu, otrzymamy wzory podane na początku rozdziału 8. Jeśli natomiast oba obroty
są określone w układzie współrzędnych związanym z obiektem (tj. obracającym się razem
z nim), to należy ustawić czynniki w odwrotnej kolejności: q1 ⋅ q2 (zobacz s. 113).

Bezpośrednie stosowanie wzoru (A.4) nie jest zbyt tanie; trzeba wykonać przy tym 24
mnożenia liczb rzeczywistych, podczas gdy pomnożenie wektora współrzędnych jednorod-
nych punktu przez macierz 4×4, reprezentującą obrót lub dowolne inne przekształcenie afi-
niczne lub rzutowe, wymaga wykonania tylko 16 mnożeń. Mając kwaternion jednostkowy
q = (a, x , y, z), możemy łatwo skonstruować macierz reprezentowanego przezeń obrotu.
Niech w = (0, r, s, t). Na podstawie wzoru (A.4) możemy obliczyć

q ⋅w ⋅ q−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a −x −y −z
x a −z y

y z a −x
z −y x a

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −r −s −t
r 0 −t s

s t 0 −r
t −s r 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a

−x
−y
−z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0(a2 + x2 − y2 − z2)r + 2(xy − az)s + 2(xz + ay)t
2(xy + az)r + (a2 + y2 − x2 − z2)s + 2(yz − ax)t
2(xz − ay)r + 2(yz + ax)s + (a2 + z2 − x2 − y2)t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Stąd otrzymamy macierz obrotu reprezentowanego przez kwaternion q:

R =

⎡⎢⎢⎢⎢⎢⎣
1 − 2(y2 + z2) 2(xy − az) 2(xz + ay)
2(xy + az) 1 − 2(x2 + z2) 2(yz − ax)
2(xz − ay) 2(yz + ax) 1 − 2(x2 + y2)

⎤⎥⎥⎥⎥⎥⎦
. (A.5)

Przejście od kwaternionowej do macierzowej reprezentacji obrotu jest więc wykonalne bez
obliczania wartości jakichkolwiek funkcji przestępnych.

Dysponując kwaternionami,mamymożliwość stosunkowo łatwego dokonania interpola-
cji położeń kątowych bryływ ruchu kulistym17, zadanychwwybranych chwilach. W tymcelu

17Czyli w ruchu obrotowym wokół osi o zmieniającym się kierunku, w każdej chwili przechodzącej przez
pewien ustalony punkt.

A.4. Kwaterniony i obroty 1051

trzeba skonstruować krzywą, której punktami są kwaterniony jednostkowe, tj. krzywą poło-
żoną na sferze jednostkowej wR4. Krzywa ta ma przechodzić przez podane punkty (kwater-
niony odpowiadające kolejno zadanym położeniom kątowym bryły w ruchu), określając jed-
noznacznie położenia kątowe bryły w innych chwilach. Elementarnym krokiem konstrukcji
takich krzywych przechodzących przez wiele zadanych punktów (w tym przykładowej kon-
strukcji przedstawionej w podrozdz. B.4) jest konstrukcja najkrótszej krzywej o zadanych
końcach położonej na sferze jednostkowej.

Przypuśćmy, że dwa kwaterniony, q0 i q1, reprezentują pewne obroty, które wyznaczają
położenia kątowe dowolnego obiektu w chwilach 0 i 1. Chcielibyśmy interpolować te obroty,
tj. dla dowolnego t ∈ [0, 1] znaleźć obrót (czyli odpowiedni kwaternion jednostkowy qt),
który wyznacza położenie „pośrednie” obiektu.

Obrót odpowiadający chwili t moglibyśmy określić przy użyciu jednego z kwaternionów
określonych wzorami q̃t = q1−t0 ⋅ q

t
1 albo q̂t = qt1 ⋅ q

1−t
0 . Podstawiając t = 0 do każdego z tych

wzorów, otrzymalibyśmy kwaternion q0, a podstawiając t = 1, dostalibyśmy kwaternion q1.
Niestety, brak przemienności mnożenia kwaternionów powoduje, że jeśli części wektorowe
kwaternionów q0 i q1 mają różne kierunki, to dla 0 < t < 1 jest q̃t ≠ q̂t , a więc każdy z tych
wzorów opisuje parametryzację innej krzywej na sferze jednostkowej (i żadna z nich nie jest
najkrótsza). Aby odwrócić ruch w czasie, należałoby zamienić kwaterniony q0 i q1, co do-
prowadziłoby do otrzymania innych położeń pośrednich18. Ponadto, dokonując interpolacji
w obróconym układzie współrzędnych, otrzymalibyśmy inny ruch obrotowy. Dlatego me-
toda interpolacji położeń kątowych oparta na każdym z podanych wyżej wzorów nie jest

poprawna.

0 q0

q2 q1

qt

tψ
ψ

0 t 1

Rysunek A.5. Interpolacja łukowa

Poprawna metoda polega na dokonaniu interpolacji łukowej kwaternionów. Na ry-
sunku A.5 jest pokazany przekrój przez sferę jednostkową w R

4 płaszczyzną zawierającą
kwaterniony jednostkowe q0 i q1, takie że q0 ≠ q1 i q0 ≠ −q1; przekrój ten jest oczywiś-

18Zamieniając kwaterniony q0 i q1, należałoby zatem zastąpić użyty do interpolacji wzór tymdrugimwzorem,

ale jak tu dokonać pierwszego wyboru?

1052 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

cie okręgiem jednostkowym. Kwaterniony q0 i q1 jednoznacznie określają najkrótszy łuk na
sferze jednostkowej, którego są końcami. Dla chwili t ∈ [0, 1] chcemy skonstruować obrót
reprezentowany przez kwaternion qt , który dzieli ten łuk w proporcji t ∶ 1− t. Funkcja, której
argumentami są kwaterniony q0, q1 i liczba t i której wartością jest ten kwaternion qt , jest
znana pod nazwą Slerp (Spherical linear interpolation)19.

Wzór opisujacy interpolację łukową przy użyciu potęgowania otrzymamy, rozpatrując
przyporządkowane kwaternionom macierze. Macierz odpowiadająca dowolnemu kwater-
nionowi jednostkowemu jest ortogonalna, a zatem reprezentuje pewną izometrię przestrze-
ni R4. Łuk, którego końcami są punkty q0 i q1, przekształcimy przy użyciu takiej izometrii,
aby obrazem q0 była jedynka kwaternionowa, do czego użyjemy odwrotności macierzy Q0

przyporządkowanej kwaternionowi q0. Dla każdego t obrazem punktu qt na tym łuku jest
punkt q̃t = q−10 ⋅ qt = Q

−1
0 qt , a w szczególności koniec łuku, tj. punkt q1, przejdzie na punkt

q̃1 = q−10 ⋅ q1 = Q
−1
0 q1. Na podstawie wzoru (A.3) kwaternion q̃t , dzielący łuk o końcach 1 i q̃1

w proporcji t ∶ 1 − t, jest równy q̃t1 . Stąd dostajemy wzór

qt = Q0q̃t = q0 ⋅ (q−10 ⋅ q1)t . (A.6)

W podobny sposób możemy otrzymać wzór

qt = q1 ⋅ (q−11 ⋅ q0)1−t ; (A.7)

łatwo możemy też sprawdzić, że (q0 ⋅ (q−10 ⋅ q1)t) ⋅ (q1 ⋅ (q−11 ⋅ q0)1−t)−1 = (1, 0), a zatem oba
powyższe wzory są równoważne i każdy z nich opisuje funkcję Slerp. Rozpatrując ruch ob-
rotowy w układzie współrzędnych, w którym zorientowanie początkowe jest opisane przez
jedynkę, a końcowe przez kwaternion q̃1, możemy zauważyć, że jeśli podczas animowania
obiektu zmieniamy parametr t ze stałą szybkością, dokonujemy interpolacji łukowej kwater-
nionów i określamy na tej podstawie chwilowe przekształcenia obiektu, to obiekt ten obraca
się wokół pewnej ustalonej osi ze stałą prędkością kątową.

0 q0

q1 q1 + q0

ψ
2

Rysunek A.6. Znajdowanie kąta między kwaternionami jednostkowymi

Zobaczmy inny, algebraicznie równoważny sposób dokonywania interpolacji łukowej.
Miarę kąta ψ między kwaternionami q0 a q1 możemy znaleźć, traktując je jak wektory w R4

i obliczając ich iloczyn skalarny, równy cosψ. Jeśli jednak kąt ψ jest bliski zera, to obliczenie

19Nazwę tę wprowadził Ken Shoemake w 1985 r.

A.4. Kwaterniony i obroty 1053

sinψ =
√
1 − cos2 ψ może wskutek błędów zaokrągleń dać bardzo niedokładny wynik. Me-

toda dokładniejsza opiera się na równościach ∣q1 − q0∣ = 2 sin ψ
2
, ∣q1 + q0∣ = 2 cos ψ

2
(rys. A.6),

z których wynikają wzory20

sinψ =
1

2
∣q1 − q0∣∣q1 + q0∣, cosψ =

1

4
(∣q1 + q0∣2 − ∣q1 − q0∣2), ψ = 2 arc tg

∣q1 − q0∣∣q1 + q0∣ .
Dalsze rachunki są takie: niech q2 oznacza leżący na rozważanym okręgu kwaternion, który
jest wektorem prostopadłym do q0 (rys. A.5). Wtedy

q1 = q0 cosψ + q2 sinψ,

qt = q0 cos tψ + q2 sin tψ.

Wyznaczając q2 na podstawie pierwszego równania i wstawiając do drugiego, po uporząd-
kowaniu otrzymamy wzór

Slerp(q0, q1; t) = qt = q0 sin(1 − t)ψ + q1 sin tψ
sinψ

. (A.8)

Stosowanie wzoru (A.8) zamiast (A.6) lub (A.7) i (A.3) też wymaga użycia funkcji trygo-
nometrycznych. Można tego uniknąć w szczególnym przypadku, gdy chcemy znaleźć punkt
w połowie łuku. Możemy wtedy użyć wzoru

Slerp(q0, q1; 1/2) = q1/2 = q0 + q1∣q0 + q1∣ .
Łuk łączący kwaterniony q0 i q1 możemy dzielić rekurencyjnie na połowy, ćwiartki itd., wy-
konując tylko dodawania, mnożenia i dzielenia liczb rzeczywistych oraz obliczając pierwias-
tek kwadratowy.

Uwaga: Chcąc interpolować położenia kątowe obiektu reprezentowane przez kwaterniony
q0 i q1, możemy dzielićw odpowiednich proporcjach łuk o końcach q0 i q1 lub łuk o końcach
q0 i −q1. Zwykle wybieramy łuk krótszy, tj. jeśli kosinus kąta ψ między q0 a q1 jest ujemny,
to wybieramy drugi z tych dwóch łuków. Ruchy określone przez oba łuki są obracaniem
w przeciwne strony. Wybór dłuższego łuku oznacza, że obiekt obróci się o kąt większy niż π.

Listing A.3 przedstawia garść procedur, które mogą być użyte do opisanych wyżej obli-
czeń z kwaternionami. Procedura QuatMultfmnoży dwa kwaterniony. Funkcje QuatAbsf
i QuatArgf obliczają wartość bezwzględną i argument (czyli liczbę α występującą w postaci
trygonometrycznej kwaternionu (A.2)). Procedury QuatLDivf i QuatRDivf wykonują oba
dzielenia kwaternionów, lewostronne i prawostronne.

Procedura M4x4QuatRotationf na podstawie wzoru (A.5) konstruuje macierz 4 × 4,
której blok 3 × 3 reprezentuje obrót określony przez dany kwaternion jednostkowy. Proce-
dury QuatRotVf i RotVQuatf dokonują konwersji reprezentacji obrotów; pierwsza znajduje

20Z uwagi na błędy zaokrągleń lepiej jest obliczać kosinus ψ jako iloczyn skalarny w R4: cosψ = ⟨q0 , q1⟩.

1054 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

Listing A.3. Procedury obliczeń z kwaternionami
C

1: void QuatMultf (float q[4], const float q1[4], const float q2[4])

2: {

3: q[0] = q1[0]*q2[0] - q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3];

4: q[1] = q1[1]*q2[0] + q1[0]*q2[1] - q1[3]*q2[2] + q1[2]*q2[3];

5: q[2] = q1[2]*q2[0] + q1[3]*q2[1] + q1[0]*q2[2] - q1[1]*q2[3];

6: q[3] = q1[3]*q2[0] - q1[2]*q2[1] + q1[1]*q2[2] + q1[0]*q2[3];

7: } /*QuatMultf*/

8:

9: float QuatAbsf (float q[4])

10: {

11: return sqrt (V4DotProductf (q, q));

12: } /*QuatAbsf*/

13:

14: double QuatArgf (float q[4])

15: {

16: return atan2 (sqrt (V3DotProductf (&q[1], &q[1])), q[0]);

17: } /*QuatArgf*/

18:

19: void QuatLDivf (float q[4], const float q2[4], const float q1[4])

20: {

21: float q2i[4], s;

22:

23: s = V4DotProductf (q2, q2);

24: if (s > 0.0) {

25: q2i[0] = q2[0]/s; q2i[1] = -q2[1]/s;

26: q2i[2] = -q2[2]/s; q2i[3] = -q2[3]/s;

27: QuatMultf (q, q2i, q1);

28: }

29: } /*QuatLDivf*/

30:

31: void QuatRDivf (float q[4], const float q1[4], const float q2[4])

32: {

33: float q2i[4], s;

34:

35: s = V4DotProductf (q2, q2);

36: if (s > 0.0) {

37: q2i[0] = q2[0]/s; q2i[1] = -q2[1]/s;

38: q2i[2] = -q2[2]/s; q2i[3] = -q2[3]/s;

39: QuatMultf (q, q1, q2i);

40: }

41: } /*QuatRDivf*/

42:

43: void M4x4QuatRotationf (GLfloat a[16], float q[4])

44: {

45: double xx, yy, zz, xa, xy, xz, ya, yz, za;

A.4. Kwaterniony i obroty 1055

46:

47: xx = 2.0*q[1]*q[1]; yy = 2.0*q[2]*q[2]; zz = 2.0*q[3]*q[3];

48: xa = 2.0*q[1]*q[0]; xy = 2.0*q[1]*q[2]; xz = 2.0*q[1]*q[3];

49: ya = 2.0*q[2]*q[0]; yz = 2.0*q[2]*q[3]; za = 2.0*q[3]*q[0];

50: memset (a, 0, 16*sizeof(GLfloat));

51: a[0] = 1.0-(yy+zz); a[1] = xy-za; a[2] = xz-ya;

52: a[4] = xy-za; a[5] = 1.0-(xx+zz); a[6] = yz+xa;

53: a[8] = xa+ya; a[9] = yz-xa; a[10] = 1.0-(xx+yy);

54: a[15] = 1.0;

55: } /*M4x4QuatRotationf*/

56:

57: void QuatRotVf (float q[4], const float v[3], double phi)

58: {

59: #define TOL 1.0e-6

60: float d;

61:

62: d = V3DotProductf (v, v);

63: if (d > TOL*TOL) {

64: d = sin (0.5*phi)/sqrt (d);

65: q[0] = cos (0.5*phi);

66: q[1] = d*v[0]; q[2] = d*v[1]; q[3] = d*v[2];

67: }

68: else

69: { q[0] = 1.0, q[1] = q[2] = q[3] = 0.0; }

70: } /*QuatRotVf*/

71:

72: void RotVQuatf (float v[3], double *phi, const float q[4])

73: {

74: float s, d;

75:

76: if ((s = V3DotProductf (&q[1], &q[1])) < TOL*TOL ||

77: (d = q[0]*q[0] + s) < TOL*TOL)

78: { v[0] = 1.0, v[1] = v[2] = 0.0; *phi = 0.0; }

79: else {

80: s = sqrt (s);

81: *phi = 2.0*atan2 (s, q[0]);

82: d = 1.0/(sqrt (d)*s);

83: v[0] = d*q[1]; v[1] = d*q[2]; v[2] = d*q[3];

84: }

85: #undef TOL

86: } /*RotVQuatf*/

87:

88: void QuatAnglef (double *psi, float *spsi, float *cpsi,

89: float q0[4], float q1[4])

90: {

91: float a[4], p, r;

92:

1056 A. JESZCZE TROCHĘ ALGEBRY Z GEOMETRIĄ

93: V4Addf (a, q0, q1);

94: p = sqrt (V4DotProductf (a, a));

95: V4Subtractf (a, q0, q1);

96: r = sqrt (V4DotProductf (a, a));

97: if (psi) *psi = 2.0*atan2 (r, p);

98: if (spsi) *spsi = 0.5*p*r;

99: if (cpsi) *cpsi = V4DotProductf (q0, q1);

100: } /*QuatAnglef*/

101:

102: void QuatArcInterpf (float qt[4], float q0[4], float q1[4],

103: double psi, float spsi, float t)

104: {

105: float stp, s1tp;

106:

107: stp = sin (t*psi); s1tp = sin ((1.0-t)*psi);

108: qt[0] = (s1tp*q0[0] + stp*q1[0]) / spsi;

109: qt[1] = (s1tp*q0[1] + stp*q1[1]) / spsi;

110: qt[2] = (s1tp*q0[2] + stp*q1[2]) / spsi;

111: qt[3] = (s1tp*q0[3] + stp*q1[3]) / spsi;

112: } /*QuatArcInterp*/

113:

114: void QuatSlerpf (float qt[4], float q0[4], float q1[4], float t)

115: {

116: float psi, spsi;

117:

118: QuatAnglef (&psi, &spsi, NULL, q0, q1);

119: if (spsi > 0.0)

120: QuatArcInterpf (qt, q0, q1, psi, spsi, t);

121: else

122: memcpy (qt, q0, 4*sizeof(float));

123: } /*QuatSlerpf*/

kwaternion jednostkowy q reprezentujący obrót o kąt φ wokół osi o kierunku wektora v,
a druga, mając dany kwaternion q (niekoniecznie jednostkowy), znajduje odpowiedni wek-
tor v i kąt φ.

Procedura QuatAnglef oblicza kąt ψ między danymi dwoma kwaternionami jednost-
kowymi oraz jego sinus i kosinus. Procedura QuatArcInterpf dokonuje interpolacji łu-
kowej kwaternionów jednostkowych, przy czym jej parametry zawierają informację redun-
dantną: kąt ψ i jego sinus. Przed wielokrotnym wywoływaniem procedury interpolacji dla
różnych argumentów t można je obliczyć (przy użyciu QuatAnglef) tylko raz. Procedura
QuatSlerpf realizuje funkcję Slerp. Jeśli jednak sinψ = 0, to albo q0 = q1 (i łuk jest zdegene-
rowanydo punktu), albo q1 = −q0 (i wtedy podane końce niewyznaczają łuku jednoznacznie,
każdy półokrąg, którego końce to q0 i−q0, jest najkrótszym łukiemmiędzy nimi). Wkażdym
z tych przypadków procedura podaje wynik qt = q0.

Opowieść o kwaternionach i obrotach ma ciąg dalszy w podrozdziale B.4.

B
Krzywe i powierzchnie B-sklejane

Wwielu zastosowaniach wygodniejsze od krzywych i płatów Béziera są będące ich uogólnie-
niem krzywe i powierzchnie B-sklejane. Niema tumiejsca na szczegółowy opis ichwłasności
ani na szerszy przegląd algorytmów ich przetwarzania. Przedstawiając tylkominimum infor-
macji umożliwiających konstruowanie krzywych interpolacyjnych i napisanie szaderów słu-
żących do rysowania powierzchni, zachęcamCzytelników do eksperymentowania i zbierania
doświadczeń. Mając je, można sięgnąć do literatury (polecam moją książkę [41], oczywiście
są też inne), aby krzywe i powierzchnie B-sklejane lepiej poznać i tym piękniej rysować.

B.1. Określenie funkcji, krzywych i płatów B-sklejanych

Podstawą reprezentacji krzywych i płatów B-sklejanych są tak zwane unormowane funkcje

B-sklejane, określone przez niemalejący ciąg węzłów u0, . . . , uN . Funkcje te można zdefi-
niować za pomocą wzoru Mansfielda-de Boora-Coxa:

N0
i (t) = { 1 dla t ∈ [ui , ui+1),

0 w przeciwnym razie,
i = 0, . . . ,N − 1, (B.1)

Nn
i (t) = t − ui

ui+n − ui
Nn−1

i (t) + ui+n+1 − t

ui+n+1 − ui+1
Nn−1

i+1 (t), n > 0, i = 0, . . . ,N − n − 1. (B.2)

Funkcja Nn
i jest jednoznacznie określona przez węzły ui , . . . , ui+n+1 i przyjmuje niezerowe

(dodatnie) wartości tylko w przedziale [ui , ui+n+1), co oznacza, że jeśli ui = ui+n+1, to jest
to funkcja zerowa. Dlatego ciągi węzłów będące podstawą określenia funkcji B-sklejanych
używanych do reprezentowania krzywych lub powierzchni stopnia n powinny spełniać wa-
runek ui < ui+n+1 dla i = 0, . . . ,N −n− 1. Jeśli ui = ui+n lub ui+1 = ui+n+1, to we wzorze (B.2)
mamy ułamek z mianownikiem równym 0, ale jest on pomnożony przez funkcję zerową
Nn−1

i albo Nn−1
i+1 , wskutek czego odpowiedni składnik w tym wzorze jest równy 0. Funkcja

Nn
i jest w każdym z przedziałów [ui , ui+1), . . . , [ui+n, ui+n+1) wielomianem stopnia n. Jeśli

ui ⩽ uk ⩽ ui+n+1 oraz uk−1 < uk = ⋯ = uk+r−1 < uk+r, to w węźle uk funkcja ta jest ciągła
razem z pochodnymi rzędu 1, . . . , n − r. Jeśli ui+1 = ⋯ = ui+n < ui+n+1, to Nn

i (ui+1) = 1.

1058 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

u0 u1
u2
u3

u4 u5 u6 u7
u8
u9

u10 t

d0

d1 d2

d3

d4

d5

d6

Rysunek B.1. Krzywa B-sklejana stopnia 3, jej węzły i punkty kontrolne

Krzywa B-sklejana stopnia n jest określona przez ciąg węzłów1 u0, . . . , uN oraz punkty
kontrolne d0 , . . . , dN−n−1, wzorem

s(t) = N−n−1

∑
i=0

diN
n
i (t), t ∈ [un , uN−n). (B.3)

Ciąg węzłów musi być dostatecznie długi, tj. musi być N > 2n (i un < uN−n), aby dziedzina
parametryzacji s była przedziałem o długości większej niż 0.

Jeśli u1 = ⋯ = un = 0 i un+1 = ⋯ = u2n = 1, to dla i = 0, . . . , n funkcja Nn
i w przedziale[0, 1) jest wielomianem Bernsteina Bn

i stopnia n (zobacz wzór (15.1)) i krzywa B-sklejana
określona z takimi węzłami jest krzywą Béziera.

Tensorowy płat powierzchni B-sklejanej stopnia (n,m) jest określony wzorem
s(u, v) = N−n−1

∑
i=0

M−m−1

∑
j=0

di jN
n
i (u)Nm

j (v), u ∈ [un , uN−n), v ∈ [vm , vM−m). (B.4)

We wzorze tym występują punkty kontrolne płata di j i dwie rodziny funkcji B-sklejanych,
stopni n im; stopnie te mogą być różne, ale niezależnie od stopni użyte do określenia funkcji
ciągi węzłów, u0, . . . , uN oraz v0, . . . , vM , mogą być różne (a wtedy rodziny funkcji Nn

i i Nm
j

są różne, nawet jeśli n = m).
Suma funkcji B-sklejanychNn

0 , . . . ,N
n
N−n−1wkażdympunkcie przedziału [un , uN−n) jest

równa 1, skąd wynika, że aby poddać krzywą lub płat B-sklejany dowolnemu przekształceniu
afinicznemu, wystarczy zastosować to przekształcenie do wszystkich punktów kontrolnych,
podobnie jak w przypadku krzywych i płatów Béziera. Wartości funkcji B-sklejanych są nie-
ujemne, dzięki czemu reprezentacja B-sklejana (tak jak reprezentacja Béziera) ma własność
otoczki wypukłej — krzywa lub powierzchnia jest w całości położona w otoczce wypukłej
zbioru swoich punktów kontrolnych. Zaletą krzywych i płatów B-sklejanych jest znacznie
większa łatwość ich kształtowania: nawet wielka liczba punktów kontrolnych nie wymusza
wysokiego stopnia wielomianów, a ponadto zmiana każdego punktu ma lokalny wpływ na

1Węzły u0 i uN , potrzebne do określenia funkcji Nn
0 i Nn

N−n−1 , nie wpływają na wartości tych funkcji

w przedziale [un , uN−n), a zatem nie mają wpływu na krzywą s i można je wybrać dowolnie.

B.2. Algorytmy de Boora 1059

n = 3, m = 4

u1
u2
u3

u4 u5 u6 u7
u8
u9

u
v1, v2, v3, v4

v5

v6

v7, v8, v9, v10
v

d00

d02

d60

Rysunek B.2. Płat powierzchni B-sklejanej stopnia (3, 4), jego węzły i punkty kontrolne

kształt krzywej lub powierzchni — zmieni się tylko jej fragment. Bardzo ważną własnością
jest możliwośćwstawiania węzłów; można dzięki niej ukształtować zgrubnie krzywą lub po-
wierzchnię z niewieloma punktami kontrolnymi, a następnie wstawić dodatkowe węzły, aby
otrzymać reprezentację tej samej krzywej lub powierzchni o większej liczbie punktów kon-
trolnych, co umożliwi cyzelowanie detali. Ale po szczegóły tych i innych własności odsyłam
do literatury.

B.2. Algorytmy de Boora

Przedstawiona na listingu B.1 procedura oblicza wartości funkcji B-sklejanych stopnia n,
określonych przez dany ciąg węzłów u0, . . . , uN . Ściślej biorąc, na podstawie wzorów (B.1)
i (B.2) procedura ta oblicza wartości wielomianów stopnia n opisujących funkcje B-sklejane
Nn

k−n , . . . ,N
n
k , które w przedziale [uk , uk+1) przyjmują niezerowe wartości.

Parametrbfvprocedury EvaluateBSplinesf jest tablicą odługości n+1, w którejma się
znaleźćwynik, czyli wartości tych funkcji w punkcie t, podanymwparametrze t. Parametr n
określa stopień n funkcji, parametr knots jest tablicą z węzłami, a parametr k określa prze-
dział [uk , uk+1) zawierający punkt t, przy czym powinno być t ∈ [un , uN−n]; należy zatem
zapewnić, że k ∈ {n, . . . ,N − n − 1}. Dla ustalonego ciągu węzłów i danej liczby t odpowied-
nią liczbę k można znaleźć różnymi sposobami. Jeśli węzły są równoodległe, tj. ui = u0 + ih
dla ustalonego h > 0 oraz i = 1, . . . ,N , to k = ⌊(t − u0)/h⌋. Jeśli węzły nie są równoodległe,
to właściwy przedział można wyszukać metodą bisekcji. W pewnych sytuacjach przedział
jest „znany z góry”, na przykład w konstrukcji krzywych interpolacyjnych, gdy potrzebne są
wartości funkcji w określających je węzłach (zobacz podrozdz. B.3).

Przekształcając wzory (B.1), (B.2), można otrzymać algorytm znajdowania punktu s(t)
krzywej określonej wzorem (B.3) dla ustalonego t. Algorytm ten umożliwia rysowanie krzy-
wych i płatówB-sklejanych, ale w tym celu potrzebna jest jego implementacja w językuGLSL.
Razem z punktem s(t) trzeba obliczać wektor styczny (o kierunku pochodnej parametryza-
cji s w punkcie t), co umożliwi obliczanie wektora normalnego płata.

1060 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

Listing B.1. Procedura obliczania wartości funkcji B-sklejanych
C

1: void EvaluateBSplinesf (float *bfv, int n, int k, const float *knots,

2: float t)

3: {

4: int i, j, l;

5: float alpha, beta;

6:

7: l = k-n;

8: bfv[n] = 1.0;

9: for (j = 1; j <= n; j++) {

10: beta = (knots[k+1]-t)/(knots[k+1]-knots[k-j+1]);

11: bfv[n-j] = beta*bfv[n-j+1];

12: for (i = k-j+1; i < k; i++) {

13: alpha = 1.0-beta;

14: beta = (knots[i+j+1]-t)/(knots[i+j+1]-knots[i+1]);

15: bfv[i-l] = alpha*bfv[i-l] + beta*bfv[i+1-l];

16: }

17: bfv[n] *= 1.0-beta;

18: }

19: } /*EvaluateBSplinesf*/

Niech t ∈ [uk , uk+1) ⊂ [un , uN−n) i niech d
(0)
k−n = dk−n , . . . , d

(0)
k
= dk . Algorytm de Bo-

ora znajdowania punktu krzywej B-sklejanej polega na skonstruowaniu punktów⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
(j)
i = (1 − α(j)i)d(j−1)i−1 + α

(j)
i d

(j−1)
i ,

α(j)i =
t − ui

ui+n+1− j − ui
,

i = k − n + j, . . . , k, j = 1, . . . , n. (B.5)

Ostatni obliczony punkt, d(n)
k

, jest punktem s(t).
Można wykazać, że jeśli n > 0 i punkt t ∈ [uk , uk+1) nie jest węzłem lub jest węzłem

o krotności mniejszej iż n (w takim węźle pochodna parametryzacji s może być nieciągła),
to

s′(t) = n

uk+1 − uk
(d(n−1)

k
− d
(n−1)
k−1
).

Listing B.2 przedstawia deklaracje bloków magazynowych zawierających reprezentację
płata B-sklejanego i procedury BSCdeBoor3f i BSPdeBoor3f. Są one częścią szadera roz-
drabniania podobnego do szadera przedstawionego na listingu 15.4.

Wbloku BSPatch znajdują się podstawowe dane opisujące płat. Pole dim zawiera liczbę d
współrzędnych punktu, 2, 3 lub 4. W polach n i m są podane stopnie płata, a w polach N i M
numery ostatnich węzłów w ciągach u0, . . . , uN oraz v0, . . . , vM . Wartością pola stride
jest odstęp między początkami kolejnych kolumn siatki kontrolnej płata w tablicy punktów
kontrolnych. W polu Colourmożna podać kolor do użycia na obrazie płata2. Wartość pola

2Szader fragmentów może użyć tego koloru lub skorzystać z opisu materiału podanego w innymmiejscu.

B.2. Algorytmy de Boora 1061

BSPNormals określa wybór wektora normalnego do użycia w modelu oświetlenia, a pole
tesslevel zawiera parametr — stopień rozdrobnienia płata, który szader sterowania roz-
drabnianiem powinien wpisać do tablic gl_TessLevelOuter i gl_TessLevelInner3.

Tablica uv w bloku BSKnots zawiera węzły, tj. N + M + 2 liczby u0, . . . , uN , v0, . . . , vM
(w tej kolejności), a współrzędne punktów kontrolnych są podane w tablicy cp w bloku
BSCPoints— ma w niej być N − n kolumn, z których każda składa się z M − m punktów,
Jeśli między kolumnami nie ma przerw, to wartością pola stridema być liczba d(M −m).

Procedura BSCdeBoor3f oblicza punkty d(n−1)
k−1

i d(n−1)
k

dla krzywej B-sklejanej w przes-
trzeni trójwymiarowej. Parametr n określa stopień krzywej. Wartością parametru t jest
liczba t. Parametr k jest indeksemdo tablicywęzłów— jeśli k < N , to t ∈ [uk , uk+1), a w prze-
ciwnym razie t ∈ [vl , vl+1), gdzie l jest wartością parametru k pomniejszoną o N + 1. W tab-
licy d są podane punkty d(0)

k−n , . . . , d
(n)
k

; określają one pewien łuk wielomianowy krzywej s.
Obliczone punkty są przypisywane parametrom wyjściowym p0 i p1, a parametr a służy
do przekazania liczby α(n)

k
. Na ich podstawie procedura BSPdeBoor3f, wykonując ostatni

krok algorytmu de Boora, oblicza punkt s(t) = (1 − α(n)
k
)d(n−1)

k−1 + α
(n)
k

d
(n−1)
k

, oraz wektor
d
(n−1)
k

− d
(n−1)
k−1 , mający ten sam kierunek i zwrot co wektor s′(t), ale na ogół inną długość,

nieistotną dla obliczenia wektora normalnego płata tensorowego4.
Procedura BSPdeBoor3f znajduje punkt s(u, v) płata B-sklejanego stopnia (n,m) i jego

wektor normalny w tym punkcie. Parametry wejściowe tej procedury to: parametr u płata,
numer węzła uk , takiego że u ∈ [uk , uk+1), parametr v płata i powiększony o N + 1 numer
węzła vl , takiego że v ∈ [vl , vl+1). Parametry wyjściowe pos i nvwyprowadzająwspółrzędne
jednorodne obliczonego punktu płata i wektora normalnego.

W pętli w liniach 32–37 procedura wybiera odpowiednie fragmenty kolumn siatki kon-
trolnej, po czym wywołuje procedurę BSCdeBoor3f. Punkty obliczone przez tę procedurę
są wpisywane do tablic q0 i q1. Otrzymane w ten sposób punkty w każdej z tych tablic są
dalej przetwarzane jak punkty kontrolne krzywych B-sklejanych stopnia n; wynikiem ob-
liczeń wykonywanych przez procedurę wywołaną w liniach 38 i 39 są punkty p00, p01, p10
i p11 (zobacz rys. B.3). Punkty te i liczby αu i αv (które w ostatnim, pominiętym kroku algo-
rytmu de Boora są parametrami interpolacji punktów otrzymanych w kroku przedostatnim)
umożliwiają obliczenie wektorów

ru = (1 − αv)(p10 − p00) + αv(p11 − p01), rv = (1 − αu)(p01 − p00) + αu(p11 − p10),
n = ru ∧ rv

i punktu

s(u, v) = (1 − αu)((1 − αv)p00 + αvp10) + αu((1 − αv)p01 + αvp11).
3Dla płatów B-sklejanych zasadne wydaje się wprowadzenie co najmniej dwóch parametrów rozdrabniania

dziedziny, osobnowzdłuż każdej osi, a jeszcze lepszym rozwiązaniembyłoby adaptacyjne obliczanie parametrów
rozdrabniania przez szader na podstawie kształtu siatki kontrolnej i wielkości obrazu płata.

4Długość wektora s′(t) jest istotna, jeśli na powierzchnię B-sklejanąma być nałożona tekstura odkształceń
określona w sposób opisany w rozdziale 21.

1062 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

Listing B.2. Procedury BSCdeBoor3f i BSPdeBoor3f
GLSL

1: #define MAX_DEG 6

2:

3: layout(std430,binding=0) buffer BSKnots { float uv[]; };

4: layout(std430,binding=1) buffer BSCPoints { float cp[]; };

5: layout(std430,binding=2) buffer BSPatch {

6: int dim, n, N, m, M, stride;

7: vec3 Colour;

8: bool BSPNormals;

9: int tesslevel;

10: } bsp;

11:

12: void BSCdeBoor3f (int n, int k, vec3 d[MAX_DEG+1], float t,

13: out vec3 p0, out vec3 p1, out float a)

14: {

15: int i, j;

16:

17: for (j = 1; j < n; j++)

18: for (i = 0; i <= n-j; i++)

19: d[i] = mix (d[i], d[i+1], (t-uv[k-n+i+j])/(uv[k+1+i]-uv[k-n+i+j]));

20: a = (t-uv[k])/(uv[k+1]-uv[k]);

21: p0 = d[0]; p1 = d[1];

22: } /*BSCdeBoor3f*/

23:

24: void BSPdeBoor3f (float u, int kk, float v, int ll,

25: out vec4 pos, out vec4 nv)

26: {

27: vec3 p[MAX_DEG+1], q0[MAX_DEG+1], q1[MAX_DEG+1],

28: p00, p01, p10, p11, a, b, ru, rv;

29: float au, av;

30: int i, j, k, l;

31:

32: for (i = 0, k = (kk-bsp.n)*bsp.stride; i <= bsp.n;

33: i++, k += bsp.stride) {

34: for (j = 0, l = k+3*(ll-bsp.N-1-bsp.m); j <= bsp.m; j++, l += 3)

35: p[j] = vec3 (cp[l], cp[l+1], cp[l+2]);

36: BSCdeBoor3f (bsp.m, ll, p, v, q0[i], q1[i], av);

37: }

38: BSCdeBoor3f (bsp.n, kk, q0, u, p00, p10, au);

39: BSCdeBoor3f (bsp.n, kk, q1, u, p01, p11, au);

40: ru = (b = mix (p10, p11, av)) - (a = mix (p00, p01, av));

41: rv = mix (p01-p00, p11-p10, au);

42: pos = vec4 (mix (a, b, au), 1.0);

43: nv = vec4 (cross (ru, rv), 0.0);

44: } /*BSPdeBoor3f*/

B.2. Algorytmy de Boora 1063

q02

q12

a)

b) c)

n = 3, m = 4

u1
u2
u3

u4 u5 u6 u7
u8
u9

u

v1, v2, v3, v4

v5

v6

v7, v8, v9, v10

v

.

q00

q10

q01
q11

q03
q13

.

q00

q10

q01
q11

q03
q13

.
.

p00

p10

p01

p11
ru

rv

.

p00

p10

p01

p11
ru

rv

.

s(u, v)

Rysunek B.3. Punkty do końcowego obliczenia punktu płata i wektora normalnego

Listing B.3 przedstawia procedurę main szadera rozdrabniania dla programu rysowania
płatów B-sklejanych. Zależnie od wartości pola dimw bloku BSPatchma ona wywołać pro-
cedurę BSPdeBoor3f z listingu B.2 lub jedną z procedur BSPdeBoor2f albo BSPdeBoor4f,
których napisanie pozostawiłem jako ćwiczenie. Przedtem jednak potrzebne są pewne przy-
gotowania, niezależne od liczby współrzędnych punktów.

Szader rozdrabniania otrzymuje współrzędne punktu w dziedzinie płata w zmiennej
wbudowanej gl_TessCoord. Ale dziedzina ta (dla algorytmu rozdrabniania wbudowanego
w potok przetwarzania grafiki) jest kwadratem jednostkowym, podczas gdy płat B-sklejany
ma dziedzinę [un , uN−n] × [vm , vM−m], która może być dowolnym prostokątem (dołącza-
jąc dwa „brakujące” odcinki brzegu, dostajemy prostokąt domknięty). Dlatego pierwszym
krokiem do zrobienia jest odwzorowanie punktu podanego przez etap rozdrabniania w dzie-
dzinę płata B-sklejanego. Otrzymamy w ten sposób parametry płata u i v.

Kolejną czynnością jest wyszukanie w obu ciągach węzłów właściwych miejsc, czyli zna-
lezienie liczb k i l , takich że u ∈ [uk , uk+1) i v ∈ [vl , vl+1), przy czym jeśli u = uN−n, to trzeba
przyjąć k = N − n − 1, a jeśli v = vM−m, to ma być l = M −m − 1. Tym zajmuje się procedura
FindKnotInterval, której parametry k0 i kN wybierają ciąg węzłów do przeszukania —
u0, . . . , uN , jeśli k0 = 0, kN = N , albo v0, . . . , vM , jeśli k0 = N + 1, kN = N +M + 1. Parametr
n zawęża przedział poszukiwań liczby t do [un , uN−n] albo [vm , vM−m]. Procedura realizuje
algorytm wyszukiwania binarnego.

1064 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

Listing B.3. Procedura main szadera rozdrabniania
GLSL

1: #version 450 core

2:

3: layout(quads,equal_spacing,cw) in;

4:

5: out GVertex { } Out;

6:

7: uniform TransBlock { } trb;

8:

9: int FindKnotInterval (int k0, int kN, int n, float t)

10: {

11: int i, j, k;

12:

13: for (i = k0+n, j = kN-n; j-i > 1;) {

14: k = i + (j-i)/2;

15: if (t >= uv[k]) i = k; else j = k;

16: }

17: return i;

18: } /*FindKnotInterval*/

19:

20: void main (void)

21: {

22: float u, v;

23: int k, l, m0, m1;

24: vec4 pos, nv;

25:

26: u = uv[bsp.n] + gl_TessCoord.x*(uv[bsp.N-bsp.n] - uv[bsp.n]);

27: m0 = bsp.N+1; m1 = bsp.N+1+bsp.M;

28: v = uv[m0+bsp.m] + gl_TessCoord.y*(uv[m1-bsp.m] - uv[m0+bsp.m]);

29: k = FindKnotInterval (0, bsp.N, bsp.n, u);

30: l = FindKnotInterval (m0, m1, bsp.m, v);

31: switch (bsp.dim) {

32: case 2: BSPdeBoor2f (u, k, v, l, pos, nv); break;

33: case 3: BSPdeBoor3f (u, k, v, l, pos, nv); break;

34: case 4: BSPdeBoor4f (u, k, v, l, pos, nv); break;

35: default: pos = nv = vec4 (0.0);

36: }

37: pos = trb.mm * pos;

38: gl_Position = trb.vpm * pos;

39: Out.Position = pos.xyz;

40: if (!bsp.BSPNormals || dot (nv, nv) < 1.0e-10)

41: Out.Normal = vec3 (0.0);

42: else

43: Out.Normal = normalize ((trb.mmti*nv).xyz);

44: Out.Colour = bsp.Colour;

45: } /*main*/

B.2. Algorytmy de Boora 1065

Uwaga: Szader opisany w pierwszym wydaniu miał zadeklarowane osobne bloki magazy-
nowe dla obu ciągówwęzłów. W konsekwencji do wyszukiwania przedziałuw każdym z tych
ciągówpotrzebna była inna procedura, ponieważw językuGLSLniemawskaźników— tabli-
ce będące parametrami musząmieć znaną długość i są w całości kopiowane (a więc również
nie powinny być długie). Umieszczenie obu ciągów w jednej tablicy umożliwiło skrócenie
kodu i uniknięcie kopiowania węzłów do tablic przekazywanych następnie jako parametry
procedurom BSPdeBoor3f i BSCdeBoor3f.

Pisząc procedurę main, przyjąłem, że blok zmiennych jednolitych z macierzami prze-
kształceń (TransBlock) i blok wyjściowy interfejsu (GVertex, o lokalnej nazwie Out), przez
który wyniki rozdrabniania trafią do szadera geometrii, są identyczne jak na listingu 15.4;
oczywiście, trzeba to zmienić, jeśli na płatyma być nałożona tekstura lub na końcowymobra-
zie mają być cienie. Przedstawiony tu szader rozdrabniania dokonuje przejścia do układu
kostki standardowej, ale oblicza i wyprowadza także punkt i wektor normalny w układzie
współrzędnych świata. Pole (typu bool) BSPNormals bloku BSPatch pełni rolę analogiczną
do pola BezNormals bloku BezPatch w drugiej aplikacji.

Listing B.4 przedstawia procedury w języku C umożliwiające umieszczenie w pamięci
GPU i rysowanie płatów B-sklejanych. Pierwsza procedura musi być wywołana po skom-
pilowaniu i złączeniu dowolnego programu szaderów zawierającego deklaracje bloków ma-
gazynowych pokazanych na listingu B.2 (np. dowolngo programu rysującego takie płaty).
Procedura odczytuje z programu numery punktów dowiązania bloków i przesunięcia pól
w bloku BSPatch.

Procedura EnterBSplinePatch rezerwuje bufory i przesyła do nich reprezentację płata,
nadając wartości domyślne polom BSPNormals i tesslevel. Nie zamieściłem listingu pro-
cedur nadających tym parametrom wartości w trakcie działania aplikacji, uznając, że nie
ma w nich niczego wymagającego szczegółowych objaśnień. Obiekt tablicy wierzchołków,
tworzony i zapisywany w liniach 79–84, służy do rysowania punktów kontrolnych przez pro-
cedurę DrawBSplineCPoints,

Przed wywołaniem procedury rysującej płat, DrawBSplinePatch, albo punkty kontrol-
ne, DrawBSplineCPoints, trzeba wybrać odpowiedni program szaderów za pomocą pro-
cedury glUseProgram.

Listing B.4. Procedury obsługi płatów B-sklejanych
C

1: #define MAX_BSPATCH_DEG 6

2:

3: typedef struct BSPatchObjf {

4: GLint udeg, lknu, vdeg, lknv, dim, stride;

5: GLuint buf[3];

6: GLuint vao;

7: } BSPatchObjf;

8:

9: #define NBSPLINEPATCHOFFS 9

1066 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

10:

11: static GLuint bspbbp = GL_INVALID_INDEX, bsknbbp = GL_INVALID_INDEX,

12: bscpbbp = GL_INVALID_INDEX;

13: static GLint bspbsize, bspbofs[NBSPLINEPATCHOFFS];

14:

15: static const GLchar *BSKNNames[] = { "BSKnots" };

16: static const GLchar *BSCPNames[] = { "BSCPoints" };

17: static const GLchar *BSPNames[] =

18: { "BSPatch", "BSPatch.dim", "BSPatch.n", "BSPatch.N", "BSPatch.m",

19: "BSPatch.M", "BSPatch.stride", "BSPatch.Colour", "BSPatch.BSPNormals",

20: "BSPatch.tesslevel" };

21:

22: void GetAccessToBSPatchStorageBlocks (GLuint program_id)

23: {

24: GLint size, ofs;

25:

26: if (bspbbp == GL_INVALID_INDEX)

27: GetAccessToStorageBlock (program_id, NBSPLINEPATCHOFFS, &BSPNames[0],

28: &bspbsize, bspbofs, &bspbbp);

29: if (bsknbbp == GL_INVALID_INDEX)

30: GetAccessToStorageBlock (program_id, 0, &BSKNNames[0],

31: &size, &ofs, &bsknbbp);

32: if (bscpbbp == GL_INVALID_INDEX)

33: GetAccessToStorageBlock (program_id, 0, &BSCPNames[0],

34: &size, &ofs, &bscpbbp);

35: } /*GetAccessToBSPatchStorageBlocks*/

36:

37: #define SSB GL_SHADER_STORAGE_BUFFER

38:

39: BSPatchObjf *EnterBSplinePatch (

40: GLint udeg, GLint lknu, const GLfloat *knotsu,

41: GLint vdeg, GLint lknv, const GLfloat *knotsv,

42: GLint dim, GLint stride, const GLfloat *cp,

43: const GLfloat *colour)

44: {

45: BSPatchObjf *bsp;

46: GLint one = GL_TRUE, ten = 10;

47:

48: if (dim < 2 || dim > 4 || udeg < 1 || udeg > MAX_BSPATCH_DEG ||

49: vdeg < 1 || vdeg > MAX_BSPATCH_DEG || lknu <= 2*udeg ||

50: lknv <= 2*vdeg)

51: return NULL;

52: bsp = malloc (sizeof(BSPatchObjf));

53: if (bsp) {

54: memset (bsp, 0, sizeof(BSPatchObjf));

55: bsp->udeg = udeg; bsp->lknu = lknu;

56: bsp->vdeg = vdeg; bsp->lknv = lknv;

B.2. Algorytmy de Boora 1067

57: bsp->dim = dim; bsp->stride = stride;

58: glGenBuffers (3, bsp->buf);

59: glBindBuffer (SSB, bsp->buf[2]);

60: glBufferData (SSB, bspbsize, NULL, GL_DYNAMIC_DRAW);

61: glBufferSubData (SSB, bspbofs[0], sizeof(GLint), &dim);

62: glBufferSubData (SSB, bspbofs[1], sizeof(GLint), &udeg);

63: glBufferSubData (SSB, bspbofs[2], sizeof(GLint), &lknu);

64: glBufferSubData (SSB, bspbofs[3], sizeof(GLint), &vdeg);

65: glBufferSubData (SSB, bspbofs[4], sizeof(GLint), &lknv);

66: glBufferSubData (SSB, bspbofs[5], sizeof(GLint), &stride);

67: glBufferSubData (SSB, bspbofs[6], 3*sizeof(GLfloat), colour);

68: glBufferSubData (SSB, bspbofs[7], sizeof(GLint), &one);

69: glBufferSubData (SSB, bspbofs[8], sizeof(GLint), &ten);

70: glBindBuffer (SSB, bsp->buf[0]);

71: glBufferData (SSB, (lknu+lknv+2)*sizeof(GLfloat), NULL,

72: GL_DYNAMIC_DRAW);

73: glBufferSubData (SSB, 0, (lknu+1)*sizeof(GLfloat), knotsu);

74: glBufferSubData (SSB, (lknu+1)*sizeof(GLfloat),

75: (lknv+1)*sizeof(GLfloat), knotsv);

76: glBindBuffer (SSB, bsp->buf[1]);

77: glBufferData (SSB, stride*(lknu-udeg)*sizeof(GLfloat), cp,

78: GL_DYNAMIC_DRAW);

79: glGenVertexArrays (1, &bsp->vao);

80: glBindVertexArray (bsp->vao);

81: glBindBuffer (GL_ARRAY_BUFFER, bsp->buf[1]);

82: glEnableVertexAttribArray (0);

83: glVertexAttribPointer (0, dim, GL_FLOAT, GL_FALSE,

84: dim*sizeof(GLfloat), (GLvoid*)0);

85: glBindVertexArray (0);

86: ExitIfGLError ("EnterBSplinePatch");

87: }

88: return bsp;

89: } /*EnterBSplinePatch*/

90:

91: void DrawBSplinePatch (BSPatchObjf *bsp)

92: {

93: if (bsp) {

94: glBindBufferBase (SSB, bsknbbp, bsp->buf[0]);

95: glBindBufferBase (SSB, bscpbbp, bsp->buf[1]);

96: glBindBufferBase (SSB, bspbbp, bsp->buf[2]);

97: glBindVertexArray (empty_vao);

98: glPatchParameteri (GL_PATCH_VERTICES, 1);

99: glDrawArrays (GL_PATCHES, 0, 1);

100: ExitIfGLError ("DrawBSplinePatch");

101: }

102: } /*DrawBSplinePatch*/

103:

1068 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

104: void DrawBSplineCPoints (BSPatchObjf *bsp)

105: {

106: if (bsp) {

107: glBindBufferBase (SSB, bsknbbp, bsp->buf[0]);

108: glBindBufferBase (SSB, bscpbbp, bsp->buf[1]);

109: glBindBufferBase (SSB, bspbbp, bsp->buf[2]);

110: glBindVertexArray (bsp->vao);

111: glPointSize (5.0);

112: glDrawArrays (GL_POINTS, 0,

113: (bsp->lknu-bsp->udeg)*(bsp->lknv-bsp->vdeg));

114: glBindVertexArray (0);

115: ExitIfGLError ("DrawBSplineCPoints");

116: }

117: } /*DrawBSplineCPoints*/

Rysunek B.4. Obraz płata B-sklejanego w oknie aplikacji OpenGL-a

Wpierwszym wydaniu książki zaproponowałem ćwiczenie — napisanie i uruchomienie
aplikacji rysującej płat B-sklejany przy użyciu opisanych tu algorytmów. W tym wydaniu
proponuję ćwiczenie polegające na oprogramowaniumożliwości reprezentowania w pamięci
GPU i jednoczesnego rysowania wielu płatów B-sklejanych, podobnie jak płatów Béziera
w drugiej aplikacji. Powinno być przy tym możliwe wprowadzenie dodatkowej tablicy in-
deksów punktów kontrolnych, aby dany punkt mógł być wspólny dla wielu płatów, co ułat-
wiłoby m.in. sklejanie brzegów takich płatów. Dodatkową atrakcją może być umożliwienie
definiowania poszczególnych płatów z różnymi ciągami węzłów (umieszczonymi w tej samej
tablicy jeden za drugim). Blok magazynowy BSPatch w tym przypadku powinien zawierać
tablicę struktur opisujących poszczególne płaty.

B.3. B-sklejane krzywe interpolacyjne 1069

B.3. B-sklejane krzywe interpolacyjne

Oprócz cieniowania są dwa główne zastosowania interpolacji w grafice. Po pierwsze, mając
dane punkty na płaszczyźnie lub w przestrzeni, możemy skonstruować gładką krzywą prze-
chodzącą przez te punkty (i ewentualnie użyć tej konstrukcji do otrzymania powierzchni,
na której leży siatka danych punktów). Po drugie, mając wartości parametrów artykulacji
w pewnych chwilach, możemy znaleźć funkcje, których argumentem jest czas, przyjmujące
w tych chwilach zadane wartości. Funkcje te umożliwią takie animowanie łańcucha kine-
matycznego, aby przywiązane do niego obiekty, poruszając się, przechodziły przez zadane
położenia.

W wielu takich zastosowaniach użyteczne okazują się funkcje sklejane trzeciego stopnia
(tzw. kubiczne), tj. funkcje opisane w sąsiadujących przedziałach przez wielomiany trzeciego
stopnia. Używane w praktyce reprezentacje takich funkcji są różne, ale zawsze można je
reprezentować za pomocą odpowiednio dobranych funkcji B-sklejanych, zatem przedstawię
przykładową konstrukcję kubicznych B-sklejanych krzywych interpolacyjnych.

Niech t0, . . . , tM oznacza rosnący ciąg liczb zwanych węzłami interpolacyjnymi. Mamy
też dane liczby p0, . . . , pM (lub punkty p0 , . . . , pM) i chcemy znaleźć taką funkcję sklejaną s,
aby było s(ti) = pi (lub taką parametryzację sklejaną s, aby było s(ti) = pi) dla i = 0, . . . ,M.

Aby określić kubiczne funkcje B-sklejane, trzeba wybrać ciąg węzłów u0, . . . , uN ; przy-
czyną częstej konfuzji jest nazwanie węzłami dwóch różnych pojęć. Liczby u0, . . . , uN są
węzłami funkcji sklejanych, czyli końcami przedziałów, w których funkcje te sąwielomiana-
mi5. Natomiast węzły interpolacyjne są punktami, w których są zadawane wartości funkcji.
Aby otrzymać zadanie dobrze określone, przyjmiemy, że t0 = u3 i tM = uN−3; poszukiwana
funkcja s(t) = ∑N−4

i=0 diN
3
i (t) będzie zatem określona w przedziale [t0, tM] = [u3, uN−3].

Trzeba znaleźć współczynniki d0, . . . , dN−4 spełniające równania

s(ti) = pi , i = 0, . . . ,M .

Przyjmiemy N = M + 6 i ui+3 = ti dla i = 0, . . . ,M, co oznacza, że węzły interpolacyjne
będą również węzłami funkcji sklejanych6. W węźle ui+3 = ti tylko funkcje N3

i , N
3
i+1 i N

3
i+2

przyjmują niezerowe wartości, które możemy obliczyć za pomocą procedury z listingu B.1.
Stąd równania interpolacji mają postać

N3
i (ti)di + N3

i+1(ti)di+1 + N3
i+2(ti)di+2 = pi .

W każdym z nich występują tylko trzy niewiadome, co ogromnie ułatwia rozwiązywanie.
Dla uproszczenia warto też przyjąć u1 = u2 = u3 oraz uN−3 = uN−2 = uN−1, ponieważ wtedy
N3
0(t0) = 1, N3

1 (t0) = N3
2(t0) = 0 oraz N3

N−6(tM) = N3
N−5(tM) = 0, N3

N−4(tM) = 1, skąd
natychmiast wynika, że d0 = p0 i dN−4 = pM .

Mamy zatemwartości funkcji zadane wM+ 1 = N −5 punktach, podczas gdy kubicznych
funkcji B-sklejanych określonych przez ciąg u0, . . . , uN jest N − 3, czyli o dwie więcej. To

5W tych punktach wielomiany są „sklejone”.
6Tymwiększa bywawspomniana konfuzja. Wogólności węzły interpolacyjne niemuszą byćwęzłami funkcji

sklejanych.

1070 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

oznacza konieczność podania jeszcze dwóch warunków (dwóch dodatkowych równań), aby
powstał układ o jednoznacznym rozwiązaniu. Zazwyczaj warunki te narzucają pewne włas-
ności funkcji s w pobliżu końców przedziału [u3, uN−3] i dlatego są nazywane warunkami

brzegowymi.
Warunki brzegowe opisane niżej to równości s′′(t0) = 0 i s′′(tM) = 0; spełniająca je

funkcja s jest nazywana naturalną kubiczną funkcją sklejaną. Ściślej biorąc, pochodne dru-
giego rzędu funkcji B-sklejanych N3

0 , N
3
1 i N3

2 w węźle u1 = u2 = u3 = t0, a także funkcji
N3

N−6, N
3
N−5 i N

3
N−4 w węźle uN−3 = uN−2 = uN−1 = tM są nieokreślone. Ale wielomiany

opisujące w przedziałach [u3, u4) i [uN−4, uN−3) te funkcje, a także funkcję s, którą chcemy
otrzymać, mają wszystkie pochodne. Dlatego warunki brzegowe nałożymy na wielomiany
opisujące funkcję s. Jeśli symbolem Pi ,k oznaczymy wielomian opisujący funkcję N3

i w prze-
dziale [uk , uk+1), to rozważane tu warunki brzegowe mają postać

P′′0,3(t0)d0 + P′′1,3(t0)d1 + P′′2,3(t0)d2 = 0, (B.6)

P′′N−6,N−4(tM)dN−6 + P′′N−5,N−4(tM)dN−5 + P′′N−4,N−4(tM)dN−4 = 0. (B.7)

Na podstawie wzoru (którego wyprowadzenie można znaleźć w [41])

Nn′
i (t) = n

ui+n − ui
Nn−1

i (t) − n

ui+n+1 − ui+1
Nn−1

i+1 (t) (B.8)

i wzorów (B.1) i (B.2), w wyniku dość żmudnych rachunków7, można obliczyć

P′′0,3(t0) = 6(u4 − u1)(u4 − u2) ,
P′′1,3(t0) = −6(u4 − u1 + u5 − u2)(u4 − u1)(u4 − u2)(u5 − u2) ,
P′′2,3(t0) = 6(u4 − u2)(u5 − u2) ,

P′′N−6,N−4(tM) = 6(uN−2 − uN−5)(uN−2 − uN−4) ,
P′′N−5,N−4(tM) = −6(uN−2 − uN−5 + uN−1 − uN−4)(uN−2 − uN−5)(uN−2 − uN−4)(uN−1 − uN−4) ,
P′′N−4,N−4(tM) = 6(uN−2 − uN−4)(uN−1 − uN−4) .
Mamy zatem układM+3 równań liniowych zM+3 niewiadomymi, przy czym w pierw-

szym i ostatnim równaniu występuje tylko jedna niewiadoma (mamy d0 = p0 i dN−4 = pM),
a jeśli warunki brzegowe przyjmiemy za drugie i przedostatnie równanie, to w każdym rów-
naniu oprócz pierwszego i ostatniego będą tylko trzy kolejne niewiadome, di , di+1 i di+2. Ma-
cierz układu równań, która ma niezerowe współczynniki tylko na diagonali i na miejscach

7Przyznam się: użyłem pakietu do obliczeń symbolicznych i nie zamierzam mieć wyrzutów.

B.3. B-sklejane krzywe interpolacyjne 1071

sąsiadujących z nią, to tak zwana macierz trójdiagonalna. Układ równań z taką macierzą
n × n można rozwiązać kosztem rzędu n.8

Na listingu B.5 zamieściłem dwie procedury, z których pierwsza znajduje trójkątne czyn-
niki (dolny L i górny U) rozkładu macierzy trójdiagonalnej A, a ściślej, macierzy PA, po-
wstałej z A przez przestawianie wierszy, jeśli jest taka potrzeba9. Liczba n wierszy i kolumn
macierzy (która musi być większa niż 2) jest wartością parametru n. Współczynniki macie-
rzy są dane w trzech tablicach. Tablica b zawiera współczynniki na diagonali, a w tablicach a
i c trzeba podać odpowiednio ich sąsiadów z lewej i prawej strony (elementy a[0] i c[n-1]
są nieużywane). Pomocnicza tablica d (o długości n − 2) jest potrzebna dlatego, że wskutek
przestawiania wierszy powstaje macierz trójkątnaU , która w każdym wierszu oprócz dwóch
ostatnich może mieć dwa niezerowe współczynniki na prawo od diagonali.

Dane w tablicach współczynniki macierzy A zostają zastąpione przez współczynniki ma-
cierzy L i U . W tablicy a procedura M3diagLUDecompf zapamiętuje współczynniki pod
diagonalą macierzy L (której współczynniki na diagonali są równe 1), a w tablicach b, c i d
są zapisywane współczynniki macierzy U na jej diagonali i obok. W tablicy p jest umiesz-
czana reprezentacja macierzy permutacji P; na miejscu i-tymw tej tablicy zostaje wstawiona
jedynka, jeśli i-ty wiersz został przestawiony z i + pierwszym (tylko takie przestawienia są
wykonywane), albo zero, jeśli przestawienia nie było.

Procedura M3diagLUSolvef, korzystając z czynników rozkładu macierzy A znalezio-
nych przez procedurę M3diagLUDecompf, rozwiązuje układ równań liniowych AX = B; ma-
cierz Bmawogólnościm kolumn i tyle samokolumnma rozwiązanie X. Współczynniki tych
macierzy są zapisane w jednowymiarowej tablicy e (o długości mn), wierszami. W miejscu
danych współczynników macierzy B procedura pozostawia obliczone rozwiązanie.

Opisanych wyżej procedur użyjemy do konstruowania interpolacyjnych kubicznych
funkcji lub krzywych sklejanych. Konstrukcję przeprowadza procedura ConstructCubic-
InterpBSplinef pokazana na listingu B.6. Jej parametr N jest wskaźnikiem zmiennej, któ-
rej ma być przypisany numer N ostatniego węzła w ciągu u0, . . . , uN , który zostanie wpi-
sany do tablicy knots. W tablicy cpoints znajdą się obliczone współczynniki d0, . . . , dN−4
lub współrzędne punktów kontrolnych d0, . . . , dN−4; liczba współrzędnych każdego punktu
(czyli wymiar przestrzeni, w której znajdują się te punkty i krzywa) jest wartością parametru
dim (jeśli ma on wartość 1, to konstruujemy funkcję skalarną). Parametr M określa liczbę
węzłów interpolacyjnych (jest ich M + 1, przy czym musi być M > 2), które należy podać
w tablicy ikn, a w tablicy p mają być podane wartości funkcji s lub współrzędne punktów,
przez które ma przechodzić krzywa s.

W linii 9 procedura rezerwuje miejsce na współczynniki macierzy układu równań i tab-
lice pomocnicze do pomieszczenia czynników jej rozkładu. W liniach 13–15 powstaje ciąg
węzłów funkcji sklejanej, który jest kopią ciągu węzłów interpolacyjnych z dołożonymi na
początku i końcu trzema dodatkowymi „egzemplarzami” pierwszgo i ostatniego węzła.

8I nie należy używać do tego uniwersalnych procedur rozwiązujących układ równań liniowych kosztem
rzędu n3.

9Algorytm realizowany przez tę procedurę to oczywiście metoda eliminacji Gaussa z wyborem elementu
głównego, zaimplementowana wcześniej (dla macierzy o innej postaci) w procedurze M4x4LUDecompf.

1072 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

Listing B.5. Procedury rozwiązywania układów równań z macierzą trójdiagonalną
C

1: char M3diagLUDecompf (int n, float *a, float *b, float *c, float *d,

2: char *p)

3: {

4: int i;

5: float l;

6: #define SWAP(x,y) { l = x; x = y; y = l; }

7:

8: memset (d, 0, (n-2)*sizeof(float));

9: for (i = 0; i < n-2; i++) {

10: if ((p[i] = fabs(a[i+1]) > fabs(b[i]))) {

11: SWAP (a[i+1], b[i]) SWAP (b[i+1], c[i])

12: d[i] = c[i+1]; c[i+1] = 0.0;

13: }

14: if (b[i] == 0.0) return false; /* przerwij, jeśli macierz osobliwa */

15: a[i+1] = l = a[i+1]/b[i];

16: b[i+1] -= l*c[i]; c[i+1] -= l*d[i];

17: }

18: if ((p[n-2] = fabs(a[n-1]) > fabs(b[n-2])))

19: { SWAP (a[n-1], b[n-2]) SWAP (b[n-1], c[n-2]) }

20: if (b[n-2] == 0.0) return false;

21: a[n-1] = l = a[n-1]/b[n-2];

22: b[n-1] -= l*c[n-2];

23: return b[n-1] != 0.0; /* jeśli wszystko OK, to przekaż true */

24: } /*M3diagLUDecompf*/

25:

26: void M3diagLUSolvef (int n, float *a, float *b, float *c, float *d,

27: char *p, int m, float *e)

28: {

29: int i, j, k;

30: float l, s, t;

31:

32: for (i = k = 0; i < n-1; i++, k += m) {

33: if (p[i]) /* przestaw wiersze prawej strony */

34: for (j = 0; j < m; j++) SWAP (e[k+j], e[k+m+j])

35: for (l = a[i+1], j = 0; j < m; j++) e[k+m+j] -= l*e[k+j];

36: }

37: for (l = b[n-1], j = 0, k = (n-1)*m; j < m; j++)

38: e[k+j] /= l;

39: for (l = b[n-2], s = c[n-2], j = 0, k = (n-2)*m; j < m; j++)

40: e[k+j] = (e[k+j] - s*e[k+m+j])/l;

41: for (i = n-3, k = (n-3)*m; i >= 0; i--, k -= m)

42: for (l = b[i], s = c[i], t = d[i], j = 0; j < m; j++)

43: e[k+j] = (e[k+j] - s*e[k+m+j] - t*e[k+m+m+j])/l;

44: #undef SWAP

45: } /*M3diagLUSolvef*/

B.3. B-sklejane krzywe interpolacyjne 1073

Listing B.6. Procedura konstrukcji sklejanych funkcji i krzywych interpolacyjnych
C

1: char ConstructCubicInterpBSplinef (int *N, float *knots, float *cp,

2: int M, float *ikn, int dim, float *p)

3: {

4: int i, lkn;

5: float *a, *b, *c, *d, bfv[4], t0, t1;

6: char *permut;

7:

8: *N = lkn = M+6;

9: if (!(a = malloc ((4*(lkn-3)-3)*sizeof(float)+(lkn-4)*sizeof(char))))

10: return false;

11: b = &a[lkn-3]; c = &b[lkn-3]; d = &c[lkn-4]; permut = (char*)&d[lkn-5];

12: /* utwórz ciąg węzłów funkcji sklejanej */

13: knots[0] = knots[1] = knots[2] = ikn[0];

14: memcpy (&knots[3], ikn, (M+1)*sizeof(float));

15: knots[lkn-2] = knots[lkn-1] = knots[lkn] = ikn[M];

16: /* utwórz macierz układu */

17: b[0] = 1.0; c[0] = 0.0;

18: t0 = knots[4]-knots[1]; t1 = knots[5]-knots[2];

19: a[1] = t1; b[1] = -(t0+t1); c[1] = t0;

20: for (i = 2; i <= M; i++) {

21: EvaluateBSplinesf (bfv, 3, i+2, knots, knots[i+2]);

22: a[i] = bfv[0]; b[i] = bfv[1]; c[i] = bfv[2];

23: }

24: t0 = knots[lkn-2]-knots[lkn-5]; t1 = knots[lkn-1]-knots[lkn-4];

25: a[lkn-3] = t1; b[lkn-3] = -(t0+t1); c[lkn-3] = t0;

26: a[lkn-2] = 0.0; b[lkn-2] = 1.0;

27: /* utwórz prawą stronę */

28: memcpy (cp, p, dim*sizeof(float));

29: memset (&cp[dim], 0, dim*sizeof(float));

30: memcpy (&cp[dim+dim], &p[dim], (M-1)*dim*sizeof(float));

31: memset (&cp[(M+1)*dim], 0, dim*sizeof(float));

32: memcpy (&cp[(M+2)*dim], &p[dim*M], dim*sizeof(float));

33: /* rozwiąż układ równań */

34: if (!M3diagLUDecompf (M+3, a, b, c, d, permut)) {

35: free (a);

36: return false;

37: }

38: M3diagLUSolvef (M+3, a, b, c, d, permut, dim, cp);

39: free (a);

40: return true;

41: } /*ConstructCubicInterpBSplinef*/

W liniach 17–26 obliczane są współczynniki trójdiagonalnej macierzy układu równań.
Współczynniki we wszystkich wierszach oprócz pierwszych i ostatnich dwóch są war-
tościami funkcji B-sklejanych obliczanymi przez procedurę EvaluateBSplinesf z lis-

1074 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

tingu B.1. W pierwszym i ostatnim równaniu występują współczynniki 0 i 1, natomiast rów-
nanie drugie i przedostatnie to warunki brzegowe (B.6) i (B.7). Ich strony pomnożyłem przez(u4 − u1)(u4 − u2)(u5 − u2)/6 i (uN−2 − uN−5)(uN−2 − uN−4)(uN−1 − uN−4)/6, co uprościło
wzory zaprogramowane w liniach 18–19 i 24–25.

W liniach 28–32 powstaje macierz będąca prawą stroną układu równań; jej drugi i przed-
ostatni wiersz zawierają zera (pochodna drugiego rzędu odpowiednich wielomianówma być
zerem), a pozostałe wiersze są wektorami współrzędnych punktów danych. Po rozłożeniu
macierzy na czynniki trójkątne jest wywoływana procedura M3diagLUSolvef, która do tab-
licy zawierającej początkowomacierz prawej stronywpisuje rozwiązanie—punkty kontrolne
interpolacyjnej krzywej sklejanej.

Do obliczania punktów krzywej, dla danych wartości parametru, najprościej jest używać
algorytmu de Boora, którego implementacja w języku GLSL jest pokazana na listingu B.2.
Jeśli współrzędne punktów krzywej są parametrami artykulacji potrzebnymi do animowania
łańcucha kinematycznego, to obliczanie tych punktów powinna wykonywaćCPU. Napisanie
odpowiedniej procedury w języku C jest prostym ćwiczeniem, które polecam.

W bardziej zaawansowanej animacji oprócz wartości funkcji może być potrzebne zada-
wanie wartości pochodnych w węzłach interpolacyjnych. Aby takie zadanie interpolacji było
dobrze określone, węzły funkcji sklejanej, w których są podane dwa warunki (wartość i po-
chodna), muszą być podwójne. Kubiczne funkcje B-sklejane w węzłach podwójnych mają
ciągłą pochodną, ale pochodna drugiego rzędu jest nieciągła. Godne polecenia (i wykona-
nia) jest nieco trudniejsze ćwiczenie polegające na napisaniu odpowiednich procedur umoż-
liwiających konstruowanie takich funkcji sklejanych i wypróbowaniu ich w aplikacji.

B.4. Sklejane krzywe kwaternionowe

Animację ruchu kulistego można przeprowadzić przez zadanie położeń kątowych obiektu
w pewnych chwilach i dokonanie interpolacji między tymi położeniami. Położenia kątowe
wygodnie jest reprezentować za pomocą kwaternionów, zgodnie z opisem w podrozdzia-
le A.4. Za pomocą funkcji Slerp łatwo jest otrzymać animację, w której obiekt obraca się
wokół ustalonej osi ze stałą prędkością kątową od zadanego położenia początkowego do koń-
cowego, ale większym wyzwaniem jest otrzymanie takiego ruchu, w którym obiekt przejdzie
przez wiele zadanych położeń, poruszając się tak, aby oś obrotu i prędkość kątowa zmieniały
się płynnie.

Mamy zatem dany rosnący ciąg liczb t0, . . . , tM i ciąg kwaternionów jednostkowych
q0, . . . , qM określających obroty obiektu do położeń zadanych w chwilach t0, . . . , tM . Za-
daniem jest znalezienie funkcji q∶ [t0, tM] → H, takiej że q(ti) = qi dla i = 0, . . . ,M, przy
czym dla każdego t ∈ [t0, tM] kwaternion q(t)ma być jednostkowy, a funkcja qma mieć co
najmniej ciągłą pochodną— prędkość kątowa w chwili t jest równa 2∣q′(t)∣.

Zobaczmy dwa z wielu możliwych sposobów rozwiązania tego zadania. Pierwszy spo-
sób polega na znalezieniu w przestrzeni R4 „zwykłej” sklejanej krzywej interpolacyjnej s.
Reprezentację B-sklejaną takiej krzywej (klasy C2) możemy skonstruować za pomocą opi-

B.4. Sklejane krzywe kwaternionowe 1075

sanej w poprzednim punkcie procedury ConstructCubicInterpBSplinef. Oczywiście
zarówno punkty kontrolne tej krzywej, jak i punkty s(t) inne niż q0, . . . , qM nie muszą być
(i na ogół nie są) wektorami o długości 1 (czyli nie są kwaternionami jednostkowymi). Ale
po obliczeniu punktu s(t) możemy przyjąć q(t) = 1

∥s(t)∥ s(t), otrzymując kwaternion jed-

nostkowy reprezentujący odpowiedni obrót dla chwili t.10

Opisany wyżej sposób jest stosunkowo prosty, niezawodny11 i w wielu przypadkach wy-
starczający; jeśli kątymiędzy kolejnymi danymi kwaternionami sąmałe (czyli kolejne zadane
położenia kątowe nie są zbyt odległe od siebie), to punkty krzywej s mają długości bliskie 1,
a to oznacza, że prędkość kątowa ruchu obrotowego jest w każdej chwili t bliska 2∥s′(t)∥.
Jeśli jednak istnieje kwaternion qA, taki że qi = q0 ⋅ q

t i−t0
A dla i = 1, . . . ,M, to obiekt może

przyjąć kolejno wszystkie zadane położenia, obracając się ze stałą prędkością. Tymczasem
interpolacja tych kwaternionów przy użyciu rozpatrywanego tu sposobu spowoduje ruch ze
zmieniającą się prędkością kątową— obiekt między zadanymi położeniami będzie zwalniał
i przyspieszał12.

Drugi sposób polega na skonstruowaniu krzywej, której wszystkie punkty są wektorami
jednostkowymi w R4 (czyli są kwaternionami jednostkowymi). Rozmaite opisywane w lite-
raturze konstrukcje takich krzywych są oparte na modyfikacjach algorytmów znajdowania
punktów krzywych Béziera i B-sklejanych. Zmodyfikujemy algorytm zdefiniowany wzo-

rem (B.5). Mając liczbę t ∈ [uk , uk+1) oraz punkty d
(0)
k−n , . . . , d

(0)
k

będące wektorami jed-
nostkowymi w R4, obliczymy kolejne punkty przy użyciu funkcji Slerp:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
(j)
i = Slerp (d(j−1)i−1 , d(j−1)i ; α(j)i)

α(j)i =
t − ui

ui+n+1− j − ui
,

i = k − n + j, . . . , k, j = 1, . . . , n. (B.9)

Wszystkie otrzymane w ten sposób punkty, w tym ostatni, są wektorami o długości 1, mo-
żemy zatemprzyjąć q(t) = d(n)

k
. Tak określona krzywa umożliwia odtworzenie ruchu ze stałą

prędkością kątową wokół ustalonej osi, ale problem polega na obliczeniu punktów kontrol-
nych krzywej interpolacyjnej — trzeba w tym celu rozwiązać układ równań nieliniowych.

Na listingu B.7 jest przedstawiona pewna propozycja algorytmu konstruowania sklejanej
krzywej interpolacyjnej, której punkty są kwaternionami jednostkowymi. Krzywa jest repre-
zentowana podobnie jak kubiczna krzywa B-sklejana, tj. za pomocą ciągu węzłów u0, . . . , uN
i punktów kontrolnych d0, . . . , dN−4, które są wektorami jednostkowymi. Procedura Quat-
SlerpdeBoorf realizuje zmodyfikowany algorytm de Boora opisany wzorem (B.9). Proce-
dura ta służy do obliczania punktów krzywej w trakcie animacji, ale jest też pomocniczym
podprogramem potrzebnym do obliczenia punktów kontrolnych krzywej.

W liniach 7–10 procedura wyszukuje przedział [uk , uk+1), do którego należy parametr t,
po czym w liniach 12–17 realizuje właściwe obliczenie. Gdyby nie było błędów zaokrągleń, to
wszystkie otrzymane punkty byłyby wektorami jednostkowymi. Wywołanie w linii 19 pro-

10W zasadzie dzielenie przez ∥s(t)∥ nie jest konieczne, bo wzór (0, u) = q ⋅ (0,w) ⋅ q−1 realizuje obrót dla
dowolnego kwaternionu q ≠ 0, ale do wzoru (A.5) trzeba podstawić współrzędne kwaternionu jednostkowego.

11Sposób ten może zawieść tylko z powodu błędnych danych lub braku wolnej pamięci RAM.
12Ten efekt może być tak słabo zauważalny, że aż nieistotny, ale on jest.

1076 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

Listing B.7. Procedury QuatSlerpdeBoorf i ConstructQuaternionInterpSplinef
C

1: void QuatSlerpdeBoorf (int n, int lkn, float *knots, float *cp, float t,

2: float *p)

3: {

4: int i, j, k;

5: float d[(MAX_DEG+1)*4], alpha;

6:

7: for (k = n, j = lkn-n; j-k > 1;) { /* bisekcja */

8: i = k + (j-k)/2;

9: if (t >= knots[i]) k = i; else j = i;

10: }

11: memcpy (d, &cp[(k-n)*4], (n+1)*4*sizeof(float));

12: for (j = 1; j <= n; j++)

13: for (i = k-n+j; i <= k; i++) {

14: alpha = (t-knots[i])/(knots[i-j+n+1]-knots[i]);

15: QuatSlerpf (&d[(i-k-j+n)*4],

16: &d[(i-k-j+n)*4], &d[(i-k-j+n+1)*4], alpha);

17: }

18: memcpy (p, d, 4*sizeof(float));

19: V4Normalisef (p); /* kompensowanie błędów zaokrągleń */

20: } /*QuatSlerpdeBoorf*/

21:

22: static void ModifyQuatCPf (int N, float *knots, int i, float *qcp,

23: float *qt)

24: {

25: float qf[4], qd[4];

26:

27: QuatSlerpdeBoorf (N, knots, qcp, knots[i+3], qf);

28: QuatRDivf (qd, &qt[4*i], qf);

29: QuatMultf (qf, qd, &qcp[4*(i+1)]);

30: memcpy (&qcp[4*(i+1)], qf, 4*sizeof(float));

31: } /*ModifyQuatCPf*/

32:

33: char ConstructQuaternionInterpSplinef (int *N, float *knots, float *qcp,

34: int M, float *ikn, float *qt)

35: {

36: #define TOL 1.0e-5

37: int i, lkn;

38: float qf[4], qd[4], dist, ldist, d;

39:

40: if (!ConstructCubicInterpBSplinef (N, knots, qcp, M, ikn, 4, qt))

41: return false;

42: for (i = 0, lkn = *N; i < lkn-3; i++)

43: V4Normalisef (&qcp[4*i]);

44: for (ldist = 4.0; ; ldist = dist) {

45: for (dist = 0.0, i = 1; i < M; i++) {

B.4. Sklejane krzywe kwaternionowe 1077

46: QuatSlerpdeBoorf (3, lkn, knots, qcp, ikn[i], qf);

47: V4Subtractf (qd, &qt[4*i], qf);

48: if ((d = V4DotProductf (qd, qd)) > dist)

49: dist = d;

50: }

51: if (dist >= ldist)

52: return false;

53: if (dist <= TOL*TOL)

54: break;

55: ModifyQuatCPf (lkn, knots, 1, qcp, qt);

56: d = knots[4]-knots[1]; d /= (d+knots[5]-knots[2]);

57: QuatSlerpf (&qcp[4], &qcp[0], &qcp[8], d);

58: for (i = 2; i < M; i++)

59: ModifyQuatCPf (lkn, knots, i, qcp, qt);

60: d = knots[lkn-2]-knots[lkn-5]; d /= (d+knots[lkn-1]-knots[lkn-4]);

61: QuatSlerpf (&qcp[4*(M+1)], &qcp[4*M], &qcp[4*(M+2)], d);

62: }

63: return true;

64: #undef TOL

65: } /*ConstructQuaternionInterpSplinef*/

cedury normalizacji13 ma na celu zmniejszenie skutków tych błędów (w arytmetyce zmien-
nopozycyjnej nie da się ich całkowicie wyeliminować).

Procedura ConstructQuaternionInterpSplinef konstruuje reprezentację krzywej
na podstawie danych węzłów interpolacyjnych t0, . . . , tM i odpowiadających im kwaternio-
nów jednostkowych q0, . . . , qM . Pierwszym krokiem konstrukcji jest znalezienie „zwyk-
łej” kubicznej interpolacyjnej krzywej B-sklejanej za pomocą opisanej wcześniej procedury
ConstructCubicInterpBSplinef. W liniach 42–43punkty kontrolne tej krzywej są zamie-
niane na wektory (kwaterniony) jednostkowe. W ten sposób powstaje początkowe przybliże-
nie poszukiwanej krzywej; jej punkty odpowiadające węzłom t1, . . . , tM−1 są przybliżeniami
punktów danych q1, . . . , qM−1 (ale już jest q(t0) = q0 i q(tM) = qM).

Zmiennej *N procedura przypisuje numer N = M +6 ostatniego węzła krzywej sklejanej,
ciąg węzłów tej krzywej jest wpisywany do tablicy knots, a w tablicy qcp zostają obliczone
punkty kontrolne krzywej — każdy z nich jest kwaternionem, czyli kolejną czwórką liczb
w tej tablicy. Liczba punktów kontrolnych jest równa M + 3.

Pętla w liniach 44–62 realizuje proces iteracyjnego „poprawiania” punktów kontrolnych.
Proces ten zostaje przerwany, gdy maksymalna odległość punktu q(ti) od qi nie przekracza
progu tolerancji TOL; ustalenie go na 10−5 wydaje sięwystarczające w animacji i nie przekra-
cza możliwości arytmetyki pojedynczej precyzji. Odległości są obliczane w pętli w liniach
45–50, po czym obliczenia są przerywane, jeśli maksymalna odległośćmieści się w tolerancji
albo jeśli maksymalna odległość wzrosła, co oznacza brak zbieżności procesu poprawiania.

Zasadnicze obliczenie („poprawienie” jednego punktu) wykonuje procedura Modify-
QuatCPf. W linii 27 oblicza ona punkt q(ti) krzywej reprezentowanej przez bieżące punkty

13będące prawdopodobnie przejawem mojej nadmiernej gorliwości

1078 B. KRZYWE I POWIERZCHNIE B-SKLEJANE

kontrolne, a kolejne instrukcje obliczają kwaternion qi ⋅ q(ti)−1 ⋅ di+1, który natychmiast za-
stąpi w tablicy dotychczasowy punkt kontrolny di+1. Skutkiem jest przemieszczenie punktu
q(ti) w stronę punktu qi . Powoduje to także zmianę punktów q(ti−1) i q(ti+1) (z wyjątkiem
q(t0) i q(tM)), ale ich przemieszczenia (zazwyczaj) sąmniejsze.

Po poprawieniu punktów d2 i dN−6 następuje jeszcze modyfikacja punktów d1 i dN−5 (li-
nie 56–57 i 60–61). Ma ona na celu spełnienie warunków brzegowych. Pochodna drugiego
rzędu „zwykłej” naturalnej krzywej sklejanej w węzłach u3 = t0 i uN−3 = tM , będących koń-
cami dziedziny, jest wektorem zerowym14. Dla krzywej położonej na sferze { q ∈ H∶ ∣q∣ = 1}
analogiczny warunek jest taki, że wektory q′′(t0) i q′′(tM) mają odpowiednio kierunki q0
i qM , dzięki czemu są prostopadłe do wszystkich wektorów stycznych do sfery w punktach
q0 i qM (w tym do q′(t0) i q′(tM)). Takie warunki brzegowe zapewniają odtworzenie ruchu
obrotowego wokół ustalonej osi ze stałą prędkością kątową— o ile tylko warunki interpola-
cyjne umożliwiają taki ruch.

Trzeba pamiętać, że zadanie interpolacji może nie mieć rozwiązania w zbiorze krzywych
określonychwzorem (B.9), gdy kolejne punktyw ciągu q0, . . . , qM są od siebie bardzo odległe
lub gdy węzły t0, . . . , tM są rozmieszczone zbyt nierównomiernie (tj. gdy długości przedzia-
łów [ti−1, ti] i [ti , ti+1] znacznie się różnią). Dlatego żaden algorytm nie może dać gwarancji
znalezienia rozwiązania15. Szybkość zbieżności procesu iteracyjnego zaimplementowanego
w opisanej tu procedurze nie jest duża — w moich eksperymentach, dla „dobrych” danych,
błąd interpolacji malał w każdej iteracji (przebiegu zewnętrznej pętli) w przybliżeniu o po-
łowę i do znalezienia rozwiązania trzeba było kilkunastu iteracji. Istnieją metody szybciej
zbieżne i warto je wypróbować, ale moim zamiarem było znalezienie algorytmu wystarcza-
jąco skutecznego i jak najprostszego do zaprogramowania, co uczyniłem.

14Czyli jest prostopadła do wszystkich wektorów.
15Jeśli rozwiązanie nie istnieje, to każdy algorytm numerycznego rozwiązywania równań nieliniowych gwa-

rantuje, że rozwiązania nie znajdzie. Ale jeśli ono istnieje, to żaden algorytm nie daje gwarancji znalezienia
go. Wiele zależy od przybliżenia początkowego, a znalezienie takiego, które prowadzi do sukcesu, bywa bardzo
trudne.

C
Kolory, barwy i ich współrzędne

C.1. Widzenie trójbarwne

Podstawy współczesnej kolorymetrii stworzył w 1853 r. Hermann Grassmann, który m.in.
wprowadził opis barw za pomocą przedstawionych dalej pojęć intensywności (tj. jasności),
odcienia, nasycenia, dominującej długości fali świetlnej i barw dopełniających i sformułował
prawa addytywnego mieszania barw. Prawa Grassmanna w szczególności opisują fakt, że
wiele różnych bodźców świetlnych (tj. świateł o różnych widmach) pobudza receptory w oku
w identyczny sposób, co umożliwia oddanie gamy barw dostatecznie szerokiej dla większości
zastosowań praktycznych przez mieszanie trzech barw podstawowych.

W siatkówce ludzkiego oka są dwa rodzaje receptorów: czopki i pręciki. Pręciki są bar-
dziej czułe (i w słabym oświetleniu przejmują rolę głównego źródła sygnałów dla zmysłu
wzroku, jest to tzw. widzenie nocne, lub skotopowe), ale istnienie tylko jednego rodzaju
pręcików nie umożliwia rozróżniania przez nie kolorów. Natomiast czopki trzech rodzajów
wykazują różną czułość dla fal o ustalonej długości, wskutek czego odpowiednio jasne świat-
ło o określonymwidmie (tj. funkcji opisującej gęstośćmocy promieniowania w zależności od
długości fali) powoduje wysyłanie z oczu do mózgu trzech (skalarnych) sygnałów w odpo-
wiedzi na pobudzenie czopków poszczególnych rodzajów (ma wtedy miejsce tzw. widzenie
dzienne albo fotopowe, jest też stan pośredni, tj. widzenie o zmierzchu, gdy „czynne” są
i czopki i pręciki). To dlatego do reprezentowania barw i w szczególności wyświetlania ob-
razów na ekranach komputerów i telewizorów wystarczają ludziom trzy liczby na piksel.

Rysunek C.1 przedstawia wykresy czułości czopków, przy czym trzeba pamiętać, że do-
kładne pomiary wartości funkcji przedstawionych na tych wykresach są trudne do prze-
prowadzenia, a ponadto u różnych osób funkcje czułości mogą się trochę różnić. Niemniej,
z praw Grassmanna wynika, że poziom bodźca, który pobudza receptor jest całką z iloczynu
widma światła padającego na ten receptor i funkcji czułości receptora w przedziale długości
fal światła widzialnego1.

1Trzeba pamiętać, że ten model widzenia barwnego jest uproszczony; zakłada się, że funkcja czułości recep-
tora nie zależy od miejsca receptora na siatkówce i nie zmienia się w czasie.

1080 C. KOLORY, BARWY I ICHWSPÓŁRZĘDNE

380 480 580 680 780 λ, nm

Rysunek C.1. Funkcje czułości czopków na światło o określonej długości fali

Do badania widzenia barwnego2 służy kolorymetr klinowy. Urządzenie takie zawiera
komorę, której ściany są czarne i w której jest umieszczony klin o dwóch białych ścianach.
Komora ma dwa okienka, przez które wpada światło badane i światło wzorcowe; światło
wpadające przez każde z okienek oświetla tylko jedną ścianę klina. Źródłem światła wzorco-
wego są żarówka z filtrem przepuszczającym długie fale (tj. światło czerwone, o długości fali
λ ⩾ 700nm) oraz lampy rtęciowe emitujące fale krótsze (światło zielone, λ = 546.1 nm, i nie-
bieskie, λ = 435.8 nm). Osoba badana, oglądając przez wziernik ściany klina, ma za zadanie
tak ustawić przysłony źródeł światła wzorcowego, aby (zdaniem tej osoby) obie ściany były
oświetlone identycznie. Współrzędne światła badanego, określone przez układ odniesienia
światełwzorcowych, odczytuje się z podziałek na przysłonach. Współrzędne te sąnieujemne,
ale domieszanie światła wzorcowego do światła badanego umożliwia także pomiary współ-
rzędnych ujemnych — są nimi liczby odczytane z podziałek przysłon światła wzorcowego
domieszanego do światła badanego, ze znakiem minus.

.
380 480 580 680 780 λ, nm

r

g

b

.
380 480 580 680 780 λ, nm

r

g

b

.

Rysunek C.2. Składowe trójchromatyczne

Na podstawie eksperymentów zostały znalezione trzy funkcje długości fali, r, g i b, zwane
składowymi trójchromatycznymi (rys. C.2). Umożliwiają one obliczenie współrzędnych
światła o określonym widmie f w układzie współrzędnych wyznaczonym przez opisane
wyżej światła wzorcowe. W tym celu należy scałkować iloczyny widma z każdą z tych

2Słowa „kolor” używam tu do określenia własności światła opisanych przez jego widmo, natomiast „barwa”
odnosi się do wrażenia wzrokowego spowodowanego przez to światło.

C.2. Diagram CIE 1081

funkcji. Teoretycznie można dalej przejść do układu współrzędnych określonego przez
triadę elementów świecących monitora i, jeśli współrzędne w tym układzie są nieujemne,
odtworzyć barwę światła owidmie f na ekranie. Jeśli jednak obraz zawiera punkty o barwach
niemożliwych do odtworzenia, to trzeba go tak przetworzyć, aby zniekształcenia barw były
niezauważalne, o czym będzie mowa dalej.

C.2. Diagram CIE

W roku 1931 Międzynarodowa Komisja Oświetleniowa (CIE — Commission Internationale
de l’Éclairage) opracowała pewien układ współrzędnych zwany CIE XYZ, obecnie przy-
jęty jako standard, na podstawie którego są określane wszystkie inne układy współrzędnych
w przestrzeni barw. Wszystkie barwy światła realizowalnego fizycznie mają w tym układzie
współrzędne nieujemne. Należy podkreślić, że „światło” odpowiadające elementom układu
odniesienia nie istnieje, tzn. nie istnieją funkcje nieujemne opisujące widmo światła dla tych
elementów.

Punkty odpowiadające barwom światła widzialnego tworzą pewną bryłę wypukłą i stoż-
kową, tzn. taką, że iloczynwektorawspółrzędnych każdego punktu tej bryły i dowolnej liczby
nieujemnej również reprezentuje barwę światła widzialnego (czyli odpowiadającymu punkt
też należy do tej bryły). Ograniczając całkowitą moc światła do pewnej stałej, otrzymamy
bryłę pokazaną na rysunku C.3a. Na rysunku C.3b jest pokazana część wspólna tej bryły
z płaszczyzną X + Y + Z = 1. Można zauważyć, że każdy przekrój bryły barw płaszczyzną
o równaniu X + Y + Z = const > 0 jest figurą podobną do pozostałych przekrojów, przy
czym stała po prawej stronie tego równania określa moc światła. Dzięki temumożemy (i bę-
dziemydalej) traktowaćwspółrzędne XYZ o sumie równej 1 jakwspółrzędne barycentryczne
w układzie określonym przez wierzchołki trójkąta na rysunku, który przedstawia każdy taki
przekrój.

Rysunek C.3b przedstawia tzw. diagram chromatyczności CIE. Brzeg obszaru światławi-
dzialnego składa się z dwóch części, zwanych krzywą tęczy i linią purpury. Punkty krzywej
tęczy reprezentują światło ściśle monochromatyczne, o jednej długości fali. Na rysunku obok
pewnych punktów krzywej tęczy są podane odpowiednie długości fali. Natomiast punkty li-
nii purpury (która jest odcinkiem) reprezentująmieszaniny (w różnych proporcjach) światła
o skrajnych długościach fali: najkrótszej (λ = 380nm) i najdłuższej (λ ⩾ 700nm).

Widoczna wewnątrz obszaru krzywa bieli składa się z punktów reprezentujących barwy
światła emitowanego przez ciało doskonale czarne3 rozgrzane do różnych temperatur. W za-
sadzie każdy punkt tej krzywej reprezentuje barwę, którą można uznać za światło białe,
choć włókno żarówki o temperaturze ok. 3000K daje światło żółtawe, czyli „ciepłe”, zaś
gwiazdy Syriusz A i B (o temperaturach powierzchni ok. 10000K i 25000K) uznajemy za
ciała niebieskie. Wiele monitorów umożliwia wybranie barwy światła białego przez ustawie-
nie odpowiadającejmu „temperatury”, najczęściej między 6000K (temperatura powierzchni
Słońca) a 7500K (temperatura powierzchni gwiazdy Procjon B). Polega to na ustaleniumocy

3Fizycy wiedzą, co to takiego.

1082 C. KOLORY, BARWY I ICHWSPÓŁRZĘDNE

a)

0 X

Y

Z

.

b)

780
640

620
610

600

590

580

570

560

550

540

530

520

510

500

490

480

470
460

450
380

2000 K
3000 K

4000 K

6000 K

8000 K

10000 K

∞

0 1
0

1

X

Y

krzywa bieli

lini
a p

urp
ury

.

b)

780
640

620
610

600

590

580

570

560

550

540

530

520

510

500

490

480

470
460

450
380

2000 K
3000 K

4000 K

6000 K

8000 K

10000 K

∞

0 1
0

1

X

Y

krzywa bieli

lini
a p

urp
ury

.

Rysunek C.3. a) bryła barw widzialnych w układzie CIE XYZ, b) diagram CIE

światła emitowanego przez poszczególne elementy (luminofory w lampie kineskopowej lub
diody świetlne w nowocześniejszych wyświetlaczach) triad pikseli, które mają przypisane
maksymalne wartości składowych r, g, b. Tak wybrane punkty bieli znajdują się w pobliżu
środka ciężkości trójkąta, w który wpisany jest obszar barw widzialnych4.

Nasyceniem barwy (saturation) nazywamy względną odległość s punktu reprezentują-
cego tę barwę na diagramie CIE od przyjętego punktu bieli; jest ono równe 1 dla punktów
na brzegu obszaru barw (czyli punktów na krzywej tęczy lub na linii purpury), a nasycenie
barwy bieli jest równe 0. Nasycenie barwy reprezentowanej przez punkt p możemy obli-
czyć, dzieląc odległość punktu p od punktu bieli W przez długość przechodzącego przez
punkt p odcinka, którego jednym końcem jest punkt bieli, a drugi koniec leży na brzegu
obszaru barw widzialnych. Na rysunku C.4a są zaznaczone dwa punkty o tym samym nasy-
ceniu s = 0.66. Punkty o tym samym nasyceniu położone po przeciwnych stronach punktu
bieli reprezentują barwy dopełniające. Mieszając w pewnych proporcjach światła o barwach
dopełniających, możemy otrzymać światło białe. Zauważmy, że obszar barw widzialnych

4Punkt ten nie leży na krzywej bieli, choć jest blisko niej.

C.2. Diagram CIE 1083

a)

W

barwy dopełniające

.

b)

Adobe RGB

sRGB

monitor CRT

D65 Rs = Ra

Bs = Ba

Gs

Ga

.

b)

Adobe RGB

sRGB

monitor CRT

D65 Rs = Ra

Bs = Ba

Gs

Ga

.

Rysunek C.4. a) barwy dopełniające, b) trójkąty barw układów sRGB, Adobe RGB i monitora

jest niesymetryczny, przez co na ogół punkt bieli nie jest środkiem odcinka, którego końce
odpowiadają barwom dopełniającym. Nie jest to więc mieszanie „pół na pół”.

Dominującą długość fali światła możemy odczytać z diagramu CIE, znajdując taki
punkt q na krzywej tęczy, że punkt reprezentujący barwę tego światła leży na odcinku łączą-
cym punkty q i W . Barwę o nasyceniu s reprezentowaną przez punkt p możemy otrzymać,
mieszając światło białe ze światłemmonochromatycznym o dominującej długości fali w pro-
porcji 1 − s ∶ s. Jeśli jednak półprosta o początku W przechodząca przez punkt p przecina
linię purpury, to dominująca długość fali dla takiego światła nie istnieje.

Triady elementów świecących pikseli wyznaczają trójkąt w obszarze światła widzialnego
na diagramieCIE.Wszystkim barwommożliwymdowyświetlenia odpowiadająpunkty tego
trójkąta5, ponieważ moc światła emitowanego przez każdy element triady jest nieujemna6.
Można zatem postawić problem: co zrobić, jeśli pewne punkty na obrazie mają kolory,
których nie da się odtworzyć?

Podstawą do opracowania sposobów radzenia sobie z tym problemem, tj. modyfikowania
obrazu tak, aby „pozbyć się” kolorów niemożliwych do odtworzenia na ekranie7, są opisane
wyżej pojęcia. Aby modyfikacje były niezauważalne, trzeba wziąć pod uwagę, na co ludzki
zmysł wzroku jest najbardziej wyczulony, a na co mniej. Zatem, najmniej zauważalne są

5Rozważamy tu światło o ustalonej mocy. W rzeczywistości wszystkie barwy możliwe do wyświetlenia na
ekranie są reprezentowane przez punkty równoległościennej kostki zawartej w bryle pokazanej na rysunkuC.3a.

6W monitorach i telewizorach różnych typów punkty odpowiadające barwom poszczególnych elementów
triady są nieco inne, ale w praktyce są onewystarczająco bliskie punktów przyjętych w standardach stosowanych
do reprezentowania obrazów, aby zniekształcenia barw były niedostrzegalne — także wtedy, gdy ustawienia
monitora (w tym wybór punktu bieli) nie odpowiadają standardowi.

7Ten sam problem występuje podczas przygotowywania obrazów do druku, choć tam ma miejsce tzw. sub-
traktywne mieszanie barw, realizowane przez tłumienie pewnych składowych światła białego przez pigmenty,
zobacz podrozdział C.5.

1084 C. KOLORY, BARWY I ICHWSPÓŁRZĘDNE

niewielkie zmiany jasności całego obrazu i przesunięcia punktu bieli — patrząc na wydru-
kowany obraz (lub fotografię) w świetle słonecznym i w świetle żarówki, widzimy „to samo”.
Dość słabo zauważalne są zmiany nasycenia barwy (całego obszaru o stałym kolorze na ob-
razie), a nieco bardziej zmiany odcienia, wyznaczonego przez dominującą długość fali lub
proporcję kolorów czerwonego i niebieskiego dla purpury. Najbardziej widoczne są wszel-
kie nieciągłości barwy obszarów sąsiadujących na obrazie. Podczas oglądania serii obrazów
(w animacji) wyraźnie dostrzegalne są też skokowe zmiany kolorów w czasie.

Jeśli kolory pewnych pikseli są poza obszarem barw odtwarzalnych, to zastąpienie ujem-
nej składowej r, g lub b przez zero może dać niezadowalający efekt. Znacznie lepszym po-
mysłem jest desaturacja, czyli zmieszanie danego koloru ze światłem białym, co nie zmienia
dominującej długości fali ani odcienia purpury. Ale skutek zrobienia tego tylko dla pikseli,
których kolory „wystają” poza dozwolony obszar, też może być niezadowalający, w związku
z czym lepiej jest skorygować wszystkie piksele na obrazie. Stopień desaturacji może być
pewną funkcją odcienia, dobraną indywidualnie do obrazu. W animacji podobną korektę
trzeba zrobić dla całej sekwencji klatek. Podsumowując, nie ma jednego prostego algorytmu
korygowania kolorów, dającego zawsze świetne wyniki. Z drugiej strony, wiele osób (zajmu-
jących się grafiką po amatorsku) się tym nie przejmuje i tworzy piękne obrazy.

C.3. Układy współrzędnych RGB i korekcja gamma

Obecnie w grafice najczęściej są używane dwa standardowe układy współrzędnych RGB,
których punkty odniesienia odpowiadają barwom czerwonej, zielonej i niebieskiej. Punk-
ty odniesienia układu sRGB, opracowanego w roku 1996 wspólnie przez firmy Hewlett–
Packard i Microso�, mają w układzie CIE XYZ współrzędne Rs = (0.64, 0.33, 0.03), Gs =(0.3, 0.6, 0.1) i Bs = (0.15, 0.06, 0.79). Trójkąt o tych wierzchołkach jest bliższy trójką-
tów odpowiadających typowym monitorom niż trójkąt o wierzchołkach Ra = Rs, Ga =(0.21, 0.71, 0.18), Ba = Bs, przy użyciu których jest określony układAdobe RGB firmyAdobe
Systems Inc., rok 1998, częściej niż w grafice stosowany w fotografii cyfrowej, obróbce ob-
razów i poligrafii. Trójkąty dla obu układów są pokazane na rysunku C.4b. W obu tych
układach przyjęty jest punkt bieliW = (0.3127, 0.3290, 0.3583). Światło o takiej barwie, zbli-
żonej do barwy światła dziennego8, jest emitowane przez ciało doskonale czarne rozgrzane
do temperatury ok. 6500K, stąd punkt ten jest oznaczany symbolem D65.

Przejście od współrzędnych CIE XYZ do sRGB składa się z trzech kroków. Pierwszy krok
jest przekształceniem liniowym, tj. zmianą układu współrzędnych kartezjańskich, opisaną
wzorem⎡⎢⎢⎢⎢⎢⎣

r
g
b

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

X
Y
Z

⎤⎥⎥⎥⎥⎥⎦
.

8Światło dochodzące w dane miejsce bezpośrednio od Słońca, o temperaturze ok. 6000K, jest zmieszane
z dochodzącym ze wszystkich stron światłem słonecznym rozproszonym w atmosferze. Ponieważ zaś atmosfera
najsilniej rozprasza fale krótkie, czyli światło niebieskie, temperatura barwy światła dziennego jest wyższa niż
temperatura powierzchni Słońca.

C.3. Układy współrzędnych RGB i korekcja gamma 1085

Pozostałe kroki są przekształceniami nieliniowymi. Krok drugi polega na obcięciu każdej
składowej do przedziału [0, 1].

Ludzki zmysł wzroku jest wyspecjalizowany w rozróżnianiu względnych przyrostów jas-
ności światła, tzn. podobnie są postrzegane zmiany na przykład o 3% mocy światła jasnego
i ciemniejszego. Gdyby zatem składowe r, g i b były reprezentowane za pomocą liczb ośmio-
bitowych proporcjonalnie do poziomu składowych9, to dokładność względna reprezentacji
barw ciemniejszych byłaby za mała — szczegóły przedmiotów słabo oświetlonych byłyby
widoczne na obrazie za mało dokładnie10. Ponadto moc L światła emitowanego przez piksel
w lampie kineskopowej zależy w sposób nieliniowy od napięcia V przyłożonego do elektrod
modulujących strumień elektronów. W dobrym przybliżeniu zależność ta jest opisana przez
funkcję potęgową L(V) = cVγ , z wykładnikiem γ ∈ [1.8, 2.8] i pewną stałą c. Podobne
odwzorowanie liczb opisujących składowe koloru na moc światła emitowanego przez piksel
realizują nowocześniejsze wyświetlacze LED lub LCD. Łatwo się o tym przekonać, rysując
obok siebie dwa prostokąty, jeden wypełniony stałym kolorem, na przykład szarym, z pik-
selami o składowych r, g, b mających stałą wartość, i drugi, w którym białe i czarne piksele
są ułożone w szachownicę. Oba prostokąty oglądane z pewnej odległości będą tak samo jas-
ne, gdy wartość przypisana składowym szarych pikseli jest bliska trzem czwartym wartości
maksymalnej (przypisanej pikselom białym).

Z tych powodów odwzorowanie poziomu każdej składowej w układzie sRGB jest nie-
liniowe; zgodnie z opisaną wyżej zależnością, obliczony poziom na przykład składowej r ∈[0, 1] należy zamienić na liczbę R = r1/γ. Liczbę tęmożna następnie pomnożyć przez 255 i za-
okrąglić do najbliższej liczby całkowitej, otrzymując liczbę ośmiobitową. Aby w obliczeniach
numerycznych uniknąć problemów związanych z tym, że pochodna funkcji f (x) = x1/γ dla
x bliskiego zera jest nieograniczona, w rzeczywistości stosowany jest nieco inny wzór:

R(x) = { 12.92x dla x < 0.0031308,
1.055x1/2.4 − 0.055 w przeciwnym razie.

Opisane tu przekształcenie, wprowadzone w związku z monitorami kineskopowymi, ale
poprawiające względną dokładność reprezentacji ciemnych barw przy użyciu niewielkiej
liczby bitów na piksel, jest nazywane korekcją gamma.

Ideę korekcji gamma ilustruje rysunek C.5. Wykres z lewej strony przedstawia funkcję R.
Punkty oznaczone kropkami przy osi poziomej są rozmieszczone w jednakowych odstępach.
Wartości funkcji R w tych punktach nie są równoodległe, ale jeśli zależność mocy L świat-
ła emitowanego przez piksel od liczby wpisanej do bufora obrazu11 jest proporcjonalna do
odwrotności funkcji R (monitory spełniają ten warunek w dobrym przybliżeniu), to moc
światła emitowanego przez odpowiednią składową piksela jest proporcjonalna do liczby opi-
sującej tę składową przed dokonaniem korekcji.

9czyli w taki sposób, że maksymalny poziom składowej jest reprezentowany przez liczbę 255, a liczbom 85
i 170 odpowiadają 1/3 i 2/3 tego poziomu

10Zauważmy, że duża zmiana względna jednej składowej powoduje dużą zmianę odcienia, a na to wzrok jest
wyczulony.

11Na wykresie z prawej strony zmienna niezależna jest związana z osią pionową.

1086 C. KOLORY, BARWY I ICHWSPÓŁRZĘDNE

0

0.2

0.4

0.6

0.8

1

R(x)

0 1 x.
0
255

51
255

102
255

153
255

204
255

255
255

za
ok

rą
gl
an
ie

.
0
255

51
255

102
255

153
255

204
255

255
255

za
ok

rą
gl
an
ie

. 0 L

korekcja odwzorowanie monitora

Rysunek C.5. Korekcja gamma

Listing C.1. Procedura korekcji gamma sRGB
GLSL

1: #define GAMMA(x) \

2: (x < 0.0031308 ? 12.92 * x : 1.055 * pow (x, 1.0/2.4) - 0.055)

3:

4: vec3 sRGBGamma (vec3 colour)

5: {

6: return vec3 (GAMMA(colour.r), GAMMA(colour.g), GAMMA(colour.b));

7: } /*sRGBGamma*/

ListingC.1 przedstawia procedurę realizującą korekcję gammaprzy użyciu opisanej wyżej
funkcji R. Zamiast niej można użyć funkcji potęgowej przyjętej w opisanym niżej układzie
współrzędnych Adobe RGB; jest ona prostsza do implementacji, a różnica obrazów otrzyma-
nych tymi sposobami jest niezauważalna: maksymalna różnica funkcji opisujących korekcje
w standardach sRGB i Adobe RGB w przedziale [0, 1] jest mniejsza niż 0.034, a odwrotności
tych funkcji różnią się o mniej niż 0.0087.

Jeśli na powierzchnię obiektu ma być nałożona tekstura zapisana w układzie sRGB, to
w aplikacji OpenGL-a należy dokonać odpowiedniej konwersji, bo w obliczeniach oświetle-
nia są potrzebne współrzędne kartezjańskie (tj. liniowo związane z mocą światła) w przes-
trzeni barw. Konwersję można przeprowadzać za pomocą ewaluatora tekstury. Jeśli trzeci
parametr procedury glTexImage2D, określający wewnętrzny format przesyłanej do pamięci
GPU tablicy tekseli, ma wartość GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA lub GL_SRGB8_-
ALPHA8, to zakłada się, że składowe R, G, B każdego teksela należy poddać przekształceniu
będącemu funkcją odwrotną do funkcji R(r) opisanej podanym wyżej wzorem.

Można równieżwygenerować obraz z pikselami „od razu” reprezentowanymi w układzie
sRGB (np. w celu zapisania go w pliku). W tym celu trzeba utworzyć pozaekranowy bu-
for ramki i podłączyć do niego załącznik — teksturę o wewnętrznym formacie GL_SRGB8_-

C.4. Układy z luminancją i chrominancją 1087

ALPHA8, w której ma być utworzony obraz, a przed rysowaniem włączyć korekcję gamma,
wywołując procedurę glEnable z parametrem GL_FRAMEBUFFER_SRGB.

Podobnie wygląda przejście od układu CIE XYZ do Adobe RGB, przy czym w pierw-
szym kroku jest używana nieco inna macierz, a w korekcji gamma jest stosowana funkcja
potęgowa f (x) = x1/γ z wykładnikiem γ = 563/256 ≈ 2.2. Składowe otrzymane po korekcji
gamma można następnie pomnożyć przez 255 lub 65535 i zaokrąglić, otrzymując w wyniku
ich reprezentacje ośmio- lub szesnastobitowe.

Choć układAdobe RGBobejmujewiększą część bryły barw (tj. więcej punktówmaw tym
układzie współrzędne nieujemne), co jest zaletą, jednak nie jest zbyt rozpowszechniony.
Pierwszy tego powód to spore oddalenie punktuGa od punktu odpowiadającego barwie zie-
lonej większości kolorowychmonitorów, a zatemwszystkich barw reprezentowalnych w tym
układzie i tak nie da się odtworzyć na ekranie, wyświetlenie zaś obrazu bez odpowiedniej
konwersji powoduje zniekształcenie barw (zmniejszenie nasycenia barw zielonych i zamiany
bieli na barwę lekko purpurową). Drugim powodem jest fakt, że rozszerzenie obszaru repre-
zentowalnego ma swoją cenę: mniejszą dokładność reprezentacji barw niżw układzie sRGB,
odczuwalną, jeśli składowe są kodowane za pomocą liczb ośmiobitowych.

Istnieje wiele innych układów współrzędnych RGB, przyjętych jako standardy telewi-
zyjne, a także mających specjalne zastosowania. Informacje na ich temat najprościej jest
znaleźć w Internecie.

C.4. Układy z luminancją i chrominancją

Wprowadzenie kolorowej telewizji w latach pięćdziesiątych XX wieku wymagało zachowa-
nia poprawnego działania odbiorników czarno-białych, odbierających sygnał, który dotąd
przenosił tylko informację o luminancji poszczególnych punktów wyświetlanych obrazów.
Sygnał ten zostałwięc uzupełniony o dwa dodatkowe sygnały tzw. chrominancji, umożliwia-
jące odtworzenie barw, tj. otrzymanie sygnałów sterujących elementami r, g, b triad pikseli
kolorowych kineskopów. Po obu stronach Atlantyku były przyjęte inne standardy telewizji
kolorowej, ale książka ta nie jest właściwym miejscem na ich szczegółowe opisy. Warto jed-
nak wiedzieć, że w układach współrzędnych YIQ i YUV , stosowanych w dawnej telewizji12,
pasma używane do przesyłania sygnałów chrominancji IQ lubUV były znacznie węższe niż
pasmo dla sygnału luminancji Y . Rzecz w tym, że zniekształcenia chrominancji są znacz-
nie mniej dostrzegalne dla ludzi niż zaburzenia luminancji. Ma to znaczenie także obecnie,
na przykład w algorytmie kompresji JPEG, który dokonuje przejścia do układu nazwanego
Y ′CBCR , ze współrzędną luminancji13 Y ′ i dwiema współrzędnymi chrominancji, a następ-
nie dokonuje kompresji stratnej poszczególnych składowych — dopuszczając większe znie-
kształcenia (i uzyskując dzięki temu większy stopień kompresji) składowych chrominancji
CB i CR.

12przekazującej obrazy za pomocą sygnału analogowego i fal radiowych
13Współrzędna Y ′, o angielskiej nazwie luma, jest związana z luminancją w sposób nieliniowy wskutek

uwzględnienia korekcji gamma.

1088 C. KOLORY, BARWY I ICHWSPÓŁRZĘDNE

Przejście między układami R′G′B′ (bardzo zbliżonym do sRGB) i Y ′UV określonymi
w standardzie telewizyjnym BT.709, jest opisane wzorami

⎡⎢⎢⎢⎢⎢⎣
Y ′

U
V

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0.2126 0.7152 0.0722
−0.09991 −0.33609 0.436
0.615 −0.55861 −0.05639

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

R′

G′

B′

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
R′

G′

B′

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
1 0 1.28033
1 −0.21482 −0.38059
1 2.12798 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Y ′

U
V

⎤⎥⎥⎥⎥⎥⎦
.

Analogiczna macierz określona w starszym standardzie BT.601 ma w pierwszym wierszu
liczby 0.299, 0.587, 0.114, użyte w aplikacji 2K do zamieniania obrazów kolorowych na jed-
nobarwne, które dalej zostają wyświetlone w kolorach czerwonym i zielonym jako anaglify
(podrozdz. 26.2). Możemy też zauważyć, że w macierzy przejścia w drugą stronę (w obu
standardach) jedynki w pierwszej kolumnie sprawiają, że skutkiem zaniku (czyli zastąpienia
przez 0) sygnałów chrominancji jest przypisanie współrzędnej Y ′ wszystkim trzem składo-
wym R′G′B′— otrzymany obraz jest czarno-szaro-biały.

Określony w roku 1976 układ współrzędnych CIELab, często spotykany w systemach
zarządzania barwą, w założeniu miał zapewnić możliwość mierzenia subiektywnej różnicy
barw za pomocą (euklidesowej) długości różnicy reprezentujących je wektorów14. Przejście
między układami CIE XYZ a CIELab jest funkcją nieliniową, opisaną wzorami

L = 116 3
√
Y/Y0 − 16, a = 500(3

√
X/X0 −

3
√
Y/Y0), b = 200(3

√
Y/Y0 − 3

√
Z/Z0),

ze stałymi X0 = 94.81, Y0 = 100, Z0 = 107.3. Współrzędna L, która wyraża jasność barwy,
jest nazywana luminancją, ale nie jest to fizyczna luminancja zdefiniowana w fotometrii.
Współrzędne a i b razem określają odcień i nasycenie barwy.

C.5. Układy z subtraktywnymmieszaniem barw

Papier, na którym jest coś wydrukowane, sam światła nie emituje, a tylko je odbija. Światło
przechodzi przez warstwy pigmentów w farbach drukarskich lub tonerach, które działają jak
filtry pochłaniające. Współrzędne CMY (Cyan— turkusowy,Magenta—purpurowy, Yellow
— żółty) opisują stopień pochłaniania światła przez pigmenty w barwach dopełniających
barwy czerwoną, zieloną i niebieską. Jeśli zatem C = M = Y = 0 i oglądamy kartkę w świetle
białym, to widzimy odbite od niej światło białe. Jeśli C = 0, M = Y = 1, to w świetle odbitym
najmniej stłumione pozostaną fale długie (czyli światło czerwone), a jeśli C = M = Y = 1, to
pigmenty pochłaniają światło o wszystkich długościach i dany punkt na papierze jest czarny.

W praktyce kolorowe pigmenty nie są idealnymi filtrami, a oprócz tego część światła od-
bija się od nich, nie przechodząc przez pozostałe pigmenty15, co uniemożliwia otrzymanie

14co udało się w znacznym stopniu
15Dlatego w drukowaniu kolejność, w jakiej są nanoszone farby o poszczególnych kolorach, jest istotna.

C.6. Układy HSV i HSL 1089

całkowitej czerni we wspomniany wyżej sposób. Czerńmożna uzyskać za pomocą czwartej,
czarnej farby (lub tonera). Wtedy opis koloru jest wektorem czterech współrzędnych, nazwa-
nych CMYK; litera K jest wzięta ze słowa blacK. Mając współrzędne R, G, B koloru piksela
(z przedziału [0, 1]),można obliczyćwspółrzędneC′ = 1−R,M′ = 1−G, Y ′ = 1−B, a następnie
przyjąć K = amax{C′ ,M′,Y ′}, z pewną stałą a ∈ (0, 1] i obliczyć C = C′ − K, M = M′ − K,
Y = Y ′ − K; jest to najprostszy sposób przygotowania obrazu do druku. W rzeczywistoś-
ci proces ten jest znacznie bardziej skomplikowany. Drukarki „fotograficzne” drukują ob-
razy przy użyciu większej liczby kolorowych atramentów (np. sześciu), a algorytmy zamiany
kolorów na ilości atramentu nanoszone na poszczególne punkty na papierze, uwzględnia-
jące wzajemne oddziaływanie pigmentów, są bardzo skomplikowane (i tajne). W poligrafii
proces przygotowania kolorowych obrazów do druku wysokiej jakości obejmuje weryfikację
wydruków próbnych i wprowadzanie korekt przez zajmujących się tym ekspertów.

C.6. Układy HSV i HSL

Opisane wyżej układy współrzędnych (z wyjątkiem CIELab) są blisko związane z techno-
logią wyświetlania lub drukowania kolorowych obrazów, ale wygoda programisty nie jest
tożsama z wygodą użytkowników programu. Artyście grafikowi wygodniej jest posługiwać
się współrzędnymi opisującymi jasność, odcień i nasycenie barwy.

Nazwy współrzędnych w układzie HSV pochodzą od słówHue (odcień), Saturation (na-
sycenie) i Value (wartość). Przejście od układu RGB16 do HSV opisują następujące wzory:

V =max{R,G , B}, a = V −min{R,G , B},
H =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 jeśli a = 0,
60(G − B)/a jeśli V = R,
120 + 60(B − R)/a jeśli V = G,
240 + 60(R −G)/a jeśli V = B,

S = { 0 jeśli V = 0,
a/V jeśli V ≠ 0.

Współrzędna H jest tradycyjnie mierzona w stopniach17 i przyjmuje wartości z przedziału[−60○, 300○). Wartości współrzędnej S należą do przedziału [0, 1], przy czym jeśli S = 0,
to barwa jest szara, a odcień jest nieokreślony, choć na podstawie podanego wyżej wzoru
przyjmuje się H = 0. Współrzędna V = 0 odpowiada czerni, V = 1 oznacza zaśmaksymalny
poziom barwy o danym odcieniu i nasyceniu — zatem tę samą współrzędną V ma światło
białe (R = G = B = 1) i światło niebieskie (R = G = 0, B = 1), które dla ludzkich oczu jest
znacznie ciemniejsze.

Układ współrzędnych HSL (Hue, Saturation, Lightness) uwzględnia fakt, że światło białe
jest jaśniejsze niż każda z jego składowych. W tym układzie światło białe (R = G = B = 1) ma

16Tu zazwyczaj jest układ RGB określony przez monitor komputera, na którym działa program.
17W programach ja bym używał radianów.

1090 C. KOLORY, BARWY I ICHWSPÓŁRZĘDNE

współrzędną L = 2, czystym barwom składowym (np. R = 1, G = B = 0) oraz ich barwom
dopełniającym (np. R = 0, G = B = 1) odpowiada natomiast współrzędna L = 1, przy czym
współrzędną L = 1 ma też barwa szara r = g = b = 0.5. W przejściu od układu RGB do HSL
należy znaleźć liczby V i a i współrzędną H tak jak w przejściu do układu HSV, a następnie
obliczyć

L = 2V − a,

S = { a/L jeśli L ⩽ 1,
a/(2 − L) jeśli L > 1.

YG YG

.

a)

V

R

YG

C

B M

K

W

.

a)

V

R

YG

C

B M

K

W

. .

R

YG

C

B M

K

W

.

R

YG

C

B M

K

W

.

b)

.

L

RC

B M

K

W

.

L

RC

B M

K

W

. .

RC

B M

K

W

.

RC

B M

K

W

.

Rysunek C.6. Bryły barw: a) w układzie HSV, b) w układzie HSL

Bryły barw w układach HSV i HSL są walcami, choć często bywają przedstawiane jako
stożek obrotowy albo dwa takie stożki zestawione podstawami (rys. C.6). Dolna podstawa
walca lub wierzchołek dolnego stożka w obu przypadkach reprezentuje czerń. W układzie
HSL górna podstawa walca lub wierzchołek górnego stożka odpowiada bieli. Współrzędna S
ma wartość 0 na osi walców lub stożków i 1 na ich powierzchniach bocznych.

D
Dżojstik w aplikacjach XWindow

Wprawdzie specyfikacja [11] systemu X Window X11R7 definiuje sposób komunikacji mię-
dzy aplikacją a dżojstikiem (który nadaje komunikaty takie jak klawiatura, tj. KeyPress
i KeyRelease), ale jest z nią kłopot. Skonfigurowanie urządzenia wymaga uprawnień admi-
nistratora i sporych umiejętności1. Jeśli aplikacja ma być rozpowszechniana, to nie możemy
tegowymagać odużytkowników. Dlatego biblioteki FreeGLUT iGLFWmająwłasne sposoby
komunikowania się z nietypowymi urządzeniami wejściowymi, w tym z dżojstikami. Spo-
soby te realizują procedury, które wywoływane w regularnych odstępach czasu „odpytują”
dżojstik o jego stan (tj. o stan przycisków i kąty obrotu drążka wokół wszystkich osi).

Jądra systemów operacyjnych mają wbudowane sterowniki dżojstików, dzięki którym
aplikacje mogą odczytywać odpowiednie informacje. W tym dodatku przedstawiam pro-
cedury współpracujące ze sterownikiem systemu Linux. Napisałem je na podstawie lektury
kodu źródłowego biblioteki FreeGLUT. Są tu dwa zestawy procedur. Pierwszy zestaw może
byćużywanypodobnie, jak procedury z bibliotek FreeGLUT iGLFW—wregularnych odstę-
pach czasu trzeba „pytać” dżojstik o jego stan i odpowiednio reagować na zmiany tego stanu.
Drugi zestaw procedur działa w ten sposób, że po otwarciu komunikacji z dżojstikiem apli-
kacja będzie otrzymywać przekazane przez system XWindow komunikaty o każdej zmianie
stanu dżojstika, dzięki czemu nie musi co chwila do niego „zaglądać”.

D.1. Aktywne sprawdzanie

Makrodefinicje w liniach 1–3 na listinguD.1 określająmaksymalną liczbę obsługiwanych jed-
nocześnie dżojstików, maksymalną liczbę osi dżojstka i maksymalną długość napisu, który
jest nazwą urządzenia nadaną przez producenta. Kolejne sześć makrodefinicji wprowadza
nazwy zdarzeń generowanych przez dżojstik, odpowiednio nic, inicjalizacja osi, inicjalizacja
przycisku, zmiana kąta obrotu drążka wokół osi, naciśnięcie lub zwolnienie przycisku i odłą-
czenie (wyjęcie wtyczki) dżojstika.

1Mi się nie udało: postępując (chyba) zgodnie ze specyfikacją, zepsułem w swoim komputerze poprawne
działanie myszy i klawiatury, a gdy je naprawiłem, wszelka myśl o dalszych próbach była mi obca.

1092 D. DŻOJSTIKW APLIKACJACH XWINDOW

Listing D.1. Nagłówki procedur do aktywnego sprawdzania stanu dżojstików
C

1: #define MAX_JOY 8

2: #define MAX_JOY_AXES 16

3: #define MAX_JOY_NAMELENGTH 128

4:

5: #define JOY_EVENT_NONE 0

6: #define JOY_INIT_AXIS 1

7: #define JOY_INIT_BUTTON 2

8: #define JOY_EVENT_AXIS 3

9: #define JOY_EVENT_BUTTON 4

10: #define JOY_EVENT_OFF 5

11:

12: typedef struct JoyState {

13: int event; /* rodzaj zdarzenia */

14: int number; /* numer osi lub przycisku */

15: unsigned int btnmask; /* stan wszystkich przycisków */

16: float axpos[MAX_JOY_AXES]; /* kąty obrotów wokół osi */

17: } JoyState;

Procedury obsługi dżojstika są przedstawione na listinguD.2. Na początku działania apli-
kacja powinna wywołać procedurę InitJoysticks. Rozpoczęcie komunikacji wykonuje
procedura OpenJoystick; jej pierwszy parametr jest numerem dżojstika, z którym aplikacja
chce nawiązaćwspółpracę. Dżojstikmoże byćpodłączonyw trakcie pracy komputera; system
operacyjny, gdy to zauważy, nadamu kolejny numer, 0, 1 itd. i utworzy plik dający aplikacjom
dostęp do urządzenia. Jeśli dżojstik jest podłączony (tj. jego wtyczka tkwi w gniazdku USB),
to wartość powrotna procedury jest niezerowa. Ostatnie trzy parametry wskazują tablicę, do
której trafi nazwa, oraz zmienne, którym będą przypisane liczby przycisków i osi urządzenia.
Na pożegnanie dżojstika aplikacja powinna wywołać procedurę CloseJoystick.

Stan dżojstika odczytuje procedura ReadJoystick, której wartość powrotna jest nieze-
rowa, jeśli następuje inicjalizacja lub jeśli od ostatniego wywołania użytkownik spowodo-
wał dżojstikiem jakieś zdarzenie. Dokładna informacja jest przekazywana w strukturze typu
JoyState wskazywanej przez parametr jst. Wartość pola event wskazuje rodzaj ostat-
niego zdarzenia (w użyciu są makrodefinicje w liniach 5–10 na listingu D.1). Po nawiązaniu
komunikacji z dżojstikiem sterownik przekazuje dla każdej osi i dla każdego przycisku jeden
komunikat opisujący początkowy kąt lub informujący, czy przycisk jest w tym momencie
naciśnięty. Dalsze komunikaty opisują zmiany stanów początkowych.

Pole number struktury JoyState zawiera numer przycisku albo osi. Poszczególne bity
polabtnmaskopisują stanwszystkich przycisków (1—przyciśnięty, 0—zwolniony), aw tab-
licy axpos są przechowywane bieżące kąty obrotów drążka wokółwszystkich osi. Są to liczby
z przedziału [−1, 1], przy czym końce przedziału odpowiadająminimalnym i maksymalnym
kątom obrotu dla każdej osi.

Możemy teraz zajrzeć do środka przedstawionych wyżej procedur. Zmienna js jest tab-
licą, której elementy — struktury typu MyJoystick— opisują poszczególne urządzenia.

D.1. Aktywne sprawdzanie 1093

Listing D.2. Procedury odczytujące stan dżojstika
C

1: #include <string.h>

2: #include <unistd.h>

3: #include <stdio.h>

4: #include <fcntl.h>

5: #include <errno.h>

6: #include <linux/joystick.h>

7:

8: #include "ajoystick.h"

9:

10: #if defined(JS_VERSION) && JS_VERSION >= 0x010000

11: #define JOY_AXIS_RANGE 32767.0

12:

13: typedef struct {

14: int fd;

15: char fname[16];

16: char jname[MAX_JOY_NAMELENGTH];

17: int buttons, axes;

18: struct js_event ev;

19: JoyState jst;

20: } MyJoystick;

21:

22: static MyJoystick js[MAX_JOY];

23:

24: void InitJoysticks (void)

25: {

26: int i;

27:

28: for (i = 0; i < MAX_JOY; i++)

29: js[i].fd = -1;

30: } /*InitJoysticks*/

31:

32: char OpenJoystick (int jsn, char *jname, int *buttons, int *axes)

33: {

34: unsigned char u;

35:

36: if (jsn < 0 || jsn >= MAX_JOY)

37: return false; /* błędny parametr */

38: sprintf (js[jsn].fname, "/dev/input/js%d", jsn);

39: if ((js[jsn].fd = open (js[jsn].fname, O_RDONLY | O_NONBLOCK)) < 0)

40: return false; /* nie ma takiego urządzenia */

41: ioctl (js[jsn].fd, JSIOCGBUTTONS, &u);

42: js[jsn].buttons = u;

43: ioctl (js[jsn].fd, JSIOCGAXES, &u);

44: js[jsn].axes = u;

45: ioctl (js[jsn].fd, JSIOCGNAME(sizeof(js[jsn].jname)), js[jsn].jname);

1094 D. DŻOJSTIKW APLIKACJACH XWINDOW

46: if (jname) strncpy (jname, js[jsn].jname, MAX_JOY_NAMELENGTH);

47: if (buttons) *buttons = js[jsn].buttons;

48: if (axes) *axes = js[jsn].axes;

49: return true;

50: } /*OpenJoystick*/

51:

52: char CloseJoystick (int jsn)

53: {

54: if (js[jsn].fd >= 0) {

55: close (js[jsn].fd);

56: js[jsn].fd = -1;

57: return true;

58: }

59: return false;

60: } /*CloseJoystick*/

61:

62: char ReadJoystick (int jsn, JoyState *jst)

63: {

64: ssize_t nbytes;

65: int n;

66:

67: if (js[jsn].fd < 0) return false;

68: jst->event = JOY_EVENT_NONE;

69: errno = 0;

70: nbytes = read (js[jsn].fd, &js[jsn].ev, sizeof(struct js_event));

71: if (nbytes < 0) {

72: if (errno == ENODEV || errno == EBADF) {

73: CloseJoystick (jsn);

74: jst->event = js[jsn].jst.event = JOY_EVENT_OFF;

75: return true;

76: }

77: else

78: return true;

79: }

80: switch (js[jsn].ev.type & ~JS_EVENT_INIT) {

81: case JS_EVENT_AXIS:

82: if ((n = js[jsn].ev.number) < js[jsn].axes)

83: jst->axpos[n] = js[jsn].jst.axpos[n] =

84: (float)js[jsn].ev.value/JOY_AXIS_RANGE;

85: jst->event = js[jsn].jst.event =

86: js[jsn].ev.type & JS_EVENT_INIT ? JOY_INIT_AXIS : JOY_EVENT_AXIS;

87: jst->number = js[jsn].jst.number = n;

88: return true;

89: case JS_EVENT_BUTTON:

90: if (!js[jsn].ev.value)

91: jst->btnmask = js[jsn].jst.btnmask &= ~(1 << js[jsn].ev.number);

92: else

D.1. Aktywne sprawdzanie 1095

93: jst->btnmask = js[jsn].jst.btnmask |= 1 << js[jsn].ev.number;

94: jst->event = js[jsn].jst.event =

95: js[jsn].ev.type & JS_EVENT_INIT ? JOY_INIT_BUTTON : JOY_EVENT_BUTTON;

96: jst->number = js[jsn].jst.number = js[jsn].ev.number;

97: return true;

98: default:

99: return false;

100: }

101: } /*ReadJoystick*/

102: #else

103: #error "No suitable joystick driver"

104: #endif

Dla podłączonych dżojstików system Linux tworzy pliki o nazwach /dev/input/js0,
/dev/input/js1 itd. Wejście z dżojstika aplikacja będzie czytać z takiego pliku. Musi
ona do tego używać procedur składających się na najbardziej „niskopoziomowy” interfejs
wejścia/wyjścia w systemie Linux2.

Otwarty (do czytania przez aplikację) plik jest identyfikowany przez tzw. deskryptor
pliku — nieujemną liczbę całkowitą pamiętaną w polu fd struktury MyJoystick. Proce-
dura OpenJoystick w linii 38 tworzy nazwę pliku dżojstika, a w linii 39 otwiera plik przy
użyciu procedury open, której wartość powrotna jest deskryptorem pliku. Drugi parametr
tej procedury określa, że plik jest otwierany tylko do czytania i ma to być operacja niebloku-
jąca—w razie braku danych do odczytania w pliku procedura czytającama nie czekać na ich
pojawienie się.

Trzy wywołania procedury ioctl w liniach 41, 43 i 45 zadają dżojstikowi pytania o liczby
jego przycisków i osi i o nazwę. W liniach 46–48 informacje te są przekazywane aplikacji,
jeśli jest nimi zainteresowana, tj. jeśli przekazała niepuste wskaźniki miejsc, w których te
informacje mają być zapisane.

Działanie procedur InitJoysticks i CloseJoystick chyba nie wymaga objaśnień.
Zobaczmy zatem, jak działa procedura ReadJoystick. W linii 70 procedura próbuje prze-
czytać ustaloną liczbę bajtów, z których składa się przekazany przez sterownik opis jednego
zdarzenia wygenerowanego przez dżojstik. Operacja czytania może się nie powieść i wtedy
zmienna errno zadeklarowana w systemowym pliku nagłówkowym errno.h otrzymuje
niezerową wartość określającą rodzaj błędu. Błędy EBADF (niepoprawny plik) i ENODEV
(urządzenie nieobecne) są traktowane jak zawiadomienie, że czytanie stało się niemożliwe
(czego prawdopodobną przyczyną jest odłączenie dżojstika).

Jeśli nie udało się przeczytać opisu zdarzenia, ale wystąpił błąd inny niż wymienione
wyżej (EAGAIN— spróbuj ponownie), to następuje powrót z procedury — nic z dżojstikiem
się nie wydarzyło i procedura nie czeka, aż się wydarzy. Dane przeczytane do zdefiniowa-

2Interfejs, którego elementami są wskaźniki do struktur typu FILE i procedury fopen, fclose, fread,
fwrite, fscanf i fprintf, jest „wysokopoziomowy” — taki sam we wszystkich systemach operacyjnych.
W systemie Linux interfejs ten ukrywa deskryptory plików i procedury open, close i read, których tu mu-
simy używać, bo potrzebujemy „rozmawiać” z urządzeniem, a operacja czytania ma być nieblokująca.

1096 D. DŻOJSTIKW APLIKACJACH XWINDOW

nej w systemowym pliku nagłówkowym linux/joystick.h struktury js_event opisują
zdarzenie, które nastąpiło. Jeśli jest to obrót drążka, to w liniach 83–84 jest obliczany obecny
kąt jego obrotu (sterownik podaje liczbę całkowitą z przedziału [−32767, 32767]). Jeśli zda-
rzenie dotyczy przycisku, to w linii 91 lub 93 odpowiadający przyciskowi bit w polu btnmask
otrzymuje aktualną wartość.

Aplikacja, wywołując procedurę ReadJoystick, może otrzymać wiadomość o odłącze-
niu dżojstika, ale nie otrzyma wiadomości o jego podłączeniu. Aby wznowić współpracę
z dżojstikiem po jego ponownym podłączeniu, aplikacja musi znów wywołać procedurę
OpenJoystick (sama musi jakoś zdecydować, kiedy to zrobić).

D.2. Komunikacja za pośrednictwem systemu XWindow

Opisane w podrozdziale D.1 procedury działają z pominięciem systemu X Window. Teraz
przedstawię rozwiązanie, w którym o zdarzeniach spowodowanych przez dżojstiki aplikacja
dowiaduje się, otrzymując komunikaty od tego systemu. Zwalnia ją to od aktywnego spraw-
dzania stanu dżojstików.

Będą tu w użyciu makrodefinicje z listingu D.1, a ponadto aplikacjamoże używać przed-
stawionej tam struktury JoyState do przechowywania informacji o stanie dżojstika lub
dżojstików— jeśli zadeklaruje tablicę takich struktur i będzie w niej skrupulatnie zapisywać
informacje z komunikatów. Informacje są przekazywane w komunikatach ClientMessage,
przy czym pole mesage_type struktury XClientMessageEvent tych komunikatów ma
wartość zmiennej aJoystick — wartość ta jest atomem zarezerwowanym w systemie
X Window przez procedurę xInitJoysticks. Zmienna aJoystick musi być widoczna
dla aplikacji, aby ta mogła ją odczytywać. Ponadto procedury obsługi dżojstika odwołują się
do zmiennej xdisplay, która identyfikuje serwer XWindow.

Listing D.3. Struktura komunikatu od dżojstika
C

1: typedef struct JoyMessage {

2: char jsn; /* numer dżojstika */

3: char msg; /* identyfikator komunikatu */

4: char number; /* numer przycisku lub osi */

5: char pressed; /* czy przycisk został naciśnięty? */

6: float angle; /* kąt obrotu osi */

7: unsigned int btnmask; /* maska bitowa przycisków */

8: char pad[8]; /* dopełnienie do 20 bajtów */

9: } JoyMessage;

10:

11: extern Display *xdisplay;

12: extern Atom aJoystick;

Listing D.4 przedstawia procedury. Aplikacja po otwarciu komunikacji z serwerem po-
winna wywołać procedurę xInitJoysticks w celu wykonania niezbędnych przygotowań,
a następnie dla każdego dżojstika, od którego zamierza odbierać komunikaty, ma wywołać
procedurę xOpenJoystick. Zakończenie współpracy z dżojstikiem następuje przez wywo-

D.2. Komunikacja za pośrednictwem systemu XWindow 1097

łanie procedury xCloseJoystick lub przez odłączenie dżojstika (o czym aplikacja zostanie
poinformowana za pomocą komunikatu JOY_EVENT_OFF).

W opisanym tu rozwiązaniu założyłem, że procedura czytająca plik urządzenia w razie
braku danych do odczytania ma czekać na ich pojawienie się. Zatem operacja czytania ma
być blokująca, dzięki czemu nie będzie absorbującego procesor aktywnego sprawdzania, czy
są już jakieś dane. Ale niedopuszczalne jest też „zawiśnięcie” aplikacji na operacji czytania.
Sposobem poradzenia sobie z tym problemem jest utworzenie dla każdego podłączonego
dżojstika osobnego wątku obliczeniowego działającego współbieżnie z głównym wątkiem
aplikacji. Wątek dżojstika będzie czekał w procedurze czytania do chwili pojawienia się da-
nych. Po powrocie z tej procedury wątek wyśle do wskazanegomu okna komunikat, po czym
znów zapadnie się w drzemkę w oczekiwaniu na kolejne dane.

Do realizacji wątków użyłem biblioteki pthread opisanej w podręczniku [20], do którego
odsyłam Czytelników chcących ją poznać. Aby użyć opisanych tu procedur, do listy biblio-
tek dołączanych do aplikacji trzeba dodać bibliotekę pthread, dopisując opcję -lpthread
w odpowiednim miejscu pliku Makefile. Jeszcze jedno: wielowątkowa aplikacja systemu
XWindow powinna przed nawiązaniem komunikacji z serwerem (czyli przed wywołaniem
procedury XOpenDisplay) wykonać instrukcję XInitThreads (); (zobacz listing 3.6).

Struktura MyXJoystick zawiera opis jednego dżojstika; tablica js zawiera tyle takich
struktur, ile maksymalnie dżojstików ma móc jednocześnie obsługiwać aplikacja. Pola fd
i fname zawierają deskryptor i nazwę pliku dżojstika. Pole jsn jest numerem dżojstika —
jest to indeks elementu tablicy js przechowywany w tej strukturze dla uproszczenia kodu.
W polach buttons i axes są pamiętane liczby przycisków i osi. Pole btnmask jest maską
bitową stanu przycisków. Pole window jest identyfikatorem okna, do którego mają być kie-
rowane komunikaty, a pole thread jest identyfikatorem wątku dżojstika.

Pierwsze dwa parametry procedury xOpenJoystick to identyfikator okna, do którego
wątek dżojstika ma wysyłać komunikaty, oraz numer dżojstika. Pozostałe parametry są
wskaźnikami zmiennych, w których ma być zapamiętana nazwa urządzenia i liczby jego
przycisków i osi. Początkowe instrukcje, nawiązujące kontakt z dżojstikiem, są podobne jak
w procedurze OpenJoystick na listingu D.2; w linii 113 jest tworzona nazwa pliku dżoj-
stika, który jest otwierany w linii 114. Drugi parametr procedury open określa otwieranie
tylko do czytania (O_RDONLY), ale bit, któremumożna by nadaćwartość 1 za pomocąmakra
O_NONBLOCK, ma wartość 0, bo teraz operacja czytania ma być blokująca.

W liniach 116–122w polach odpowiedniego elementu (struktury MyXJoystick) są zapa-
miętywane potrzebne informacje, w tym także informacje odczytane z urządzenia za pomocą
procedury ioctl, które w liniach 123–125 są też udostępniane aplikacji.

W liniach 126–129 jest uruchamiany wątek obliczeniowy dżojstika. W zmiennej attr
są zapisywane atrybuty wątku, przy czym większość z nich otrzymuje domyślne wartości
(w szczególności wątek będzie miałminimalną określoną przez bibliotekę pthread wielkość
stosumaszynowego, który i tak jest aż nadto pojemny). Wątekma być odczepiony (detached)
od głównego wątku aplikacji3. Wątek utworzony przez procedurę pthread_create w li-
nii 128natychmiast przystępuje do pracy; wykonuje on opisaną dalej procedurę xJoyThread.

3Po objaśnienia proszę zajrzeć do [20].

1098 D. DŻOJSTIKW APLIKACJACH XWINDOW

Listing D.4. Procedury obsługi dżojstika w XWindow
C

1: #include <string.h>

2: #include <unistd.h>

3: #include <stdio.h>

4: #include <fcntl.h>

5: #include <errno.h>

6: #include <linux/joystick.h>

7: #include <pthread.h>

8: #include <X11/Xlib.h>

9: #include <X11/Xutil.h>

10:

11: #include "xjoystick.h"

12:

13: #if defined(JS_VERSION) && JS_VERSION >= 0x010000

14: #define JOY_AXIS_RANGE 32767.0

15:

16: typedef struct {

17: int fd;

18: char fname[16];

19: char jsn;

20: int buttons, axes;

21: unsigned int btnmask;

22: Window window;

23: pthread_t thread;

24: } MyXJoystick;

25:

26: static MyXJoystick js[MAX_JOY];

27: Atom aJoystick;

28:

29: void xInitJoysticks (void)

30: {

31: int i;

32:

33: memset (js, 0, MAX_JOY*sizeof(MyXJoystick));

34: for (i = 0; i < MAX_JOY; i++)

35: js[i].fd = -1;

36: aJoystick = XInternAtom (xdisplay, "aJoystick", False);

37: } /*xInitJoysticks*/

38:

39: static void PostJoystickEvent (Window win, char jsn, char msg, char number,

40: char pressed, float ang, unsigned int btnmask)

41: {

42: JoyMessage jmsg;

43:

44: jmsg.jsn = jsn; jmsg.msg = msg; jmsg.number = number;

45: jmsg.pressed = pressed; jmsg.angle = ang; jmsg.btnmask = btnmask;

D.2. Komunikacja za pośrednictwem systemu XWindow 1099

46: memset (jmsg.pad, 0, 8*sizeof(char));

47: PostClientMessageEvent (win, aJoystick, 8, (void*)&jmsg);

48: XFlush (xdisplay);

49: } /*PostJoystickEvent*/

50:

51: static void *xJoyThread (void *data)

52: {

53: MyXJoystick *js;

54: struct js_event ev;

55: ssize_t nbytes;

56: int number;

57: char msg;

58:

59: js = (MyXJoystick*)data;

60: for (;;) {

61: errno = 0;

62: nbytes = read (js->fd, &ev, sizeof(struct js_event));

63: if (nbytes < 0) {

64: if (errno == ENODEV || errno == EBADF) {

65: PostJoystickEvent (js->window, js->jsn, JOY_EVENT_OFF,

66: 0, 0, 0.0, 0);

67: if (js->fd >= 0) {

68: close (js->fd);

69: js->fd = -1;

70: }

71: pthread_exit (NULL);

72: }

73: else

74: continue;

75: }

76: switch (ev.type & ~JS_EVENT_INIT) {

77: case JS_EVENT_AXIS:

78: if ((number = ev.number) < js->axes) {

79: msg = ev.type & JS_EVENT_INIT ? JOY_INIT_AXIS : JOY_EVENT_AXIS;

80: PostJoystickEvent (js->window, js->jsn, msg, number, 0,

81: (float)ev.value/JOY_AXIS_RANGE, 0);

82: }

83: continue;

84: case JS_EVENT_BUTTON:

85: if ((number = ev.number) < js->buttons) {

86: msg = ev.type & JS_EVENT_INIT ?

87: JOY_INIT_BUTTON : JOY_EVENT_BUTTON;

88: if (!ev.value)

89: js->btnmask &= ~(1 << ev.number);

90: else

91: js->btnmask |= 1 << ev.number;

92: PostJoystickEvent (js->window, js->jsn, msg,

1100 D. DŻOJSTIKW APLIKACJACH XWINDOW

93: number, ev.value != 0, 0.0, js->btnmask);

94: }

95: continue;

96: default:

97: continue;

98: }

99: }

100: return NULL;

101: } /*xJoyThread*/

102:

103: char xOpenJoystick (Window window, int jsn,

104: char *jname, int *buttons, int *axes)

105: {

106: unsigned char u;

107: pthread_attr_t attr;

108: int rc;

109: char name[MAX_JOY_NAMELENGTH];

110:

111: if (jsn < 0 || jsn >= MAX_JOY)

112: return false;

113: sprintf (js[jsn].fname, "/dev/input/js%d", jsn);

114: if ((js[jsn].fd = open (js[jsn].fname, O_RDONLY)) < 0)

115: return false;

116: js[jsn].jsn = jsn;

117: js[jsn].window = window;

118: ioctl (js[jsn].fd, JSIOCGBUTTONS, &u);

119: js[jsn].buttons = u;

120: ioctl (js[jsn].fd, JSIOCGAXES, &u);

121: js[jsn].axes = u;

122: ioctl (js[jsn].fd, JSIOCGNAME(MAX_JOY_NAMELENGTH), name);

123: if (jname) strncpy (jname, name, MAX_JOY_NAMELENGTH);

124: if (buttons) *buttons = js[jsn].buttons;

125: if (axes) *axes = js[jsn].axes;

126: pthread_attr_init (&attr);

127: pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);

128: rc = pthread_create (&js[jsn].thread, &attr, xJoyThread,

129: (void*)&js[jsn]);

130: if (rc) {

131: pthread_attr_destroy (&attr);

132: xCloseJoystick (jsn);

133: return false;

134: }

135: return true;

136: } /*xOpenJoystick*/

137:

138: char xCloseJoystick (int jsn)

139: {

D.2. Komunikacja za pośrednictwem systemu XWindow 1101

140: if (js[jsn].fd >= 0) {

141: if (js[jsn].thread) {

142: pthread_cancel (js[jsn].thread);

143: js[jsn].thread = 0;

144: }

145: close (js[jsn].fd);

146: js[jsn].fd = -1;

147: return true;

148: }

149: return true;

150: } /*xCloseJoystick*/

151: #else

152: #error "No suitable joystick driver"

153: #endif

Jeśli jednak uruchomienie wątku zakończyło się niepowodzeniem, to w linii 133 ta przykra
wiadomość zostaje przekazana aplikacji.

Parametr procedury xJoyThread (linie 51–101), wykonywanej przez wątek dżojstika, jest
wskaźnikiem odpowiedniej struktury MyXJoystick w tablicy js. Procedura wykonuje nie-
skończoną pętlę, w której czyta plik dżojstika (czekając, ile trzeba, na dane w procedurze
read). W razie błędu uniemożliwiającego dalszą współpracę z dżojstikiem (zobacz pod-
rozdz. D.1) w linii 65 jest wysyłany komunikat o odłączeniu dżojstika, po czym wątek składa
rezygnację z dalszego działania.

Uwaga: Zmienna errno jest jedna i wszystkie wątki, także główny wątek aplikacji, mają do
niej dostęp, co jest potencjalnym źródłem błędów. Nie jest bowiem możliwe zidentyfikowa-
nie przyczyny błędu, gdy wiele wątkóww tym samym czasie wywołuje procedury systemowe
mogące przypisać wartość zmiennej errno4.

Po przeczytaniu danych następuje ich interpretacja: jeśli zgłoszone przez sterownik zda-
rzenie dotyczy osi, to są wykonywane instrukcje w liniach 78–82, a jeśli przycisku, to 85–94.
Po obliczeniu kąta obrotu lub stanu przycisku i aktualnej maski bitowej naciśniętych przy-
cisków (co jest wykonywane identycznie jak w procedurze ReadJoystick z listingu D.2)
wywoływana jest procedura PostJoystickEvent (linie 39–49), która przygotowuje dane
do umieszczenia w komunikacie i wywołuje procedurę PostClientMessageEvent z lis-
tingu 3.8, która z kolei ten komunikat wyśle. Sam fakt wstawienia (przez XSendEvent) ko-
munikatu do kolejki systemu XWindow nie wystarczy, aby ten komunikat od razu dotarł do
adresata. Gdywątek główny aplikacji, „zawieszony”w procedurze XNextEvent, czeka na ko-
munikat, trzeba go odpowiednio „szturchnąć”5. Takie „szturchnięcie” wykonuje procedura
XFlush wywołana w linii 48.

4Jedynym stuprocentowo poprawnym rozwiązaniem wydaje się zastąpienie wątków przez procesy (urucha-
miane przy użyciu procedur fork i exec), ponieważ każdy procesmawłasną zmienną errno, ale to rozwiązanie
wydaje się cokolwiek siłowe.

5Co jest niepotrzebne, gdy głównywątek aplikacji sam do siebie wysyła komunikat: wkrótce po XSendEvent
wywoła procedurę XNextEvent, która znalazłszy od razu komunikat, nie zacznie na niego czekać. Nie ma też
tego problemu z komunikatami wysłanymi przez inne procesy, tj. inne działające w tym samym czasie programy.
Tylko wątki tego samego procesu muszą specjalnie „szturchać”.

1102 D. DŻOJSTIKW APLIKACJACH XWINDOW

Procedura xCloseJoystickmoże byćwywołana przez aplikację, jeśli ta chce zakończyć
współpracę z dżojstikiem bez proszenia użytkownika o wyciągnięcie wtyczki. Postanowienie
o dymisji wręcza wątkowi procedura pthread_cancel, a oprócz tego trzeba zamknąć plik
dżojstika i zapamiętać, że został zamknięty, przypisując polu fd wartość -1.

Listing D.5 przedstawia sposób odbierania przez aplikację komunikatów od dżojstika;
analogiczną procedurę dla aplikacji biblioteki GLFW pokazałem na listingu 3.4. Inwencji
Czytelników pozostawiam zamianę instrukcji wypisujących komunikaty do terminala (nie-
zastąpionych podczas uruchamiania programu) na instrukcje powodujące zmiany reprezen-
tacji obiektów i powodujące wykonywanie ich nowych obrazów.

Listing D.5. Procedura odbierająca komunikaty dżojstika
C

1: void MyJoystickEvent (JoyMessage *jmsg)

2: {

3: printf ("joystick %d:", jmsg->jsn);

4: switch (jmsg->msg) {

5: case JOY_INIT_AXIS:

6: printf (" init axis %d, ang = %f\n", jmsg->number, jmsg->angle);

7: break;

8: case JOY_INIT_BUTTON:

9: printf (" init button %2d, %d, %8x\n", jmsg->number, jmsg->pressed,

10: jmsg->btnmask);

11: break;

12: case JOY_EVENT_AXIS:

13: printf (" axis %d, ang = %f\n", jmsg->number, jmsg->angle);

14: break;

15: case JOY_EVENT_BUTTON:

16: printf (" button %2d, %d, %8x\n", jmsg->number, jmsg->pressed,

17: jmsg->btnmask);

18: break;

19: case JOY_EVENT_OFF:

20: printf (" off\n");

21: break;

22: }

23: } /*MyJoystickEvent*/

24:

25: void MyWinClientMessage (XClientMessageEvent *ev)

26: {

27: if (ev->message_type == aJoystick)

28: MyJoystickEvent ((JoyMessage*)ev->data.b);

29: else /* obsługa innych komunikatów ClientMessage */

30: } /*MyWinClientMessage*/

E
Rzutowanie nieliniowe

Przekształcenie przestrzeni trójwymiarowej na płaszczyznę, które zachowujewspółliniowość
każdej trójki punktów, jest rzutem równoległym albo perspektywicznym. Niekiedy są po-
trzebne inne sposoby rzutowania. Przedstawiam zatem rzuty panoramiczne (na rzutnięwal-
cową, czyli rozwijalną) i rzuty na sferę (która nie jest rozwijalna), razem z propozycją sposobu
ich realizowania w aplikacjach OpenGL-a.

Odwzorowanie punktów danych w układzie współrzędnych modelu do układu kostki
standardowej w rzutowaniu perspektywicznym lub równoległym jest złożeniem przejścia
do układu świata, przejścia od układu świata do układu obserwatora i przejścia od układu
obserwatora do układu kostki standardowej (czego dokładniejszy opis jest w rozdz. 6). Aby
uzyskać każdy z rzutów opisanych niżej, trzeba wprowadzić przekształcenie nieliniowe mię-
dzy ostatnimi dwoma z tych przejść.

E.1. Panorama punktowa

Rzutnia dla panoramy jest fragmentem powierzchni walcowej, który po rozwinięciu jest
prostokątem, odwzorowywanym następnie na klatkę w oknie. Obserwator znajduje się
w punkcie na osi walca. Zatem bryła widzenia jest ograniczona sześcioma powierzchniami:
walcowymi przednią i tylną (zakładamy, że rzutnia jest powierzchnią przednią), stożkowymi
górną i dolną oraz dwiema płaszczyznami bocznymi, zobacz rysunek E.1.

Przyjąłem, że oś walcowej rzutni jest osią y układu obserwatora i wyznacza kierunek
pionowy na obrazie w oknie. Wtedy bryłęwidzenia w układzie obserwatora można opisać za
pomocą pięciu parametrów. Dwa z nich, które oznaczymy n i f (near i far), są promieniami
walców. Kolejne dwa, b i t (bottom i top), są współrzędnymi y punktów na dolnej i górnej
krawędzi wycinka przedniego walca, który będzie odwzorowany w okno. Ostatni parametr,
φ, jest kątem między bocznymi płaszczyznami bryły widzenia1; bryła ta jest symetryczna
względem płaszczyzny yz układu obserwatora.

1Wszystkie kąty mierzę w radianach.

1104 E. RZUTOWANIE NIELINIOWE

−n

− f

x

y

z
b

.

t

.

t

.

Rysunek E.1. Bryła widzenia panoramy punktowej

Długość dolnego i górnego brzegu przedniej ściany bryły widzenia (która po rozwinięciu
jest szerokością prostokąta z obrazem) jest równa nφ. Aby zatem osiągnąć jednakowe ska-
lowanie w pionie i poziomie na ekranie o współczynniku aspektu a dla klatki o szerokości
w pikseli i wysokości h pikseli, trzeba spełnić następujący warunek:

aw ∶ h = nφ ∶ t − b.

Stąd dla ustalonej wysokości t − b przedniej ściany bryły widzenia2 należy przyjąć

φ =
t − b

n

aw

h
.

Przekształcenie nieliniowe wstawione przed przejściem do układu kostki standardowej
jest zamianą współrzędnych x , y, z na x′, y′, z′, opisaną wzorami

x′ = arc tg
x

−z
, y′ = y/r, z′ = −r, w których r =

√
x2 + z2 .

Przekształcając punkt reprezentowany za pomocąwspółrzędnych jednorodnych X ,Y , Z ,W ,
możemy użyć wzorów

X′ = arc tg
X

−Z
, Y ′ = Y/R, Z′ = −R/W , W ′ = 1, podstawiając R =

√
X2 + Z2.

Przekształcenie to odwzorowuje bryłę widzenia na prostopadłościan. Macierz P przekształ-
cającą go na kostkę standardową skonstruuje procedura M4x4Orthof (listing 6.2) wywołana
z parametrami left = −φ/2, right = φ/2, bottom = b/n, top = t/n, near = n, far = f .

2Możemy ją wybrać tak samo jak dla rzutowania perspektywicznego w pierwszej aplikacji, zobacz s. 152.

E.2. Panorama linearna 1105

E.2. Panorama linearna

Wszystkie proste łączące punkty w przestrzeni i ich obrazy na walcowej rzutni w opisanej
wyżej panoramie przecinają się w jednym punkcie — położeniu obserwatora, stąd nazwa:
panorama punktowa. Możemy określić takie rzutowanie na powierzchnię walca, w którym
analogiczne proste przecinają oś walca pod ustalonym kątem; wtedy „środki rzutowania”
zajmują odcinek na tej osi, w związku z czym takie odwzorowanie przestrzeni na płaszczyznę
wypada nazwać panoramą linearną.

−n

− f

x

y

z

.

b

t

.

b

t

.

Rysunek E.2. Bryła widzenia panoramy linearnej

Bryła widzenia panoramy linearnej jest ograniczona dwoma walcami (wewnętrznym,
czyli „przednim” i zewnętrznym, „tylnym”), dwiema powierzchniami stożkowymi („dolną”
i „górną”) i dwiema płaszczyznami bocznymi. Można ją opisać za pomocą sześciu paramet-
rów: liczby n i f są promieniami walców, liczby b i t wyznaczają końce odcinka środków
rzutowania na osi walców i stożków (osi y układu współrzędnych obserwatora), liczba φ jest
miarą kątamiędzy płaszczyznami bocznymi, a liczba ϑ określa kątmiędzy prostymi rzutowa-
nia a płaszczyzną xz.3 Ale potrzebny jest jeszcze jeden parametr—odległość d od osi walców
obiektów, dla których skalowanie wymiarówpoziomych i pionowych na obraziema być takie
samo (zapewne przyjmiemy n < d < f). Rzutnia w tym przypadku jest walcem o promie-
niu d, którego rozwinięty i odwzorowany na klatkę fragment ma szerokość dφ i wysokość
t − b. W panoramie linearnej skalowanie wymiarów pionowych jest stałe, a poziomych jest
odwrotnie proporcjonalne do tej odległości4. Dla klatki o wymiarachw × h pikseli (na ekra-

3Jeśli ϑ = 0, to górna i dolna powierzchnia bryły widzenia są płaskie.
4W panoramie punktowej skalowanie obu osi zmienia się z tą odległością.

1106 E. RZUTOWANIE NIELINIOWE

nie o współczynniku aspektu a) należy przyjąć

φ =
t − b

d

aw

h
.

Przekształcenie nieliniowe współrzędnych kartezjańskich punktu danego w układzie ob-
serwatora opiszemy wzorami

x′ = arc tg
x

−z
, y′ = y + r tg ϑ , z′ = −r, r =

√
x2 + z2 ,

a równoważne przekształcenie współrzędnych jednorodnych jest takie:

X′ = arc tg
X

−Z
, Y ′ = (Y + R tg ϑ)/W , Z′ = −R/W , W ′ = 1, R =

√
X2 + Z2.

Przejście od tak obliczonych współrzędnych X′,Y ′ , Z′,W ′ do układu kostki standardowej
zapewni macierz P skonstruowana przez procedurę M4x4Orthof (listing 6.2) na podstawie
parametrów left = −φ/2, right = φ/2, bottom = b, top = t, near = n, far = f , przy
czym liczby b i t mają spełniać warunek opisany wcześniej; można przyjąć „symetrycznie”
t = −b = dφh/(2aw).
E.3. Rzutowanie na sferę

Płaski obraz przestrzeni możemy otrzymać jako złożenie dwóch rzutów, z których pierwszy
przekształca przestrzeńna sferę, a drugi jest rzutem równoległymwycinka tej sfery na prosto-
kąt. W ten sposób powstają obrazy przypominające fotografie wykonane przez obiektywy
typu „rybie oko”.

−n

− f

x

y

z

Rysunek E.3. Bryła widzenia w rzutowaniu na sferę

E.4. Rozdrabnianie w rzutowaniu nieliniowym 1107

Aby opisać bryłę widzenia pokazaną na rysunku E.3, trzeba podać parametry n i f , które
określają minimalną i maksymalną odległość jej punktów od obserwatora (czyli promienie
sfery „wewnętrznej” i „zewnętrznej”, wyznaczającej przednią i tylną ścianę bryły) i cztery
kąty, oznaczone symbolami φl , φr, ϑb i ϑt, które muszą spełniać nierówności −π/2 < φl <
φr < π/2 i −π/2 < ϑb < ϑt < π/2. Powierzchnie ograniczające bryłę widzenia z dołu, z góry
i z boków są stożkami obrotowymi. Najczęściej przyjmiemy φl = −φr i ϑb = −ϑt i wtedy
bryła widzenia będzie symetryczna względem płaszczyzn yz i xz.

Przekształcenie nieliniowe współrzędnych kartezjańskich punktu w układzie obserwa-
tora możemy opisać wzorami

x′ =
x

r
, y′ =

y

r
, z′ = −r, r =

√
x2 + y2 + z2 ,

a wtedy współrzędne jednorodne trzeba przekształcić według wzorów

X′ =
X

R
, Y ′ =

Y

R
, Z′ = −R/W , W ′ = 1, R =

√
X2 + Y2 + Z2.

W ten sposób otrzymujemy rzut środkowy przestrzeni na sferę jednostkową5. Aby otrzymać
poprawne skalowanie w pionie i poziomie, przy dobieraniu kątów dowymiarów klatki trzeba
spełnić proporcję

sinφr − sinφl

aw
=
sin ϑt − sin ϑb

h
.

Przejście do układu kostki standardowej zapewni macierz P skonstruowana przez procedurę
M4x4Orthof, której trzeba podać parametry left = sinφl , right = sinφr, bottom = sin ϑb,
top = sin ϑt, near = n, far = f .

E.4. Rozdrabnianie w rzutowaniu nieliniowym

Listing E.1 przedstawia procedurę, która dokonuje jednego z opisanych wyżej przekształceń
nieliniowych. Przekształcenie jest określone przez zawartość bloku zmiennych jednolitych
NLProjection, którego pole type określa rodzaj przekształcenia, a pole tanthetama war-
tość tg ϑ, potrzebną w panoramie linearnej. Wywoływane przez tę procedurę funkcje atan
i length są opisane w podrozdziale 9.13.

Listing E.1. Procedura przekształceń nieliniowych
GLSL

1: #define PROJ_POINT_PANORAMA 1

2: #define PROJ_LINEAR_PANORAMA 2

3: #define PROJ_SPHERICAL 3

4:

5Rysunek E.3 przedstawia sytuację, w której n = 1.

1108 E. RZUTOWANIE NIELINIOWE

5: uniform NLProjection {

6: int type;

7: float tantheta;

8: } nlp;

9:

10: vec4 NonlinTransformation (vec4 p)

11: {

12: float R;

13:

14: switch (nlp.type) {

15: case PROJ_POINT_PANORAMA:

16: R = length (p.xz);

17: return vec4 (atan (-p.z, p.x), p.y/R, -R/p.w, 1.0);

18: case PROJ_LINEAR_PANORAMA:

19: R = length (p.xz);

20: return vec4 (atan (-p.z, p.x), (y+R*nlp.tantheta)/p.w, -R/p.w, 1.0);

21: case PROJ_SPHERICAL:

22: R = length (p.xyz);

23: return vec4 (p.x/R, p.y/R, -R/p.w, 1.0);

24: default: return p;

25: }

26: } /*NonlinTransformation*/

W implementacji rzutowania nieliniowego wyprowadzenie i oprogramowanie wzorów,
na podstawie których odbywa się rzutowanie, jest tą łatwą częścią zadania. Znacznie więk-
szy problem sprawia to, że obrazem odcinka w tych rzutach jest na ogół zakrzywiony łuk
(w panoramach szerszych niż π to mogą być dwa łuki), a ponadto bryły widzenia dla tych
rzutów nie są wypukłe i nie są wielościenne. Dlatego po przekształceniu wierzchołków pry-
mitywu do narysowania — odcinka lub trójkąta— trzeba go obciąć (przynajmniej zgrubnie,
do wielościanu otaczającego bryłęwidzenia), a następnie rozdrobnić na dostatecznie krótkie
odcinki lub dostatecznie małe trójkąty i poddać przekształceniu (nieliniowemu, a następnie
przejściu do układu kostki standardowej) wierzchołki tych odcinków lub trójkątów. Przy tym
zachodzi konieczność obcięcia i rozdrobnienia boków trójkątów w taki sposób, aby na obra-
zie powierzchni złożonej z wielu trójkątów nie było szczelin między trójkątami o wspólnych
bokach.

Przykładowy szader geometrii na listingu E.2 zamienia odcinek na łamaną. W kwalifika-
torze wyjścia takiego szadera (linia 6) trzeba podaćmaksymalną liczbę wierzchołków, które
szader ten może wyprowadzić, przy czym w trakcie pracy może ich wyprowadzićmniej, jeśli
mniejszy stopień rozdrobnienia łamanej wystarczy do otrzymania dostatecznej dokładnoś-
ci obrazu. Wierzchołki łamanej, tj. końce fragmentów rozdrobnionego odcinka, są prze-
kształcane zgodnie z opisem wybranego rzutowania (perspektywicznego lub nieliniowego)
do układu kostki standardowej. Szader na listingu nie zawiera procedury obcinania odcinka,
koniecznej w zastosowaniach bardziej zaawansowanych niż tylko wykonanie ilustracji do
jednej książki.

E.4. Rozdrabnianie w rzutowaniu nieliniowym 1109

Listing E.2. Rozdrabnianie i rzutowanie nieliniowe odcinka
GLSL

1: #version 420

2:

3: #define N 30

4:

5: layout(lines) in;

6: layout(line_strip,max_vertices=N) out;

7:

8: uniform TransBlock {

9: mat4 mm, mmti, vm, pm;

10: vec4 eyepos;

11: } trb;

12:

13: vec4 NonlinTransformation (vec4 p) { /* listing E.1 */ }

14:

15: void main (void)

16: {

17: int i;

18: vec4 p;

19:

20: for (i = 0; i < N; i++) {

21: p = mix (gl_in[0].gl_Position, gl_in[1].gl_Position,

22: float(i)/float(N-1));

23: gl_Position = trb.pm*(NonlinTransformation (trb.vm*(trb.mm*p)));

24: EmitVertex ();

25: }

26: EndPrimitive ();

27: } /*main*/

Listing E.3 przedstawia najprostszy sposób rozdrabniania trójkąta przez szader geometrii.
Dla ustalonej liczby N powstaje z niego N taśm trójkątowych, złożonych odpowiednio z 1, 3,
5, . . . , 2N − 1 trójkątów. Trójkąty te mają wiele wierzchołków wspólnych, zatem obliczenie
przebiega w dwóch etapach: najpierw wierzchołki sąwyznaczane, przekształcane i zapamię-
tywane w tablicach, z których zostaną wyprowadzone w drugim etapie. Całkowita liczba
wierzchołków, czyli potrzebna długość tablic, jest równa (N + 1)(N +2)/2, liczba wierzchoł-
ków wyprowadzonych jest natomiast większa, bo wierzchołki wspólne dla dwóch taśm są
wyprowadzane dwukrotnie. Stąd liczba wierzchołków przekazywanych na wyjście, zadekla-
rowana w kwalifikatorze w linii 5 jest równa N(N + 2).

Rysunek E.4 przedstawia schemat podziału trójkąta. Wierzchołki jego fragmentów są po-
numerowane parami liczb (i , j), przy czym 0 ⩽ j ⩽ i ⩽ N . Makrodefinicja TR_MAT_INDEX
zamienia taką parę na indeks do tablic jednowymiarowych, w których szader zapisuje wyniki
obliczeń pierwszego etapu. Pokazany szader przekazuje następujące atrybuty: wektor współ-
rzędnych jednorodnych położenia wierzchołka w układzie kostki standardowej (w tablicy
ppp), wektor współrzędnych kartezjańskich w układzie świata (w tablicy pos), kolor (w tab-
licy ccc) i położenie obserwatora (w tablicy epos).

1110 E. RZUTOWANIE NIELINIOWE

p0

p1

p2

i

j

0

1

2

3

4

5

6

7

8

9

Rysunek E.4. Schemat podziału trójkąta na taśmy

Listing E.3. Rozdrabnianie i rzutowanie nieliniowe trójkąta
GLSL

1: #version 420

2:

3: #define N 6

4: #define TN 28 /* (N+1)*(N+2)/2 */

5: #define NN 48 /* N*(N+2) */

6:

7: layout(triangles) in;

8: layout(triangle_strip,max_vertices=NN) out;

9:

10: in Vertex {

11: vec4 Colour;

12: } In[];

13:

14: out FVertex {

15: vec4 eyepos;

16: vec4 Colour;

17: vec3 Position;

18: vec3 Normal;

19: } Out;

20:

21: uniform TransBlock { /* listing E.2 */ } trb;

22: uniform NLProjection { /* listing E.2*/ } nlp;

23:

24: #define TR_MAT_INDEX(i,j) ((i)*((i)+1)/2+(j))

25:

26: vec3 nv;

27: vec4 ppp[TN], ccc[TN], epos[TN];

28: vec3 pos[TN];

29:

E.4. Rozdrabnianie w rzutowaniu nieliniowym 1111

30: vec4 NonlinTransformation (vec4 p) { /* listing E.1 */ }

31:

32: void Emit (int i, int j)

33: {

34: int k;

35:

36: k = TR_MAT_INDEX (i, j);

37: gl_Position = ppp[k];

38: Out.eyepos = epos[k];

39: Out.Position = pos[k];

40: Out.Normal = nv;

41: Out.Colour = ccc[k];

42: EmitVertex ();

43: } /*Emit*/

44:

45: void main (void)

46: {

47: int i, j, k;

48: vec3 v1, v2;

49: vec4 p, q;

50: mat4 vmi;

51: float x, y, z;

52:

53: v1 = (trb.mm*(gl_in[1].gl_Position - gl_in[0].gl_Position)).xyz;

54: v2 = (trb.mm*(gl_in[2].gl_Position - gl_in[0].gl_Position)).xyz;

55: nv = normalize (cross (v1, v2));

56: if (nlp.type == PROJ_LINEAR_PANORAMA)

57: vmi = inverse (trb.vm);

58: for (i = k = 0; i <= N; i++) {

59: x = float(N-i)/float(N);

60: for (j = 0; j <= i; j++, k++) {

61: y = float(i-j)/float(N);

62: z = 1.0 - x - y;

63: p = trb.mm * (x*gl_in[0].gl_Position + y*gl_in[1].gl_Position +

64: z*gl_in[2].gl_Position);

65: pos[k] = p.xyz/p.w;

66: q = NonlinTransformation (trb.vm*p);

67: ppp[k] = trb.pm * q;

68: if (nlp.type == PROJ_LINEAR_PANORAMA) {

69: q.x = q.z = 0.0;

70: epos[k] = vmi*q;

71: }

72: else

73: epos[k] = trb.eyepos;

74: ccc[k] = x*In[0].Colour + y*In[1].Colour + z*In[2].Colour;

75: }

76: }

1112 E. RZUTOWANIE NIELINIOWE

77: for (i = 1; i <= N; i++) {

78: Emit (i, 0);

79: for (j = 0; j < i; j++) {

80: Emit (i-1, j);

81: Emit (i, j+1);

82: }

83: EndPrimitive (); /* koniec taśmy */

84: }

85: } /*main*/

Ten ostatni atrybut wymaga wyjaśnienia. W przypadku rzutu perspektywicznego, pa-
noramy punktowej i rzutowania na sferę położenie obserwatora, tj. środek rzutowania, jest

Rysunek E.5. Rzut perspektywiczny i panorama punktowa

E.4. Rozdrabnianie w rzutowaniu nieliniowym 1113

jednym punktem, którego współrzędne są podane w zmiennej jednolitej trb.eyepos i już.
W panoramie linearnej jest wiele położeń obserwatora, które tworzą odcinek (rys. E.2). Sza-
der fragmentów potrzebuje znać położenie obserwatora do badania, czy poszczególne źródła
światła znajdują się po tej samej stronie co obserwator, czy po przeciwnej, i do obliczania
odblasków. Dlatego zestaw atrybutów punktu na trójkącie, przetwarzanego przez szader
fragmentów, powinien zawierać położenie obserwatora, z którego został otrzymany obraz
tego punktu.

Szader oblicza położenia obserwatora dla poszczególnych wierzchołków trójkąta, po
czym są one interpolowane, tak jak każdy inny atrybut, w etapie rasteryzacji. Jeśli jest
wybrana panorama linearna, to obliczenie położenia obserwatora polega na znalezieniu jego
położenia w układzie współrzędnych obserwatora (co jest robione w liniach 66 i 69) i przejś-

Rysunek E.6. Panorama linearna (z kątem ϑ = 0) i rzut na sferę

1114 E. RZUTOWANIE NIELINIOWE

ciu do układu świata w linii 70. Dla pozostałych rzutów współrzędne położenia obserwatora
są kopiowane z bloku zmiennych jednolitych trb.

W liniach 53–55 obliczany jest wektor normalny trójkąta. Zauważmy, że to jest wspólny
wektor normalny wszystkich fragmentów tego trójkąta.

Adaptacyjne (dostosowane do wielkości i kształtu obrazu) rozdrabnianie trójkątów przez
szader geometrii jest znacznie trudniejsze niż rozdrabnianie odcinków, bo zazwyczaj trój-
kąty przylegają bokami do innych trójkątów, tworząc powierzchnie, które nie powinny mieć
szczelin. Dlatego adaptacyjne algorytmy rozdrabniania, dające poprawne wizualnie wyniki,
są dość skomplikowane. Dla każdego boku trójkąta trzeba indywidualnie ustalić liczbę od-
cinków, na które ten bok zostanie podzielony, przy czym liczba ta nie może zależeć od trze-
ciego wierzchołka trójkąta. Po podzieleniu boków trzeba dokonać podziałuwnętrza trójkąta,
co może prowadzić do wygenerowania różnych zbiorów taśm trójkątowych i algorytm musi
obsługiwać wszystkie możliwe (w ramach przyjętego ograniczenia stopnia rozdrobnienia)
przypadki. Kolejną komplikacją jest konieczność wstępnego obcięcia trójkątów do bryły wi-
dzenia (lub wielościanu zawierającego bryłę widzenia), przy czym nie ma prostego sposobu
wykorzystania „gotowych” algorytmów wbudowanych w etap obcinania prymitywów w po-
toku przetwarzania grafiki. Alternatywą jest skorzystanie z szaderów rozdrabniania zamiast
geometrii, co jednak ma tę wadę, że wszystkie obiekty trzeba rysować jako płaty6. Ogra-
niczywszy się do pokazania na rysunkach E.5 i E.6 obrazów otrzymanych (bez adaptacji)
w rzucie perspektywicznym i w opisanych w podrozdziałach E.1–E.3 rzutach nieliniowych,
pozostawiam te zagadnienia jako problemy otwarte.

6Perspektywę punktową i rzut na sferęmożna zrealizować znacznie prościej, za pomocą przetwarzania obra-
zu. Wystarczy wykonać obraz w rzucie perspektywicznym, a następnie nałożyć go jako teksturę na prostokąt,
wprowadzając odpowiednią dystorsję. Nie da się jednak otrzymaćw ten sposób obrazów zwieloma położeniami
obserwatora, takich jak perspektywa linearna.

F
Rysowanie fraktali

F.1. ZbiórMandelbrota

Wódz indiański znad Missisipi
Zapytany, ile ma tipi,
Zamiast skończyć kolację,
Zapadł się wmedytację
I oznajmił: e2iπ . Howgh.

F.1.1. Liczby zespolone

Licząc się z tym, że do lektury tej książki przystąpią Czytelnicy nieznający jeszcze liczb ze-
spolonych, zamieszczam niezbędne minimum informacji na ich temat. Liczby zespolone są
parami liczb rzeczywistych, (a, b) lub (x , y), czyli wektorami współrzędnych kartezjańskich
punktów na płaszczyźnie1. Często zapisuje się je w postaci a+bi lub x+ yi. Pierwszy element
pary jest nazywany częścią rzeczywistą, a drugi częścią urojoną liczby zespolonej.

Dodawanie liczb zespolonych jest zwykłym dodawaniem wektorów w przestrzeni R2,
a mnożenie jest określone wzorem

(a1, b1)(a2, b2) = (a1a2 − b1b2, a1b2 + b1a2). (F.1)

Tak określonemnożenie jest działaniem łącznym, przemiennym i rozdzielnymwzględemdo-
dawania — zbiór liczb zespolonych z tymi działaniami, oznaczany symbolem C, jest ciałem.
Zerem w tym ciele jest liczba (0, 0), a jedynką liczba (1, 0). Ograniczając dodawanie i mno-
żenie do liczb, których części urojone są równe 0, otrzymamy wyniki, których części rze-
czywiste są sumami albo iloczynami części rzeczywistych argumentów tych działań, a części
urojone są zerem. W ten sposób ciało liczb rzeczywistych R jest „zanurzone” w ciele C: mo-
żemy wykonywać dodawanie i mnożenie liczb zespolonych i rzeczywistych, doczepiając do
tych ostatnich część urojoną 0.

1Płaszczyznę, której punkty traktujemy jak liczby zespolone, nazywamy płaszczyznąGaussa lub płaszczyzną
zespoloną.

1116 F. RYSOWANIE FRAKTALI

Wartość bezwzględna liczby z = (x , y) jest to liczba rzeczywista ∣z∣ = √x2 + y2. Dla
dowolnych liczb z1, z2 jest ∣z1z2∣ = ∣z1∣∣z2∣. Liczba sprzężona z z jest to liczba z = (x ,−y).
Iloczyn zz jest równy (x2 + y2, 0), a zatem jego część rzeczywista jest kwadratem liczby ∣z∣.
Odwrotność liczby z ≠ (0, 0), czyli liczba z−1, taka że zz−1 = (1, 0), jest równa 1

∣z∣2
z.

Jedynka urojona jest to liczba (0, 1), oznaczana najczęściej literą i. Jest i2 = (−1, 0), a więc
liczba i (a także −i = (0,−1)) jest pierwiastkiem kwadratowym z −1.

Liczby zespolone można przedstawiać w postaci trygonometrycznej, tj. jako iloczyn
liczby rzeczywistej ∣z∣ i liczby zespolonej o wartości bezwzględnej 1:

z = ∣z∣(cosφ, sinφ).
Jeśli liczba z nie jest zerem, to liczba rzeczywista φ ∈ [−π, π), zwana argumentem liczby z,
jest jednoznacznie określona. Liczby ∣z∣, φ sąwspółrzędnymi biegunowymi punktu na płasz-
czyźnie, którego współrzędnymi kartezjańskimi są części x , y liczby z.

Iloczyn dwóch liczb zespolonych zapisanych w postaci trygonometrycznej jest równy

z1z2 = ∣z1∣(cosφ1, sinφ1)∣z2∣(cosφ2, sinφ2) = ∣z1∣∣z2∣(cos(φ1 + φ2), sin(φ1 + φ2)).
Jego wartość bezwzględna jest iloczynem wartości bezwzględnych czynników, a argument
jest sumą ich argumentów2. Liczby zespolone o wartości bezwzględnej 1 reprezentują ob-
roty płaszczyzny; chcąc obrócić punkt (x , y)wokół początku układu współrzędnych o kąt φ,
wystarczy pomnożyć go, jako liczbę zespoloną, przez liczbę (cosφ, sinφ).

Całkowite potęgi liczb zespolonych opisuje wzór de Moivre’a:

zk = ∣z∣k(cos kφ, sin kφ).
Ten sam wzór definiuje potęgowanie także wtedy, gdy wykładnik jest dowolną liczbą rzeczy-
wistą3. Ostatni wzór, który tu podam, zamienia postać trygonometryczną liczby zespolonej
na postać wykładniczą, zapisaną przy użyciu podstawy logarytmu naturalnego (liczby Eu-
lera) e = 2.71828 . . .; ma miejsce równość ∣z∣(cosφ, sinφ) = ∣z∣eiφ. Wódz o tym wiedział.

F.1.2. Iterowanie wielomianu kwadratowego

ZbiórMandelbrota składa się z tych liczb zespolonych c, dla których nieskończony ciąg liczb
z0, z1, z2, . . . określonych wzorami z0 = 0 oraz zk+1 = z2k + c jest ograniczony. Wartości bez-
względne wszystkich takich liczb nie są większe niż 2, a więc cały zbiór Mandelbrota jest
zawarty w kole o promieniu 2. Po utożsamieniu wybranego prostokąta w płaszczyźnie ze-
spolonej z obszarem okna na ekranie można dla każdego piksela znaleźć odpowiadającąmu
liczbę c, a następnie obliczać kolejne wyrazy ciągu, kończąc po osiągnięciu ustalonego limitu
liczby wyrazów lub po wcześniejszym otrzymaniu takiej liczby zk , że ∣zk ∣ > R, dla ustalonego

2Do tej sumy może być potrzebne dodanie lub odjęcie 2π, aby otrzymać argument z przedziału [−π, π).
3Uwaga: Wprawdzie (cos(φ + 2mπ), sin(φ + 2mπ)) = (cosφ, sinφ) dla każdej liczby całkowitej m, ale

jeśli t nie jest liczbą całkowitą, a m ≠ 0, to nie musi być (cos t(φ + 2mπ), sin t(φ + 2mπ)) = (cos tφ, sin tφ).

F.1. Zbiór Mandelbrota 1117

R ⩾ 2. Kolor piksela można wybrać na podstawie liczby k, otrzymując pokolorowany obraz
otoczenia zbioru Mandelbrota.

Funkcja, której wartością dla każdego punktu c płaszczyzny zespolonej jest najmniejsza
liczba całkowita k, taka że ∣zk ∣ > R, lub ∞, jeśli taka liczba nie istnieje, jest nieciągła. Na
potrzeby grafiki warto ją „uciąglić”, czyli tak zmodyfikować, aby otrzymać funkcję ciągłą poza
zbioremMandelbrota4. Najprostsza taka funkcja jest określona wzorem

f (c) = k + R − ∣zk−1∣∣zk ∣ − ∣zk−1∣ ,
w którym ∣zk−1∣ ⩽ R < ∣zk ∣. Jej ciągłość wynika stąd, że dla każdego k > 0 funkcja wk(c) = zk
jest wielomianem (stopnia 2k−1), a więc jest funkcją ciągłą.

x

y

−2

.

−1

.

−1

..

0
φ

φ

.

0
φ

φ

.

Rysunek F.1. Obszary wewnątrz zbioru Mandelbrota

Duża część zbioru Mandelbrota składa się z koła o środku (−1, 0) i promieniu 1
4
oraz

obszaru, którego brzegiem jest krzywa zwana kardioidą opisana przez punkt okręgu o pro-
mieniu 1

4
toczącego się po okręgu o środku (0, 0) i tym samym promieniu (rys. F.1). Warto

sprawdzić, czy odpowiadającapikselowi liczba c = (x , y) leży w tym kole lubw tymobszarze,
bo jeśli tak, to ciąg jest ograniczony i można od razu zaniechać obliczania jego wyrazów.

Punkt (x , y) leży we wspomnianym kole, gdy (x + 1)2 + y2 ⩽ 1
16
. Nieco bardziej skompli-

kowane jest badanie, czy punkt leży w obszarze ograniczonym przez kardioidę. Jeśli okrąg,
po którym toczy się drugi okrąg, przesuniemy tak, aby jego środek byłw punkcie (− 1

4
, 0), to

opis kardioidy we współrzędnych biegunowych ma postać

r(φ) = 1

2
(1 − cosφ), φ ∈ [0, 2π).

Na tej podstawie można (najpierw spróbuj samodzielnie, a potem zajrzyj na stronę [60])
znaleźć funkcję opisaną wzorem

w(x , y) = (x̂2 + y2)2 + x̂(x̂2 + y2) − y2/4,
4Dokładniej, ciągłą w każdym kole, którego brzeg nie przecina zbioru Mandelbrota; funkcja pozostanie

w jego otoczeniu nieograniczona, a zatem nieciągła.

1118 F. RYSOWANIE FRAKTALI

w którym x̂ = x − 1
4
. Funkcja ta ma wartość 0 we wszystkich punktach kardioidy, ujemną

w ograniczonym przez nią obszarze i dodatnią poza tym obszarem.
Dwie rzeczy w aplikacji wyświetlającej obrazy zbioru Mandelbrota mogą być zmieniane

w czasie rzeczywistym: prostokąt, który można przesuwać i zmniejszać lub powiększać, oraz
paleta, czyli odwzorowanie wartości funkcji f (c) na kolor. Zazwyczaj limit N liczby iteracji,
po osiągnięciu którego obliczenia są przerywane, jest rzędu kilkuset do kilku tysięcy, wskutek
czego wykonanie obrazu trwa zbyt długo, aby można było osiągnąć płynną animację wybie-
rania prostokąta. Ale przekształcanie liczby na kolor zabiera bardzomało czasu, a po zmianie
palety nie trzeba na nowo liczyć iteracji dla każdego piksela. Z tego powodu sensowne wy-
daje się wykonywanie obrazów w dwóch etapach: w pierwszym dla każdego piksela trzeba
znaleźć odpowiednią liczbę c, a potem obliczyć i zapamiętaćwartość funkcji f (c), albo liczbę
przyjętą do zakodowania nieskończoności, jeśli ∣zN ∣ ⩽ R. W drugim etapie trzeba narysować
prostokąt w oknie, kolorując go na podstawie zapamiętanych liczb i bieżącej palety.

Listing F.1. Szader wierzchołków
GLSL

1: #version 450 core

2:

3: void main (void)

4: {

5: const vec4 p[4] = { vec4(-1,-1,0,1), vec4(1,-1,0,1),

6: vec4(1,1,0,1), vec4(-1,1,0,1) };

7:

8: gl_Position = p[gl_VertexID];

9: } /*main*/

Listing F.1 przedstawia szader, którego zadaniem jest wyprowadzenie jednego wierzchoł-
ka kwadratu w układzie kostki standardowej; obraz kwadratu o boku 2, położonego w płasz-
czyźnie xy i o środku w początku układu wypełni klatkę (zajmującą całe okno aplikacji).
Szader ten wchodzi w skład programów używanych w obu etapach wykonywania obrazu.
Odwzorowanie współrzędnych fragmentu (piksela) w oknie w płaszczyznę zespoloną wy-
kona szader fragmentów pierwszego z tych programów.

Blok zmiennych jednolitych zawierający dane potrzebne do tego odwzorowania jest
przedstawiony na listingu F.2. Wartości pól zmiennej rxy opisują wybrany prostokąt; x i y
przechowująwspółrzędne x lewego i prawego boku, a z i wwspółrzędne y dolnego i górnego
boku tego prostokąta. W zmiennej wh są przechowywane wymiary (szerokość i wysokość)
klatki w pikselach. Pozostałe pola są opisane dalej.

Listing F.2. Blok TransBlock szaderów fragmentów
GLSL

1: uniform TransBlock {

2: dvec4 rxy;

3: dvec2 wh;

4: int width, mag, maxit, currit, diter;

5: } tr;

F.1. Zbiór Mandelbrota 1119

Najefektowniejsze obrazy zbioru Mandelbrota przedstawiają fragmenty jego otoczenia
w bardzo dużym powiększeniu. Użytkownik aplikacji może odwzorować w okno tak mały
fragment płaszczyzny zespolonej, że współrzędne punktów odpowiadających sąsiednim pik-
selom (czyli części rzeczywiste i urojone liczb zespolonych będących tymi punktami) mogą
być reprezentowane przez te same liczby zmiennopozycyjne, przez co jakość obrazów spada.
Użyjemy podwójnej precyzji: zmienne rxy i wh są typu dvec4 i dvec2, ale i tak konieczne
są ograniczenia. Jeśli obliczenia elementów ciągu są prowadzone w podwójnej precyzji, to
można dopuścićminimalną średnicę prostokąta rzędu 10−13.

W polu maxit jest podany limit liczby iteracji. Wartość m pola mag (1 lub 3) określa
powiększenie obrazu wykonywanego w pierwszym etapie; obrazy fraktali powinny być anty-
aliasowane i dlatego obraz ten (czyli tablica, w której będą zapamiętywane liczbywykonanych
iteracji) ma rozdzielczość m razy większą niż obraz końcowy.

Jeśli limitN liczby iteracji jest rzędu kilku lub kilkunastu tysięcy, to nawet największamoc
obliczeniowaGPU5 niewystarczy dowykonywania obliczeń dostatecznie szybko, abymożna
było, zmieniając prostokąt, otrzymaćpłynną animację obrazów6; opóźnieniamogą byćnawet
rzędu sekundy. Można się z tym pogodzić lub opracować pewien kompromis: iteracje wyko-
nywać podetapami i wyświetlać obrazy tego, co GPU zdążyła policzyć w ustalonym limicie
czasu, dostatecznie krótkim, aby aplikacja płynnie reagowała na działania użytkownika. Jeśli
podczas trwania podetapu prostokąt został zmieniony, to dla nowego prostokąta trzeba ob-
liczenia zacząć od początku, a jeśli nie, to można wykonać kolejny podetap, w którym liczba
iteracji będzie dostosowana domocy obliczeniowej GPU. To rozwiązanie ma swoją cenę: jest
nią duże zapotrzebowanie na pamięć GPU. Na przykład obraz o rozdzielczości 4K ma wy-
miary 3480 × 2160 pikseli. Z włączonym antyaliasingiem dla każdego piksela będziemy ite-
rować wielomiany odpowiadające 9 punktom płaszczyzny zespolonej. Dla każdego takiego
punktu c będzie trzeba pamiętać wartość funkcji f (c) w zmiennej typu float, oraz liczbę
zespoloną zk−1 w zmiennej typu dvec2. Zajmie to w sumie 1492992000 bajtów, czyli prawie
półtora gigabajta.

Listing F.3 przedstawia szader fragmentów pierwszego etapu rysowania. Wyniki jego ob-
liczeń, czyli wartości funkcji f , trafiają do obrazu img przy użyciu procedury imageStore,
dlatego ten szader zawsze kończy działanie instrukcjądiscard. Kwalifikatorr32fwdeklara-
cji zmiennej img oznacza, że każdy piksel w tym obrazie ma tylko jedną składową, reprezen-
towaną jako 32-bitowa liczba zmiennopozycyjna. Niestety, dostępne w OpenGL-u formaty
obrazów nie dająmożliwości pamiętania pikseli o składowych podwójnej precyzji7, dlatego
liczby zk , które trzeba pamiętać między podetapami pierwszego etapu rysowania, są prze-
chowywane w bloku magazynowym Cmap, zawierającego odpowiednio długą tablicę.

Symbole INF0, INF1 i INF2 reprezentują trzy liczby większe niż największy przewidy-
wany limit liczby iteracji; pierwsza z nich ma sygnalizować odkrycie, że punkt c leży w kole,
druga, że w obszarze ograniczonym kardioidą, a trzecia oznacza, że wykonane iteracje nie
wystarczyły do stwierdzenia rozbieżności ciągu. Umożliwia to późniejsze nadanie odpowied-
nim pikselom innych kolorów.

5istniejących w chwili pisania tego tekstu
6Istotna jest też wielkość obrazu i to, czy jest włączony antyaliasing.
7a szkoda

1120 F. RYSOWANIE FRAKTALI

Listing F.3. Szader fragmentów pierwszego etapu rysowania zbioru Mandelbrota
GLSL

1: #version 440 core

2:

3: #define INF0 65533.0

4: #define INF1 65534.0

5: #define INF2 65535.0

6: #define R 5.0

7: #define RR 25.0

8:

9: uniform TransBlock { } tr; /* listing F.2 */

10:

11: layout(r32f,binding=1) uniform image2D img;

12: layout(std430,binding=0) buffer Cmap { dvec2 cmap[]; };

13:

14: void main (void)

15: {

16: dvec2 c, z;

17: double xx, x2, y2, r2, rk2, fr;

18: int i;

19: ivec2 xy;

20:

21: xy = ivec2 (int(gl_FragCoord.x), int(gl_FragCoord.y));

22: c = dvec2 (tr.rxy.x + double(gl_FragCoord.x)/tr.wh.x*(tr.rxy.y-tr.rxy.x),

23: tr.rxy.z + double(gl_FragCoord.y)/tr.wh.y*(tr.rxy.w-tr.rxy.z));

24: if (tr.currit == 0) {

25: xx = c.x+1.0; y2 = c.y*c.y;

26: if (xx*xx+y2 <= 0.0625) {

27: imageStore (img, xy, vec4 (INF0, 0.0, 0.0, 0.0));

28: cmap[xy.y*tr.width + xy.x] = c;

29: discard;

30: }

31: else {

32: xx = c.x - 0.25; x2 = xx*xx; r2 = x2+y2;

33: if ((r2 + xx)*r2 <= 0.25 * y2) {

34: imageStore (img, xy, vec4 (INF1, 0.0, 0.0, 0.0));

35: cmap[xy.y*tr.width + xy.x] = c;

36: discard;

37: }

38: }

39: imageStore (img, xy, vec4 (INF2, 0.0, 0.0, 0.0));

40: z = dvec2 (0.0, 0.0);

41: rk2 = 0.0;

42: }

43: else {

44: if (imageLoad (img, xy).r < INF0)

45: discard;

F.1. Zbiór Mandelbrota 1121

46: z = cmap[xy.y*tr.width + xy.x];

47: rk2 = z.x*z.x + z.y*z.y;

48: }

49: for (i = tr.currit; i < tr.currit+tr.diter; i++) {

50: z = dvec2 ((z.x + z.y)*(z.x - z.y) + c.x, (z.x + z.x)*z.y + c.y);

51: if ((r2 = z.x*z.x + z.y*z.y) > RR) {

52: fr = (R-sqrt (rk2)) / (sqrt (r2)-sqrt (rk2));

53: imageStore (img, xy, vec4 (float(i) + fr, 0.0, 0.0, 0.0));

54: cmap[xy.y*tr.width + xy.x] = z;

55: discard;

56: }

57: rk2 = r2;

58: }

59: cmap[xy.y*tr.width + xy.x] = z;

60: discard;

61: } /*main*/

W linii 21 współrzędne fragmentu są zaokrąglane i składane w wektor xy potrzebny do
zapisania wyniku obliczeń w obrazie img. Części rzeczywista i urojona liczby c odpowiada-
jącej fragmentowi są obliczane w liniach 22–23.

Wartość zmiennej jednolitej curritwbloku TransBlock jest liczbą iteracji wykonanych
od początku pierwszego etapu rysowania (w poprzednich podetapach). Jeśli jest równa 0, to
szader sprawdza, czy liczba c leży w kole lub w obszarze, którego brzegiem jest kardioida.
Zmienne xx i y2 otrzymująwartości x + 1 i y2, po czym w linii 26 następuje sprawdzenie, czy
punkt c leży w kole. Jeśli nie, to w linii 32 zmiennym xx, x2 i r2 kolejno przypisywane są
wartości x̂, x̂2 i x̂2+ y2 i następuje badanie, czy jest spełniona nierówność (x̂2+ y2)2+ x̂(x̂2+
y2) ⩽ y2/4, czyli czy w(x , y) ⩽ 0. Zależnie od wyników testów, do obrazu img trafia jedna
z liczb reprezentujących nieskończoność, a w tablicy cmap zostaje zapamiętana liczba c.

Jeśli zmienna currit ma wartość niezerową, to szader został wywołany w celu konty-
nuowania iteracji. Jeśli wcześniej w obrazie img została zapisana liczba mniejsza niż INF0,
to obliczenia dla tego punktu są już zakończone i szader natychmiast kończy działanie in-
strukcją w linii 45. W przeciwnym razie zmiennej z jest przypisywana wartość zk odczytana
z tablicy cmap, a w linii 47 jest obliczana liczba ∣zk ∣2.

Iteracje wielomianu kwadratowego są wykonywane w liniach 49–58; zmienna jednolita
diterprzechowuje bieżący limit liczby iteracji, określony przez aplikację8. Warunkiemprze-
rwania pętli jest wykonanie danej liczby iteracji w bieżącym podetapie lub wykonanie w su-
mie N iteracji we wszystkich podetapach pierwszego etapu rysowania.

Obliczenie kolejnej liczby zk następuje w linii 50, a zaraz potem szader sprawdza, czy
należy przerwać iteracje, bo ∣zk ∣ > R; wartość zmiennej r2, czyli ∣zk ∣2, jest porównywana
z R2. W linii 52 jest obliczana część ułamkowa funkcji f (c), która jest dodawana do części
całkowitej (liczby wykonanych iteracji) w linii następnej. Wartość zmiennej rk2 jest równa

8Nie ma możliwości przerwania rozpoczętych obliczeń na GPU, a zatem aplikacja nie może spowodować
ich przerwania po ustalonym czasie. Zamiast tego aplikacja dobiera bieżący limit liczby iteracji na podstawie
szybkości obliczeń zmierzonej w poprzednim podetapie.

1122 F. RYSOWANIE FRAKTALI

∣zk−1∣2. W linii 59 ostatnia otrzymana liczba zk , która leży w kole o promieniu R, zostaje
zapamiętana, aby można było wznowić iteracje w kolejnym podetapie.

Listing F.4 przedstawia procedurę, która wywołuje program zbudowany z szaderów opi-
sanych wyżej, a potem program drugiego etapu rysowania, wykonujący obraz bieżącego
stanu obliczeń. Działanie procedury zależy od wartości zmiennych globalnych, których de-
klaracje są pokazane na listingu. Zmienna mappingchanged otrzymuje wartość true po
każdej zmianie prostokąta odwzorowanegow okno, po zmianie wymiarówokna i po zmianie
limitu N liczby iteracji, pamiętanego w zmiennej maxiter. Jeśli zmienna mappingchanged
ma wartość niezerową, to pierwszy etap rysowania trzeba zacząć od początku; zmienna
curriter otrzymuje wartość 0. Zmienna finished nie otrzyma wartości true, dopóki
suma liczb iteracji wykonanych w poszczególnych podetapach będzie mniejsza niż N .

W linii 24 są obliczane wymiary obrazu w pikselach — takie jak okno lub 3 razy większe,
jeśli jest włączony antyaliasing. W liniach 26–32 zmiennym jednolitym w bloku TransBlock
są nadawane wartości; w szczególności zmiennej curriter zostaje przypisana liczba iteracji
wykonanych we wcześniejszych podetapach, a zmienna diter otrzymuje wartość począt-
kową podaną w deklaracji w linii 12 albo wartość obliczoną w liniach 42–43 w poprzednim
wywołaniu procedury rysującej.

Podetapy pierwszego etapu wykonują obraz w pozaekranowym buforze ramki, którego
sposób tworzenia jest opisany dalej. Instrukcje w liniach 39 i 41 mierzą czas trwania podeta-
pu, w którym wykonane zostało diter iteracji, po czym (na potrzeby kolejnego podetapu)
obliczana jest liczba iteracji, dla której spodziewany czas obliczeń (w sekundach) jest podany
w makrodefinicji FTIME — celem jest wyświetlanie 30 klatek na sekundę, co zapewnia wy-
starczającą płynność animacji. Aby pomiary czasu obliczeń na GPU miały sens, wywołania
procedury TimerToc są poprzedzone wywołaniami procedury glFinish, która czeka na
dokończenie wszelkich obliczeń przez GPU. Bez tego byłby mierzony tylko czas „wprawia-
nia obliczeń w ruch”.

Listing F.4. Procedura rysowania zbioru Mandelbrota
C

1: #define MINMAXIT 100

2: #define MAXMAXIT 16000

3: #define FTIME 0.032

4: #define UNB GL_UNIFORM_BUFFER

5:

6: int wdt, hgh, magaa;

7: static double width, height;

8: static OffsFBO *fbo;

9: static char mappingchanged = true, finished = false, antialias1 = true;

10: static GLuint program_id[2], trbuf, trbpoint;

11: static GLint trofs[7];

12: static GLint maxiter = MINMAXIT, curriter = 0, diter = 100;

13:

14: char RedrawMyObject1 (void)

15: {

F.1. Zbiór Mandelbrota 1123

16: GLdouble xyc[2];

17: GLint dit;

18: double t0, t1, di;

19:

20: if (mappingchanged) { finished = false; curriter = 0; }

21: if (!finished) {

22: mappingchanged = false;

23: magaa = antialias1 ? MAGAA : 1;

24: xyc[0] = magaa*width; xyc[1] = magaa*height;

25: glBindBufferBase (UNB, trbpoint, trbuf);

26: glBufferSubData (UNB, trofs[1], 2*sizeof(GLdouble), xyc);

27: glBufferSubData (UNB, trofs[2], sizeof(GLint), &maxiter);

28: glBufferSubData (UNB, trofs[3], sizeof(GLint), &magaa);

29: glBufferSubData (UNB, trofs[4], sizeof(GLint), &curriter);

30: glBufferSubData (UNB, trofs[5], sizeof(GLint), &fbo->width);

31: dit = curriter+diter <= maxiter ? diter : maxiter-curriter;

32: glBufferSubData (UNB, trofs[6], sizeof(GLint), &dit);

33: glBindFramebuffer (GL_FRAMEBUFFER, fbo->fbo);

34: glViewport (0, 0, magaa*wdt, magaa*hgh);

35: glBindImageTexture (1, fbo->txt, 0, GL_FALSE, 0, GL_WRITE_ONLY,

36: GL_R32F);

37: glUseProgram (program_id[0]);

38: glBindVertexArray (empty_vao);

39: glFinish (); t0 = TimerToc ();

40: glDrawArrays (GL_TRIANGLE_FAN, 0, 4);

41: glFinish (); t1 = TimerToc ();

42: di = (double)dit*FTIME/(t1-t0);

43: diter = di < MINMAXIT ? MINMAXIT : (di > MAXMAXIT ? MAXMAXIT : (int)di);

44: glBindFramebuffer (GL_FRAMEBUFFER, 0);

45: finished = (curriter += dit) >= maxiter;

46: }

47: glViewport (0, 0, wdt, hgh);

48: glBindImageTexture (1, fbo->txt, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F);

49: glUseProgram (program_id[1]);

50: glDrawArrays (GL_TRIANGLE_FAN, 0, 4);

51: glBindVertexArray (0);

52: if (showtext1)

53: DisplayTextObject (mytext);

54: glUseProgram (0);

55: glFlush ();

56: ExitIfGLError ("RedrawMyObject1");

57: return finished;

58: } /*RedrawMyObject1*/

Po wykonaniu podetapu lub po jego pominięciu, jeśli zmienna finished miała war-
tość false, drugi program szaderów, opisany dalej, wykonuje obraz w oknie. Wartość true
przekazywana przez procedurę RedrawMyObject1 sygnalizuje, że pierwszy etap rysowania
jest zakończony. Listing F.5 przedstawia przykład użycia tej procedury w aplikacji biblioteki

1124 F. RYSOWANIE FRAKTALI

GLFW; zmienna redraw1, której wartość true powoduje wywołanie procedury Redraw1
w głównej pętli komunikatów aplikacji, otrzymuje wartość false dopiero po wykonaniu
wszystkich podetapów pierwszego etapu rysowania. Pomiędzy wywołaniami procedury ry-
sowania aplikacja obsługuje komunikaty wejściowe, powodowane działaniami użytkownika.

Listing F.5. Procedura wykonywania obrazu w części okienkowej
C

1: void Redraw1 (GLFWwindow *win)

2: {

3: glfwMakeContextCurrent (win);

4: if (opti1 == 0) {

5: if ((redraw1 = !RedrawMyObject1 ()))

6: glfwPostEmptyEvent ();

7: }

8: else {

9: opti1 --;

10: glfwPostEmptyEvent ();

11: }

12: glfwSwapBuffers (win);

13: ExitIfGLError ("Redraw");

14: } /*Redraw1*/

F.1.3. Obliczanie koloru piksela

Zadaniem szadera, którego procedura mainwidnieje na listingu F.6, jest zamiana liczb f (c),
wpisanych w pierwszym etapie do obrazu img, na kolor piksela. Wymiary (szerokość i wy-
sokość w pikselach) tego obrazu są takie same jak wymiary obrazu końcowego (czyli klatki
zajmującej całe okno aplikacji) lub m = 3 razy większe. W pierwszym przypadku (w linii 31)
kolor piksela na końcowym obrazie jest obliczany przy użyciu wybranej palety na podstawie
jednego piksela obrazu wejściowego.

Wdrugimprzypadku (w liniach 33–48) jest wykonywany antyaliasing: kolor każdego pik-
sela jest średnią ważoną kolorów wielu pikseli obrazu wejściowego. Kolor piksela (ξ, η) ob-
razu wynikowego q jest obliczany na podstawie pikseli obrazu wejściowego p według wzoru

q(ξ, η) = 3

∑
i=−3

Ni

3

∑
j=−3

N jp(3ξ + i , 3η + j), (F.2)

w którym liczbyNi sąwartościami średnimi funkcji rozkładu normalnegoGaussaN1 wprze-
działach [i − 1/2, i + 1/2] (zobacz podrozdz. 27.2); przyjęte odchylenie standardowe σ = 1
odpowiada tu szerokości lub wysokości jednego piksela obrazu wejściowego.

Pomocnicza funkcja itx odczytuje liczbę f (c) zapamiętaną w pikselu obrazu wejścio-
wego, przy czym jeśli podane współrzędne określają piksel poza obrazem, to wartością funk-
cji jest liczba INF0, którą opisane dalej palety zamienią na kolor czarny. Tablica mgf zawiera

F.1. Zbiór Mandelbrota 1125

Listing F.6. Procedura main szadera fragmentów drugiego etapu rysowania
GLSL

1: #version 450 core

2:

3: uniform TransBlock { } tr; /* listing F.2 */

4:

5: layout(location=0) out vec4 out_Colour;

6:

7: layout(r32f,binding=1) uniform image2D img;

8:

9: ivec2 wh;

10:

11: float itx (ivec2 xy)

12: {

13: if (xy.x < 0 || xy.y < 0 || xy.x >= wh.x || xy.y >= wh.y)

14: return float(INF0);

15: else

16: return imageLoad (img, xy).r;

17: } /*itx*/

18:

19: void main (void)

20: {

21: const float mgf[4] =

22: {0.3831031644, 0.2418428568, 0.0606257426, 0.0059798184};

23: int i, j;

24: ivec2 xy;

25: float tx;

26: vec3 Colour, col;

27:

28: wh = imageSize (img);

29: xy = ivec2 (int(gl_FragCoord.x), int(gl_FragCoord.y));

30: if (tr.mag == 1)

31: Colour = Palette (uint(itx (xy)));

32: else { /* mag == 3 */

33: xy = tr.mag * xy - ivec2 (-1,-1);

34: col = mgf[0] * Palette (itx (xy));

35: for (j = 1; j < 4; j++)

36: col += mgf[j] * (Palette (itx (xy+ivec2(0, j))) +

37: Palette (itx (xy+ivec2(0,-j))));

38: Colour = mgf[0] * col;

39: for (i = 1; i < 4; i++) {

40: col = mgf[0] * (Palette (itx (xy+ivec2(i,0))) +

41: Palette (itx (xy+ivec2(-i,0))));

42: for (j = 1; j < 4; j++)

43: col += mgf[j] * (Palette (itx (xy+ivec2(i, j))) +

44: Palette (itx (xy+ivec2(i,-j))) +

45: Palette (itx (xy+ivec2(-i, j))) +

1126 F. RYSOWANIE FRAKTALI

46: Palette (itx (xy+ivec2(-i,-j))));

47: Colour += mgf[i] * col;

48: }

49: }

50: out_Colour = vec4 (AGamma (Colour), 1.0);

51: } /*main*/

liczby Ni , te same co na listingu 27.7. Instrukcje w liniach 34–48 realizują obliczanie koloru
piksela według wzoru (F.2), po czym jest on poddawany korekcji gamma i wyprowadzany.

Na listingu F.7 są przedstawione procedury realizujące dwie palety i wywołująca je proce-
dura pomocnicza Palette; pierwsza paleta (linie 1–10) jest bardzo prosta: punktom w kole
nadaje kolor niebieski, punktom w obszarze, którego brzegiem jest kardioida kolor zielony,
punktom, dla których ciąg liczb zk po N iteracjach nie opuścił koła o promieniu R kolor
czerwony, a pozostałym punktom kolor czarny albo biały, zależnie od parzystości liczby wy-
konanych iteracji (czyli podanej jako parametr części całkowitej wartości funkcji f (c)).

Procedura w liniach 32–47 realizuje bardziej wyrafinowaną paletę, określoną przy użyciu
wymiernej krzywej Béziera p (zobacz podrozdz. 15.1 i 15.2), którą użytkownik aplikacji może
zmieniać. Jeśli w pierwszym etapie zostało wykonane N iteracji lub test spowodował ich za-
niechanie, to punkt jest czarny. Jeśli obliczenia zostały przerwane po mniej niż N iteracjach,
to w linii 43 jest obliczany parametr t = f (c)/N krzywej, będący liczbą z przedziału (0, 1).
Krzywa jest położona w trójwymiarowej przestrzeni kolorów; współrzędne xy punktu p(t)
określają odcień, a współrzędna z odpowiada za jasność koloru.

Blok zmiennych jednolitych PaletteBlock zawiera reprezentację krzywej; wartość pola
deg to stopień krzywej, tablica cp zawiera wektory współrzędnych jednorodnych punktów
kontrolnych, a wektory w tablicy bpcp reprezentują te same punkty, przy czym współrzędne
wagowe są równe 1. Ta ostatnia reprezentacja jest potrzebna do wykonania obrazu krzywej,
aby użytkownik mógł ją wygodnie zmieniać; rozwinięcie tego tematu jest dalej.

Po obliczeniu (przez procedurę wywołaną w linii 41) punktu p(t) następuje obliczenie
koloru. Do współrzędnych kartezjańskich x, y jest dołączana liczba 1 − x − y i w ten sposób
powstają współrzędne barycentryczne opisujące składowe koloru. W linii 43 składowe te są
obcinane do przedziału [0, 1]; w tymmomencie zostaje ustalony odcień, zależny od proporcji

Listing F.7. Podprogramy realizujące palety
GLSL

1: vec3 Palette0 (uint itr)

2: {

3: switch (itr) {

4: case INF0: return vec3 (0.0, 0.0, 1.0);

5: case INF1: return vec3 (0.0, 1.0, 0.0);

6: case INF2: return vec3 (1.0, 0.0, 0.0);

7: default: return (itr & 0x01) != 0 ? vec3 (1.0, 1.0, 1.0) :

8: vec3 (0.0, 0.0, 0.0);

9: }

10: } /*Palette0*/

11:

F.1. Zbiór Mandelbrota 1127

12: uniform PaletteBlock {

13: int deg;

14: vec4 cp[MAXDEG+1], bpcp[MAXDEG+1];

15: } pal;

16:

17: vec3 BCHorner3Rf (int n, vec4 bcp[MAXDEG+1], float t)

18: {

19: int i, b;

20: float s, d;

21: vec4 p;

22:

23: s = 1.0-t; d = t; b = n;

24: p = bcp[0];

25: for (i = 1; i <= n; i++) {

26: p = s*p + (b*d)*bcp[i];

27: d *= t; b = (b*(n-i))/(i+1);

28: }

29: return p.xyz/p.w;

30: } /*BCHorner3Rf*/

31:

32: vec3 Palette1 (float itr)

33: {

34: float t;

35: vec3 p, c;

36:

37: if (itr >= INF0)

38: return vec3 (0.0, 0.0, 0.0);

39: else {

40: t = itr / float(trb.maxit);

41: p = BCHorner3Rf (pal.deg, pal.cp, t);

42: c.rg = p.xy; c.b = 1.0 - p.x - p.y;

43: c = clamp (c, vec3(0.0), vec3(1.0));

44: t = max (c.r, c.g); t = max (t, c.b);

45: return p.z*c/t;

46: }

47: } /*Palette1*/

48:

49: uniform int pn = 1;

50:

51: vec3 Palette (float tx)

52: {

53: switch (pn) {

54: default: return Palette0 (uint(tx));

55: case 1: return Palette1 (tx);

56: case 2: return Palette1 (trunc(tx));

57: }

58: } /*Palette*/

1128 F. RYSOWANIE FRAKTALI

składowych, czyli od kierunku wektora (r, g , b) zapamiętanego w zmiennej c. Pozostaje
ustalenie jasności, czyli długości wektora współrzędnych koloru. W linii 44 największa skła-
dowa jest przypisywana zmiennej t. Obliczony w linii 45wektor ma największąwspółrzędną
równą współrzędnej z punktu p(t) (ma ona wartość z przedziału [0, 1]).

Wywołując Palette1, procedura Palette podaje jako parametr liczbę f (c) albo część
całkowitą tej liczby — do wyboru przez użytkownika aplikacji.

F.1.4. Pozaekranowy bufor ramki

W pierwszym etapie rysowanie odbywa się poza ekranem. Obraz, w którym mają być za-
pamiętane wartości funkcji f (c) dla każdego piksela, jest załącznikiem koloru używanego
wtedy pozaekranowego bufora ramki9. Oprócz tego obrazu potrzebna jest tablica, w której
będą pamiętane liczby zk .

Listing F.8 przedstawia strukturę OffsFBO będącą opakowaniempozaekranowego bufora
ramki, oraz procedury obsługi tego bufora. Procedura NewOffsFBO tworzy bufor, którego
załącznikiem jest tekstura o podanych wymiarach (tekstura ta zawiera obraz, w którym są
zapisywane wartości funkcji f (c)), oraz bufor zawierający blok magazynowy Cmap; bufor
ten zostaje przywiązany do punktu dowiązania 0 w celu GL_SHADER_STORAGE_BUFFER (zo-
bacz listing F.3, linia 12). Procedura SetOffsFBOSize służy do zmiany wymiarów tekstury
i bufora z blokiem Cmap, które trzeba dostosowywać do wymiarów okna aplikacji. Wartość
GL_R32F trzeciego parametru procedury glTexStorage2Dwywołanej w linii 10 oznacza, że
każdy element tekstury ma mieć tylko jedną składową reprezentowaną jako 32-bitowa liczba
zmiennopozycyjna. Procedura DeleteOffsFBO likwiduje bufor ramki z załącznikiem i bu-
for z blokiem magazynowym Cmap.

Listing F.8. Procedury obsługi pozaekranowego bufora ramki
C

1: typedef struct {

2: GLuint fbo, txt, cmap;

3: int width, height;

4: } OffsFBO;

5:

6: static char AllocOffsTexture (OffsFBO *fbo, int w, int h)

7: {

8: glGenTextures (1, &fbo->txt);

9: glBindTexture (GL_TEXTURE_2D, fbo->txt);

10: glTexStorage2D (GL_TEXTURE_2D, 1, GL_R32F, w, h);

11: glBindFramebuffer (GL_FRAMEBUFFER, fbo->fbo);

12: glFramebufferTexture (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, fbo->txt,

9Bufor ramki jest gotowy do pracy, gdy ma określoną szerokość i wysokość w pikselach; wystarczy po-
danie załącznika, tj. tekstury o określonych wymiarach. Można też podać wymiary za pomocą procedury
glFramebufferParameteri i w ten sposób przygotować do pracy bufor ramki bez załączników (przykład
jest pokazany w p. 29.2.5); zwróćmy uwagę, że szader fragmentów z listingu F.3 zawsze wykonuje instrukcję
discard; wynik jego obliczeń jest zapisywany z pominięciem ostatniego etapu potoku przetwarzania grafiki.

F.1. Zbiór Mandelbrota 1129

13: 0);

14: if (glCheckFramebufferStatus (GL_FRAMEBUFFER) !=

15: GL_FRAMEBUFFER_COMPLETE)

16: ExitOnError ("AllocOffsTexture");

17: glBindFramebuffer (GL_FRAMEBUFFER, 0);

18: fbo->cmap = NewStorageBuffer (w*h*2*sizeof(GLdouble), 0);

19: fbo->width = w; fbo->height = h;

20: ExitIfGLError ("AllocOffsTexture");

21: return true;

22: } /*AllocOffsTexture*/

23:

24: OffsFBO *NewOffsFBO (int w, int h)

25: {

26: OffsFBO *fbo;

27:

28: if ((fbo = malloc (sizeof(OffsFBO)))) {

29: glGenFramebuffers (1, &fbo->fbo);

30: if (AllocOffsTexture (fbo, w, h))

31: return fbo;

32: else {

33: glDeleteFramebuffers (1, &fbo->fbo);

34: free (fbo);

35: }

36: }

37: return NULL;

38: } /*NewOffsFBO*/

39:

40: char SetOffsFBOSize (OffsFBO *fbo, int w, int h)

41: {

42: if (w != fbo->width || h != fbo->height) {

43: glDeleteTextures (1, &fbo->txt);

44: glDeleteBuffers (1, &fbo->cmap);

45: if (!AllocOffsTexture (fbo, w, h)) {

46: glDeleteFramebuffers (1, &fbo->fbo);

47: free (fbo);

48: return false;

49: }

50: }

51: return true;

52: } /*SetOffsFBOSize*/

53:

54: void DeleteOffsFBO (OffsFBO *fbo)

55: {

56: glDeleteFramebuffers (1, &fbo->fbo);

57: glDeleteTextures (1, &fbo->txt);

58: glDeleteBuffers (1, &fbo->cmap);

59: ExitIfGLError ("DeleteOffsFBO");

1130 F. RYSOWANIE FRAKTALI

60: free (fbo);

61: } /*DeleteOffsFBO*/

F.1.5. Odwzorowanie prostokąta w okno

Prostokąt w płaszczyźnie zespolonej, którego obraz wypełnia okno, jest określony za pomocą
środka i promienia okręgu opisanego na tym prostokącie; długości jego boków można ob-
liczyć, znając ten promień i wymiary okna w pikselach. Współrzędne środka i promień są
przechowywane w zmiennych xc, yc i rc; deklaracje pozostałych zmiennych globalnych,
których wartości zależą od prostokąta i od wymiarów okna, są pokazane na listingu F.4.

Obliczenie współrzędnych wierzchołków prostokąta wykonuje procedura pokazana na
listingu F.9. Instrukcja w linii 11 oblicza długość przekątnej okna w pikselach (przy założe-
niu, że współczynnik aspekt jest równy 1). W linii 12 są obliczane sinus i kosinus kąta między
przekątną a poziomym bokiem prostokąta, co umożliwia znalezienie w linii 13 połówek sze-
rokości i wysokości prostokąta. W liniach 14 i 15 liczby te są odejmowane od i dodawane do
współrzędnych środka prostokąta, po czym następuje przesłanie otrzymanej czwórki liczb
do zmiennej rxy w bloku TransBlock.

Wywołana w linii 18 procedura NotifyRectangle przygotowuje tekstowy opis prosto-
kąta, który może być dodatkowo wyświetlony w oknie.

Listing F.9. Procedura znajdująca odwzorowanie płaszczyzny zespolonej w okno
C

1: static double xc = -0.5, yc = 0.0, rc = 3.0, dxc, dyc;

2:

3: void FindTheMapping (int w, int h)

4: {

5: double d, s, c;

6: GLdouble xyc[4];

7:

8: if (!SetOffsFBOSize (fbo, w*MAGAA, h*MAGAA))

9: ExitOnError ("FindTheMapping");

10: width = (double)(wdt = w); height = (double)(hgh = h);

11: d = sqrt (width*width + height*height);

12: s = height/d; c = width/d;

13: dxc = rc*c; dyc = rc*s;

14: xyc[0] = xc - dxc; xyc[1] = xc + dxc;

15: xyc[2] = yc - dyc; xyc[3] = yc + dyc;

16: glBindBuffer (GL_UNIFORM_BUFFER, trbuf);

17: glBufferSubData (GL_UNIFORM_BUFFER, trofs[0], 4*sizeof(GLdouble), xyc);

18: NotifyRectangle ();

19: mappingchanged = true;

20: ExitIfGLError ("FindTheMapping");

21: } /*FindTheMapping*/

F.1. Zbiór Mandelbrota 1131

Listing F.10. Procedury wybierania prostokąta
C

1: static int zoomcnt = 0;

2:

3: char Zoom (char zoom_in)

4: {

5: int cnt;

6: double r;

7:

8: if (zoom_in) {

9: if ((r = 3.0*pow (1.05, ++cnt)) < MIN_RC)

10: return false;

11: }

12: else {

13: if ((r = 3.0*pow (1.05, --cnt)) > MAX_RC)

14: return false;

15: }

16: rc = r; zoomcnt = cnt;

17: FindTheMapping (wdt, hgh);

18: return true;

19: } /*Zoom*/

20:

21: char Pan (double dx, double dy)

22: {

23: xc -= (dx/width)*2.0*dxc; yc += (dy/height)*2.0*dyc;

24: FindTheMapping (wdt, hgh);

25: return true;

26: } /*Pan*/

Procedury na listingu F.10 umożliwiają zmienianie promienia koła i środka prostokąta.
Parametr procedury Zoom określa, czy należy wykonać najazd, tj. powiększyć fragment ob-
razu przez zmniejszenie promienia okręgu. Parametry procedury Pan są współrzędnymi
wektora przesunięcia kursora w oknie — na ich podstawie procedura oblicza przesunięcie
w płaszczyźnie zespolonej i znajduje środek nowego prostokąta.

F.1.6. Paleta i wymierne krzywe Béziera

Rysunek F.2 przedstawia okno z przykładowymi wihajstrami umożliwiającymi interakcyjne
zmienianie palety; przypomnijmy, że jej zadaniem jest przyporządkowanie każdej liczbie
f (c) ∈ [1,N]wektora owspółrzędnych r, g , b ∈ [0, 1] reprezentującego kolor do nadania pik-
selom, dla których szader fragmentówwpierwszym etapie przerwał obliczenia powyznacze-
niu k = ⌊ f (c)⌋ elementów ciągu zespolonego. Wihajster z lewej strony przedstawia trójkąt,
na którego tle jest narysowana płaska krzywa Béziera i jej łamana kontrolna. Kolor każdego
piksela trójkąta jest opisany przez wektor (R,G , B), którego współrzędne są jednorodnymi
współrzędnymi barycentrycznymi (zobacz podrozdz. 5.3) odpowiedniego punktuwukładzie
określonym przez wierzchołki trójkąta. Największa współrzędna jest równa 1, dzięki czemu

1132 F. RYSOWANIE FRAKTALI

każdy punkt trójkątamamaksymalną jasnośćmożliwą do otrzymania przy ustalonymodcie-
niu. Użytkownik aplikacji może dowolnie przesuwać punkty kontrolne krzywej, sprawiając,
że przechodzi ona przez punkty o wybranych odcieniach.

0 1 t
0

1
h(t)

.

ρ = 30
ρ = 10

ρ = 3
ρ = 1

ρ = 1
3

ρ = 1
10

ρ = 1
30

.

ρ = 30
ρ = 10

ρ = 3
ρ = 1

ρ = 1
3

ρ = 1
10

ρ = 1
30

.

Rysunek F.2. Obraz krzywej Béziera określającej paletę i wykresy funkcji h

Wihajster z prawej strony wyświetla krzywą Béziera, która jest wykresem funkcji ska-
larnej (wielomianu) z(t) opisującej jasność kolorów; punkty kontrolne tej krzywej można
przesuwać do dołu i do góry, aby jasność zmniejszyć lub zwiększyć. Współrzędne R,G punk-
tów płaskiej krzywej i wartość funkcji skalarnej opisanych wyżej opisująwspółrzędne x , y, z
wielomianowej krzywej Béziera q położonej w przestrzeni trójwymiarowej.

Opisana w p. F.1.3 krzywa wymierna p powstaje przez reparametryzację krzywej q: jest
p(t) = q(h(t)), przy czym h jest to funkcja homograficzna skonstruowana tak, aby spełniała
następujące warunki: ma być rosnąca w przedziale [0, 1] i ma być h(0) = 0 i h(1) = 1. Każda
taka funkcja ma postać

h(t) = ρt

ρt + (1 − t) ,
z dodatnim parametrem ρ.

Podstawiając funkcję h wmiejsce parametru krzywej Béziera q, której punkty kontrolne
oznaczymy p0 , . . . , pn (zobacz p. 15.1), dostaniemy parametryzację

p(t) = n

∑
i=0

pi(n
i
)h(t)i(1 − h(t))n−i = n

∑
i=0

pi(n
i
) ρ i t i(1 − t)n−i(ρt + (1 − t))n .

Wszystkie składniki mają wspólny mianownik, równy (ρt + (1− t))n = ∑n
i=0 ρ

i(n
i
)t i(1 − t)i

= ∑n
i=0 ρ

iBn
i (t), zatem

p(t) = ∑n
i=0 ρ

ipiBn
i (t)

∑n
i=0 ρ

iBn
i (t) .

F.1. Zbiór Mandelbrota 1133

Wektorem współrzędnych jednorodnych punktu p(t) jest więc punkt P(t) krzywej Béziera,
której punkty kontrolne P0, . . . , Pn są wektorami współrzędnych jednorodnych punktów
p0 , . . . , pn, takimi że współrzędna wagowa Wi wektora Pi jest równa ρ i . Punkt p(t) znaj-
duje pokazana na listingu F.7 procedura BCHorner3Rf, która najpierw oblicza wektor P(t),
a potem (w linii 29) dokonuje przejścia od współrzędnych jednorodnych do kartezjańskich.

Do manipulowania wartością parametru ρ najlepiej nadaje się rolka myszy; w odpowie-
dzi na komunikat o jej obróceniu wartość zmiennej przechowującej ten parametr (począt-
kowo 1) należy pomnożyć lub podzielić na przykład przez czynnik 1.05. Użytecznym zakre-
sem wartości parametru ρ okazał się przedział [10−4, 104]. Rysując wihajster taki jak w oknie
na rysunku F.2, lepiej jest używać reprezentacji, w której współrzędne wagowe wszystkich
punktów kontrolnych są równe 1 (są one przechowywane w tablicy bpcp). Więcej wiado-
mości na temat wizualizacji zbioruMandelbrota można znaleźć w sieci, polecam stronę [61].

Rysunek F.3. Obraz fragmentu zbioru Mandelbrota i jego otoczenia

Wszystkie opisane w tym podrozdziale (i wszystkie inne) sposoby wizualizacji zbioru
Mandelbrota mogą być też użyte do wykonywania obrazów zbiorów Julii. Dla ustalonej
liczby zespolonej c zbiór Julii Jc składa się z tych punktów z0 płaszczyzny zespolonej, dla
których ciąg nieskończony określony wzorami z0 = 0, zk+1 = z2k + c jest ograniczony. Liczba c
jest zatem ta sama dla wszystkich punktów, dla których wykonuje obliczenia szader łatwy
do otrzymania przez modyfikację szadera z listingu F.3, i można ją przekazać w zmiennej
jednolitej. Aplikacja może liczbę c przeczytać z pliku lub z klawiatury, ale znacznie lepszym
pomysłem jest umożliwienie użytkownikowi wskazywania punktu c w dodatkowym oknie,
w którym jest wyświetlany zbiór Mandelbrota (lub powiększony fragment tego zbioru).

1134 F. RYSOWANIE FRAKTALI

F.2. Piramida Sierpińskiego i gąbka Mengera

Znana konstrukcja zbioru Cantora— dzielimy odcinek na trzy równe części, usuwamy część
środkową (zostawiając jej końce) i powtarzamywnieskończoność to samo z odcinkami, które
pozostały—ma swoje uogólnieniaw dwóch, trzech i większej liczbiewymiarów. Narysujemy
dwie najbardziej znane figury trójwymiarowe otrzymane tąmetodą.

Piramida Sierpińskiego powstaje z czworościanu foremnego przez usunięcie ośmio-
ścianu foremnego, którego wierzchołki są środkami krawędzi tego czworościanu. Wwyniku
otrzymamy cztery czworościany, z których każdy jest obrazem czworościanu danego w jed-
nokładności o współczynniku skali 1/2 i o środku w jednym z jego wierzchołków. Czworo-
ściany te drążymy dalej w ten sam sposób.

Na obrazach przedstawiamy oczywiście przybliżenia piramidy otrzymane po skończenie
wielu krokach usuwania; ponieważ takie przybliżenie składa się z czworościanów, których
ściany są trójkątami, możemy je oświetlić. Zauważmy jednak, że liczba czworościanów za-
leży wykładniczo od liczby N wykonanych iteracji — jest ona równa 4N , czyli dla N = 12
mamy ponad 16 milionów czworościanów. Nie ma sensu tworzenie tablic z wszystkimi ich
wierzchołkami; znacznie lepiej i prościej jest do ich wygenerowania zatrudnić GPU.

Szader geometrii z listingu F.11 oblicza i wyprowadza ściany jednego czworościanu; prog-
ram z tym szaderem trzeba wywołać za pomocą procedury glDrawArraysInstanced, ka-
żąc jej narysować jeden punkt w 4N instancjach. Szader wierzchołków musi przekazać tylko
numer instancji (otrzymany w zmiennej gl_InstanceID), przy czym przed przystąpieniem
do rysowania należy nadać zmiennej jednolitej level wartość N .

Listing F.11. Szader geometrii do rysowania piramidy Sierpińskiego
GLSL

1: #version 440

2:

3: #define A 0.57735027 /* sqrt(1/3) */

4:

5: layout(points) in;

6: layout(triangle_strip,max_vertices=12) out;

7:

8: in int instanceID[];

9:

10: out FVertex {

11: vec3 Colour, Position, Normal, TNormal;

12: } Out;

13:

14: uniform TransBlock {

15: mat4 mm, mmti, vm, pm, vpm;

16: vec4 eyepos;

17: } trb;

18:

19: uniform int level;

20:

21: const vec4 p[4] = { vec4(-A,-A,-A,1.0), vec4(A,A,-A,1.0),

F.2. Piramida Sierpińskiego i gąbka Mengera 1135

22: vec4(-A,A,A,1.0), vec4(A,-A,A,1.0) };

23: const vec3 nv[4] = { vec3(-A,A,-A), vec3(-A,-A,A),

24: vec3(A,-A,-A), vec3(A,A,A) };

25: const vec3 col[4] = { vec3(1.0,0.0,0.0), vec3(0.0,1.0,0.0),

26: vec3(0.0,0.0,1.0), vec3(0.5,0.5,0.5) };

27: const int t[4][3] = {{1,2,3},{0,2,3},{0,1,3},{0,1,2}};

28: const int f[4][3] = {{0,1,2},{0,2,3},{0,3,1},{3,2,1}};

29:

30: void main (void)

31: {

32: vec4 q[4], pos[4];

33: vec3 c[4], n[4];

34: int i, j, k, l;

35:

36: for (i = 0; i < 4; i++) { q[i] = p[i]; c[i] = col[i]; }

37: for (i = 0, j = instanceID[0]; i < level; i++, j /= 4) {

38: k = j % 4;

39: for (l = 0; l < 3; l++)

40: q[t[k][l]] = 0.5*(q[k] + q[t[k][l]]);

41: for (l = 0; l < 3; l++)

42: c[t[k][l]] = 0.5*(c[k] + c[t[k][l]]);

43: }

44: for (i = 0; i < 4; i++) {

45: n[i] = normalize (mat3(trb.mmti) * nv[i]);

46: pos[i] = trb.mm * q[i];

47: q[i] = trb.vpm * pos[i];

48: }

49: for (i = 0; i < 4; i++) {

50: for (j = 0; j < 3; j++) {

51: k = f[i][j];

52: gl_Position = q[k];

53: Out.Position = pos[k].xyz;

54: Out.Colour = c[k];

55: Out.Normal = Out.TNormal = n[i];

56: EmitVertex ();

57: }

58: EndPrimitive ();

59: }

60: } /*main*/

Położenia i kolory wierzchołków „dużego” czworościanu są podane w tablicach p i col.
W linii 36dane te są kopiowane do tablic roboczych, po czymwpętli w liniach 37–43następuje
N iteracji przekształcenia czworościanu. W każdej iteracji, na podstawie numeru instancji
jest wybierany (i przypisywany zmiennej k) numer wierzchołka, który ma być środkiem jed-
nokładności. Posługując się indeksami z pomocniczej tablicy t, szader zastępuje pozostałe
trzy wierzchołki środkami odpowiednich krawędzi czworościanu, czyli ich obrazami w tej
jednokładności. W taki sam sposób są przetwarzane (interpolowane) kolory wierzchołków.

1136 F. RYSOWANIE FRAKTALI

Pętla w liniach 44–48ma na celu przejście od układu współrzędnych modelu do układów
świata i kostki standardowej. Jednokładności zachowują wektory normalne ścian czworo-
ścianu, zatemw linii 45 przekształceniu (przejściu do układu świata i normalizacji) są podda-
wane wektory wzięte z tablicy nv. Ściany sąwyprowadzane w pętli w liniach 49–59; w każdym
przebiegu wewnętrznej pętli jest wyprowadzany jeden wierzchołek trójkąta.

Gąbka Mengera powstaje przez podzielenie sześcianu na 27 sześcianów 3 razy mniej-
szych i odrzuceniu tych sześcianów, których żadna krawędź nie leży na krawędzi sześcianu
oryginalnego. Pozostałe 20 sześcianów w ten sam sposób przekształca się dalej. Praktyczne
ograniczenie liczby iteracji w konstruowaniu przybliżenia gąbki Mengera jest znacznie sil-
niejsze, bo w każdej iteracji liczba sześcianów rośnie dwudziestokrotnie, więc po wykonaniu
5 iteracji dostaniemy 3200000 sześcianów i na tym wypadałoby poprzestać.

Implementując przekształcenia sześcianu, którego krawędzie są równoległe do osi układu
współrzędnych (modelu), skorzystamy z faktu, że każda potrzebna jednokładnośćmoże być
zrealizowana przez niezależne przekształcenie współrzędnych x, y, z. „Skompresowana” in-
formacja o przekształceniach jest umieszczona w tablicy t; jeśli w danej iteracji sześcian
ma być poddany przekształceniu o numerze k ∈ {0, . . . , 19}, to liczby t[k][0], t[k][1]
i t[k][2] oznaczają odpowiednio numery trzech przekształceń, którym należy poddać te
współrzędne. Aby umożliwić przetwarzanie współrzędnych w pętli, zamiast nadać zmien-
nym p0 i p1 typ vec3, zadeklarowałem je jako tablice liczb typu float.

Niech s oznacza współrzędną x, y lub z; indeks l jest numerem tej współrzędnej. Jej
przedział zmienności [s0, s1] dla poddawanego przekształceniu sześcianu, zależnie od liczby
t[k][l] należy zastąpić przez [s0, a], [a, b] lub [b, s1], gdzie liczby a i b dzielą przedział[s0, s1] odpowiednio w 1/3 i 2/3 jego długości; odpowiednie obliczenia są wykonywane w li-
niach 46, 49–51 albo 54. Zwracam uwagę, że wzory zaprogramowane w liniach 46 i 49 oraz 50

i 54 są identyczne, dzięki czemu wyniki obliczeń liczb a i b na danym poziomie podziału są
obarczone identycznymi błędami zaokrągleń. Trzeba dbać o takie szczegóły.

W liniach 58–61 z liczb znajdujących się w tablicach p0 i p1 składane jest 8 wierzchoł-
ków sześcianu, które zostają zapamiętane w tablicy p. Czwórki indeksów do tej tablicy, ra-
zem z odpowiednimi wektorami normalnymi ścian sześcianu, są przekazywane procedurze
OutputFacet, której zadaniem jest przekazanie na wyjście szadera jednej ściany sześcianu.
Warunki sprawdzane przed każdym wywołaniem tej procedury mają na celu pominięcie
ścian, które nie mogą być widoczne na obrazie. Po pierwsze, jeśli ostatnie przekształcenie
współrzędnej s zamieniło przedział [s0, s1] na [a, b] (czyli odrzuciło początek i koniec prze-
działu), to ściany w płaszczyznach s = a i s = b przylegają do ścian innych sześcianów. Po
drugie, szader odrzuca ściany odwrócone tyłem do obserwatora.

Wektor normalny każdej ściany sześcianumakierunek jednej z osi układuwspółrzędnych
modelu. Dzięki temu wystarczy sprawdzić, czy różnica współrzędnej s położenia obserwa-
tora i dowolnego punktu na ścianie ma taki sam znak jak współrzędna s (zorientowanego na
zewnątrz sześcianu) wektora normalnego tej ściany. Aby umożliwić te testy, w linii 62 szader
oblicza położenie obserwatora w układzie współrzędnych modelu. W zmiennej trb.mmti
jest przechowywana potrzebna do przekształcenia wektorów normalnych transpozycja od-

F.2. Piramida Sierpińskiego i gąbka Mengera 1137

Listing F.12. Szader geometrii do rysowania gąbki Mengera
GLSL

1: #version 440

2:

3: /* linie 3-19 takie same, jak na listingu F.11 */

4:

5: const int t[21][3] =

6: {{0,0,0},{1,0,0},{2,0,0},{0,1,0},{2,1,0},{0,2,0},{1,2,0},

7: {2,2,0},{0,0,1},{2,0,1},{0,2,1},{2,2,1},{0,0,2},{1,0,2},

8: {2,0,2},{0,1,2},{2,1,2},{0,2,2},{1,2,2},{2,2,2},{0,0,0}};

9: const int ip0[4] = {0,3,4,7}, ip1[4] = {1,5,2,6}, ip2[4] = {1,0,5,4},

10: ip3[4] = {2,6,3,7}, ip4[4] = {1,2,0,3}, ip5[4] = {5,4,6,7};

11:

12: vec3 p[8];

13:

14: void OutputVertex (vec3 p, vec3 nv)

15: {

16: vec4 q;

17:

18: Out.Colour = vec3(p.x/(2*A)+0.5, p.y/(2.0*A)+0.5, p.z/(2.0*A)+0.5);

19: Out.Position = (q = trb.mm*vec4(p,1.0)).xyz;

20: Out.Normal = Out.TNormal = mat3(trb.mmti) * nv;

21: gl_Position = trb.vpm * q;

22: EmitVertex ();

23: } /*OutputVertex*/

24:

25: void OutputFacet (int ip[4], vec3 nv)

26: {

27: int i;

28:

29: for (i = 0; i < 4; i++)

30: OutputVertex (p[ip[i]], nv);

31: EndPrimitive ();

32: } /*OutputFacet*/

33:

34: void main (void)

35: {

36: float p0[3], p1[3], a;

37: vec4 epm;

38: int i, j, k, l;

39:

40: p0[0] = p0[1] = p0[2] = -A; p1[0] = p1[1] = p1[2] = A;

41: for (i = 0, j = instanceID[0]; i < level; i++, j /= 20) {

42: k = j % 20;

43: for (l = 0; l < 3; l++)

44: switch (t[k][l]) {

45: case 0:

1138 F. RYSOWANIE FRAKTALI

46: p1[l] = (2.0*p0[l] + p1[l])/3.0;

47: break;

48: case 1:

49: a = (2.0*p0[l] + p1[l])/3.0;

50: p1[l] = (p0[l] + 2.0*p1[l])/3.0;

51: p0[l] = a;

52: break;

53: case 2:

54: p0[l] = (p0[l] + 2.0*p1[l])/3.0;

55: break;

56: }

57: }

58: p[0] = vec3(p0[0],p0[1],p0[2]); p[1] = vec3(p1[0],p0[1],p0[2]);

59: p[2] = vec3(p1[0],p1[1],p0[2]); p[3] = vec3(p0[0],p1[1],p0[2]);

60: p[4] = vec3(p0[0],p0[1],p1[2]); p[5] = vec3(p1[0],p0[1],p1[2]);

61: p[6] = vec3(p1[0],p1[1],p1[2]); p[7] = vec3(p0[0],p1[1],p1[2]);

62: epm = transpose(trb.mmti) * trb.eyepos;

63: if (level == 0) k = 20;

64: if (t[k][0] != 1 && epm.x - p0[0] < 0.0)

65: OutputFacet (ip0, vec3(-1.0,0.0,0.0));

66: if (t[k][0] != 1 && epm.x - p1[0] > 0.0)

67: OutputFacet (ip1, vec3(1.0,0.0,0.0));

68: if (t[k][1] != 1 && epm.y - p0[1] < 0.0)

69: OutputFacet (ip2, vec3(0.0,-1.0,0.0));

70: if (t[k][1] != 1 && epm.y - p1[1] > 0.0)

71: OutputFacet (ip3, vec3(0.0,1.0,0.0));

72: if (t[k][2] != 1 && epm.z - p0[2] < 0.0)

73: OutputFacet (ip4, vec3(0.0,0.0,-1.0));

74: if (t[k][2] != 1 && epm.z - p1[2] > 0.0)

75: OutputFacet (ip5, vec3(0.0,0.0,1.0));

76: } /*main*/

wrotności macierzy przejścia od układu modelu do układu świata, czyli transpozycja ma-
cierzy przejścia od układu świata do układu modelu. Dlatego w tym miejscu jest użyta
funkcja transpose, która likwiduje skutki transpozycji wykonanej przez CPU. Z sześciu
ścian sześcianu odwrócone przodem do obserwatora są zawsze tylko jedna, dwie lub trzy,
zatem szader wyprowadzi co najwyżej trzy taśmy trójkątowe z czterema wierzchołkami (re-
prezentujące po dwie trójkątne połówki ścian). Dlatego limit liczby wierzchołków podany
w kwalifikatorze wyjścia tego szadera jest też równy 12 (zob. listing F.11, linia 6). Procedura
OutputFacet wyprowadza jedną taką taśmę, za pomocą procedury OutputVertex. W li-
nii 18 jest obliczany kolor wierzchołka — przez poddanie położenia wierzchołka takiemu
przekształceniu, które sześcian [−√1/3,√1/3]3 przeprowadza na kostkę jednostkową [0, 1]3.
W linii 19 następuje przejście od układu modelu do układu świata, w linii 20 obliczany jest
wektor normalny ściany w układzie świata, a w linii 21 położenie wierzchołka jest przekształ-
cane do układu współrzędnych kostki standardowej.

F.2. Piramida Sierpińskiego i gąbka Mengera 1139

Za wygląd obiektów na obrazie odpowiada szader fragmentów, który może stosować do-
wolnymodel oświetlenia imoże też realizować algorytm cieni. Obrazy na rysunku F.4 zostały
wykonane przy użyciu szadera z listingów 18.1–18.4.

Rysunek F.4. Obrazy piramidy Sierpińskiego i gąbki Mengera

Rozszerzymy zadanie, otrzymując obrazy przecięcia gąbki (a raczej jej przybliżeń) z pół-
przestrzenią. W tym celu trzeba określić płaszczyznę, która jest brzegiem tej półprzestrzeni
i poddać ściany rysowanych sześcianówobcinaniu tąpłaszczyzną, ale to niewystarczy: trzeba
jeszcze narysować ściany brył otrzymanych z przeciętych sześcianów. Użyjemy do tego prog-
ramów z dwomanowymi szaderami geometrii; szaderywierzchołków i fragmentów pozosta-
ną te same.

Listing F.13 przedstawia szader powodujący obcinanie ścian sześcianów; jest do niego do-
dana deklaracja tablicy gl_ClipDistance, do której sąwpisywane odległości wierzchołków
od płaszczyzny obcinającej i blok zmiennych jednolitych opisujący tę płaszczyznę. Pole nv
w tym bloku przechowuje wektor normalny n, a w tablicy square są podane wierzchołki
w0 , . . . ,w3 leżącego w tej płaszczyźnie czworokąta; każdy z nich, razem z wektorem normal-
nym, wyznacza tę płaszczyznę jednoznacznie.

Listing F.13. Pierwszy szader geometrii do rysowania obciętej gąbki Mengera
GLSL

1: #version 440

2:

3: /* linie 3–19 takie jak na listingu F.11 */

4:

5: out float gl_ClipDistance[1];

6:

7: uniform ClipPlane {

8: vec4 nv;

9: vec4 square[4];

10: } clp;

1140 F. RYSOWANIE FRAKTALI

11:

12: vec3 p[8];

13: float c[8];

14:

15: void OutputVertex (vec3 p, vec3 nv, float c)

16: {

17: /* początek procedury bez zmian */

18: gl_ClipDistance[0] = c;

19: EmitVertex ();

20: } /*OutputVertex*/

21:

22: void OutputFacet (int ip[4], vec3 nv)

23: {

24: int i;

25:

26: for (i = 0; i < 4; i++)

27: OutputVertex (p[ip[i]], nv, c[ip[i]]);

28: EndPrimitive ();

29: } /*OutputFacet*/

30:

31: void main (void)

32: {

33: /* zmienne lokalne procedury main bez zmian */

34: bool pos;

35:

36: /* obliczanie wierzchołków sześcianu bez zmian */

37: for (i = 0, pos = false; i < 8; i++) {

38: c[i] = dot (clp.nv.xyz, p[i]-clp.square[0].xyz);

39: if (c[i] > 0.0) pos = true;

40: }

41: if (!pos) return;

42: epm = transpose(trb.mmti) * trb.eyepos;

43: /* wyprowadzanie ścian sześcianu bez zmian */

44: } /*main*/

Obliczenie wierzchołków sześcianu jest wykonywane tak samo jak przez szader z lis-
tingu F.12. Zadaniem instrukcji w liniach 37–40 jest obliczenie odległości ze znakiem wierz-
chołków od płaszczyzny obcinającej, a dokładniej, dla wierzchołka pi jest znajdowana liczba
ci = ⟨n, pi −w0⟩. Jeśli żadna liczba ci nie jest dodatnia, szader kończy działanie, oszczędzając
niepotrzebnej pracy etapowi obcinania w potoku przetwarzania grafiki. Modyfikacje proce-
dur OutputFacet i OutputVertexmają na celu wyprowadzenie razem z wierzchołkiem pi
liczby ci .

Listing F.14 przedstawia szader geometrii, którego zadaniem jest znalezienie i wyprowa-
dzenie wielokątów otrzymanych z przecięcia sześcianów, z których składa się gąbka, płasz-
czyzną obcinającą. Taki wielokąt musi być podzielony na trójkąty i wyprowadzony w postaci
taśmy trójkątowej; może ona mieć co najwyżej 6 wierzchołków.

F.2. Piramida Sierpińskiego i gąbka Mengera 1141

Listing F.14. Drugi szader geometrii do rysowania obciętej gąbki Mengera
GLSL

1: #version 440

2:

3: /* zmienne interfejsu takie jak na listingu F.12 */

4: uniform ClipPlane { } clp; /* listing F.13 */

5:

6: vec3 cp[20];

7:

8: int SHClip (vec3 nv, vec3 p, int n, int k, int l)

9: {

10: vec3 s, t;

11: float ds, dt;

12: int i, m;

13: #define OUTPUT(P) { cp[l+m] = P; m ++; }

14:

15: s = cp[k+n-1]; ds = dot (nv, q-s);

16: for (i = m = 0; i < n; i++) {

17: t = cp[k+i]; dt = dot (nv, q-t);

18: if (ds >= 0.0) {

19: if (dt >= 0.0) OUTPUT (t)

20: else OUTPUT (mix (s, t, ds/(ds-dt)))

21: }

22: else {

23: if (dt >= 0.0) {

24: OUTPUT (mix (s, t, ds/(ds-dt)))

25: OUTPUT (t)

26: }

27: }

28: s = t; ds = dt;

29: }

30: return m;

31: #undef OUTPUT

32: } /*SHClip*/

33:

34: void OutputVertex (vec3 p)

35: {

36: vec4 q;

37:

38: Out.Colour = vec3(p.x/(2*A)+0.5, p.y/(2.0*A)+0.5, p.z/(2.0*A)+0.5);

39: Out.Position = (q = trb.mm*vec4(p,1.0)).xyz;

40: Out.Normal = Out.TNormal = mat3(trb.mmti) * clp.nv.xyz;

41: gl_Position = trb.vpm * q;

42: EmitVertex ();

43: } /*OutputVertex*/

44:

45: void OutputPolygon (int n)

1142 F. RYSOWANIE FRAKTALI

46: {

47: int i, k;

48:

49: for (i = 0, k = n-1; i < k; i++, k--) {

50: OutputVertex (cp[i]);

51: OutputVertex (cp[k]);

52: }

53: if (i == k)

54: OutputVertex (cp[i]);

55: EndPrimitive ();

56: } /*OutputPolygon*/

57:

58: void main (void)

59: {

60: /* zmienne jak na listingu F.12 */

61: float c;

62: bool pos, neg;

63:

64: /* obliczanie wierzchołków sześcianu bez zmian */

65: for (i = 0, pos = neg = false; i < 8; i++) {

66: c = dot (clp.nv.xyz, p[i]-clp.square[0].xyz);

67: if (c > 0.0) pos = true;

68: else if (c < 0.0) neg = true;

69: }

70: if (!(pos && neg)) return;

71: for (i = 0; i < 4; i++)

72: cp[i] = clp.square[i].xyz;

73: i = SHClip (vec3(-1.0,0.0,0.0), p[0], 4, 0, 10);

74: i = SHClip (vec3(1.0,0.0,0.0), p[1], i, 10, 0);

75: i = SHClip (vec3(0.0,-1.0,0.0), p[1], i, 0, 10);

76: i = SHClip (vec3(0.0,1.0,0.0), p[2], i, 10, 0);

77: i = SHClip (vec3(0.0,0.0,-1.0), p[1], i, 0, 10);

78: i = SHClip (vec3(0.0,0.0,1.0), p[5], i, 10, 0);

79: if (i > 2)

80: OutputPolygon (i);

81: } /*main*/

Procedura main, na podstawie numeru instancji sześcianu, oblicza jego wierzchołki tak
samo jak w szaderach na listingach F.12 i F.13. W liniach 65–69 są obliczane odległości ze zna-
kiem wierzchołków od płaszczyzny obcinającej, po czym, jeśli wszystkie one mają ten sam
znak, to szader kończy działanie. Jeśli zaś płaszczyzna obcinająca przecina sześcian, to prze-
cięcie jest wyznaczane. Czworokąt, którego wierzchołki są podane w tablicy square, musi
być tak duży, aby zawierał przecięcie płaszczyzny z całą gąbką. Przecięcie jest znajdowane
za pomocą opisanego w p. 19.8.7 algorytmu Sutherlanda-Hodgmana obcinania wielokąta do
półprzestrzeni; sześcian (część przybliżenia gąbki określona przez numer instancji) jest prze-
cięciem sześciu półprzestrzeni, a zatem procedurę obcinania trzeba wywołać sześciokrotnie.

F.2. Piramida Sierpińskiego i gąbka Mengera 1143

Parametrami procedury obcinania są wektor normalny i punkt płaszczyzny obcinającej
(którą w tym przypadku jest płaszczyzna zawierająca ścianę sześcianu), liczba wierzchołków
obcinanego wielokąta i dwa indeksy do globalnej tablicy cp, w której są przechowywane
te wierzchołki. Tablica ta jest podzielona na połowy; wierzchołki są odczytywane z jednej
połowy (której początek jest wskazywany przez pierwszy indeks) i zapisywane w drugiej po-
łowie; w następnym wywołaniu procedury role tych połówek są zamieniane. Choć podczas
obcinania dużego czworokąta do sześcianu nie pojawi się więcej niż 6 wierzchołków, tablica
cp ma długość 20; jest to zabezpieczenie na wypadek, gdyby (wskutek zmian aplikacji) po-
dany w tablicy square czworokąt stał się za mały i wynik jego obcinania mógłmieć nawet 10
wierzchołków10.

W liniach 71–72wierzchołki czworokąta są przepisywane do pierwszej połowy tablicy cp.
Procedura SHClip jest podobna do tej z listingu 19.15, ale w tym przypadku obliczenie jest
wykonywane we współrzędnych kartezjańskich. Wzór opisujący parametr t punktu przecię-
cia krawędzi st wielokąta z płaszczyzną obcinającąma postać

t = ⟨q − s, n⟩/⟨t − s, n⟩ = ds/(ds − dt),
w której liczby ds i dt są odległościami ze znakiem punktów s i t od płaszczyzny obcinającej.

Procedura OutputPolygonwyprowadza wynik obcinania. Jego wierzchołki są uporząd-
kowanew kolejności występowania na brzegu. Gdyby byłamożliwośćwyprowadzenia wach-
larza trójkątów przez szader geometrii, to taka kolejność byłaby odpowiednia. Ale szader
może wyprowadzić tylko taśmę trójkątową. Instrukcje procedury OutputPolygon realizują
kolejność wyprowadzania wierzchołków odpowiednią dla taśmy.

Przedstawiona na listingu F.15 procedura wykonuje obraz obciętej gąbki przy użyciu
programów z szaderami opisanymi wyżej. Liczba instancji obiektu (tj. sześcianów, z któ-
rych składa się przybliżenie gąbki) jest wyznaczana tak jak dla gąbki nieobciętej. Podczas
rysowania ścian sześcianów (w linii 16) obcinanie ma być włączone, ale jest ono wyłączane
w linii 17, przed rysowaniem przekroju gąbki.

Listing F.15. Procedura rysowania obciętej gąbki Mengera
C

1: void DrawClippedSponge (void)

2: {

3: GLint ninst;

4: int i;

5:

6: glBindVertexArray (empty_vao);

7: for (i = 1, ninst = 20; i < level[1]; i++)

8: ninst *= 20;

9: glEnable (GL_CLIP_DISTANCE0);

10: glEnable (GL_CULL_FACE);

11: glCullFace (GL_FRONT);

10Czasami trzeba dmuchać na zimne i moim zdaniem to jest taka sytuacja. Z każdym obcinaniem wielokąta
wypukłego do półprzestrzeni liczba wierzchołków może się zwiększyć co najwyżej o 1.

1144 F. RYSOWANIE FRAKTALI

12: glFrontFace (GL_CCW);

13: glUseProgram (program_id[2]); /* program z szaderem z listingu F.13 */

14: glUniform1i (levelloc[2], level[1]);

15: glUniform1i (ColourSourceLoc[2], 0);

16: glDrawArraysInstanced (GL_POINTS, 0, 1, ninst);

17: glDisable (GL_CLIP_DISTANCE0);

18: glUseProgram (program_id[3]); /* program z szaderem z listingu F.14 */

19: glUniform1i (levelloc[3], level[1]);

20: glUniform1i (ColourSourceLoc[3], 0);

21: glDrawArraysInstanced (GL_POINTS, 0, 1, ninst);

22: glBindVertexArray (0);

23: ExitIfGLError ("DrawClippedSponge");

24: } /*DrawClippedSponge*/

Rysunek F.5. Obrazy części wspólnej gąbki Mengera i półprzestrzeni

Rysunek F.5 przedstawia obrazy przecięć dwóch przybliżeń gąbki Mengera z półprzes-
trzenią { (x , y, z)∶ x + y + z ⩽ 0}.

G
GPGPU

Przedstawiona w rozdziale 31 implementacja metody zagęszczania siatek jest przykładem za-
stosowania GPU do obliczeń niezwiązanych bezpośrednio z grafiką, czyli GPGPU. W tym
dodatku są opisane przykłady implementacji algorytmów ogólnego stosowania, wykorzys-
tujących moc obliczeniową pracujących równolegle procesorów GPU. Część z nich została
użyta w implementacji metody bilansu energetycznego w rozdziale 29 i w procedurach za-
gęszczania siatek opisanych w rozdziale 31.

G.1. Działania parami

Mając dany ciąg n liczb lub wektorów, można obliczyć sumę ich wszystkich w ⌈log2 n⌉ kro-
kach, dodając jednocześnie pary składników, a potem pary sum częściowych. Implementacja
najprostszego algorytmu sumowania parami jest pokazana na listingach G.1 i G.2. Pierwszy
z nich przedstawia szader obliczeniowy, który wywołuje procedurę dodajacą do i-tego ele-
mentu w tablicy element j-ty; ta procedura, niepokazana tu, realizuje działanie odpowiednie
dla konkretnych obiektów, które mogą być liczbami całkowitymi lub zmiennopozycyjnymi,
ale też wektorami lub macierzami. Szczegóły budowy tablicy w pamięci GPU, w której są
umieszczone obiekty (np. układ danych w buforze) i rodzaj obiektów, zna tylko ta procedura.
Zadaniem procedury main jest wyznaczenie liczb i oraz j — pierwsza z nich jest numerem
instancji szadera w grupie roboczej i jest mniejsza niż n/2, a druga jest o ⌈n/2⌉ większa.

Przedstawiony tu szader jest wywoływany przez procedurę GPUSumUp, która przedtem
przywiązuje do odpowiedniego celu podany jako parametr bufor magazynowy zawierający
dane i nadaje wartości zmiennym jednolitym— zmienna n0 określa początek ciągu do zsu-
mowania w tablicy, a zmienna n określa bieżącą liczbę składników. W kolejnych krokach
liczba ta maleje o połowę (z zaokrąglaniem w górę), a gdy zmaleje do 1, w miejscu n0 w tab-
licy jest gotowa suma wszystkich elementów ciągu.

Rozwinięciem makrodefinicji COMPUTE (listing 9.1) jest instrukcja złożona, w której po
wywołaniu procedury glDispatchCompute, uruchamiającym obliczenia na GPU, nastę-
puje wywołanie procedury glMemoryBarrier, z której powrót następuje, gdy wszystkie
operacje zapisu do buforów magazynowych są zakończone.

1146 G. GPGPU

Listing G.1. Procedura main szadera sumowania parami
GLSL

1: #version 450 core

2:

3: layout(local_size_x=1) in;

4:

5: uniform uint n;

6:

7: void AddTwoTerms (uint i, uint j);

8:

9: void main (void)

10: {

11: uint i, j;

12:

13: i = uint (gl_GlobalInvocationID.x);

14: if ((j = i+(n+1)/2) < n)

15: AddTwoTerms (i, j);

16: } /*main*/

Listing G.2. Procedura sumowania parami na GPU
C

1: static GLuint program_id, GLuint uloc[2];

2:

3: void GPUSumUp (GLuint n, GLuint n0, GLuint databuf)

4: {

5: glUseProgram (program_id);

6: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, databuf);

7: glUniform1ui (uloc[1], n0);

8: for (; n > 1; n = (n+1)/2) {

9: glUniform1ui (uloc[0], n);

10: COMPUTE (n/2, 1, 1)

11: }

12: ExitIfGLError ("GPUSumUp");

13: } /*GPUSumUp*/

Wypada uczynić dwie uwagi: po pierwsze, algorytm ma spore wymagania pamięciowe,
bo „psuje” początkową zawartość tablicy. Jeśli oryginalny ciąg będzie później potrzebny, to
trzeba utworzyć dodatkowy bufor roboczy, skopiować do niego dane i zepsuć kopię. Po dru-
gie, algorytm zakłada łączność i przemienność wykonywanego działania; dodawanie liczb,
a także wektorów i macierzy ma te własności w algebrze i w arytmetyce stałopozycyjnej, ale
nie w arytmetyce zmiennopozycyjnej, ponieważ w niej występują błędy zaokrągleń1. Ich

1Zamiana argumentów jednego dodawania nie zmieni wyniku, ale przestawienie wielu składników lub inne
ich pogrupowanie (np. a+(b+ c) zamiast (a+b)+ c) jużmoże. Matematyk powiedziałby, że dodawanie zmien-
nopozycyjne jest działaniem łącznym z dokładnością do błędów zaokrągleń, co jest przyznaniem, że dodawanie
zmiennopozycyjne nie jest łączne, ale stara się najlepiej jak się da.

G.1. Działania parami 1147

obecność sprawia, że obliczona suma liczb zmiennopozycyjnych prawie zawsze jest tylko
prawie dokładną sumą tych liczb.

Uwaga: Skutki błędów zaokrągleń mogą być interpretowane jako względne zaburzenia da-
nych; różne algorytmy sumowania liczb zmiennopozycyjnych obliczą dokładne sumy trochę
innych liczb. Wielkość tych zaburzeń zależy odwzględnej dokładności reprezentacji (w przy-
bliżeniu 10−7 dla pojedynczej i 10−15 dla podwójnej precyzji) i od tzw. stałych kumulacji, które
im sąmniejsze, tym lepszy jest algorytm. Dla sumowania n liczb „po kolei” stałe kumulacji
są rzędu n, a dla sumowania parami tylko log2 n. A więc algorytmy sumowania parami, dla
dużych n, mają przewagę nad sumowaniem „po kolei” także pod tym względem.

a) b)

0

1

2

3

s

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

◇ ◇ ◇ ◇ ◇

◇ ◇

◇

◇

0

1

2

3

s

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

◇ ◇ ◇ ◇ ◇

◇ ◇

◇

◇

Rysunek G.1. Drzewa działań parami realizowanych przez dwa algorytmy równoległe dla n = 10

Pewne działania dwuargumentowe są łączne, ale nie są przemienne. Działaniami takimi
są na przykładmnożenie macierzy n×n (dla n > 1) i mnożenie kwaternionów. Oznaczmy ta-
kie działanie symbolem „◇”. Jeśli trzeba obliczyćwyrażenie a0◇a1◇⋯◇an−1, w którym nie
wolno przestawiać argumentów, ale można (dzięki łączności) dowolnie rozmieścić nawiasy,
to możemy użyć innego algorytmu równoległego, który również wykonuje ⌈log2 n⌉ kroków.
Algorytm ten jest przedstawiony na listingach G.3 i G.4; szader obliczeniowy na pierwszym
listingu jest wywoływany odpowiednią liczbę razy przez procedurę z drugiego listingu. Dzia-
łanie realizowane przez procedurę AddTwoTermsmoże być dowolnym działaniem łącznym2,
przy czym procedura wykonuje działanie na obiektach obecnych na pozycjach n0+i i n0+j
i wpisuje wynik do tablicy na miejsce pierwszego z tych argumentów. Na rysunku G.1 są po-
kazane drzewawyrażeń obliczanych przez oba opisane tu algorytmy, a takżemiejscaw tablicy
z danymi, na których są zapisywane wyniki pośrednie. W obu przypadkach wynik końcowy
zostaje na miejscu pierwszego elementu ciągu3.

2ewentualnie łącznym z dokładnością do błędów zaokrągleń
3Gdy działanie „◇” jest dodawaniem liczb zmiennopozycyjnych, stałe kumulacji są takie same jak dla pierw-

szego algorytmu — od obu algorytmów sumowania parami można oczekiwać podobnej dokładności.

1148 G. GPGPU

Listing G.3. Procedura main drugiego algorytmu sumowania parami
GLSL

1: #version 450 core

2:

3: layout(local_size_x=1) in;

4:

5: uniform uint n, q;

6:

7: void AddTwoTerms (uint i, uint j); /* dowolne działanie łączne */

8:

9: void main (void)

10: {

11: uint i, j;

12:

13: i = uint ((q+q)*gl_GlobalInvocationID.x);

14: if ((j = i+q) < n)

15: AddTwoTerms (i, j);

16: } /*main*/

Listing G.4. Druga procedura sumowania parami na GPU
C

1: static GLuint program_id, GLuint uloc[3];

2:

3: void GPUAltSumUp (GLuint n, GLuint n0, GLuint databuf)

4: {

5: GLuint q;

6:

7: glUseProgram (program_id);

8: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, databuf);

9: glUniform1ui (uloc[0], n); /* uniform n = n; */

10: glUniform1ui (uloc[1], n0); /* uniform n0 = n0; */

11: for (q = 1; n > 1; q += q, n = (n+1)/2) {

12: glUniform1ui (uloc[2], q); /* uniform q = q; */

13: COMPUTE (n/2, 1, 1)

14: }

15: } /*GPUAltSumUp*/

W obu przedstawionych wyżej algorytmach możemy wykonywać dowolne działanie
łączne i przemienne (w drugim przypadku wystarczy tylko łączność), na przykład wybie-
ranie mniejszego (albo większego) elementu, co umożliwia znalezienie minimalnego (albo
maksymalnego) elementu ciągu w ⌈log2 n⌉ krokach. Dokładnie tyle samo kroków wystarczy,
aby oba elementy skrajne — minimalny i maksymalny — znaleźć jednocześnie.

Szader jednocześnie znajdujący elementy skrajne w danym ciągu posługuje się trzema
procedurami, które mają dostęp do tablicy zawierającej ten ciąg i które są dostosowane do
konkretnego rodzaju elementów, ich reprezentacji i relacji ustalającej porządekmiędzy nimi.

G.1. Działania parami 1149

Jedną z tych procedur jest komparator, czyli procedura porównująca dwa elementy ciągu na
wskazanych pozycjach i przestawiająca je tak, aby na pierwszej pozycji znalazł się element
mniejszy. Pozostałe dwie procedury porównują dwa elementy i jeśli drugi element jest od-
powiednio mniejszy albo większy, to przepisują go na pierwszą pozycję. Przykład takich
procedur (dla ciągu liczb całkowitych) jest na listingu G.5.

Listing G.5. Procedury do znajdowania minimum i maksimum w ciągu liczb
GLSL

1: #version 450 core

2:

3: layout(std430,binding=0) buffer Data { int d[]; } data;

4:

5: uniform uint n, n0;

6:

7: void CompSwap (uint i, uint j)

8: {

9: int x;

10:

11: if (data.d[i += n0] > data.d[j += n0])

12: { x = data.d[i]; data.d[i] = data.d[j]; data.d[j] = x; }

13: } /*CompSwap*/

14:

15: void ChooseMin (uint i, uint j)

16: {

17: if (data.d[i += n0] > data.d[j += n0])

18: data.d[i] = data.d[j];

19: } /*ChooseMin*/

20:

21: void ChooseMax (uint i, uint j)

22: {

23: if (data.d[i += n0] < data.d[j += n0])

24: data.d[i] = data.d[j];

25: } /*ChooseMax*/

Procedura main na listingu G.6 działa nieco inaczej w pierwszym kroku niżw kolejnych.
Wartość zmiennej jednolitej n, która musi być większa niż 1, jest liczbą elementów w tab-
licy. W pierwszym kroku zmienna s ma wartość true; wtedy komparator (wywołany w li-
nii 19) porządkuje parę sąsiednich elementów, wskutek czego mniejsze elementy wszystkich
par znajdą się w tablicy na pozycjach parzystych, a większe na nieparzystych. Dodatkowo
jeśli długość ciągu jest nieparzysta, to ostatni jego element jest porównywany z elementami
pierwszej pary i jeśli jest mniejszy od pierwszego z nich albo większy od drugiego, to jest
wpisywany na odpowiednie miejsce w tej parze. Odtąd liczba miejsc w tablicy zajętych przez
potrzebne dalej dane, będąca wartością zmiennej n, jest parzysta.

1150 G. GPGPU

Listing G.6. Procedura main szadera znajdowania minimum i maksimum
GLSL

1: #version 450 core

2:

3: layout(local_size_x=1) in;

4:

5: uniform uint n;

6: uniform bool s;

7:

8: void CompSwap (uint i, uint j);

9: void ChooseMin (uint i, uint j);

10: void ChooseMax (uint i, uint j);

11:

12: void main (void)

13: {

14: uint i, j;

15:

16: i = uint (gl_GlobalInvocationID.x); i += i;

17: if (s) { /* porządkowanie par */

18: if ((j = i+1) < n)

19: CompSwap (i, j);

20: if (i == 0 && (n & 0x01) != 0) { /* n nieparzyste */

21: ChooseMin (0, n-1);

22: ChooseMax (1, n-1);

23: }

24: }

25: else if ((j = i + 2*((n+3)/4)) < n) {

26: ChooseMin (i, j);

27: ChooseMax (i+1, j+1);

28: }

29: } /*main*/

Gdy zmienna smawartość false, w tablicy znajduje się n/2 uporządkowanych par, przy
czym któraś z tych par zawiera element najmniejszy, a inna lub ta sama para zawiera element
największy danego ciągu. Wątek i-ty szadera przetwarza pary o numerach i oraz j = i+⌈n/4⌉;
mniejszy z mniejszych oraz większy z większych elementów obu par zostają zapamiętane
w pierwszej parze. W ten sposób istotne dane zostają przeniesione do pierwszej połowy
dotychczas istotnego fragmentu tablicy.

Procedura na listingu G.7 po zakończeniu działania zostawia elementy najmniejszy i naj-
większy na pierwszych dwóch miejscach tablicy zajmowanej początkowo przez dany ciąg,
skąd aplikacja może je odczytać. Zawartość tablicy zostaje oczywście „zepsuta”. Wydaje mi
się, że procedura ta nie wymaga dalszych objaśnień. Polecam ćwiczenie: napisanie szadera,
który dla tablicy punktów w przestrzeni znajduje boks otaczający, tj. najmniejszy prostopad-
łościan o krawędziach równoległych do osi układu współrzędnych zawierający te punkty,
i wypróbowanie tego szadera w aplikacji 1E (rozdz. 13) lub w innych, własnych aplikacjach.

G.2. Obliczanie sum prefiksowych 1151

Listing G.7. Procedura znajdowania minimum i maksimum
C

1: static GLuint program_id, uloc[3];

2:

3: void GPUFindMinMax (GLuint n, GLuint n0, GLuint databuf)

4: {

5: glUseProgram (program_id);

6: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, databuf);

7: glUniform1ui (uloc[0], n);

8: glUniform1ui (uloc[1], n0);

9: glUniform1ui (uloc[2], GL_TRUE); /* uniform s = true; */

10: COMPUTE (n/2, 1, 1)

11: glUniform1ui (uloc[2], GL_FALSE); /* uniform s = false; */

12: for (n &= ~0x01; n > 2; n = 2*((n+3)/4)) {

13: glUniform1ui (uloc[0], n);

14: COMPUTE (n/4, 1, 1)

15: }

16: ExitIfGLError ("GPUFindMinMax");

17: } /*GPUFindMinMax*/

G.2. Obliczanie sum prefiksowych

Wwielu zastosowaniach zachodzi konieczność znalezienia sum prefiksowych danego ciągu
liczb a0, . . . , an−1, czyli sum częściowych tego ciągu od początku do każdego miejsca:

sl
def=

l

∑
j=0

a j , l = 0, . . . , n − 1.

Łatwo jest to zrobić sekwencyjnie (wykonując kolejno n−1 dodawań), ale uruchamiającwątki
działające równolegle, można to zadanie wykonać w ⌈log2 n⌉ krokach, tak jak zsumowanie
wszystkich liczb (czyli obliczenie tylko ostatniego elementu ciągu sum prefiksowych, sn−1).

Zobaczmy implementację (w postaci procedurywC i szadera obliczeniowego) algorytmu
obliczania sumprefiksowych. Wątki szadera są zorganizowane w jednowymiarową grupę ro-
boczą. Algorytm równoległy obliczania sum prefiksowych składa się z s = ⌈log2 n⌉ kroków
(ponumerowanych od 0 do s − 1, rys. G.2). W każdym kroku wątek wykonuje jedno doda-
wanie elementów danego ciągu lub ich sum.

Ciąg a0, . . . , an−1 dany w tablicy zostanie zastąpiony przez ciąg s0 , . . . , sn−1. W kolejnych
krokach pewne elementy tablicy są dodawane do innych elementów, które zostają zastąpione
przez obliczone sumy. Na rysunkumożna zauważyć, że k+1 najmniej znaczących cyfr w roz-
winięciu dwójkowym indeksów elementów dodawanych w k-tym kroku do elementów na
innych pozycjach to 0 i k jedynek. Każdy taki element jest dodawany do 2k kolejnych ele-
mentów. W szczególności dla k = 0 każdy element o indeksie parzystym zostaje dodany do
swojego prawego sąsiada (i tylko do niego).

1152 G. GPGPU

k = 0

k = 1

k = 2

k = 3

k = 4

a0

s0

a1

s1

a2

s2

a3

s3

a4

s4

a5

s5

a6

s6

a7

s7

a8

s8

a9

s9

a10

s10

a11

s11

a12

s12

a13

s13

a14

s14

a15

s15

a16

s16

a17

s17

a18

s18

a19

s19

a20

s20

a21

s21

a22

s22

a23

s23

+
0

+
1

+
2

+
3

+
4

+
5

+
6

+
7

+
8

+
9

+
10

+
11

+
0

+
1

+
2

+
3

+
4

+
5

+
6

+
7

+
8

+
9

+
10

+
11

+
0

+
1

+
2

+
3

+
4

+
5

+
6

+
7

+
8

+
9

+
10

+
11

+
0

+
1

+
2

+
3

+
4

+
5

+
6

+
7

+
0

+
1

+
2

+
3

+
4

+
5

+
6

+
7

Rysunek G.2. Nałożone drzewa binarne sum prefiksowych

Wątek o numerze i ma w kroku k-tym dodać elementy o indeksach

ia = 2k+1⌊i/2k⌋ + 2k − 1, ib = ia + (i mod 2k) + 1

i wpisać sumę na miejsce ib. Indeksy ia , ib dla kolejnych kroków można obliczać za pomocą
działań na cyfrach rozwinięcia dwójkowego liczby i i maskach bitowych. Gdyby dopusz-
czalna wielkość lokalnej grupy roboczej była większa lub równa n/2, to opisany wyżej algo-
rytm obliczania sum prefiksowychmogłaby realizować jedna taka grupa, w której i-ty wątek
wykonywałby następującą instrukcję:

for (ii = i+i, m0 = 0x01, m1 = 0; m0 < n; m1 = (m0 += m0)-1) {

ia = (ii & ˜m0) | m1;

if ((ib = ia + (i & m1) + 1) < N)

a[ib] += a[ia];

groupMemoryBarrier ();

}

Rolę zmiennej określającej numer kroku k pełni tu zmienna m0, która w k-tym kroku ma
wartość 2k . Warunek zakończenia pętli opisuje nierówność 2k ⩾ n równoważną k ⩾ log2 n.
Zmienna m1 ma w k-tym kroku wartość 2k − 1, zatem k jej najmniej znaczących bitów ma
wartość 1, a pozostałe to zera. Wwyrażeniu, którego wartość jest przypisywana zmiennej ia,
bit rozwinięcia dwójkowego liczby 2i na pozycji k jest kasowany, a wszystkie bity na pozyc-
jach 0, . . . , k − 1 otrzymują wartość 1, co daje wynik równoważny zastosowaniu podanego
wcześniej wzoru na ia. Wartość wyrażenia (i & m1) jest resztą z dzielenia i przez 2k .

Procedura groupMemoryBarrier ma zapewnić dokończenie działania w k-tym kroku
przez wszystkie wątki (całą grupę roboczą) przed rozpoczęciem wykonywania kroku na-
stępnego. Jednak działanie tej procedury jest ograniczone do lokalnej grupy roboczej, której

G.2. Obliczanie sum prefiksowych 1153

maksymalny rozmiar ogranicza dopuszczalną długość ciągu możliwego do przetworzenia
przy użyciu powyższej instrukcji4. Dlatego obliczenie sum prefiksowych dla ciągów ponad
dwa razy dłuższych niż dopuszczalna wielkość lokalnej grupy roboczej wymaga użycia roz-
wiązania, w którym za synchronizację dostępu do pamięci odpowiada CPU; dla lokalnych
grup roboczych przyjmiemy rozmiary 1×1×1, a długość (jednowymiarowej) globalnej grupy
roboczej dobierzemy do długości ciągu.

Listing G.8 przedstawia procedurę, którą procedura main szadera ma wywołać, aby wy-
konać jeden krok algorytmu sumowania. Jej parametrem jest liczba i będąca wartością
zmiennej wbudowanej gl_GlobalInvocationID — określa ona numer wątku w global-
nej grupie roboczej. Zmienna jednolita prStep przechowuje numer k bieżącego kroku
algorytmu. Zmienne prN0 i prN określają miejsce początku ciągu i jego długość w tab-
licy seq.a znajdującej się w buforze magazynowym przywiązanym do punktu 0 w celu
GL_SHADER_STORAGE_BUFFER. Układ std4305 określa, że elementy tablicy (liczby całko-
wite 32-bitowe) są upakowane bez przerw.

Listing G.8. Procedura realizująca krok obliczania sum prefiksowych
GLSL

1: layout(std430,binding=0) buffer prSequence { int a[]; } seq;

2:

3: void iPrefixSum (uint i)

4: {

5: uint ii, m0, m1, ia, ib;

6:

7: ii = i+i; m0 = 0x01 << prStep; m1 = m0-1;

8: ia = (ii & ~m0) | m1;

9: if ((ib = ia + (i & m1) + 1) < prN)

10: seq.a[prN0 + ib] += seq.a[prN0 + ia];

11: } /*iPrefixSum*/

Przedstawiona na listingu G.9 procedura iPrefixSum, działająca na CPU, realizuje ze-
wnętrzną pętlę algorytmu sumowania, wykonywaną s = ⌈log2 n⌉ razy. Parametry N0 i N
procedury określająmiejsce początku i długość ciągu w buforze magazynowym przywiąza-
nym do punktu dowiązania 0 w celu GL_SHADER_STORAGE_BUFFER. Ich wartości są przypi-
sywane zmiennym jednolitym prN0 i prN, których położenia zostały odczytane po złączeniu
programu i zapamiętane w zmiennych locN0 i locN. Zmienna jednolita prStep otrzymuje
w kolejnych przebiegach pętli wartości 0, 1, . . . , s− 1. W linii 7 jest obliczana potrzebna liczba
wątków, równa ⌊n/2⌋, czyli długość globalnej grupy roboczej.

Makrodefinicja COMPUTE powywołaniu procedury glDispatchComputewywołuje pro-
cedurę glMemoryBarrier. Jej zadaniem jest wstrzymaćwykonywanie programu na CPU aż
do zakończenia obliczeń i zapisania w pamięci wyników przez wszystkie wątki szadera, aby
można było przystąpić do następnego kroku sumowania lub do dalszych obliczeń korzysta-
jących z gotowych sum prefiksowych.

4Taki wariant algorytmu jest realizowany przez szader z listingu 29.30 w liniach 71–81.
5wprowadzony w specyfikacji OpenGL 4.3, dopuszczalny tylko dla buforów magazynowych

1154 G. GPGPU

Listing G.9. Podprogram na CPU wywołujący procedurę z listingu G.8
C

1: void iPrefixSum (GLuint *uvofs, GLuint N0, GLuint N)

2: {

3: unsigned int k, m, d;

4:

5: glUniform1ui (locN0, N0); /* uniform prN0 = N0; */

6: glUinform1ui (locN, N); /* uniform prN = N; */

7: d = N/2;

8: for (k = 0, m = N-1; m > 0; k++, m >>= 1) {

9: glUniform1ui (locprStep, k); /* uniform prStep = k; */

10: COMPUTE (d, 1, 1)

11: }

12: ExitIfGLError ("iPrefixSum");

13: } /*iPrefixSum*/

G.3. Sortowanie
Ale zemsta, choć leniwa,
Nagnała cię w nasze sieci;

AdamMickiewicz: Pani Twardowska

Zaprogramujemy tzw. sieć sortującą, której masywnie równoległa implementacja sortuje
ciąg o długości n w czasie rzędu log2 n. Implementacja sieci sortującej na GPU okazuje się
znacznie prostsza niż dokładny opis i dowód poprawności tego algorytmu; opiszę jak on
działa, ale po wyjaśnienie, dlaczego on działa (czyli po podstawy teoretyczne), jestem zmu-
szony odesłać Czytelników do rozdziału 27 książki [54].

Wykonawcą algorytmu na najniższym poziomie jest komparator, czyli procedura porów-
nująca dane obiekty na dwóch wskazanych miejscach w tablicy i przestawiająca je, jeśli drugi
obiekt powinien poprzedzać pierwszy. Rodzaj obiektów i relacja, zgodnie z którą należy je
uporządkować, są „zaszyte” w komparatorze. Dla ustalenia uwagi w opisie algorytmu przyj-
miemy, że w tablicy jest ciąg liczb, który ma być posortowany niemalejąco. W każdym kroku
algorytmu ⌊n/2⌋ wątków komparatora może jednocześnie zbadać i tam, gdzie trzeba, prze-
stawić ⌊n/2⌋ par obiektów w tablicy. Jeśli n > 2, to sztuka polega na wykonaniu właściwej
(jak najmniejszej) liczby kroków i wskazaniu, w każdym kroku, odpowiednich par dla po-
szczególnych komparatorów.

Listing G.10 przedstawia implementację sieci sortującej na CPU — napisałem ją po to,
aby ułatwić sobie uruchomienie implementacji docelowej i zrobić rysunek G.3, a zamieści-
łem ją tu, aby lepiej objaśnić działanie algorytmu. Dlatego ta implementacja może posor-
tować tylko ciąg liczb całkowitych. Procedura CompSwap w liniach 1–9 jest dostosowanym
do tego komparatorem. Sortowanie składa się z s = ⌈log2 n⌉ etapów. W kolejnych etapach
sortowanie odbywa się we fragmentach tablicy, których długościami są liczby 2, 4, 8, . . . , tj.
kolejne całkowite potęgi dwójki6. Na początku etapu połowy każdego takiego fragmentu są
posortowane; zadaniem etapu jest „scalenie” tych połówek, czyli takie przestawienie obiek-

6Jeśli liczba n nie jest potęgą dwójki, to ostatni fragment tablicy może być krótszy.

G.3. Sortowanie 1155

tów, aby uporządkować fragment. W i-tymetapie scalenie fragmentówodługości 2i−1, dające
posortowane fragmenty o długości 2i , wymaga wykonania i kroków algorytmu.

Listing G.10. Implementacja sekwencyjna sieci sortującej
C

1: void CompSwap (unsigned int n, int *data, unsigned int i, unsigned int j)

2: {

3: int x;

4:

5: if (j < n) {

6: if (data[i] > data[j])

7: { x = data[i]; data[i] = data[j]; data[j] = x; }

8: }

9: } /*CompSwap*/

10:

11: void NetSort (unsigned int n, int *data)

12: {

13: unsigned int steps, nn, h, h2, h4, i, j, k, kk, l;

14:

15: if (n < 2)

16: return;

17: for (nn = n-1, steps = 0; nn; nn >>= 1, steps ++)

18: ;

19: nn = 1 << steps;

20: for (i = 0, h2 = 1, h = 2, k = nn >> 1;

21: i < steps;

22: i++, h2 = h, h <<= 1, k >>= 1) {

23: for (j = 0; j < k; j++) {

24: for (l = 0; l < h2; l++)

25: CompSwap (n, data, j*h+l, j*h+h-1-l);

26: }

27: for (h2 = h >> 1, h4 = h2 >> 1, kk = k << 1;

28: h2 > 1;

29: h2 = h4, kk <<= 1, h4 >>= 1) {

30: for (j = 0; j < kk; j++) {

31: for (l = 0; l < h4; l++)

32: CompSwap (n, data, j*h2+l, j*h2+l+h4);

33: }

34: }

35: }

36: } /*NetSort*/

Instrukcje procedury NetSort w liniach 17–19 wyznaczają i zapamiętują w zmiennej
steps liczbę s etapów sortowania, a zmienna nn otrzymuje wartość 2s, tzn. najmniejszą cał-
kowitą potęgę liczby 2 nie mniejszą niż n.

Kolejne etapy wykonywane są w pętli w liniach 20–35. Pierwszy krok każdego z tych eta-
pów różni się od pozostałych, dlatego jest onwykonywany przez osobną pętlęw liniach 23–26.
Ale choć CPU wywoła komparator dla każdej pary po kolei, zarówno w tym, jak i w każdym

1156 G. GPGPU

i = 1

i = 2

i = 3

i = 4

a0

s0

a1

s1

a2

s2

a3

s3

a4

s4

a5

s5

a6

s6

a7

s7

a8

s8

a9

s9

a10

s10

a11

s11

a12

s12

a13

s13

a14

s14

a15

s15

Rysunek G.3. Sieć sortująca dla n = 16 — poziome odcinki i zygzaki symbolizują komparatory

następnym kroku (linie 27–34) wszystkie działania wykonywane przez komparator (kompa-
ratory)mogą się odbywać jednocześnie.

Przed i-tym etapem obie połowy fragmentu o długości 2i tablicy są posortowane.
W pierwszym kroku etapu komparatory porównują pierwszy obiekt z pierwszej połowy
z ostatnim obiektem drugiej, drugi z przedostatnim itd. (rys. G.3). Okazuje się, że wsku-
tek dokonanej wymiany obiektów między połowami powstają w tych połowach fragmentu
tzw. ciągi bitoniczne, tj. dające się podzielić na dwie części monotoniczne — niemalejącą
i nierosnącą— w tej lub w odwrotnej kolejności7. Co więcej, wszystkie obiekty w pierwszej
połowie fragmentu sąmniejsze lub równe obiektom w drugiej połowie. Kolejne kroki i-tego
etapu mają na celu posortowanie tych połówek.

Sortowanie ciągu bitonicznego jest nazywane czyszczeniem. Zaczyna się ono w drugim
kroku i-tego etapu, w którym ciąg bitoniczny w każdym kolejnym fragmencie tablicy o dłu-
gości 2i−1 komparatory zamieniają na dwa dwukrotnie krótsze ciągi bitoniczne, przy czym
żaden element pierwszego z nich nie jest większy niż którykolwiek element drugiego ciągu.
Podobniew kolejnych krokach czyszczenia długości ciągówbitonicznychmaleją dwukrotnie,
a elementy mniejsze zostają przestawione przed większe, aż powstaną ciągi o długości 1 —
i w ten sposób zawartości kolejnych fragmentów tablicy o długości 2i zostają posortowane.

Wartość nadawana zmiennej k przed wykonaniem i-tego etapu jest liczbą fragmentów
o długości 2i , przypisywanej zmiennej h. Wartości zmiennych h2 i h4 to odpowiednio dłu-
gości ciągów bitonicznych przed i po kolejnym kroku czyszczenia.

Listing G.11 przedstawia szader obliczeniowy, którego wątki (instancje) wyznaczają za-
dania dla komparatorów. Właściwy komparator jest procedurą, którą najlepiej jest umieścić

7Ciąg monotoniczny też jest ciągiem bitonicznym, którego jedna z części monotonicznych jest pusta.

G.3. Sortowanie 1157

Listing G.11. Procedura main szadera sieci sortującej
GLSL

1: #version 450 core

2:

3: layout(local_size_x=1) in;

4:

5: uniform uint n, h;

6: uniform bool reverse;

7:

8: void CompSwap (uint i, uint j);

9:

10: void main (void)

11: {

12: uint iid, i, j, l, h2;

13:

14: iid = uint (gl_GlobalInvocationID.x);

15: h2 = h >> 1; l = iid % h2; iid /= h2; i = iid*h+l;

16: if ((j = reverse ? (iid+1)*h-l-1 : i+h2) < n)

17: CompSwap (i, j);

18: } /*main*/

w innym szaderze. Dzięki temu tu nie ma żadnych zależności od rodzaju sortowanych obiek-
tów ani żadnej konkretnej relacji ustalającej porządek w ich zbiorze, co w zasadzie umożliwia
użycie tej samej procedury sortowania do obiektów różnych typów— wystarczy złączyć ten
szader z szaderami zawierającymi różne komparatory, aby zbudowaćwszystkie programy do
sortowania potrzebne w aplikacji.

Zadaniem procedury main jest obliczenie (na podstawie numeru instancji podanego
w zmiennej gl_GlobalInvocationID) właściwej pary indeksów do sortowanej tablicy
i wywołanie procedury komparatora. Zmienna jednolita reverse ma wartość true, jeś-
li szader jest wywołany w pierwszym kroku i-tego etapu; wtedy wartość zmiennej h jest
równa 2i , czyli jest długością fragmentu z dwoma podciągami niemalejącymi, które mają
być scalone. Jeśli reverse == false, to wywołanie szadera nastąpiło w kroku czyszcze-
nia, a wartość zmiennej h jest długością fragmentu tablicy zawierającego początkowy ciąg
bitoniczny (to jest wartość zmiennej h2 w procedurach na listingach G.10 i G.12).

Wparze liczb podawanych jako parametry komparatora zawsze druga liczba jest większa;
jeśli jest ona większa niż indeks ostatniego elementu ciągu, to komparator nie jest wywoły-
wany, bo obiekt określony przez pierwszą liczbę (jeśli ona nie jest też za duża) ma zostać na
swoimmiejscu. Warunek badany w linii 16 zapewnia, że oba parametry podawane w wywo-
łaniu komparatora są liczbami z zakresu 0, . . . , n − 1. Przykładowy komparator, odpowiedni
do sortowania liczb całkowitych, jest pokazany na listingu G.5.

Pliki o nazwach sortnet.comp.glsl i sortnetcs.comp.glsl zawierają procedurę
main szadera sortowania i komparator; poza tym przykładowa procedura kompilacji szade-
rów sortowania na listingu G.12 nie wymaga objaśnień. Parametry procedury sortowania,
GPUNetSort, opisują długość i początek ciągu oraz identyfikator bufora magazynowego
zawierającego ten ciąg. W liniach 44–47 procedura przywiązuje ten bufor do celu, wybiera

1158 G. GPGPU

Listing G.12. Procedury kompilacji szaderów i sortowania
C

1: static GLuint shader_id[2], program_id;

2: static GLuint uloc[4]; /* położenia zmiennych jednolitych */

3:

4: void LoadSortingShaders (void)

5: {

6: static const char *filename[] =

7: { "sortnet.comp.glsl", "sortnetcs.comp.glsl" };

8: static const char *uname[] = { "n", "n0", "reverse", "h" };

9: int i;

10:

11: shader_id[0] = CompileShaderFiles (GL_COMPUTE_SHADER, 1, &filename[0]);

12: shader_id[1] = CompileShaderFiles (GL_COMPUTE_SHADER, 1, &filename[1]);

13: program_id = LinkShaderProgram (2, shader_id, "sort");

14: for (i = 0; i < 4; i++)

15: uloc[i] = glGetUniformLocation (program_id, uname[i]);

16: ExitIfGLError ("LoadSortingShaders");

17: } /*LoadSortingShaders*/

18:

19: static void _GPUNetSort (GLuint nseq, GLuint n, GLuint rloc, GLuint hloc)

20: {

21: GLuint steps, nn, h, h2, gsize, i;

22:

23: if (n < 2)

24: return;

25: for (nn = n-1, steps = 0; nn; nn >>= 1, steps ++)

26: ;

27: nn = 1 << steps; gsize = nn/2;

28: for (i = 0, h2 = 1, h = 2; i < steps; i++, h2 = h, h += h) {

29: glUniform1ui (rloc, GL_TRUE); /* uniform reverse = true; */

30: glUniform1ui (hloc, h);

31: COMPUTE (gsize, nseq, 1)

32: glUniform1ui (rloc, GL_FALSE); /* uniform reverse = false; */

33: for (; h2 > 1; h2 >>= 1) {

34: glUniform1ui (hloc, h2); /* uniform h = h2; */

35: COMPUTE (gsize, nseq, 1)

36: }

37: }

38: } /*_GPUNetSort*/

39:

40: void GPUNetSort (GLuint n, GLuint n0, GLuint dbuf)

41: {

42: if (n < 2)

43: return;

44: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, dbuf);

45: glUseProgram (program_id);

G.4. Przetwarzanie macierzy rzadkich 1159

46: glUniform1ui (uloc[0], n);

47: glUniform1ui (uloc[1], n0);

48: _GPUNetSort (1, n, uloc[2], uloc[3]);

49: ExitIfGLError ("GPUNetSort");

50: } /*GPUNetSort*/

program szaderów i nadaje wartości zmiennym jednolitym n i n0, po czym wywołuje
procedurę _GPUNetSort, która realizuje właściwy algorytm; w zastosowaniach opisanych
dalej użyjemy tej procedury, której parametry określają liczbę sortowanych ciągów (tumamy
jeden) oraz długość ciągu i odczytane z programu szaderówpołożenia zmiennych jednolitych
reverse i h; w różnych zastosowaniach użyjemy różnych programów zawierających pełniące
tę samą rolę zmienne jednolite o tych nazwach.

Zamiast pętli w liniach 23–26 i 30–33 na listingu G.10, w liniach 31 i 35 są wywołania
programu szaderów (przez makrodefinicję COMPUTE). Liczba potrzebnych wątków (podczas
sortowania jednego ciągu) jest równa nn/2 — jest to największa całkowita potęga liczby 2
mniejsza niż n. Wywołana następnie procedura glMemoryBarrier czeka, ażwszystkie kom-
paratory zakończą pracę.

G.4. Przetwarzanie macierzy rzadkich

Macierz rzadkam×n jest to (duża)macierz, któramawiększośćwspółczynników równych 0.
Gdy liczbamn jest znacznie większa niż liczbawspółczynnikówniezerowych, warto8 używać
reprezentacji macierzy zajmujących jak najmniej miejsca w pamięci i wykonywać działania
na nich bez marnowania czasu na mnożenie przez 0 i dodawanie zer.

Z pewnymi macierzami rzadkimi można sobie poradzić dosyć łatwo. Na przykład
w podrozdziale B.3 jest użyta najbardziej naturalna reprezentacjamacierzy trójdiagonalnych.
Trochę większym wyzwaniem są macierze o nieregularnej strukturze, których niezerowe
współczynniki są rozmieszczone w zupełnie dowolnych miejscach. W grafice komputerowej
takiemacierze pojawiają sięm.in. w obliczeniach globalnego oświetlenia (rozdz. 29) i w prze-
twarzaniu siatek (rozdz. 31). Tu przyjrzymy się reprezentacji takich macierzy zwanej CSR
(compressed sparse rows).

Dane opisujące macierz rzadką są umieszczone w trzech tablicach, które nazwę r, c i a.
W tablicy r, o długości m + 1, jest niemalejący ciąg liczb całkowitych r0, . . . , rm, przy czym
r0 = 0, a różnice ri+1 − ri są liczbami niezerowych współczynników w kolejnych wierszach9.
W szczególności rm jest liczbą niezerowych współczynników w całej macierzy.

Pozostałe dwie tablice mają długość N = rm. Liczby całkowite w tablicy c są numerami
kolumn, w których występują niezerowe współczynniki. Tak więc w i-tym wierszu macie-
rzy jest ri+1 − ri współczynników znajdujących się w kolumnach, których numery są podane
w tablicy c namiejscach ri , ri+1, . . . , ri+1−1. Same współczynniki są przechowywane w tab-
licy a na miejscach o tych samych indeksach.

8a czasami po prostu trzeba
9Wiersze i kolumny macierzy, a także współrzędne wektorów, numerujemy, zaczynając od 0.

1160 G. GPGPU

Przykład. Macierz

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 2 0 0 3 0 4 0

0 5 6 7 0 0 0 8
9 0 0 10 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ma wymiary 3 × 8 i tylko 10 niezerowych współczynników. Reprezentują ją tablice

r = { 0, 4, 8, 10};

c = { 0, 1, 4, 6, 1, 2, 3, 7, 0, 3};

a = {1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0};

Listing G.13 przedstawia definicję struktury, w której są zebrane niezbędne informacje
o macierzy rzadkiej. Pola m, n i nnz służą do przechowania liczb wierszy, kolumn i nieze-
rowych współczynników macierzy. Pole lmax służy do zapamiętania maksymalnej liczby
niezerowych współczyników w wierszu. W tablicy buf są identyfikatory dwóch buforów
magazynowych. W pierwszym z nich są umieszczone opisane wyżej tablice r i c, a w drugim
tablica a z niezerowymi współczynnikami.

Listing G.13. Opakowanie reprezentacji macierzy rzadkiej
C

1: typedef struct {

2: int m, n, nnz, lmax;

3: GLuint buf[2];

4: } GPUSparseMatrix;

G.4.1. Mnożenie macierzy rzadkiej przez wektor

Przypuśćmy, że trzeba obliczyć wektor y ∈ Rm, który jest iloczynem macierzy rzadkiej A
i wektora x = (x0, . . . , xn−1) ∈ Rn. Jak wiemy, i-ta współrzędna wektora y jest równa

yi =
n−1

∑
j=0

ai jx j, (G.1)

przy czym dla macierzy rzadkiej zwykle tylko niewiele składników sumy w tym wzorze nie
jest zerem. Opisane niżej algorytmy mnożenia, zrealizowane w postaci procedur w C i sza-
derów obliczeniowych, obliczają i sumują tylko te składniki, w których ai j ≠ 0.

W wielu zastosowaniach występuje mnożenie macierzy rzadkiej przez macierz o więcej
niż jednej kolumnie i dlatego warto mieć procedurę realizującą takie działanie. W szczegól-
ności wiersze macierzy X o wymiarach n × d i macierzy Y = AX mogą być interpretowane
jako punkty w przestrzeni d-wymiarowej. Dotyczy to na przykład rozpatrywanych w pod-
rozdziale 31.11 macierzy, za pomocą których możemy obliczać położenia wierzchołków za-
gęszczonej siatki na podstawie wierzchołków siatki danej.

G.4. Przetwarzanie macierzy rzadkich 1161

Przedstawię dwa algorytmy mnożenia macierzy rzadkiej przez wektor. Pierwszy z nich
jest znacznie prostszy, nie korzysta z pamięci dodatkowej (tylko z reprezentacji macierzy oraz
tablic z macierzami X i Y), a przy tym często działa znacznie szybciej niż algorytm opisany
dalej, o teoretycznie mniejszym rzędzie złożoności czasowej. Szader realizujący ten algorytm
jest pokazany na listinguG.14; nie pokazuję procedury kompilującej ten szader i odczytującej
położenia zmiennych jednolitych, uznając to za niepotrzebne.

Listing G.14. Szader pierwszego algorytmu mnożenia macierzy rzadkiej przez wektor
GLSL

1: #version 450 core

2:

3: layout(local_size_x=1) in;

4:

5: layout(std430,binding=0) buffer RowsCols { uint rc[]; } rc;

6: layout(std430,binding=1) buffer Coeff { float a[]; } a;

7: layout(std430,binding=2) buffer Xvec { float x[]; } x;

8: layout(std430,binding=3) buffer Yvec { float y[]; } y;

9:

10: uniform uint m, dim;

11:

12: #define r(i) rc.rc[i]

13: #define c(i) rc.rc[m+1+(i)]

14:

15: void main (void)

16: {

17: uint xi, yi, j, k, l;

18: float s;

19:

20: xi = gl_GlobalInvocationID.x;

21: yi = gl_GlobalInvocationID.y;

22: k = xi*dim + yi;

23: for (j = r(xi), s = 0.0; j < r(xi+1); j++) {

24: l = c(j);

25: s += a.a[j] * x.x[l*dim + yi];

26: }

27: y.y[k] = s;

28: } /*main*/

Deklaracje w liniach 5–8 opisują punkty dowiązania buforów z tablicami r i c, a, z ma-
cierzą X i miejscem na macierz Y . Wartościami zmiennych jednolitych m i dim są liczba m
wierszy macierzy A i liczba d kolumn macierzy X (i Y). Globalna grupa robocza ma wy-
miarym×d×1; zadaniem każdego wątku jest obliczenie jednego współczynnikamacierzy Y ,
w wierszu i kolumnie określonych przez indeksy wątku w grupie roboczej. Zastosowany jest
tu sekwencyjny algorytm sumowania. Sposób zatrudnienia tego szadera przez procedurę
z listingu G.15 nie wymaga objaśnień.

1162 G. GPGPU

Listing G.15. Pierwsza procedura mnożenia macierzy rzadkiej przez wektor
C

1: static GLuint program_id;

2: static GLuint uloc[2]; /* położenia odczytane po skompilowaniu programu */

3:

4: void GPUSMultSparseMatrixVectorf (GLuint ybuf,

5: GPUSparseMatrix *a, GLuint dim, GLuint xbuf)

6: {

7: glUseProgram (program_id);

8: glUniform1ui (uloc[0], a->m); /* uniform m = a->m; */

9: glUniform1ui (uloc[1], dim); /* uniform dim = dim; */

10: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, a->buf[0]);

11: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 1, a->buf[1]);

12: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 2, xbuf);

13: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 3, ybuf);

14: COMPUTE (a->m, dim, 1)

15: ExitIfGLError ("GPUSMultSparseMatrixVectorf");

16: } /*GPUSMultSparseMatrixVectorf*/

Drugi algorytm powstał z chęci użycia algorytmu sumowania parami, który jak wiemy
można zrównoleglić i który daje lepsze oszacowania skutków błędów zaokrągleń (zobacz
podrozdz. G.1). Obie części implementacji są przedstawione na listingach G.16 i G.17.

Procedura GPUMultSparseMatrixVectorf ma takie same parametry jak procedura
GPUSMultSparseMatrixVectorf: identyfikator bufora, w którym ma się znaleźć wynik,
strukturę z opisemmacierzy, liczbę d kolumnmacierzy X i Y i identyfikator bufora z macie-
rzą X.

Pole lmax służy do zapamiętania maksymalnej liczby niezerowych współczynników
w wierszu macierzy A; jest to maksymalna liczba składników we wzorze (G.1), na jej podsta-
wie ustalana jest liczba kroków sumowania parami. Jeśli pole to ma wartość 0, to procedura
znajduje i zapisuje w nim maksymalną liczbę niezerowych współczynników, aby pominąć
ten krok obliczeń w następnym wywołaniu10.

W liniach 12–26 następują przygotowania, w tym nadawanie wartości zmiennym jedno-
litym i przywiązywanie buforów o podanych identyfikatorach do odpowiednich punktów
dowiązania. Dwa bufory pomocnicze są tworzone w linii 20, po czym w liniach 21–26 są
przywiązywane do odpowiednich punktów i są im nadawane odpowiednie wielkości.

Obliczenie składa się z kilku etapów, których numery są kolejno przypisywane zmiennej
jednolitej stage. Globalna grupa robocza składa się z grup lokalnych o wymiarach 1 × 1 × 1
i w poszczególnych etapach jest jedno- lub dwuwymiarowa. Makrodefinicja EXECSTAGEw li-
niach 4–5, wprowadzona dla skrócenia i uczytelnienia kodu, wywołuje (za pośrednictwem
makrodefinicji COMPUTE z listingu 9.1) program szaderóww celu wykonania kolejnego kroku

10Mnożenie macierzy przez wektor jest krokiem wielu iteracyjnych metod rozwiązywania układów równań
liniowych, w których dana macierz jest mnożona kolejno przez różne wektory. Jeśli macierz się nie zmienia, to
i liczbę lmax wystarczy znaleźć tylko raz.

G.4. Przetwarzanie macierzy rzadkich 1163

Listing G.16. Druga procedura mnożenia macierzy rzadkiej przez wektor
C

1: static GLuint program_id;

2: static GLuint uloc[5];

3:

4: #define EXECSTAGE(STAGE,SIZEX,SIZEY,SIZEZ) \

5: { glUniform1i (uloc[0], STAGE); COMPUTE (SIZEX, SIZEY, SIZEZ) }

6:

7: void GPUMultSparseMatrixVectorf (GLuint ybuf,

8: GPUSparseMatrix *a, GLuint dim, GLuint xbuf)

9: {

10: GLuint auxb[2], t;

11:

12: glUseProgram (program_id);

13: glUniform1ui (uloc[1], a->m);

14: glUniform1ui (uloc[2], a->nnz);

15: glUniform1ui (uloc[3], dim);

16: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, a->buf[0]);

17: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 1, a->buf[1]);

18: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 2, xbuf);

19: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 3, ybuf);

20: glGenBuffers (2, auxb);

21: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 5, auxb[1]);

22: glBufferData (GL_SHADER_STORAGE_BUFFER, a->nnz*dim*sizeof(GLfloat),

23: NULL, GL_DYNAMIC_DRAW);

24: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 4, auxb[0]);

25: glBufferData (GL_SHADER_STORAGE_BUFFER, a->m*sizeof(GLuint),

26: NULL, GL_DYNAMIC_DRAW);

27: EXECSTAGE (0, a->m, 1, 1)

28: if (!a->lmax) {

29: glUniform1i (uloc[0], 1); /* stage = 1 */

30: for (t = a->m; t > 1; t = (t+1)/2) {

31: glUniform1ui (uloc[4], t);

32: COMPUTE (t/2, 1, 1)

33: }

34: glGetBufferSubData (GL_SHADER_STORAGE_BUFFER, 0,

35: sizeof(GLuint), &a->lmax);

36: EXECSTAGE (0, a->m, 1, 1)

37: }

38: EXECSTAGE (2, a->nnz, 1, 1)

39: glUniform1i (uloc[0], 3); /* stage = 3 */

40: for (t = a->lmax; t > 1; t = (t+1)/2) {

41: glUniform1ui (uloc[4], t);

42: COMPUTE (a->m, (t/2), 1)

43: }

44: EXECSTAGE (4, a->m, 1, 1)

45: glUseProgram (0);

1164 G. GPGPU

46: glDeleteBuffers (2, auxb);

47: ExitIfGLError ("GPUMultSparseMatrixVectorf");

48: } /*GPUMultSparseMatrixVectorf*/

lub etapu obliczeń i czeka na jego wyniki. Pierwszy etap (w którym zmienna stagema war-
tość 0) polega na obliczeniu różnic ri+1−ri i zapamiętaniu ich w tablicy lgt.l (w pierwszym
buforze pomocniczym).

Jeśli pole a->lmax ma wartość 0, to następują (w liniach 28–37) dwa dodatkowe etapy
mające znaleźć maksymalną różnicę. Pierwszy z nich realizuje algorytm opisany w podroz-
dziale G.1 i składający się z ⌈log2m⌉ kroków. Największa różnica jest odczytywana z bufora
w liniach 34–35. Ponieważ jej znalezienie wiąże się z zepsuciem zawartości bufora, w linii 36
różnice są obliczane ponownie.

Uwaga: Największa liczba niezerowych współczynników w wierszu jest odczytywana z bu-
fora auxb[0] (tj. z bloku magazynowego RowL) — to dlatego ten bufor został przywiązany
do celu GL_SHADER_STORAGE_BUFFER jako ostatni (w linii 24).

Etap realizowany w linii 38 wykonuje mnożenie współczynników macierzy przez odpo-
wiednie wiersze macierzy X; iloczyny są zapamiętywane w drugim buforze pomocniczym
(w tablicy b.b)11. Zauważmy (listing G.17, linie 33–34), że współczynnik ai j macierzy, pa-
miętany wmiejscu i tablicy a.a, musi być pomnożony przez j-ty wiersz macierzy X, którgo
numer j jest brany z tablicy c.

Kolejny etap, realizowany w liniach 39–43 procedury w C i w liniach 37–42 szadera, ma
obliczyć sumy składników poszczególnych współczynników macierzy Y . Wszystkie wiersze
tej macierzy są obliczane jednocześnie za pomocą opisanego w podrozdziale G.1 sumowania
parami. W tym etapie grupa robocza jest dwuwymiarowa; indeks x wątku w grupie jest
numerem sumy (czyli wiersza macierzy Y), a indeks y określa pierwszy składnik w danym
kroku sumowania.

Drugi składnik w danym kroku ma numer k = j + ⌈t/2⌉, obliczany w linii 38, przy czym
numer ten musi być mniejszy niż liczba składników i-tej sumy i mniejszy niż liczba t (war-
tość zmiennej t) określająca maksymalną liczbę składników sumowanych w danym kroku
algorytmu sumowania parami. Ten warunek jest sprawdzany w linii 39; zauważmy, że jeśli
liczby składników poszczególnych sum są różne, to pewne wątki „próżnują”, ale w kolejnych
krokach (których jest ⌈log2 lmax⌉) drugi wymiar grupy roboczej maleje do jedynki i próżnu-
jących wątków jest coraz mniej.

Ostatni etap (linia 44na listinguG.16 i linie 45–46na listinguG.17)ma skopiować obliczone
sumy z bufora pomocniczego do bufora, w którym ma się znaleźć wynik. Miejsce w buforze
pomocniczym, w którym poprzedni etap obliczeń zostawił i-ty wiersz macierzy Y (którego
indeks i jest wartością zmiennej i), ma numer r(i), chyba że następna liczba w tablicy r
jest taka sama (czyli różnica ri+1 − ri pamiętana w lgt.l[i] jest zerem). Jest tak wtedy, gdy
w i-tym wierszu macierzy A są tylko zerowe współczynniki, a wtedy i-ty wiersz macierzy Y
też składa się z samych zer.

11Mnożenie współczynników wiersza macierzy X jest tu wykonywane sekwencyjnie. Można by to zrówno-
leglić, ale dla zadań „dużych” (w porównaniu z liczbą procesorów w GPU) to nie musi przyspieszyć obliczeń.

G.4. Przetwarzanie macierzy rzadkich 1165

Listing G.17. Szader drugiego algorytmu mnożenia macierzy rzadkiej przez wektor
GLSL

1: #version 450

2:

3: layout(local_size_x=1) in;

4:

5: layout(std430,binding=0) buffer RowsCols { uint rc[]; } rc;

6: layout(std430,binding=1) buffer Coeff { float a[]; } a;

7: layout(std430,binding=2) buffer Xvec { float x[]; } x;

8: layout(std430,binding=3) buffer Yvec { float y[]; } y;

9: layout(std430,binding=4) buffer RowL { uint l[]; } lgt;

10: layout(std430,binding=5) buffer Prod { float b[]; } b;

11:

12: uniform int stage;

13: uniform uint m, nnz, dim, t;

14:

15: #define r(i) rc.rc[i]

16: #define c(i) rc.rc[m+1+(i)]

17:

18: void main (void)

19: {

20: uint i, j, k, l, u, v;

21:

22: i = gl_GlobalInvocationID.x;

23: switch (stage) {

24: case 0:

25: lgt.l[i] = r(i+1) - r(i);

26: return;

27: case 1:

28: if ((j = i + (t+1)/2) < t)

29: if (lgt.l[j] > lgt.l[i])

30: lgt.l[i] = lgt.l[j];

31: return;

32: case 2:

33: for (l = 0, u = i*dim, v = c(i)*dim; l < dim; l++)

34: b.b[u++] = a.a[i] * x.x[v++];

35: return;

36: case 3:

37: j = gl_GlobalInvocationID.y;

38: k = j + (t+1)/2;

39: if (k < lgt.l[i] && k < t) {

40: for (l = 0, u = (r(i)+j)*dim, v = (r(i)+k)*dim; l < dim; l++)

41: b.b[u++] += b.b[v++];

42: }

43: return;

44: case 4:

45: for (l = 0, u = i*dim, v = r(i)*dim; l < dim; l++)

1166 G. GPGPU

46: y.y[u++] = b.b[v++];

47: return;

48: default:

49: return;

50: }

51: } /*main*/

Drugi z przedstawionych wyżej algorytmów jest znacznie bardziej skomplikowany i po-
trzebuje sporo pamięci dodatkowej. Wartowięc sprawdzić, czy jest lepszy. Choć obliczenia są
w nim podzielone na więcej wątków, które mogą być wykonywane równolegle, warunkiem
faktycznego przyspieszenia obliczeń byłoby istnienie odpowiednio dużej liczby procesorów
GPU. W rzeczywistości wielokrotne uruchamianie kolejnych etapów obliczeń i czekanie na
ich dokończenie przed następnymi etapami zabiera sporo czasu. Jeśli liczba wierszymacierzy
jest zbliżona do liczby procesorów lub większa, a przy tym maksymalna liczba niezerowych
współczynników w wierszu nie jest duża, to pierwszy algorytm „zatrudnia” procesory GPU
w prawie jednakowym stopniu, a to oznacza, że wykorzystuje GPU bardzo efektywnie.

Algorytm sumowania parami daje zazwyczaj dokładniejsze wyniki niż algorytm sekwen-
cyjny, ale dla zwiększenia dokładności tego ostatniego wystarczy zadeklarować zmienną s
(listing G.14, linia 18) typu double12, co zmniejszy błędy zaokrągleń sumowania.

Jeśli macierz rzadka n×n jest symetryczna, tomoże być przechowywanawmniejszej iloś-
ci pamięci — ponieważ ai j = a ji dla każdego i, j, w zasadzie wystarczy trzymać w tablicach
tylko niezerowe współczynniki na i pod diagonalą (dla i ⩾ j). Nie jest jednak łatwe dostoso-
wanie do takiej oszczędnej reprezentacji równoległego algorytmu mnożenia macierzy przez
wektor, dlatego rzadkie macierze symetryczne powinny byćw pamięci GPU reprezentowane
tak jak niesymetryczne.

G.4.2. Transponowanie macierzy rzadkiej

Dla macierzy rzadkiej A znajdziemy reprezentację jej transpozycji, AT , a raczej napiszemy
szader i procedurę w C, które to będą robić. Dla macierzy m × n, która ma N niezerowych
współczynników, zostanie to wykonane w O(log2 N + logm) krokach.

Listing G.18 przedstawia procedurę dokonującą transpozycji przy użyciu szadera z lis-
tinguG.19. Identyfikator programu szaderów i położenia zmiennych jednolitychw tymprog-
ramie są pamiętane w zmiennych program_id i uloc.

Po znalezieniumacierzyAT macierz Amoże byćwaplikacji niepotrzebna. W takimprzy-
padku tablica a, w której są przechowywane współczynniki macierzy A, może stać się częścią
reprezentacji macierzy AT — będą w niej te same liczby ustawione w innej kolejności. Jeśli
potrzebne są obie macierze, to zostanie utworzony bufor z nową tablicą o tej samej długoś-
ci. Zawsze będzie tworzony nowy bufor z tablicami r i c dla macierzy AT , bo jego długość,
n + 1 + N , jest na ogół inna niż suma m + 1 + N długości tablic r i c dla macierzy A.

12Trzeba wtedy dopisać konwersję między typami double a float, aby kompilator uznał kod szadera za
bezbłędny.

G.4. Przetwarzanie macierzy rzadkich 1167

Listing G.18. Procedura znajdowania transpozycji macierzy rzadkiej
C

1: static GLuint program_id;

2: static GLuint uloc[7];

3:

4: #define EXECSTAGE(STAGE,SIZEX,SIZEY,SIZEZ) /* listing G.16 */

5:

6: char GPUTransposeSparsef (GPUSparseMatrix *at, GPUSparseMatrix *a,

7: char keep_a)

8: {

9: GLuint atb[3];

10: GLuint m, n, nnz;

11:

12: glUseProgram (program_id);

13: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, a->buf[0]);

14: glUniform1ui (uloc[4], m = at->n = a->m);

15: glUniform1ui (uloc[5], n = at->m = a->n);

16: glUniform1ui (uloc[6], nnz = at->nnz = a->nnz);

17: if (keep_a) {

18: glGenBuffers (3, atb);

19: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 1, a->buf[1]);

20: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 3, at->buf[1] = atb[2]);

21: glBufferData (GL_SHADER_STORAGE_BUFFER, nnz*sizeof(GLfloat),

22: NULL, GL_DYNAMIC_DRAW);

23: EXECSTAGE (0, nnz, 1, 1);

24: }

25: else {

26: glGenBuffers (2, atb);

27: glBindBufferBase (GL_SHADER_STORAGE_BLOCK, 3, at->buf[1] = a->buf[1]);

28: }

29: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 2, at->buf[0] = atb[0]);

30: glBufferData (GL_SHADER_STORAGE_BUFFER, (n+1+nnz)*sizeof(GLuint),

31: NULL, GL_DYNAMIC_DRAW);

32: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 4, atb[1]);

33: glBufferData (GL_SHADER_STORAGE_BUFFER, nnz*sizeof(GLuint),

34: NULL, GL_DYNAMIC_DRAW);

35: EXECSTAGE (1, nnz, 1, 1);

36: _GPUNetSort (1, nnz, uloc[2], uloc[3]); /* listing G.12 */

37: EXECSTAGE (3, n+1, 1, 1);

38: glDeleteBuffers (1, &atb[1]);

39: if (!keep_a) {

40: glDeleteBuffers (1, &a->buf[0]);

41: memset (a, 0, sizeof(GPUSparseMatrix));

42: }

43: return true;

44: } /*GPUTransposeSparsef*/

1168 G. GPGPU

Listing G.19. Szader znajdowania transpozycji macierzy rzadkiej
GLSL

1: #version 430

2:

3: layout(local_size_x=1) in;

4:

5: layout(std430,binding=0) buffer RC { uint rc[]; } rc;

6: layout(std430,binding=1) buffer Coeff { float a[]; } aa;

7: layout(std430,binding=2) buffer RCT { uint rc[]; } rct;

8: layout(std430,binding=3) buffer CoeffT { float a[]; } at;

9: layout(std430,binding=4) buffer auxb { uint a[]; } aux;

10:

11: uniform uint m, n, nnz;

12: uniform uint stage, step, h;

13: uniform bool reverse;

14:

15: #define r(I) rc.rc[I]

16: #define c(I) rc.rc[m+1+(I)]

17: #define rt(I) rct.rc[I]

18: #define ct(I) rct.rc[n+1+(I)]

19: #define pairi(I) ct(I)

20: #define pairj(I) aux.a[I]

21:

22: void CompSwap (uint i, uint j)

23: {

24: uint b;

25: float x;

26:

27: if (pairj(j) < pairj(i) ||

28: pairj(j) == pairj(i) && pairi(j) < pairi(i)) {

29: b = pairi(i); pairi(i) = pairi(j); pairi(j) = b;

30: b = pairj(i); pairj(i) = pairj(j); pairj(j) = b;

31: x = at.a[i]; at.a[i] = at.a[j]; at.a[j] = x;

32: }

33: } /*CompSwap*/

34:

35: void main (void)

36: {

37: uint i, j, k, l, h2;

38:

39: i = gl_GlobalInvocationID.x;

40: switch (stage) {

41: case 0:

42: at.a[i] = aa.a[i];

43: return;

44: case 1:

45: pairj(i) = c(i);

G.4. Przetwarzanie macierzy rzadkich 1169

46: for (j = 0, k = m; k-j > 1;) {

47: l = j + (k-j)/2;

48: i < r(l) ? (k = l) : (j = l);

49: }

50: pairi(i) = j;

51: return;

52: case 2:

53: h2 = h >> 1; l = i % h2; i /= h2; j = i*h+l;

54: if ((k = reverse ? (i+1)*h-l-1 : j+h2) < nnz)

55: CompSwap (j, k);

56: return;

57: case 3:

58: if (i > pairj(nnz-1))

59: rt(n) = nnz;

60: else if (i <= pairj(0))

61: rt(i) = 0;

62: else { /* i < n */

63: for (j = 1, k = nnz; k-j > 1;) {

64: l = j + (k-j)/2;

65: i < pairj(l) || i == pairj(l-1) ? (k = l) : (j = l);

66: }

67: rt(i) = j;

68: }

69: return;

70: default:

71: return;

72: }

73: } /*main*/

Pierwszy parametr procedury GPUTransposeSparsef to wskaźnik opakowania wyniku,
tj. transpozycji macierzy, której opis jest wskazywany przez drugi parametr. Jeśli trzeci pa-
rametr ma wartość zerową (false), to reprezentacja macierzy danej zostanie zlikwidowana,
a bufor, w którym są jej współczynniki, stanie się częściąmacierzy wynikowej.

W liniach 12–16 procedura wybiera program szaderów, przywiązuje bufor z tablicami r
i c do celu GL_SHADER_STORAGE_BUFFER i nadaje zmiennym jednolitym m, n i nnzwartości
m, n i N .

Jeśli reprezentacja macierzy danej ma być zachowana, to w linii 18 są tworzone trzy bu-
fory, z których dwa staną się częścią reprezentacji wyniku, a trzeci jest pamięcią dodatkową
dla algorytmu. Etap 0 (listing G.19, linia 42) ma skopiować tablicę a ze współczynnikami
macierzy danej do bufora z tablicą a znajdowanej transpozycji. Jeśli reprezentacja macierzy
danej nie jest dalej potrzebna, to w linii 26 są tworzone tylko dwa bufory, w pierwszym z nich
będą tablice r i c wyniku, a drugi jest pamięcią dodatkową.

W liniach 29–34 nowo utworzone bufory są przywiązywane do odpowiednich punktów
dowiązania w celu GL_SHADER_STORAGE_BUFFER i są im nadawane potrzebne wielkości —
bufor roboczy musi pomieścić N liczb całkowitych.

1170 G. GPGPU

Wetapie 1 powstają trójki (i , j, ai j) opisujące niezerowe współczynniki macierzy A; każ-
dy wątek szadera przetwarza jeden współczynnik. Indeks kolumny, j, który stanie się nu-
merem wiersza macierzy AT , jest wpisywany do bufora roboczego (listing G.19, linia 45).
Indeks wiersza i stanie się indeksem kolumny; jest on wpisywany do docelowej tablicy c

(listing G.19, linie 50, 18, 19), przy czym dla każdego współczynnika numer wiersza macie-
rzy A, w którym on się znajduje, trzeba znaleźć metodą wyszukiwania binarnego — to jest
wykonywane w pętli w liniach 46–49.

Etap 2 jest sortowaniem trójek w kolejności niemalejących indeksów j, trójki z tym sa-
mym indeksem j są sortowane w kolejności rosnących indeksów i. Do sortowania jest użyta
procedura w C z listingu G.12. Instrukcje w linii 53 obliczają indeksy pary trójek, po czym
jest wywoływana procedura CompSwap, czyli komparator, który porządkuje tę parę.

Ostatni etap, 3, ma wypełnić tablicę r reprezentacji macierzy AT . W tablicy roboczej
są, uporządkowane niemalejąco, numery wierszy kolejnych współczynników tej macierzy.
Pierwszy element tablicy r jest równy 0, ostatni element (o indeksie n) jest równy N . Jeśli po-
czątkowe wierszemają tylko zerowe współczynniki, to na początku tablicy będzie odpowied-
nio więcej zer, podobnie, jeśli macierz AT ma zerowe końcowe wiersze, to odpowiadające im
elementy tablicy r otrzymują wartość N — to robią instrukcje w liniach 61 i 59. Dla każdego
z pozostałych wierszy metodąwyszukiwania binarnego jest znajdowany (w liniach 63–66) in-
deks w tablicy a pierwszego niezerowegowspółczynnika, albo, jeśli wiersz jest zerowy, indeks
w tablicy a pierwszego niezerowego współczynnika w najbliższym wierszu niezerowym.

Bufor roboczy jest likwidowany przez instrukcję w linii 38 na listingu G.18. Jeśli repre-
zentacja macierzy A nie ma być zachowana, to w liniach 40–41 jest też sprzątany bufor z jej
tablicami r i c i opakowanie macierzy A jest czyszczone.

G.4.3. Mnożenie macierzy rzadkich

Zrealizujemy na GPU mnożenie macierzy rzadkich reprezentowanych w sposób przedsta-
wiony na początku tego podrozdziału. Procedura mnożenia korzysta z opisanych wcześniej
w tym dodatku algorytmów sortowania i obliczania sum prefiksowych.

Spodziewając się, że macierz C, która jest iloczynem macierzy rzadkich A i B, też jest
rzadka i chcąc ją reprezentować w taki sam sposób, trzeba wskazać miejsca, w których po-
jawią się jej niezerowe współczynniki. Aby to zrobić, zobaczmy schemat na rysunku G.4.
Przedstawia on niezerowe współczynniki w pewnym (i-tym)wierszumacierzy A; i-ty wiersz
iloczynu jest sumą wierszy macierzy B pomnożonych przez współczynniki z i-tego wiersza
macierzy A. Macierz C może mieć niezerowe współczynniki w tych kolumnach, w których
występują niezerowe współczynniki w wyróżnionych wierszach macierzy B. Zatem, aby ob-
liczyć i-ty wiersz macierzy C, trzeba przez niezerowe współczynniki w i-tymwierszu macie-
rzy A pomnożyć niezerowe współczynniki w odpowiednich wierszach macierzy B, a następ-
nie obliczyć, dla każdego j, współczynnik ci j jako sumę tych iloczynów, w których występują
współczynniki macierzy B z j-tej kolumny13.

13Taka suma iloczynówmoże być równa 0, ale tym się nie zajmiemy, chyba że Czytelnik, w ramach ćwiczenia,
rozbuduje procedurę o „czyszczenie” otrzymanego wyniku z zer. Ma to większy sens dla macierzy o współczyn-
nikach całkowitych niż zmiennopozycyjnych. Dalej, pisząc o niezerowych współczynnikach macierzy C, mam
na myśli sumy niezerowych iloczynów.

G.4. Przetwarzanie macierzy rzadkich 1171

B
↓

A→ C

ci j =
n−1

∑
k=0

aikbk j

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦..

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦..

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Rysunek G.4. Schemat Falka dla iloczynu macierzy rzadkich

Listing G.20 przedstawia procedurę GPUMultSparseMatricesf, która oblicza iloczyn
macierzy rzadkich m × n i n × l , korzystając z szadera obliczeniowego zamieszczonego na
listinguG.21. Po skompilowaniu i złączeniu programu szaderów odczytane z niego położenia
zmiennych jednolitych stage, prN0, prN, prStep, ma, nnza, mb, nprod, nnzc, h, reverse
i tablgt są (w tej kolejności) zapamiętane w tablicy uvloc.

Parametry procedury mnożenia to wskaźniki opakowań macierzy: wynikowej (tj. ilo-
czynu C = AB) oraz czynników A i B.

Instrukcjew liniach 15–21przywiązują bufory zmacierzamiA i B do odpowiednich punk-
tów dowiązania i nadają wartości zmiennym jednolitym ma (liczba wierszy macierzy A i C),
nnza (liczba niezerowychwspółczynnikówmacierzy A) i mb (liczba wierszymacierzy B i jed-
nocześnie liczba kolumnmacierzyA). W linii 22 procedura rezerwuje pięć buforów; pierwsze
trzy z nich będą użyte jako pamięć robocza, a w pozostałych dwóch będzie umieszczony wy-
nik (i identyfikatory tych buforów zostaną przypisane wskaźnikom w tablicy c->buf).

Pierwszy etap algorytmu (linie 26–29) ma znaleźć liczbę wszystkich niezerowych iloczy-
nów aikbk j. Niezerowy współczynnik aik ma być pomnożony przez niezerowe współczyn-
niki macierzy B w k-tym wierszu. Do bufora roboczego (o długości nnza+1), przywiąza-
nego do punktu 4, wątki szadera wpisują liczby współczynników w odpowiednich wierszach
macierzy B (listing G.21, linie 55–57). Liczby te są wpisywane „o jedno miejsce dalej”, a na
początek ciągu liczb w buforze trafi 0. W linii 27 następuje obliczenie ciągu sum prefikso-
wych. Ostatnia liczba w tym ciągu, oznaczę ją literą P, jest całkowitą liczbą iloczynów, która
trafi do zmiennej nprod w procedurze GPUMultSparseMatricesf i do zmiennej jednolitej
nprod szadera. Pary sąsiednich liczb w tym ciągu wyznaczają początki i końce obliczonych
później podciągów iloczynówwspółczynników, otrzymanych dla kolejnychwspółczynników
macierzy A.

Istnieją takie niezerowemacierze rzadkie, których iloczyn jestmacierzą zerową. W szcze-
gólności może się okazać, że liczba P niezerowych iloczynów jest zerem, a wtedy procedura
kończy działanie, wypełniając zerami opakowanie macierzy C (linie 31–33).

1172 G. GPGPU

Listing G.20. Procedura mnożenia macierzy rzadkich
C

1: static GLuint program_id;

2: static GLuint uvloc[12];

3:

4: #define EXECSTAGE(STAGE,SIZEX,SIZEY,SIZEZ) /* listing G.16 */

5:

6: static void iPrefixSum (int N0, int N) { } /* listing G.9 */

7:

8: char GPUMultSparseMatricesf (GPUSparseMatrix *c,

9: GPUSparseMatrix *a, GPUSparseMatrix *b)

10: {

11: GLuint auxb[5];

12: GLuint nprod, _nnzc, maxnt, tablgt, i;

13:

14: glUseProgram (program_id);

15: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, a->buf[0]);

16: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 1, a->buf[1]);

17: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 2, b->buf[0]);

18: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 3, b->buf[1]);

19: glUniform1ui (uloc[4], a->m);

20: glUniform1ui (uloc[5], a->nnz);

21: glUniform1ui (uloc[6], a->n);

22: glGenBuffers (5, auxb);

23: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 4, auxb[0]);

24: glBufferData (GL_SHADER_STORAGE_BUFFER,

25: (a->nnz+1)*sizeof(GLuint), NULL, GL_DYNAMIC_DRAW);

26: EXECSTAGE (1, a->nnz, 1, 1)

27: iPrefixSum (1, a->nnz);

28: glGetBufferSubData (GL_SHADER_STORAGE_BUFFER,

29: a->nnz*sizeof(GLuint), sizeof(GLuint), &nprod);

30: if (!nprod) {

31: glDeleteBuffers (5, auxb);

32: memset (c, 0, sizeof(GPUSparseMatrix));

33: return false;

34: }

35: glUniform1ui (uloc[7], nprod);

36: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 6, auxb[1]);

37: glBufferData (GL_SHADER_STORAGE_BUFFER,

38: 2*nprod*sizeof(GLuint), NULL, GL_DYNAMIC_DRAW);

39: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 5, auxb[2]);

40: glBufferData (GL_SHADER_STORAGE_BUFFER,

41: nprod*sizeof(GLfloat), NULL, GL_DYNAMIC_DRAW);

42: EXECSTAGE (2, nprod, 1, 1)

43: glUniform1ui (uloc[11], tablgt = nprod > a->m ? nprod+1 : a->m+1);

44: glDeleteBuffers (1, &auxb[0]);

45: glGenBuffers (1, &auxb[0]);

G.4. Przetwarzanie macierzy rzadkich 1173

46: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 4, auxb[0]);

47: glBufferData (GL_SHADER_STORAGE_BUFFER,

48: 2*tablgt*sizeof(GLuint), NULL, GL_DYNAMIC_DRAW);

49: EXECSTAGE (3, a->m, 1, 1)

50: EXECSTAGE (4, a->m, 1, 1);

51: glUniform1i (uloc[0], 5); /* uniform stage = 5; */

52: for (i = a->m; i > 1; i = (i+1)/2) {

53: glUniform1ui (uloc[2], i);

54: COMPUTE (i/2, 1, 1);

55: }

56: glGetBufferSubData (GL_SHADER_STORAGE_BUFFER,

57: tablgt*sizeof(GLuint), sizeof(GLuint), &maxnt);

58: _GPUNetSort (a->m, maxnt, uloc[10], uloc[9]);

59: EXECSTAGE (7, nprod, 1, 1)

60: iPrefixSum (1, nprod);

61: glGetBufferSubData (GL_SHADER_STORAGE_BUFFER,

62: nprod*sizeof(GLuint), sizeof(GLuint), &_nnzc);

63: glUniform1ui (uloc[8], _nnzc);

64: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 1, auxb[4]);

65: glBufferData (GL_SHADER_STORAGE_BUFFER,

66: _nnzc*sizeof(GLfloat), NULL, GL_DYNAMIC_DRAW);

67: glBindBufferBase (GL_SHADER_STORAGE_BUFFER, 0, auxb[3]);

68: glBufferData (GL_SHADER_STORAGE_BUFFER,

69: (a->m+1+_nnzc)*sizeof(GLuint), NULL, GL_DYNAMIC_DRAW);

70: EXECSTAGE (8, nprod+1, 1, 1)

71: EXECSTAGE (9, _nnzc, 1, 1);

72: EXECSTAGE (10, a->m, 1, 1)

73: c->m = a->m; c->n = b->n; c->nnz = _nnzc; c->lmax = 0;

74: c->buf[0] = auxb[3]; c->buf[1] = auxb[4];

75: glUseProgram (0);

76: glDeleteBuffers (3, auxb);

77: ExitIfGLError ("GPUMultSparseMatricesf");

78: return true;

79: } /*GPUMultSparseMatricesf*/

Drugi etap mnożenia realizują instrukcje w liniach 35–42. Dla każdego iloczynu aikbk j
trzeba zapamiętaćw buforach roboczych trzy liczby: indeksy i, j oraz sam iloczyn. W liniach
36–41 rezerwowana jest pamięć na 2P liczb typu GLuintw jednymoraz P liczb typu GLfloat
w drugim buforze. Bufory robocze są przywiązywane do punktów dowiązania 6 i 5; ich
nazwy lokalne w treści szadera to aux2 i aux1, ale dostęp do pierwszego z nich odbywa się za
pomocąmakrodefinicji pairi i pairj (linie 22, 23), bo w tym buforze będą przechowywane
pary liczb (i , j).

Wywołanie (przez makro EXECSTAGE) procedury glDispatchCompute w linii 42 po-
woduje wykonanie, dla każdego iloczynu do obliczenia, instrukcji szadera w liniach 60–71.
Pętla w liniach 60–63 znajduje numer p niezerowego współczynnika aik, który jest pierw-
szym czynnikiem, za pomocą wyszukiwania binarnego w ciągu sum prefiksowych obliczo-

1174 G. GPGPU

nych w pierwszym etapie. Pętla w liniach 64–67, również metodą wyszukiwania binarnego,
znajduje indeks i, tj. numer wiersza zawierającego współczynnik aik będący przedmiotem
zainteresowania danego wątku szadera i zapamiętuje go (w linii 68) w buforze. Wartość
przypisana zmiennej q w linii 69 jest numerem współczynnika bk j w tablicy niezerowych
współczynnikówmacierzy B, a w linii 70 jest zapamiętany w buforze indeks j kolumny z tym
współczynnikiem. W linii 71 współczynniki aik i bk j są mnożone. Z powodu konieczności
wyszukiwania indeksów koszt tego etapu, identyczny dla wszystkich iloczynów, jest rzędu
sumy logarytmów liczby niezerowych współczynników macierzy A i liczby jej wierszy.

Po zapamiętaniu w buforach pomocniczych par (i , j) oraz iloczynów aikbk j dostęp do
tablic z reprezentacjami macierzy A i B przestaje być potrzebny. W związku z tym, oraz
dążeniem do zmieszczenia się w limicie ośmiu buforów magazynowych, do których szader
obliczeniowy może mieć dostęp (zobacz p. 11.5.1), bufory, w których będzie umieszczony
końcowy wynik (czyli reprezentacja macierzy C) zostaną przywiązane do punktów 0 i 1,
dzięki którym wcześniej szader miał dostęp do macierzy A. Do zrobienia pozostało oblicze-
nie sum właściwych iloczynów i znalezienie, dla każdej sumy, numeru wiersza i kolumny, na
przecięciu których ta suma jest współczynnikiem macierzy C.

W liniach 44–48 następuje realokacja pierwszego bufora pomocniczego, ponieważ dalej
trzeba będzie zmieścić w nim dwie tablice o długościach T = max(P,m) + 1. Dostęp do
tych tablic w treści szadera odbywa się za pomocą makrodefinicji tab1 i tab2. Wartością
zmiennej jednolitej tablgt jest liczba T , przypisywana w linii 43.

Kolejne cztery etapy mają posortować trójki (i , j, aikbk j), aby iloczyny, które trzeba zsu-
mować, znalazły się w tablicy obok siebie. Trójki już są uporządkowane względem indek-
sów i, zatem trzeba dla każdego i wyodrębnić odpowiedni podciąg trójek i uporządkować
go względem j. Etap 3 (listing G.21, linie 74–84) znajduje metodą wyszukiwania binarnego
i wpisuje do pierwszej tablicym+1 liczb będących numeramimiejsc, od których zaczynają się
podciągi z danym indeksem i; ostatnia liczba jest równa P. W ten sposób różnice kolejnych
liczb w tablicy są długościami odpowiednich podciągów do posortowania. Etap 4 oblicza te
różnice, a etap 5 (listing G.20, linie 51–57, listing G.21, linie 90–93) znajduje największą z nich
i przypisuje ją zmiennej maxnt.

Szósty etap jest sortowaniem podciągów trójek za pomocą algorytmu sieci sortującej re-
alizowanego przez procedurę _GPUNetSort z listingu G.12; liczba sortowanych podciągów
jest liczbąwierszy macierzy A i C. Liczba kroków sortowania jest określona przez największą
długość podciągu. Globalna grupa robocza jest w tym etapie dwuwymiarowa. Jej pierw-
szy wymiar jest równy ⌈log2 l⌉ − 1, gdzie l jest największą długością sortowanego podciągu,
a drugi wymiar jest liczbą podciągów (czyli liczbą wierszy macierzy C).

Współrzędne x i y wątku w grupie roboczej określają numer podciągu i numer kompara-
tora zatrudnionego do posortowania tego podciągu. Numery te są parametrami procedury
SortIt (listing G.21, linie 29–42), która na ich podstawie oblicza położenia trójek w tablicach
i wykonuje zadanie komparatora. Warto zwrócić uwagę, że choć długości podciągów mogą
się znacznie różnić (mogą być nawet podciągi puste), określenie liczby etapów sortowania
na podstawie największej długości daje poprawny wynik: podciągi najkrótsze zostaną po-
sortowane w początkowych etapach, a dalej komparatory, po porównaniu, niczego już nie

G.4. Przetwarzanie macierzy rzadkich 1175

przestawią. Trzeba tylko sprawdzać, czy indeks drugiego elementu pary odpowiada elemen-
towi tego samego podciągu, co jest robione w linii 36.

Listing G.21. Szader obliczeniowy mnożenia macierzy rzadkich
GLSL

1: #version 450 core

2:

3: layout(local_size_x=1) in;

4:

5: layout(std430,binding=0) buffer RCA { uint rc[]; } rca;

6: layout(std430,binding=1) buffer CoeffA { float a[]; } aa;

7: layout(std430,binding=2) buffer RCB { uint rc[]; } rcb;

8: layout(std430,binding=3) buffer CoeffB { float a[]; } ab;

9: layout(std430,binding=4) buffer Auxb0 { uint a[]; } seq;

10: layout(std430,binding=5) buffer Auxb1 { float a[]; } aux1;

11: layout(std430,binding=6) buffer Auxb2 { uint a[]; } aux2;

12:

13: uniform int stage;

14: uniform uint prN0, prN, prStep;

15: uniform uint ma, nnza, mb, nprod, nnzc, h, tablgt;

16: uniform bool reverse;

17:

18: #define ra(I) rca.rc[I]

19: #define ca(I) rca.rc[ma+1+(I)]

20: #define rb(I) rcb.rc[I]

21: #define cb(I) rcb.rc[mb+1+(I)]

22: #define pairi(I) aux2.a[2*(I)]

23: #define pairj(I) aux2.a[2*(I)+1]

24: #define tab1(I) seq.a[I]

25: #define tab2(I) seq.a[tablgt+(I)]

26:

27: void iPrefixSum (uint i) { } /* procedura z listingu G.8 */

28:

29: void SortIt (uint ns, uint np)

30: {

31: uint i, j, l, h2;

32: float x;

33:

34: h2 = h >> 1; l = np % h2; np /= h2;

35: i = tab1(ns)+np*h+l; j = reverse ? tab1(ns)+(np+1)*h-l-1 : i + h2;

36: if (j < tab1(ns+1)) {

37: if (pairj(i) > pairj(j)) {

38: l = pairj(i); pairj(i) = pairj(j); pairj(j) = l;

39: x = aux1.a[i]; aux1.a[i] = aux1.a[j]; aux1.a[j] = x;

40: }

41: }

42: } /*SortIt*/

1176 G. GPGPU

43:

44: void main (void)

45: {

46: uint i, j, k, l, m, p, q;

47: float s;

48:

49: i = gl_GlobalInvocationID.x;

50: switch (stage) {

51: case 0:

52: iPrefixSum (i);

53: return;

54: case 1:

55: if (i == 0) seq.a[i] = 0;

56: j = ca(i);

57: seq.a[i+1] = rb(j+1)-rb(j);

58: return;

59: case 2:

60: for (p = 0, k = nnza; k-p > 1;) {

61: l = p + (k-p)/2;

62: if (i >= seq.a[l]) p = l; else k = l;

63: }

64: for (j = 0, k = ma; k-j > 1;) {

65: l = j + (k-j)/2;

66: if (p >= ra(l)) j = l; else k = l;

67: }

68: pairi(i) = j;

69: q = rb(ca(p))+i-seq.a[p];

70: pairj(i) = cb(q);

71: aux1.a[i] = aa.a[p]*ab.a[q];

72: return;

73: case 3:

74: if (i == 0) {

75: tab1(0) = 0;

76: tab1(ma) = nprod;

77: }

78: else {

79: for (j = 0, k = nprod; k-j > 1;) {

80: l = j + (k-j)/2;

81: if (pairi(l) < i) j = l; else k = l;

82: }

83: tab1(i) = k;

84: }

85: return;

86: case 4:

87: tab2(i) = tab1(i+1)-tab1(i);

88: return;

89: case 5:

G.4. Przetwarzanie macierzy rzadkich 1177

90: if ((j = i+(prN+1)/2) < prN) {

91: if (tab2(i) < tab2(j))

92: tab2(i) = tab2(j);

93: }

94: return;

95: case 6:

96: SortIt (i, gl_GlobalInvocationID.y);

97: return;

98: case 7:

99: if (i == 0)

100: { tab1(0) = 0; tab1(1) = 1; }

101: else

102: tab1(i+1) = pairi(i-1) != pairi(i) || pairj(i-1) != pairj(i) ? 1 : 0;

103: return;

104: case 8:

105: if (i == nprod)

106: tab2(nnzc) = nprod;

107: else if (tab1(i+1) > tab1(i)) {

108: ca(tab1(i)) = pairj(i);

109: tab2(tab1(i)) = i;

110: }

111: return;

112: case 9:

113: if (tab2(i+1) > tab2(i)) {

114: for (j = tab2(i), s = 0.0; j < tab2(i+1); j++)

115: s += aux1.a[j];

116: aa.a[i] = s;

117: tab1(i) = pairi(tab2(i));

118: }

119: return;

120: case 10:

121: if (i == 0) {

122: ra(0) = 0;

123: ra(ma) = nnzc;

124: }

125: else {

126: for (p = 0, k = nnzc; k-p > 1;) {

127: l = p + (k-p)/2;

128: if (i > tab1(l-1)) p = l; else k = l;

129: }

130: ra(i) = p;

131: }

132: return;

133: default:

134: return;

135: }

136: } /*main*/

1178 G. GPGPU

Wetapie siódmym (linia 59na listinguG.20 oraz 99–102na listinguG.21) do pierwszej tab-
licy sąwpisywane jedynki i zera: jedynka odpowiada iloczynowi, który jest pierwszym skład-
nikiem sumy do obliczenia (czyli jest pierwszym iloczynem z daną parą indeksów (i , j)),
a zero odpowiada każdemu kolejnemu składnikowi. Wspomniane zera i jedynki są wpisy-
wane „o jedno miejsce dalej”, a na początek tablicy trafia 0. Po obliczeniu ciągu sum pre-
fiksowych na końcu ciągu (w miejscu o numerze P) otrzymamy liczbę wpisanych jedynek,
czyli liczbęN niezerowychwspółczynnikówmacierzyC. Liczba ta jest odczytywana z bufora
w liniach 61–62, a w linii 63 jest przypisywana zmiennej jednolitej nnzc.

W liniach 64–69 bufory, w których ma się znaleźć wynik, są przywiązywane do punktów
dowiązania 0 i 1 i następuje rezerwacja bloków pamięci GPU o odpowiedniej długości.

W etapie ósmym (listing G.20, linia 70 i listing G.21, linie 105–110) dla każdego niezero-
wego współczynnika macierzy C do tablicy c będącej częścią reprezentacji tej macierzy jest
wpisywany numer kolumny, w której jest ten współczynnik. Ponadto do drugiej tablicy po-
mocniczej jest wpisywany ciąg liczb, które są indeksami początków podciągów iloczynów do
zsumowania. Warunek badany przez szader w linii 107 jest spełniony, gdy numer wątku jest
numerem pierwszego iloczynu w sumowanym podciągu. Instrukcja przypisania w linii 106
„zakańcza” wpisywany do tablicy ciąg liczbą P na pozycji N . W rezultacie w tablicy tab2
mamy ciąg liczb t0 = 0, t1, . . . , tN−1, tN = P, taki że i-ty współczynnik macierzy C jest sumą
iloczynów znajdujących się w tablicy aux1 od miejsca ti do ti+1 − 1.

W etapie dziewiątym (linia 71 i 113–118) następuje sumowanie składników w celu oblicze-
nia współczynników ci j macierzy C. Obliczona suma jest w linii 116 zapisywana w tablicy a
reprezentacjimacierzyC, a w linii 117w tablicy pomocniczej jest zapamiętywanynumerwier-
sza, w którym występuje obliczony współczynnik.

W etapie dziesiątym jest wypełniana tablica r reprezentacji macierzy C; sąw niej zapisy-
wane indeksy początków miejsc w tablicach c i a, od których zaczynają się numery kolumn
i współczynniki w danym wierszu macierzy C. Indeksy te są znajdowane metodą wyszuki-
wania binarnego w tablicy tab1, w której (właśnie w tym celu) w poprzednim etapie zostały
zapisane numery wierszy obliczonych współczynników. Działa to poprawnie także wtedy,
gdy pewne wiersze macierzy C są zerowe. Wątek zerowy, oprócz zera na początku, wpisuje
do tablicy r na pozycjim, która jest liczbąwierszy macierzy C, liczbę N niezerowych współ-
czynników tej macierzy.

Tyle obliczeń na GPU. W liniach 73–76 procedura przypisuje liczbę niezerowych współ-
czynników wyniku i identyfikatory zawierających go buforów zmiennym wskazywanym
przez parametry, po czym sprząta po sobie.

H
Słowniki

H.1. Słownik TLS-ów i CzLS-ów

AABB— axis-aligned bounding box, prostopadłościan otaczający obiekt, jego część, zespół
obiektów lub całą scenę, o krawędziach równoległych do osi (jakiegoś ustalonego) układu
współrzędnych, zobacz OBB.

AFR— alternating frame rendering, naprzemienne wykonywanie klatek, technika tworzenia
animacji na komputerze wyposażonym w więcej niż jedną GPU. Kolejne klatki są wy-
konywane przez inne GPU, co pozwala na zwiększenie liczby klatek na sekundę albo na
zwiększenie stopnia skomplikowania rysowanych scen lub algorytmów rysowania.

AMD— Advanced Micro Devices, jeden z dwóch wiodących producentów CPU i jeden
z dwóch wiodących producentów GPU.

ANSI— American National Standards Institute, organizacja, która opracowała kanoniczny
standard języka C. Staram się go trzymać.

API— application programming interface, po włosku słowo api oznacza pszczoły.

ARB—OpenGLArchitecture Review Board, komitet, który w latach 1992–2006 odpowiadał
za rozwój standardu OpenGL, później wszedł w skład Khronos Group.

ATD— abstrakcyjny typ danych, czyli opis możliwych działań na obiekcie i ich skutków,
umożliwiający programiście skupienie się na sposobie używania obiektu, bez rozprasza-
nia uwagi na szczegóły jego implementacji (które mogą być różne). Przykładami ATD są
stosy, kolejki i słowniki, a także konteksty OpenGL-a — maszyny stanów zdefiniowane
w specyfikacji.

AZDO — approaching zero driver overhead, co proponuję spolszczyć na QZNS, czyli ku
zerowemu narzutowi sterownika. Filozofia rozwoju standardu Vulkan na podstawie do-
świadczeń z OpenGL-em, zgodnie z którą dla optymalnego wykorzystania GPU cała od-
powiedzialność za konfigurację obiektów używanych w procesie wykonywania obrazów,
a także synchronizację współdziałania CPU i GPU, spada na autora aplikacji.

1180 H. SŁOWNIKI

BFA— brute force approach, metoda brutalnej siły, czyli zamiana zadania trudniejszego (np.
narysowania gładkiej powierzchni) na dużo zadań łatwych (np. narysowania mnóstwa
trójkącików), które można rozwiązywać równolegle, gdy sięma odpowiedni sprzęt.

BFS— breadth-first search, przeszukiwanie grafu wszerz.

BLAS— basic linear algebra subroutines, podstawowe podprogramy algebry liniowej realizu-
jące działania elementarne, takie jakmnożenie wektorów przez liczby, dodawanie wekto-
rów, obliczanie iloczynu skalarnego, mnożenie macierzy przez wektor, mnożenie dwóch
macierzy itd. Podprogramy te są zwykle zoptymalizowane do pracy na sprzęcie, na któ-
rymmają działać i sąwykorzystywanem.in. przez bibliotekę LAPACK. Ich odpowiedniki
działające na GPU sąw bibliotece CUBLAS, dostępnej dla procedur napisanych w języku
CUDA.

Także bottom level acceleration structure, struktura danychużywanaw śledzeniu promieni
za pomocą GPU, zobacz TLAS.

blit— block image transfer, blokowe przesłanie obrazu, działanie wykonywane przez proce-
durę glBlitFramebuffer.

BRDF — bidirectional reflectance distribution function, dwukierunkowa funkcja rozkładu
odbicia światła, składnik BSDF.

BSDF— bidirectional scattering distribution function, dwukierunkowa funkcja odbicia i za-
łamania światła, centralny element modelu oświetlenia powierzchni. Jej argumentami
są kierunki padania i odbicia lub załamania światła, a jej wartość jest ilorazem radiancji
światła odbitego lub załamanego i irradiancji światła padającego na powierzchnię.

BTDF— bidirectional transmission distribution function, dwukierunkowa funkcja rozkładu
załamania światła, drugi składnik BSDF.

BVH— bounding volume hierarchy, hierarchia otoczek części skomplikowanej sceny uży-
wana do przyspieszania rozwiązywania zadań takich jak znajdowanie przecięć promieni
z obiektami lub wykrywanie kolizji obiektów. Często otoczkami są kule lub AABB.

CAD— computer aided design, projektowanie wspomagane komputerem.

CAGD— computer aided geometric design, modelowanie geometryczne, dział matematyki
stosowanej zajmujący się teoretycznymi podstawami CAD.

CCD— charge-coupled device, współczesna namiastka szklanej płyty lub taśmy z octanu
celulozy, pokrytej emulsją z bromkiem srebra.

CCW— counterclockwise, przeciwnie do ruchu wskazówek zegara.

CIE—Commission Internationale de l’Éclairage,MiędzynarodowaKomisjaOświetleniowa,
założona w roku 1913 organizacja zajmująca się opracowaniem standardów dla radio-
metrii, fotometrii i kolorymetrii.

CMY, CMYK— Cyan, Magenta, Yellow, (blacK), współrzędne używane w subtraktywnym
modelu mieszania barw.

H.1. Słownik TLS-ów i CzLS-ów 1181

CPU— central processing unit, „główny” procesor, albo „jednostka centralna”, stąd uznałem,
że CPU jest rodzaju żeńskiego.

CRT— cathode ray tube, w zasadzie lampa kineskopowa, ale wciąż jeszcze tym skrótem
w różnych pakietach oprogramowania (i bibliotekach procedur) określa sięmonitor.

CSR— compressed sparse rows, reprezentacja macierzy rzadkich opisana w podrozdziale G.4
i użyta w implementacji metody bilansu energetycznego w rozdziale 29 i w zagęszczaniu
siatek w rozdziale 31. Jest też skrót CSC (compressed sparse columns), który oznacza po-
dobną reprezentację, z zamienionymi rolami wierszy i kolumn.

CUDA — Compute Unified Device Architecture, język programowania GPU opracowany
przez firmęNVIDIA. Jest on podobniejszy do C niżGLSL i w zastosowaniach niezwiąza-
nych z potokiem przetwarzania grafiki wydaje się mieć większą siłę wyrazu. Zamiast
szaderów obliczeniowych napisanych w GLSL-u można napisać odpowiedni program
w języku CUDA, ale jego zastosowanie ograniczone jest do komputerów wyposażonych
w GPU z procesorami firmy NVIDIA.

CzLS— czteroliterowy skrót, na przykład CzLS (nie mylić z TLS).

DFS— depth-first search, przeszukiwanie grafu w głąb.

DMA — direct memory access, układy wejścia/wyjścia umożliwiające przesyłanie danych
m.in. między pamięcią operacyjną CPU a pamięcią GPU znacznie szybciej niż może to
czynić CPU.

DOF — degrees of freedom, stopnie swobody, niezależne parametry artykulacji łańcucha
kinematycznego1.

Także depth of field, głębia ostrości obiektywu, którąmożna symulować przy użyciu bu-
fora akumulacji.

DPI— dots per inch, jednostka rozdzielczości obrazu, liczba pikseli na cal.

DRI— direct rendering interface, zaimplementowana w bibliotece GLXmożliwość przekazy-
wania danych i poleceńmiędzy CPU a GPU z pominięciem protokołu komunikacyjnego
systemu XWindow, w celu przyspieszenia tworzenia grafiki.

DSA— direct state access, wprowadzony w specyfikacji OpenGL 4.5 dostęp do obiektów
w pamięci GPU (buforów, tekstur i buforów ramki) bez przywiązywania ich do odpo-
wiednich celów, realizowany za pomocą procedur mających słowo Named w nazwie.

EBO— element buffer object, to samo co IBO.

FBO— framebuffer object, obiekt bufora ramki.

FIFO— first in, first out, kolejka.

FPS— frames per second, liczbawyświetlanych klatek na sekundę. Takżefirst person shooting,
co można rozumieć jako strzelanie w pierwszej osobie lub strzelanie do pierwszej osoby.
Ja tego nie robię.

1W łańcuchach otwartych wszystkie parametry artykulacji są niezależne.

1182 H. SŁOWNIKI

FSF— Free So�ware Foundation, organizacja, która opracowała licencje GPL i LGPL.

GAF— geometric attenuation factor, funkcja opisująca wzajemne zasłanianie mikrościanek
w opartych na prawach fizyki modelach oświetlenia powierzchni.

GCC— GNU compiler collection, pakiet kompilatorów różnych języków programowania,
w tym języka C.

GDI— graphics device interface, biblioteka grafiki dwuwymiarowej, której można używać
w natywnych aplikacjach systemuWindows do rysowania wihajstrów.

GGX— mimo starań nie udało mi się odnaleźć słów, z których powstał ten TLS. Bywa on
używany jako określenie implementacji dwukierunkowej funkcji odbicia światła (BRDF)
lub jej czynników: funkcji rozkładu kierunków wektora normalnego (NDF) lub funkcji
zasłaniania mikrościanek (GAF).

GIGO — garbage in, garbage out, niezależnie, czy używamykolejki (FIFO), czy stosu (LIFO).

GIMP — GNU Image Manipulation Program, program do obróbki obrazów rastrowych,
przydaje się do przygotowywania tekstur i ilustracji.

GLEW— OpenGL Extension Wrangler, jedna z bibliotek udostępniających aplikacji adresy
procedur OpenGL-a.

GLSL— OpenGL shading language, bohater tej książki.

GLU— OpenGL utilities, biblioteka pomocnicza, większość jej procedur jest dostosowana
do starego OpenGL-a.

GLUT— OpenGL Utility Toolkit, historycznie pierwsza biblioteka z API dla interakcyjnych
aplikacji OpenGL-a, umożliwiająca uniezależnienie aplikacji od systemu operacyjnego
i systemu okien.

GNU— GNU’s not Unix, TLS, w którym rekurencja służy kokieterii.

GPL — GNU Public License, opracowana przez FSF licencja, na zasadach której są roz-
powszechniane liczne programy.

GPU— graphics processing unit, procesor grafiki. Inaczej „jednostka” lub „karta” graficzna,
według mnie jest rodzaju takiego jak CPU.

GUI— graphical user interface, zestaw wyświetlanych na ekranie wihajstrów, które służą do
interakcji użytkownika z programem. Zobacz teżWIMP.

GWS— global workgroup size, wielkość globalnej grupy roboczej.

HDR— high dynamic range, szeroki zakres dynamiczny, reprezentacja obrazu, w której skła-
dowe r, g, b pikseli są reprezentowane przez liczby zmiennopozycyjne. Wyświetlenie ta-
kiego obrazu na ekranie musi być poprzedzone przekształceniem do postaci LDR, ale
reprezentacja HDR umożliwia prowadzenie obliczeń z dużą dokładnością, a składowe
pikseli nie muszą należeć do przedziału [0, 1].

HID— human input device, dowolne urządzenie umożliwiającewprowadzanie danych przez
człowieka, na przykład klawiatura, mysz, dżojstik.

H.1. Słownik TLS-ów i CzLS-ów 1183

HLSL— high level shading language, język programowania GPU, który w standardzie Di-
rectX firmy Microso� pełni rolę analogiczną do GLSL-a.

HSL,HSV—Hue, Saturation, Lightness, Value (odcień, nasycenie, światłość, wartość), „ma-
larskie” współrzędne barw, wymyślone jako wygodniejsze niż RGB dla użytkowników
programów graficznych.

IBL— image-based lighting, oświetlenie przez obraz, tj. przy użyciu obrazu świata otaczają-
cego rysowany obiekt — światłem odbitym lub wysyłanym przez obiekty dookoła.

IBO— index buffer object, bufor z indeksami do tablicy wierzchołków, umożliwia wygodne
rysowanie łamanych, taśmtrójkątowych lubwachlarzy określonych przez ciągwierzchoł-
ków, które mogą się powtarzać.

IEEE—Institute of Electrical andElectronics Engineers, organizacja, która opracowałam.in.
standard arytmetyki zmiennopozycyjnej IEEE 754, obejmujący reprezentacje liczb oraz

najważniejsze własności działań na nich. CPU realizują ten standard w pełni, natomiast
GPU zazwyczaj tylko w ograniczonym zakresie, o czym trzeba wiedzieć.

IFS— iterated function system, układ iterowanych przekształceń, jeden z modeli matema-
tycznych używanych do otrzymywania obrazów figur fraktalowych.

JPEG— Joint Photographic Experts Group, komitet, który opracował algorytmy kompresji
odpowiednie dla fotografii. Także format zapisu plików z obrazami, korzystający z tych
algorytmów, które mogą być też stosowane do kompresji obrazów w zapisanych innych
formatach, na przykład TIFF.

JPG—TLS CzLS-u JPEG używany jako rozszerzenie nazw plików w formacie JPEG.

KISS— keep it simple, stupid!, najważniejsza maksyma, która powinna zawsze przyświecać
każdemu programiście. W praktyce, niestety, nie każdemu, nie zawsze, albo w ogóle nie
przyświeca. Mam wrażenie, że twórcy standardu Vulkan o niej nie słyszeli.

KHR — Khronos Group, konsorcjum sprawujące od roku 2006 opiekę nad standardem
OpenGL.

LCD— liquid crystal display, wyświetlacz ciekłokrystaliczny.

LDR— low dynamic range, wąski zakres dynamiczny, reprezentacja obrazu z pikselami re-
prezentowanymi przy użyciu 8 bitów na każdą ze składowych r, g, b koloru (bity te repre-
zentują liczniki ułamków o mianowniku 255, składowe należą więc do przedziału [0, 1]).
Taka reprezentacja nadaje się do bezpośredniego wyświetlenia na ekranie, ale jest niewy-
starczająca dla niektórych metod tworzenia obrazów. Zobacz HDR.

LGPL— Lesser GNU Public License, nieco inna licencja niż GPL.

LIFO— last in, first out, stos.

LLVM— low level virtual machine, niskopoziomowa maszyna wirtualna, obecnie jest to na-
zwa własna oderwana od słów, których jest skrótem. To jest kompilator dla wielu języków

1184 H. SŁOWNIKI

programowania (początkowo C/C++), wytwarzający kod pośredni, który może być pod-
dany optymalizacji przed przetworzeniem go na kod docelowy. Projekt ten był podstawą
do opracowania reprezentacji SPIR-V szaderów.

LOD— level of detail, poziom szczegółowości modelu dostosowany do jego wielkości na
obrazie. Nie należy rysować wentyli w kołach samochodu, jeśli obraz całego tego samo-
chodu w narysowanym krajobrazie ma średnicę kilkunastu pikseli (co innego, jeśli obraz
wentyla ma kilkanaście pikseli).

LSB— least-significant bits, bity na mniej znaczących pozycjach w reprezentacji liczby.

LTE— light transfer equation, równanie transportu światła, nazywane też równaniembilansu
energetycznego, jest ono matematycznym modelem globalnego oświetlenia sceny.

LWS— local workgroup size, wielkość lokalnej grupy roboczej, zadeklarowana w treści sza-
dera obliczeniowego i dostępna w zmiennej wbudowanej gl_WorkGroupSize.

LZNK— liniowe zadanie najmniejszych kwadratów. Dla danej macierzy A ∈ Rm×n i wektora
b ∈ Rm polega ono na znalezieniu takiego wektora x ∈ Rn, że długośćwektora r = b − Ax
(równoważnie: suma kwadratów jego współrzędnych) jest najmniejsza. Jeśli układ rów-
nań Ax = b jest niesprzeczny, to każde jego rozwiązanie jest rozwiązaniem LZNK. Jeśli
kolumnymacierzy A są liniowo niezależne, to jest to tzw. regularne LZNK, które ma jed-
noznaczne rozwiązanie. Jeśli wiersze macierzy A są liniowo niezależne, to układ Ax = b
jest niesprzeczny, ale dla m < n ma nieskończenie wiele rozwiązań — wtedy stawia się
tzw. dualne LZNK, które polega na znalezieniu rozwiązania najkrótszego lub położonego
najbliżej danego wektora x̂ ∈ Rn. Jeśli i wiersze i kolumnymacierzy A są liniowo zależne,
to LZNK jest nieregularne; w zbiorze wektorów x, takich że wektor b−Ax jest najkrótszy,
trzeba znaleźć wektor najkrótszy lub najbliższy danego wektora x̂.

MIMD— multiple instruction, multiple data, komputer wieloprocesorowy, w którym każdy
procesor może wykonywać w tym samym czasie inną instrukcję, zobacz SIMD.

MIP—multum in parvo, wiele w niewielu, określenie techniki teksturowania (mipmapingu,
MIP-mapping) użytej w rozdziale 19.

MRT — multiple render target, jednoczesne wykonywanie wielu obrazów, na przykład na
różnych warstwach jednego załącznika bufora ramki (wybieranych przez nadanie od-
powiednich wartości zmiennej gl_Layer przez szader geometrii, zobacz rozdz. 26)
lub na różnych załącznikach koloru bufora ramki (wybieranych przez kwalifikatory
layout(location=i) zmiennych wyjściowych szadera fragmentów, rozdz. 27) albo
w różnych klatkach (wybieranych za pomocą zmiennej gl_Viewport szadera geometrii,
zobacz rozdz. 29).

MSAA— multisampled antialiasing, antyaliasing przez wielopróbkowanie. W tej technice
szacuje się obszar piksela zajęty przez fragment powierzchni, zliczając (wybrane w pik-
selu) punkty należące do obrazu tego fragmentu, ale jego kolor (uwzględniający oświet-
lenie i teksturę) oblicza się tylko dla jednego (lub niewielu) punktów, porównaj z SSAA.

MSB—most-significant bits, bity na bardziej znaczących pozycjach w reprezentacji liczby.

H.1. Słownik TLS-ów i CzLS-ów 1185

MVP—model–view–projection, ciąg przekształceń opisujących kolejno przejścia od układu
współrzędnych obiektu (modelu) do układu świata, obserwatora i kostki standardowej,
definiujący rzutowanie obiektu trójwymiarowego na płaszczyznę obrazu. Macierz opisu-
jąca złożenie tych przekształceń jest równa PVM (zobacz rozdz. 6).

NaN— not a number, nie-liczba, ciąg bitów zapisany w zmiennej typu float lub double

niereprezentujący żadnej liczby rzeczywistej ani nieskończoności.

NDC— normalized device coordinates, układ współrzędnych kostki standardowej; w tym
układzie współrzędne kartezjańskie punktów bryły widzenia leżą w przedziale [−1, 1].

NDF— normal distribution function, funkcja opisująca rozkład kierunków wektorów nor-
malnych mikrościanek chropowatej powierzchni.

OBB— oriented bounding box, prostopadłościan otaczający obiekt, jego część lub zespół
obiektów, którego krawędzie mogą być dowolnie obrócone względem osi układu współ-
rzędnych, zobacz AABB.

ODW— ostatnia działająca wersja, czyli program, który działał, zanim postanowiliśmy go
ulepszyć. Trzeba było zrobić kopię zapasową.

OOP— object oriented programming, programowanie obiektowe, czyli takie, w którym pro-
cedury (zwane metodami) są traktowane jak integralna część przetwarzanych przez nie
danych. Język C++ ma dostosowaną do tego składnię, ale w C też tak można.

Oops— ups, to akurat nie jest skrót.

PBO— pixel buffer object, bufor z tablicą pikseli, a właściwie dowolnych danych reprezen-
towanych przez pojedyncze liczby, pary lub czwórki liczb, przetwarzanych przez szadery
jako obraz (image).

PBR— physically based rendering, obrazowanie oparte na prawach fizyki. Wwęższym sensie
jest to używanie zaawansowanych lokalnych i globalnych modeli oświetlenia, a w szer-
szym stosowanie w konstrukcji scen do narysowania odpowiednichmodeli matematycz-
nych, na przykład w animacji rozwiązywanie równań ruchu zgodnych z zasadami me-
chaniki.

PCF— percentage-closer filtering, technika antyaliasigu obrazu cienia opisana w p. 22.6.2.

PRAM— parallel randomaccessmachine, modelmatematyczny komputera zwielomaproce-
sorami, badany w teorii złożoności obliczeniowej. Dość dobrą realizacją takiego modelu
jest komputer z wielordzeniową CPU, a znacznie gorszą (z uwagi na to, że procesory nie
działają całkowicie niezależnie) jest GPU.

POLA— principle of least astonishment, zasadaminimalizacji zaskoczeń. Mianowicie, należy
ich oszczędzać użytkownikom aplikacji.

PWN— dawniej Państwowe Wydawnictwo Naukowe, obecnie (od 1991 r.) Wydawnictwo
Naukowe PWN.

QED— quantum electrodynamics, elektrodynamika kwantowa, czyli fizyczna teoria światła,
oraz quod erat demonstrandum, czego należało dowieść. ◻

1186 H. SŁOWNIKI

QZNS— zobacz AZDO.

RAM— random access memory, pamięć o dostępie bezpośrednim. Również random access

machine, model matematyczny komputera składającego się z jednordzeniowego proce-
sora z pamięcią RAM, badany w teorii złożoności obliczeniowej. Po angielsku ram to
także baran.

RGB— red, green, blue, współrzędne w przestrzeni koloru.

RGBA— red, green, blue, alpha, współrzędne w przestrzeni koloru i składowa alfa, pomoc-
nicza w tworzeniu obrazu.

RMS— root mean square, odchylenie standardowe, parametr rozkładu kierunkówwektorów
normalnych mikrościanek, z których składa się chropowata powierzchnia.

RRZ— równanie różniczkowe zwyczajne, opisujące na przykład ruch cząsteczki w rozdzia-
le 24.

SIMD— single instruction, multiple data, komputer wieloprocesorowy, w którym wszystkie
procesory w danej chwili wykonują tę samą instrukcję na różnych danych albo czekają.
GPU jest takim komputerem. Zobacz MIMD.

SMF — Simple Model Format, format plików tekstowych przeznaczony do opisu modeli
obiektów trójwymiarowych.

SPD— spectral power distribution, widmo rozkładu mocy, określona w przedziale długości
fal światła widzialnego funkcja opisująca strumień energetyczny światła.

SPIR— Standard Portable Intermediate Representation, binarny format częściowo skompi-
lowanych programów dla GPU, można go używać do rozpowszechniania szaderów bez
udostępniania ich kodów źródłowych.

SSAA— supersampled antialiasing, antyaliasing przez nadpróbkowanie, kolor fragmentu ob-
licza sięna podstawie kolorówwszystkichwybranych punktówwobszarze piksela. To jest
bardziej czasochłonne niż wielopróbkowanie, zobacz MSAA.

SSAO— screen space ambient occlusion, metoda obliczania oświetlenia stosowana podczas
opóźnionego cieniowania.

SSBO— shader storage buffer object, obiekt bufora magazynowego.

SVD— singular value decomposition, rozkład macierzy względem wartości szczególnych.
Jednym z jego najważniejszych zastosowań jest rozwiązywanie nieregularnych LZNK.

TBO— texture buffer object, obiekt bufora tekstury, a właściwie buformagazynowy udostęp-
niony szaderom jako tekstura jednowymiarowa.

TIFF— tagged image file format, format plikówdo zapisu obrazów rastrowych, niesamowicie
elastyczny.

TIGA — Texas Instruments Graphics Architecture, standard grafiki zbudowany w latach
dziewięćdziesiątych XX wieku wokół procesorów TMS 34010 i TMS 34020, które były

H.1. Słownik TLS-ów i CzLS-ów 1187

pierwszymi możliwymi do zainstalowania w komputerach osobistych całkowicie prog-
ramowalnymi GPU (choć wtedy ten TLS jeszcze nie istniał). Standard ten okazał się
ślepą uliczką w rozwoju technologii, ale był w swoim czasie inspirujący.

TLAS— top level acceleration structure, struktura danych używanaw śledzeniu promieni (re-
alizowanym za pomocą obecnie najnowszych generacji GPUfirmyNVIDIA), dostępnym
w rozszerzeniu standardu Vulkan (niestety, nie OpenGL, nie tylko ja ubolewam nad tym
zaniedbaniem). Określone przez aplikację zbiory trójkątów, reprezentowane przez struk-
tury BLAS, są (w fazie preprocesingu) organizowane w TLAS, która umożliwia szybkie
odnajdowanie trójkątów przeciętych przez promienie.

TLS— trzyliterowy skrót, na przykład TLS (nie mylić z CzLS).

UBO— uniform buffer object, bufor z blokiem zmiennych jednolitych.

ulp— unit in the last position, jednostka „rozdzielczości” dwójkowej reprezentacji liczby,
czyli wartość bezwzględna przyrostu wartości x zmiennej danego typu spowodowanego
zmianą najmniej znaczącego bitu tej zmiennej. Dla zmiennych stałopozycyjnych (całko-
witych, np. int) jednostka ta nie zależy od wartości zmiennej i w zasadzie jest równa 1,
chyba że zmienna reprezentuje licznik jakiegoś ułamka. Na przykład liczby ośmiobi-
towe w buforze obrazu lub teksturze reprezentują liczby rzeczywiste z przedziału [0, 1]
—wtedy ulp x = 1

255
.

Dla liczby zmiennopozycyjnej znormalizowanej x = (−1)s2c−b(1 + m), składającej się
z bitu znaku s, cechy c i (reprezentowanej przez t bitów i będącej ułamkiem z prze-
działu [0, 1)) mantysy m jest ulp x = 2c−b−t . Jeśli c = 0, to mamy liczbę nieznorma-

lizowaną x = (−1)s21−bm i wtedy ulp x = 21−b−t . Mantysy liczb pojedynczej precyzji
(float) mają 23 bity, a mantysy liczb podwójnej precyzji (double) mają ich 52. Stałe b
tych reprezentacji to odpowiednio 127 i 1023.

Ups— uch, pomyliłem się (zobacz Oops).

USB — universal serial bus, magistrala danych dla urządzeń wejścia/wyjścia, takich jak kla-
wiatury, myszy, drukarki, pendrajwy, dyski zewnętrzne, dżojstiki, wentylatory, lampki,
odkurzacze do klawiatury itp.

VAO— vertex array object, obiekt tablicy wierzchołków (zobacz hasło lista na s. 1188).

VBO— vertex buffer object, bufor przechowujący atrybuty wierzchołków, rejestrowany
w VAO.

VESA— Video Electronics Standards Association, organizacja dbająca o to, aby monitory
różnych producentów można było podłączać do komputerów różnych producentów.

WIMP— windows, icons, menus, pointers, dawno używany CzLS, w krótkim czasie wyparty
przez TLS GUI, bo jak ktoś zauważył, każdy wolałby być gui niż wimp.

WMIM—WydziałMatematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego.

WWW —world-wide web, w praktyce wysypisko wszelkichwiadomości, w którym potrzeb-
ne (i rzetelne) informacje bywają trudne do znalezienia.

1188 H. SŁOWNIKI

H.2. Słownik wyrazów wieloznacznych

bodziec— oddziaływujący na zmysły sygnał, na przykład świetlny lub dźwiękowy. Dawniej
kij pasterski.

bufor—pierwotnie zderzak wagonu lub lokomotywy, ułatwiający ich sprzęgnięcie. W kom-
puterach to najpierw był magazyn danych przekazywanych między urządzeniami dzia-
łającymi z różną szybkością, na przykład procesorem i dyskiem lub drukarką. Obecnie
słowo to oznacza dowolny magazyn danych w pamięci RAM CPU, a także GPU, ale nie
tylko. Bufor ramki (framebuffer) to struktura danych, w której ramach odbywa się two-
rzenie obrazu, w nomen omen buforach (obrazu, głębokości i maski) zarejestrowanych
jako załączniki bufora ramki.

funkcja— w matematyce jest to podzbiór iloczynu kartezjańskiego A × B, czyli zbioru par(a, b) złożonych z elementów dowolnych zbiorów A i B. Piszemy f ∶A→ B, aby określić
dziedzinęA i zbiórwartości B funkcji f . Każdy element zbioruA (argument funkcji) jest
pierwszym elementem jednej pary tego podzbioru. To samo znaczenie co funkcja mają
słowa przekształcenie, przyporządkowanie, odwzorowanie i kilka innych, używanych
trochę rzadziej. Jeśli para (a, b) należy do (czyli jest elementem) funkcji f , to mówimy,
że b jest wartością funkcji f w punkcie a, lub obrazem punktu a w przekształceniu f .

W informatyce „funkcja” to oficjalna nazwa dowolnego podprogramu w językach C
i GLSL, ale w tej książce słowa tego używam tylko w odniesieniu do podprogramów obli-
czających pewien wynik i podających go przez swoją nazwę, przy czym wynik ten zależy
tylko od parametrów tego podprogramu, który ponadto nie ma żadnych efektów ubocz-
nych (w zasadzie tylko taki podprogram wypada uznać za realizację funkcji w sensie
matematycznym). Pozostałe podprogramy określam słowem procedura.

iloczyn— działanie zwane też mnożeniem, albo wynik tego działania, określonego w spo-
sób dostosowany do jego argumentów. Iloczyn liczb całkowitych lub rzeczywistych, jaki
jest, każdy widzi. Iloczyny dwóch macierzy, AB, macierzy i wektora, Ax oraz liczby
i macierzy, aA, są opisane w podrozdziale 5.1. Iloczyn funkcji o tej samej dziedzinie
jest funkcją (f g)(x) = f (x)g(x). Iloczyn tensorowy funkcji o dziedzinach D1 i D2

jest funkcją określoną w zbiorze D1 × D2 (iloczynie kartezjańskim dziedzin tych funk-
cji), (f ⊗ g)(u, v) = f (u)g(v), zobacz podrozdział 15.1. Szczególnym przypadkiem ilo-
czynu tensorowego jest opisany w podrozdziale 17.1 iloczyn sferyczny dwóch płaskich
krzywych, który jest konstrukcją płata powierzchni parametrycznej. Opisy iloczynu ska-
larnego ⟨a, b⟩ i iloczynuwektorowego a∧bwektorówwprzestrzeniR3 są podanewpod-
rozdziale 5.5, a iloczyn wektorowy a∧b∧c wR4 jest przedstawiony w podrozdziale 15.2.
Iloczyn mieszany wektorów a, b, c ∈ R3 jest liczbą ⟨a ∧ b, c⟩ = det[a, b, c]. W podroz-
dziale 28.3 jest użyty przykład iloczynu skalarnego ⟨ f , g⟩ funkcji f i g określonych na
sferze jednostkowej. Definicja iloczynu liczb zespolonych jest przypomniana w p. F.1.1,
wreszcie w podrozdziale A.4 są rozpatrywane iloczyny kwaternionów, q1 ⋅ q2.

lista— struktura danych, w której każdy element oprócz pewnej informacji przechowuje
identyfikator (wskaźnik lub indeks) następnego elementu.

H.2. Słownik wyrazów wieloznacznych 1189

Lista obrazowa (display list) to w starym OpenGL-u reprezentacja ciągu wykonanych
wywołań procedur OpenGL-a z odpowiednimi parametrami, umożliwiająca powtarza-
nie go bez ponownego obliczania wartości parametrów. Listy obrazowe i procedury ich
obsługi w nowym OpenGL-u zostały zdeprecjonowane, a szkoda.

Listą obrazową dostępną w nowym OpenGL-u jest obiekt tablicy wierzchołków (VAO),
w którym jest zapamiętany ciąg wywołań procedur określającychmiejsca, z których etap
pobierania wierzchołków ma odczytać atrybuty wierzchołków podczas rysowania. Od-
tworzenie tego ciągu następuje po każdym wywołaniu procedury glBindVertexArray.

Lista parametrów to to, co w językach C i GLSL odróżnia identyfikator podprogramu
(który jąma) od identyfikatora zmiennej (która jej nie ma).

metoda— sposób robienia czegoś, na przykład metoda śledzenia promieni lub metoda
bilansu energetycznego są sposobami obliczania oświetlenia.

W programowaniu obiektowymmetoda to podprogram zintegrowany z pewną strukturą
danych.

model— w matematyce stosowanej jest to wzór lub algorytm opisujący (zawsze w uprosz-
czeniu) dowolne zjawisko, na przykład odbicie światła od powierzchni.

Słowo „model” oznacza również rysowany przedmiot lub jego reprezentację w pamięci
komputera.

obiekt— figura geometryczna lub jej reprezentacja. Obiekt to też struktura danych wypo-
sażona w metody, czyli podprogramy oficjalnie uznawane za nieodłączne części takiej
struktury. W nomenklaturze OpenGL-a to także używany w określonej roli bufor lub
inna struktura danych w pamięci GPU, na przykład FBO, IBO, TBO, SSBO, UBO, VAO,
VBO (zobacz podrozdz. H.1).

obraz— wartość funkcji f w danym punkcie (obraz punktu) lub zbiór wartości funkcji we
wszystkich punktach pewnego zbioru (obraz zbioru).

W grafice komputerowej obraz jest wyświetlonym na ekranie lub wydrukowanym po-
wodem stosowania grafiki, ale także reprezentacją takiego obrazu w postaci tablicy
pikseli (w odpowiednimbuforze), a nawet dowolnym zbioremdanych przechowywanych
w buforze obrazu (image buffer).

orientacja— relacja równoważności określona między uporządkowanymi liniowo niezależ-
nymi n-tkami wektorów w n-wymiarowej rzeczywistej przestrzeni liniowej (a także mię-
dzy układamiwspółrzędnych kartezjańskich). Dwie takie n-tki są zorientowane zgodnie,
jeśli wyznacznikmacierzy przekształcenia przeprowadzającego jedną z nich na drugą jest
dodatni, i przeciwnie, jeśli jest ujemny.

Orientacja danej n-tki wektorów (lub danego układuwspółrzędnych) jest to należenie do
jednej z dwóch klas abstrakcji powyższej relacji. W przestrzeni trójwymiarowej mówi się
o orientacjiprawoskrętnej i lewoskrętnej (zobacz podrozdz. 5.6). Wpłaszczyźniewyróż-
nia się orientację zgodną z ruchem wskazówek zegara i orientację przeciwną do ruchu

wskazówek zegara. W przestrzeni jednowymiarowej orientacja jest zwrotem wektora.

1190 H. SŁOWNIKI

Słowem „orientacja” potocznie określa się też obrót, który razem z odpowiednim prze-
sunięciem nadaje obiektowi bieżące położenie w przestrzeni.

osobliwość— najogólniej, jest to miejsce nieciągłości jakiejś funkcji związanej z reprezen-
tacją krzywej lub powierzchni, które może byćwidoczne na obrazie. Na przykład osobli-
wością jest węzeł krzywej sklejanej: w węźle o krotności r krzywej stopnia n może być
nieciągła pochodna rzędu n − r + 1 parametryzacji, jeśli więc r = n, to możliwa jest
nieciągłość pochodnej widoczna jako punkt załamania, a jeśli r = n − 1, to nieciągłość
podchodnej drugiego rzędu powoduje skokową zmianę krzywizny krzywej.

Inny przykład to punkt, w którym pochodne cząstkowe parametryzacji powierzchni są
liniowo zależne. Wyznacznik macierzy tzw. pierwszej formy podstawowej jest w takim
punkcie równy 0, a ponieważwe wzorach opisujących krzywizny powierzchni występuje
on w mianowniku, krzywizny mogą być nieograniczone (co oznacza brak ich ciągłości),
tak jak w wierzchołku stożka. Nawet jeśli powierzchnia jest gładka (jak dno i pokrywka
czajnika), to iloczyn wektorowy liniowo zależnych pochodnych cząstkowych jest wekto-
rem zerowym i wektor normalny trzeba znaleźć w inny sposób.

Osobliwośćmacierzy kwadratowej to liniowa zależność jej kolumn, macierz osobliwa nie
ma odwrotności, a przekształcenie przez nią opisane niema przekształcenia odwrotnego.

parametr — dla funkcji wielu zmiennych jest to zmienna (argument) o ustalonej wartoś-
ci podczas badania własności funkcji (np. czy jest rosnąca) ze względu na pozostałe
zmienne.

Parametr krzywej lub powierzchni jest to argument funkcji zwanej parametryzacją tej
krzywej lub powierzchni.

Parametr artykulacji określa wzajemne położenie członów łańcucha kinematycznego
związanychw parę kinematyczną, jeśli na przykład jest ona zawiasem, to jest to kąt obrotu
wokół jego osi.

Parametr formalny podprogramu jest to zmienna zadeklarowana w nagłówku, otrzymuje
wartość początkową w chwili wywołania. Jest to wartość parametru aktualnego, czyli
odpowiedniego wyrażenia podanego w wywołaniu tego podprogramu.

płat— powierzchnia lub fragment powierzchni dany za pomocą parametryzacji, tj. funkcji
wektorowej określonej w obszarze płaskim, na przykład płat Béziera lub B-sklejany.

W OpenGL-u płat jest to prymityw, którego obróbka w potoku przetwarzania grafiki ma
etap rozdrabniania; w jego wyniku powstają odcinki lub trójkąty, które mogą przybliżać
gładką krzywą lub powierzchnię.

W opisanej w rozdziale 29 implementacji metody bilansu energetycznego słowo płat
oznacza zestaw trójkątów dzielony na elementy i makroelementy w celu dokonania dys-
kretyzacji równania bilansu energetycznego.

prymityw — figura geometryczna zdefiniowana lub przetwarzana „w całości”, niezłożona
z prostszych obiektów.

H.2. Słownik wyrazów wieloznacznych 1191

W poszczególnych etapach potoku przetwarzania grafiki co innego może być prymity-
wem: dla etapu pobierania wierzchołków prymitywem może być zbiór punktów, zbiór
odcinków, łamana, zbiór trójkątów, taśma trójkątowa, wachlarz trójkątów lub płat. Dla
szadera geometrii lub obcinania prymitywami są tylko pojedyncze punkty, odcinki i trój-
kąty, ale wyjściem szadera geometrii (z którego powstają prymitywy dla etapu obcinania)
są zbiory punktów, łamane lub taśmy trójkątowe.

przestrzeń—wmatematyce to dowolny zbiór, najczęściej słowo to jest używane w geometrii
(a także, nie bójmy się tego słowa, topologii) i może oznaczać przestrzeń jednowymia-
rową (np. prostą), dwuwymiarową (np. płaszczyznę) lub przestrzeń o większym wymia-
rze.

Przestrzeń kolorów to w istocie układ współrzędnych używanych do opisu światła.
Faktyczny zbiór kolorów (przestrzeń w sensie matematycznym, będąca obrazem zbio-
ru widm promieniowania elektromagnetycznego w pewnym przekształceniu liniowym)
jest jeden, a w nim są określone różne układy współrzędnych nazywane przestrzeniami
kolorów. To jest powszechnie przyjęty błąd pojęciowy.

W informatyce jestmowa o przestrzeniach nazw, czyli wykazach identyfikatorów, w któ-
rych są przechowywane nazwy podprogramów standardowych w danym języku lub
nazwy zmiennych, podprogramów i innych obiektów zadeklarowanych w programie.

punkt— w matematyce element dowolnego zbioru, czasami pojęcie to bywa zawężone do
elementów przestrzeni geometrycznej.

Punkt dowiązania to element tablicy w indeksowanym celu OpenGL-a. W ten sposób
jeden cel (np. GL_UNIFORM_BUFFER lub GL_TEXTURE_2D) umożliwia dostęp szadera do
wielu obiektów (bloków zmiennych jednolitych lub tekstur).

rzut—wmatematyce dowolna funkcja f ∶A→ A, taka że f (f (a)) = f (a) dla każdego a ∈ A;
jest też w tym znaczeniu używane określenie przekształcenie idempotentne. Dla takiej
funkcji, jeśli b = f (a), to mówimy też, że punkt b jest rzutem punktu a.

W grafice najczęściej rzut oznacza przekształcenie przestrzeni (bryły widzenia), w któ-
rej są określone obiekty do narysowania, na obszar tworzonego obrazu. Może być rzut
równoległy, perspektywiczny lub nieliniowy (np. panoramiczny).

tekstura— funkcja opisująca dowolną własność, która wpływa na wygląd punktów rysowa-
nej powierzchni na obrazie.

W OpenGL-u tekstury są reprezentowane przez tablice tzw. tekseli, przechowywujących
wartości takiej funkcji w skończenie wielu punktach.

topologia— w matematyce jest to rodzina tzw. podzbiorów otwartych dowolnego zbioru,
zwanego przestrzenią topologiczną, spełniająca aksjomaty podane w podręcznikach.

Dla powierzchni (zbioru punktów) zbudowanej z wielokątów informacja o ich połącze-
niach wzdłuż wspólnych krawędzi określa topologię w sensie podanym wyżej, co uspra-
wiedliwia używanie słowa „topologia” dla tej informacji.

1192 H. SŁOWNIKI

wektor— obiekt, który można mnożyć przez skalary (tj. liczby) i dodawać do innych obiek-
tów tego samego rodzaju. Najczęściej słowo to oznacza macierz kolumnową składającą
się ze współrzędnych punktu, ale to może być też dowolna macierz, przekształcenie li-
niowe lub funkcja o określonej dziedzinie.

Łacińskie słowo vector, zanim Galileusz wprowadził je do matematyki, oznaczało tra-
garza.

węzeł— wyróżniony punkt w dziedzinie funkcji skalarnej lub wektorowej (parametryzacji
krzywej). Węzły interpolacyjne są to punkty ui , dla których funkcja ma przyjmować
zadane wartości. Węzły funkcji lub krzywej sklejanej to punkty ui rozgraniczające prze-
działy, w których ta funkcja lub krzywa jest opisana przy użyciu różnych wielomianów.
Węzły kwadratury to punkty, w których są obliczane wartości funkcji w celu numerycz-
nego obliczenia całki z tej funkcji.

wierzchołek—w geometrii jest to punkt będący wspólnym końcem odcinków rozpatrywa-
nej łamanej (która może być brzegiem wielokąta, wtedy jest to wierzchołek wielokąta,
a także bryły wielościennej, której ten wielokąt jest ścianą).

Wierzchołek stożka jest punktem wspólnymwszystkich jego tworzących. Na powierzch-
ni stożka jest to jedyna osobliwość, czyli punkt, w którym kierunek wektora normalnego
nie jest określony.

W teorii grafów wierzchołek jest obiektem — elementem (dowolnie określonego) zbio-
ru wierzchołków grafu. Obiekt ten może mieć dowolne atrybuty, jeśli na przykład jest
punktem w przestrzeni, to ma określone położenie. Wierzchołek grafu opisującego łań-
cuch kinematyczny jest członem łańcucha.

W OpenGL-u wierzchołek jest obiektem o atrybutach opisanych przez liczby, przy czym
najczęściej jest to punkt w przestrzeni. Wierzchołki są przekazywane między kolejnymi
etapami potoku przetwarzania grafiki, ale dopiero ostatni szader części przedniej potoku
w programie szaderów, jeśli ma spowodować rysowanie, musi przekazać (do etapu ob-
cinania) wierzchołki o ustalonym położeniu w przestrzeni (w układzie współrzędnych
kostki standardowej).

Jest jeszcze wierzchołek góry lodowej — to jest część OpenGL-a opisana w tej książce.

Tak zwana Metoda Bromby polega na tym,
że czytamy hasła jedno po drugim
w kolejności alfabetycznej i sprawdzamy,
czy to prawda, że są na podanej stronie.

MaciejWojtyszko: Bromba i inni.

Skorowidz

A

adaptacyjne rozdrabnianie 376, 596, 1061,
1114

Adobe Systems 1084
aksonometria 136, 138
algorytm

bryły cienia 543
cieni 544, 549–557, 688, 697
dla mgły 620, 627–632

de Boora
obliczania wartości funkcji
B-sklejanych 1059

zmodyfikowany 1075
znajdowania punktu krzywej
B-sklejanej 1060, 1074

głębi ostrości 644
Grahama 796
Highama 1044
kompresji JPEG 1087
łączenia drzew w lesie zbiorów

rozłącznych 795
obliczania sum prefiksowych 838, 894,

1151–1154, 1170
QuickSort 663
sieci sortującej 812, 834, 1154–1159,

1170, 1174
sumowania parami 758, 811, 824, 826,

1145–1148
Sutherlanda-Hodgmana 490, 811, 1142
śledzenia promieni 696, 697
widoczności 163, 346–348, 494, 819
wyszukiwania binarnego 839, 1063,

1173, 1178
AMD 1179
anaglify 682, 1088

analogia Nusselta 787, 790, 817
animacja 47, 172–175, 296, 313–336, 345,

425–427, 575–578, 591–592, 594,
607, 616–622, 947, 956, 1005, . . .

ANSI C 3
antyaliasing 196, 311, 455, 469–472, 474,

494, 511, 528–529, 639, 643, 687,
711, 948, 1124

cieni 572–574
Apple 39
ARB 17, 1179
artykulacja łańcucha kinematycznego 314,

580, 663, 979, 1007, 1024
aspekt 83, 84, 132, 133, 153, 643, 654, 1104,

1106
atom 61, 947, 957, 1096
atrybuty wierzchołka 16, 22, 25, 141, 143,

216, 300, 309, 403–406, 457, 536,
555, 843, 880, 1003

B

barwy dopełniające 1082
baza przestrzeni liniowej 752
bezszwowe łączenie tekstury kostkowej 693
biblioteka

dl 13
FreeGLUT 3, 13, 38, 40–48, 51, 55, 60,

132, 141–367, 472, 681, 855, 956, 1091
GDI 855
GL 13, 37
gl3w 32, 37, 40, 95, 100
glad 13, 33, 38, 40, 100
GLEW 31, 37, 40, 95, 100, 1182
GLFW 3, 38, 48–55, 369–697, 855,

1091, 1102

1194 SKOROWIDZ

GLU 37, 1182
GLUT 40, 43, 1182
GLX 30, 36, 37, 681, 940
IRIS GL 17
LAPACK 130
procedur GLSL-a 199–208
pthread 1097
TIFF 38, 461
WGL 37, 68–76
X11 56–67, 855, 856, 869, 947, 948,

1005, 1017
billboard 728
Blinn, James 393, 434
blok

magazynowy 184, 185, 267, 376, 386,
483, 579, 891, 1060, 1065, 1119

podprogramu 189
zmiennych interfejsu 191, 192, 520, 555
zmiennych jednolitych 26, 142, 144,

145, 184, 185, 222, 253, 270, 271,
435, 483, 498, 553, 555, 563, 579, . . .

domyślny 27, 98, 185
błędy

OpenGL-a 85–87, 100–104
reprezentacji liczb 119, 346
systemu XWindow 67
zaokrągleń 163–165, 342, 347, 372, 490,

550, 568, 637, 719, 1044, 1045, 1053,
1136, 1146, 1162, 1166

bryła
barw 1081, 1087, 1090
cienia 543, 572
stożkowa 1081
sztywna 313
widzenia 23, 132, 133, 136, 142, 163, 167,

237, 543, 601, 621, 622, 1103, 1105,
1107, 1185, 1191

bufor
akumulacji 639, 645–652, 661, 668,

671, 680, 682
geometrii (G-bufor) 711–719
głębokości 24, 155, 164, 346, 497, 500,

510, 544, 546, 550, 552, 557, 568,
570, 621, 648, 718, 1188

indeksów 150, 154, 302
magazynowy 27, 197, 267, 271, 610, 617,

780, 799, 802, 809, 822, 880, 890,

898, 912, 1145, 1153, 1186
maski 24, 55, 497, 544, 1188
obrazu 24, 155, 497, 510, 681, 1188, 1189
ramki 497, 550, 559, 648, 674, 681, 711,

1181, 1188
pozaekranowy 749, 797, 802, 822,
827, 1122, 1128–1130

roboczy 497, 510–511, 715
wielopróbkowy 711
wierzchołków 22, 25

C

całkowanie
czynnika osłabienia 730–731
irradiancji 451, 731, 746–751
radiancji 771–775
ruchu cząsteczek 607–609, 624
współczynników kształtu 824

całkowite odbicie wewnętrzne światła 1038
Carmack, John 543
cel 26, 148

GL_ARRAY_BUFFER 25, 147
GL_ATOMIC_COUNTER_BUFFER 208
GL_COPY_READ_BUFFER 622
GL_COPY_WRITE_BUFFER 622
GL_DRAW_FRAMEBUFFER 502, 511, 562
GL_ELEMENT_ARRAY_BUFFER 150, 154,

296, 300, 509, 933
GL_READ_FRAMEBUFFER 511, 562
GL_SHADER_STORAGE_BUFFER 28,

267, 269, 613, 890, 898, 899, 912,
932, 960, 993, 998, 1153, 1169

GL_TEXTURE_1D 480, 1003, 1004
GL_TEXTURE_2D 464, 468, 473, 478,

480, 504, 508, 509, 561, 565, 569,
648, 700, 703

GL_TEXTURE_2D_ARRAY 676, 677
GL_TEXTURE_3D 480
GL_TEXTURE_CUBE_MAP 689, 693,

700, 703, 749
GL_TEXTURE_CUBE_MAP_ARRAY 710
GL_UNIFORM_BUFFER 26, 145, 151, 171,

223, 257, 267, 269, 508, 613, 799
indeksowany 26, 146

chrominancja 1087
ciało doskonale czarne 1081, 1084
ciąg bitoniczny 1156
cieniowanie 18, 143

SKOROWIDZ 1195

Gourauda 237
Phonga 237
próbek 470, 528

Cook, Robert 572
CPU 13, 1181
Crow, Frank 543
CUDA 1181
cykl Hamiltona 162
czajnik z Utah 393, 432, 570
część liniowa przekształcenia afinicznego

111, 115, 117, 124, 283, 415, 417, 524,
1039, 1042

CzLS 1181
człon łańcucha kinematycznego 314, 320,

575–578, 582, 973, 985
w mechanice 313
w programie 314, 317

czworościan 493
foremny 160, 162, 1134

czynnik
Fresnela 762–765, 770, 775
osłabienia 729
zasłaniania mikrościanek 761

czytanie
pliku SMF 349–361
pliku TIFF 461

D

desaturacja 1084
diagram CIE 1081–1083
DirectX 1019
długość

fali świetlnej 215, 434, 739
dominująca 1083

ogniskowa obiektywu 153, 640, 642,
643, 654, 665, 668

wektora 114, 116, 201, 752
dodawanie wektora do punktu 107
dwudziestościan foremny 146, 247, 287
dwukierunkowa funkcja

odbicia i załamania światła 742, 1180
odbicia światła 729, 751, 760, 771, 775,

778, 783
podpowierzchniowego rozpraszania

światła 759
przechodzenia światła 765

dwunastościan
foremny 160, 162, 163

wielki 162
dyrektywy preprocesora GLSL 180–181

#extension 98, 181, 483
dyskretyzacja równania całkowego 785–788
działanie dobrze określone 108, 1048
dziedzina

krzywej Béziera 370
płata B-sklejanego 1063
płata Béziera 370, 484, 524, 531
płata OpenGL-a 23, 194, 279, 282, 375,

377, 429, 1063
tekstury 456, 468, 473, 484, 498, 687,

789, 815
dzielenia kwaternionów 1047
dżojstik 53, 66, 1091–1102

E
edytor 875
efekt stroboskopowy 663
elektrodynamika kwantowa 742
element

dyskretyzacji 785, 789, 792, 802, 811,
813, 816, 823, 833, 846, 849

powierzchni 740, 781, 783
emitancja 740, 745, 787
etap

końcowych operacji na buforze obrazu
24, 150

obcinania 24, 297, 486, 489, 671
pobierania wierzchołków 22
rasteryzacji 24, 555, 1113
rozdrabniania dziedziny płata 23, 279,

459
Euklides 513
ewaluator tekstury 28, 205, 460, 466, 474,

480, 554, 555, 557, 627, 687, 689,
737, 754, 789, 847

F
faktura 455, 539
filotaksja 645
filtrowanie

obrazu 639, 720
tekstury 457, 474

Ford T 550
format

pliku SMF 349
pliku TIFF 461, 1186

1196 SKOROWIDZ

fotometria 739, 741
fraktale 1115–1144
funkcja

abs 200, 695, 803
acos 203, 599, 767
acosh 203

all 204

any 204

asin 203

asinh 203

atan 203, 1108
atanh 203

atomicCounter 209

atomicCounterDecrement 209

atomicCounterIncrement 209

bitCount 205

bitfieldExtract 205

bitfieldInsert 205

bitfieldReverse 205

ceil 200

clamp 201, 438, 439, 556, 695, 708, 751,
779

cos 202, 307, 339, 736, 749, 773, 777
cosh 203

cross 202, 217, 285, 304, 308, 373, 383,
385, 430, 520, 523, 532, 533, 554,
673, 844, 938, 961, 967, 1062, 1111

cross4 375, 383, 384, 487, 488, 962
degrees 203

determinant 204

distance 201, 602
dot 202, 219, 220, 238, 241, 242, 245,

286, 304, 338, 438, 439, 491, 519,
520, 524, 533, 541, 553, 556, 599, . . .

equal 204

exp 201, 295, 611, 773
exp2 201

faceforward 202

findLSB 205

findMSB 205

floor 200, 492
fract 200, 516, 523, 533
glIsBuffer 21
glIsProgram 21
glIsTexture 21
greaterThan 204

greaterThanEqual 204

harmoniczna 752, 753
homograficzna 135, 706, 1132
imageLoad 208, 646, 647, 685, 687,

717, 725, 727, 734, 831, 846, 849,
1120

imageSamples 208

imageSize 208, 726, 1125
imulExtended 204

inverse 204, 533, 804, 1111
inversesqrt 201, 756
Inversion 659, 663
isinf 201

isnan 201

length 201, 238, 430, 598, 736, 1108
lessThan 204

lessThanEqual 204

log 201

log2 201

matrixCompMult 203

max 200

mieszająca 24, 150, 196, 621, 636–637
min 200, 339
mix 201, 280, 298, 458, 459, 490, 491,

538, 541, 611, 1062, 1109, 1141
mod 200

modf 200

normalize 202, 217, 219, 220, 241, 242,
285, 286, 308, 338, 384, 385, 430,
437, 453, 488, 520, 522, 523, 532, . . .

not 204

notEqual 204

outerProduct 203

parzysta 720
potęgowa 201, 1085, 1087
pow 201, 438, 439, 541, 611, 776
QuatAbsf 1054

QuatArgf 1054

radians 203

RadicalInversion 658, 659, 664,
683

reflect 202, 694, 696, 697, 779
refract 202, 696, 697, 765, 1037, 1038
RGBXColour 868

round 200

roundEven 200

rozkładu normalnego Gaussa 720, 1124
sign 200

SKOROWIDZ 1197

sin 202, 307, 338, 736, 749, 773, 777
sinh 203

Slerp 1052, 1053, 1074, 1075
smoothstep 201

sqrt 201, 219, 523, 736, 749, 767, 777
step 201

symetryczna 744, 763
tan 202

tanh 203

texelFetch 208, 687
texture 206, 207, 457, 461, 466, 471,

474, 481, 483, 562, 572, 675, 676,
687, 693, 695, 700, 707, 708, 717, . . .

textureGrad 207

textureLod 206, 207, 780
textureOffset 206, 207, 572
textureProj 206, 207, 485, 556, 557,

562, 572, 573, 631, 688
textureProjOffset 572, 573
textureQueryLevels 206

textureQueryLod 206

textureSamples 207

textureSize 206

transpose 203, 1138, 1140
trunc 200

uaddCarry 204

umulExtended 204

usubBorrow 204

V3DotProductf 125, 126, 166, 416, 417,
547, 548, 1054, 1055

V4DotProductf 1054, 1056
V4Normalisef 1076
XYInside 864, 865

funkcje
B-sklejane 1057, 1069
sklejane 1069

G

G-bufor 712–719
Galileusz 1192
gąbka Mengera 1136–1144
generator liczb pseudolosowych 615
geometria

różniczkowa 513
rzutowa 484, 485

globalna grupa robocza 578, 754, 1161, 1174
głębia ostrości 639–645, 680, 683

głębokość 24, 137, 164, 195, 196, 305, 309,
310, 346, 449, 450, 494, 514, 521,
525, 527, 544, 546, 568, 688, . . .

GPU 13, 1182
graf

łańcucha kinematycznego 314, 315, 317,
971, 985

sąsiedztwa trójkątów 795
graficzny interfejs użytkownika 56, 855, 947,

1005
Grassmann, Hermann 1079
grupy robocze szadera obliczeniowego 209,

578, 610, 616, 647, 890, 1151
guzik 870, 940, 1005

H

Hamilton, William Rowan 1046
Hanrahan, Pat 746, 753
harmonia sfer 752
helikoida 789
Hewlett–Packard 1084

I

identyfikator
binarnego formatu programu 98
bloku zmiennych jednolitych 144
bufora 146, 147, 386, 616, 622
bufora ramki 561
obiektu tablicy wierzchołków 147, 616
programu 93, 98, 144, 157
szadera 89, 90, 92, 96, 144
tekstury 480, 561, 1003

iloczyn 1188
kartezjański 419, 783, 1188
kwaternionów 1046
macierzy 111, 165, 295, 553, 1042, 1046
macierzy i wektora 841
sferyczny 419–421, 428, 431, 571, 606,

1188
skalarny 114, 116, 202, 215, 222, 286,

304, 434, 454, 488, 490, 525, 549,
731, 737, 744, 753, 766, 795

funkcji 751
tensorowy 720, 1188
wektorowy 115, 202, 218, 371, 374, 383,

415, 430, 524, 962
iluminancja 741

1198 SKOROWIDZ

indeks
bloku zmiennych jednolitych 93, 144
podprogramu 190

instrukcje GLSL-a 187–188
Intel 80
intensywność kątowa 740
intermodulacja 455
interpolacja 1069

atrybutów wierzchołków 143, 280, 300,
309–311, 449, 457, 538, 555, 880,
1003

kolorów 236
kwaternionów 1007, 1045, 1050–1053,

1075
łukowa 1045, 1051
obrotów 1007, 1045, 1050–1053,

1074–1078
położeń obserwatora 1113
tekseli 457, 466, 528, 562, 693
wektorów 201, 221, 611

irradiancja 729, 735, 738, 740, 742, 743, 746,
769, 771, 782, 847

izometria 115, 138, 284, 415, 545, 731, 833,
1045, 1052

J

jednokładność 134, 138, 170, 316, 365, 423,
424, 739, 1136

jednolitość obliczeń na GPU 191, 696
jednostka obrazu 647
jedynka kwaternionowa 1024, 1047

K
Kajiya, James 742
kandela 741
kanwa 856, 858
kardioida 1117
Khronos Group 19, 20, 30, 38, 1179, 1183
Kilgard, Mark 40
klatka 24, 55, 131, 153, 495, 545, 642, 718, 747
klatki kluczowe 1005, 1018
kodowanie kolorów w XWindow 868
kolorymetr klinowy 1080
kombinacja

afiniczna 108, 370, 811, 921
liniowa 107, 539, 752
wektorowa 108

komparator 812, 1149, 1154, 1157, 1170, 1174

komunikacja między szaderami 192–196
komunikat X Window

ButtonPress 60
ButtonRelease 60
ClientMessage 60, 64–66, 858, 864,

953, 956, 957, 1096
ConfigureNotify 60, 858, 864, 953
EnterNotify 864
Expose 59, 60, 80, 856, 864, 867
GraphicsExpose 867
KeyPress 60, 1091
KeyRelease 1091
LeaveNotify 864
MotionNotify 60
NoExpose 867

konstruktor
macierzy 183
tablicy 184
wektora 182

kontekst
grafiki X11 869
OpenGL-a 18, 20, 39, 46, 47, 51, 56,

73–76, 96, 223, 681
uruchomieniowy 101–104

konwersja typów w GLSL-u 186
korekcja gamma 222, 499, 645, 734, 735,

846, 1085, 1087
kostka standardowa 24, 132, 134, 135, 142,

151, 280, 282, 489, 496, 497, 554,
616, 747, 754, 843

krawędzie
brzegowe siatki 877, 889, 913
sylwetkowe 303
wewnętrzne siatki 877, 889, 912

krzywa
bieli 1081
tęczy 1081

krzywe
B-sklejane 297, 432, 931, 1057, 1075
interpolacyjne 1006

Béziera 248, 297, 369, 380, 386, 420,
429, 432, 571, 597, 931, 1058, 1075,
1131

wymierne 420, 421, 1126
interpolacyjne 1024
B-sklejane 1007, 1074

stałego parametru 370, 596

SKOROWIDZ 1199

Księżyc 313, 315, 332, 335, 337, 340, 348, 709,
763, 849

kwadratura 720, 730, 746, 754, 764, 772,
775, 824

kwalifikator
early_fragment_tests 449, 830
interfejsu 191
miejsca 143, 198
origin_upper_left 272
parametru podprogramu 189
pixel_center_integer 139
precyzji 189
układu 22, 196–199, 229
bloku interfejsu 191

wejścia szadera geometrii 194, 240,
248, 297

wejścia szadera rozdrabniania 296
wyjścia szadera geometrii 218, 243
zmiennej 141, 185
buffer 185

const 185

flat 143, 312, 449, 520, 555, 938
noperspective 311, 490
shared 185, 835
uniform 185

kwaternion 1045–1056
czysty 1048
jednostkowy 1048, 1074, 1075
niemy 1047
odwrotny 1047
sprzężony 1046, 1048
zerowy 1046

kwaternionowa reprezentacja obrotów 166,
1007, 1018, 1048–1051

L

Lambert, Johann Heinrich 213
liczby zmiennopozycyjne 163, 615

połówkowej precyzji 474, 688
liczniki niepodzielne 182, 208
linia purpury 1081
liniowe zadanie najmniejszych kwadratów

310, 1184
Linux 3, 29, 31, 39, 77, 931, 1091–1102
lista

obrazowa 1188
parametrów podprogramu 189

lokalna grupa robocza 578, 579, 818, 833,
1152

luks 741
lumen 739
luminancja 684, 741, 1087, 1088

Ł
łamana kontrolna 370, 421, 597, 1131
łańcuch kinematyczny 313–332, 368,

575–578, 582–590, 616, 623–626,
663, 971–980, 985–994, 1069, 1074

otwarty 314
zamknięty 314, 320

łączność
mnożenia kwaternionów 1046
mnożenia macierzy 106, 1046
operatorów GLSL-a 186

M
macierz

diagonalna 787, 790, 1042, 1043
jednostkowa 106, 118, 119, 151, 317, 322,

325, 549, 576, 1045, 1047
kolumnowa 106
kwadratowa 106, 204
kwaternionu 1046, 1052
nieosobliwa 106, 112, 113, 130, 168, 204,

283, 484, 1044
obrotu 118, 119, 315, 415, 575, 827, 1039,

1042, 1050
odwrotna 106, 115, 127, 130, 134, 204,

329, 415, 576, 1044
ortogonalna 115, 165, 234, 284, 329, 415,

545, 1039, 1042–1044, 1047, 1052
permutacji 1071
podwajania 922, 927
przekształcenia afinicznego 111, 112,

1039
przekształcenia modelu 406, 423
przekształcenia perspektywicznego

134, 346
przesunięcia 118, 315, 575, 576
różniczki 514, 515, 531
rzadka 790, 822, 839, 921, 928,

1159–1178
skalowania 118, 1042
stochastyczna 921
symetryczna 1042, 1044, 1166

1200 SKOROWIDZ

transponowana 106, 115, 130, 203, 329,
415, 1044, 1047, 1166

trójdiagonalna 1071
uśredniania 922, 926, 928
zagęszczania 921–930, 1034
zerowa 1171

makroelementy 789, 808, 812, 816, 817, 822
Metal 39
metoda

bilansu energetycznego 783–854, 1145
bisekcji 1043
Bromby 1193
eliminacji Gaussa 126, 788, 1071
Galerkina 786
kolokacji 785
Newtona 530
PCF 572
siecznych 1043
wyszukiwania binarnego 351, 839,

1063, 1170, 1173, 1174, 1178
mgła 237, 607–609, 620–623, 625, 627
miara

kąta bryłowego 739, 746
skróconego elementu powierzchni

740, 743, 782
Microso� 1084
Międzynarodowa Komisja Oświetleniowa

1081, 1180
mikrościanki 539, 759–763, 766
mipmaping 456, 688, 690, 693, 1003
mnożenie

kwaternionów 1045
liczb zespolonych 1046, 1115
macierzy rzadkich 928, 929, 1170–1178
macierzy rzadkiej przez wektor 841,

928, 1160–1166
model oświetlenia

anizotropowy 539–542
Blinna-Phonga 433, 435, 438, 452, 454,

539, 557, 706, 728, 743, 985, 995
Cooka i Torrance’a 760, 763, 766–770
hemisferycznego 450–452, 689, 728,

854
Lamberta 213–216, 237, 385, 433, 451,

454, 557, 690, 693, 694, 706, 718,
728, 744–759, 763, 765, 769, . . .

Orena i Nayara 348, 763, 766–770, 778

Phonga 433, 452, 539, 728, 743
modyfikatory 44

N
nadpróbkowanie 711
nagłówek podprogramu 189
nasycenie barwy 450, 1082
nazwa

instancji 191, 192
zewnętrzna 142, 144, 186, 191

Newell, Martin 393
norma

druga indukowana 1045
operatora liniowego 785
supremum 784

normalizacja
wektora 126, 202, 218, 221, 371
współrzędnych 150, 687

nowy OpenGL 18, 19, 29, 31, 38, 40, 43, 47,
63, 133, 155, 474, 639, 855

numer
instancji 376–378, 380, 388, 407, 457,

458, 517, 519, 829
miejsca atrybutu 141, 148, 198, 404
miejsca zmiennej interfejsu 280

NVIDIA 80, 83, 1181, 1187

O
obcinanie 245–247, 486, 488, 489, 1108, 1139
obiekt

bufora magazynowego 1186
bufora ramki 1181
bufora zmiennych jednolitych 26, 144
tablicy wierzchołków 25, 141, 261, 502,

620, 790, 1187, 1189
pusty 15, 391, 943, 999

w łańcuchu kinematycznym 314, 316,
317, 325, 578

z zamkniętą objętością 159, 543, 570,
574

obraz 271, 647, 686
obszar cienia 543, 544, 552, 557, 570, 996
odbicie symetryczne 115, 126, 202, 495, 1043

Householdera 545, 731, 748, 833
odcinki z przyległościami 297
odejmowanie punktów 107
odległość

punktów 114, 201

SKOROWIDZ 1201

ze znakiem 116, 245
odrzucanie

prymitywów 246
ścian odwróconych tyłem 117, 159, 260,

494
odwzorowanie

bufora w przestrzeń adresową CPU
637

Gaussa 513
ograniczenia implementacji OpenGL-a 269
okno aktywne 43, 47, 48
Olszta, Paweł 40
OpenGL 1.0 17
OpenGL ES 180
operatory GLSL-a 186–187
opóźnione cieniowanie 711–738
Optimus 80–83
optyka

geometryczna 539, 742
liniowa 742

orientacja 44, 116, 159, 304, 378, 459, 494,
545, 878, 1189

ortogonalizacja wektora 521
osobliwość 535, 555
ostatnia działająca wersja 1185
ostrosłup widzenia 133–136, 151, 153,

346–348, 488, 639, 642, 643,
652–654, 672, 682, 683, 701

ośmiościan foremny 160, 1134
oświetlenie

bezkierunkowe 750
hemisferyczne 745, 746
przez obraz 745–759
przez otoczenie 745–759, 771–781

P

pakiet BSTools 931
paleta 1118
panorama

linearna 1105, 1113
punktowa 1103, 1112

para kinematyczna 313–578, 582, 584, 971,
988, 990

parametry
artykulacji 313, 315, 317, 320, 328, 576,

591, 855, 990, 1005–1007, 1018, 1019,
1069, 1074

podprogramu w GLSL-u 189

rozdrabniania dziedziny płata 281, 377,
429, 596–606

Phong, Bui Tuong 433
pionizowanie obserwatora 414–417
piramida Sierpińskiego 1134–1136
Platon 133
plik

utilities.c 34, 85–87, 89–93,
118–130, 165, 222–225, 549, 663

utilities.h 40
wglext.h 472
xwidgets.h 856

pliki nagłówkowe OpenGL-a 29
płaszczyzna niewłaściwa 486
płaszczyzna zespolona 1115
płaszczyzny obcinania 245, 488
płaty 23, 278

B-sklejane 330, 380, 1058
Béziera 317, 330, 369–373, 375–393,

407, 420, 429, 457, 458, 467, 497,
517, 531, 540, 549, 552, 571, . . .

wymierne 373–374, 431, 518
trójkątowe 789, 794, 797

pochodne
parametryzacji 513, 514
płata Béziera 371–374, 382, 519

podobieństwo geometryczne 138, 597, 789
podprogramy w GLSL-u 188–190
podwajanie siatki 887, 896–910
podwójne buforowanie 16, 43, 60, 82, 156,

940
polaryzacja światła 742
pole position 221
położenie zmiennej jednolitej 185, 525
postać trygonometryczna kwaternionu 1048
poświata 719–728, 732, 735
potęgowanie kwaternionów 1048
potok

programów 98, 143
przetwarzania grafiki 18, 22, 185, 191,

196, 299, 376, 671, 999
część przednia 23, 132, 236, 245, 1192
część tylna 24

powierzchnia
anizotropowa 539, 761
graniczna ciągu siatek 940
izotropowa 539, 761, 764, 771

1202 SKOROWIDZ

obrotowa 373, 419–420, 431
prostokreślna 429
zakreślana 431–432

powiększanie danych 18, 239, 243
poziom szczegółowości 83, 296, 596, 994,

1184
półcień 572
półkrawędzie w reprezentacji

łańcucha kinematycznego 315, 317, 320,
325

siatki 877–880, 960, 962
prawa Grassmanna 1079
prawo załamania światła 1038
problem milenijny 77
procedura

AttachStorageBlockToBP 268

AttachUniformBlockToBP 224, 441
barrier 212, 834–836
ButtonInput 870

ButtonRedraw 871

CompileShaderFiles 91, 145, 232,
256, 290, 339, 396, 411, 444, 499,
558, 559, 582, 614, 647, 892, . . .

CompileShaderStrings 89, 90, 91
ConstructCubicInterpBSplinef

1019, 1071, 1073, 1076
ConstructEmptyVAO 257, 261, 262,

389, 391
ConstructQuaternionInterp-

Splinef 1076

CreateMyWindow 70

CreateSPIRVShader 96, 97
CreateWindowExA 70
DefWindowProcA 70, 71
DeleteBezierPatches 393, 400
DeleteEmptyVAO 261, 262, 265, 401,

595
DeleteMyGLXWindow 64

DeleteWinMenu 859

DestroyWindow 73
DispatchMessage 72
DrawBezierPatches 392, 399, 406,

412, 426, 446, 468
EmitVertex 195, 217, 218, 241, 244,

285, 298, 308, 385, 430, 460, 521,
554, 673, 675, 704, 705, 748, . . .

EmptyInput 869

EmptyRedraw 869

EndPrimitive 195, 217, 218, 241, 242,
244, 285, 298, 308, 385, 460, 487,
521, 554, 673, 675, 704, 705, . . .

EnterBezierPatches 388, 422
EnterBezierPatchesElem 390, 394,

572
EnterRSphericalProduct 422
EvaluateBSplinesf 1059, 1060, 1073
_ExitIfGLError 85, 86
ExitIfGLError 86, 90, 92, 96, 145,

152–154, 158, 170, 174, 177, 178, . . .
_ExitOnError 85, 86
ExitOnError 34, 86, 223, 442, 481,

501, 537, 584, 585, 587, 618, 624, . . .
GetAccessToBezPatchStorage-

Blocks 387, 396, 466
GetAccessToStorageBlock 268,

387, 582, 614, 1066
GetAccessToUniformBlock 223,

229, 256, 257, 441, 614, 892, 963
GetGLProcAddresses 35, 40, 42, 50,

51, 64, 75, 950
GetScreenDimensions 84
gl3wInit 33, 35, 85, 95, 482
glActiveTexture 480, 482, 560, 566,

567, 589, 628–630, 676, 677, 699,
702, 732, 755, 774, 780, 827, 842, . . .

gladLoadGL 15, 35, 85
glAttachShader 15, 92, 93
glBindBuffer 25, 100, 146, 149,

151–153, 170, 174, 177, 178, 230, 258,
261, 289, 291, 364, 442, 443, 482, . . .

glBindBufferBase 100, 145, 146, 224,
226, 257, 259, 268–270, 392, 469,
588, 618, 619, 623, 755, 780, 801, . . .

glBindBufferRange 270
glBindBuffersBase 270
glBindBuffersRange 270
glBindFramebuffer 501, 508, 510,

560, 561, 567, 568, 629, 630, 649,
660, 661, 678, 699, 702, . . .

glBindImageTexture 650, 651, 716,
723, 778, 821, 843, 848, 1123

glBindProgramPipeline 98
glBindRenderbuffer 510
glBindSampler 474, 754, 755

SKOROWIDZ 1203

glBindTexture 465, 468, 472, 476,
479, 480, 482, 501, 503, 560, 566,
567, 589, 629, 630, 648, 649, . . .

glBindVertexArray 14, 147, 149, 151,
153, 154, 235, 259, 262, 291, 299,
306, 341, 364, 392, 410, 501, . . .

glBlendFunc 620, 621, 637
glBlitFramebuffer 511, 637, 648,

661, 681, 715, 716, 1180
glBlitNamedFramebuffer 511
glBufferData 100, 145, 146, 148, 149,

151, 186, 197, 224, 257–259, 268, 291,
364, 501, 537, 584, 585, 587, 617, . . .

glBufferStorage 638
glBufferSubData 100, 151–153, 170,

174, 177, 178, 186, 197, 230, 257, 258,
261, 267, 289, 389, 390, 442, 443, . . .

glCheckFramebufferStatus 501,
502, 510, 629, 649, 678, 699, 714,
750, 800, 828, 842, 1129

glClear 14, 155, 347, 399, 412, 426,
508, 567, 568, 630, 660, 702, 716,
828, 842, 945, 981, 1000

glClearBufferiv 716
glClearColor 14, 155, 347, 399, 412,

426, 508, 567, 568, 630, 660, 842,
945, 981, 1000

glClearNamedBufferData 821, 822
glClearTexImage 828
glColorMask 626, 630, 631
glCompileShader 15, 30, 89, 90
glCompressedTexImage2D 478, 479
glCopyBufferSubData 622, 623, 897
glCopyNamedBufferSubData 509,

622, 834, 841
glCreateProgram 15, 92
glCreateShader 15, 89, 90, 92, 96
glCreateTextures 509
glCullFace 160, 1143
glDebugMessageCallback 101
glDebugMessageControl 101, 103
glDeleteBuffers 99, 158, 234, 258,

260, 261, 265, 293, 393, 400, 448,
501, 590, 595, 623, 755, 801, . . .

glDeleteFramebuffers 501, 561,
629, 650, 715, 750, 774, 801, 822,
843, 1129

glDeleteProgram 14, 92, 93, 158, 233,
261, 264, 293, 400, 582, 595, 614,
648, 892, 939, 998

glDeleteSamplers 755
glDeleteShader 15, 90, 93, 96, 145,

232, 257, 290, 340, 396, 411, 445,
499, 558, 559, 582, 614, 647, . . .

glDeleteTextures 469, 477, 501, 561,
590, 629, 650, 715, 822, 843, 1129

glDeleteVertexArrays 14, 158, 234,
262, 265, 501, 623

glDepthFunc 20, 494, 716, 723, 732
glDepthMask 620, 621
glDetachShader 93
glDisable 20, 104, 246, 449, 471, 472,

529, 567, 569, 620, 621, 630, 702,
1000, 1144

GL_CULL_FACE 160, 259
GL_DEPTH_CLAMP 821
GL_DEPTH_TEST 259
GL_MULTISAMPLE 470

glDisableVertexAttribArray 148,
162

glDispatchCompute 209, 210, 212,
580, 588, 620, 651, 716, 723, 732,
778, 848, 1145, 1153, 1173

glDrawArrays 14, 16, 25, 146, 154, 159,
259, 260, 278, 297, 306, 364, 418,
503, 535, 566, 620, 676, 750, 774, . . .

glDrawArraysInstanced 193, 376,
392, 393, 405, 410, 418, 801, 933,
936–938, 968, 999, 1134, 1144

glDrawBuffer 560, 562, 699, 750, 774
glDrawBuffers 681, 714, 828
glDrawElements 146, 148, 154, 155,

159, 278, 291, 292, 296, 297, 300,
302, 341, 364, 368, 418, 493, 509, . . .

glDrawElementsInstanced 405, 418
glEnable 20, 470, 471, 692, 981
GL_BLEND 620
GL_CLIP_DISTANCE0 246, 1143
GL_CULL_FACE 160, 1143
GL_DEBUG_OUTPUT 103
GL_DEBUG_OUTPUT_SYNCHRONOUS

103
GL_DEPTH_CLAMP 543, 620, 716,
723, 732

1204 SKOROWIDZ

GL_DEPTH_TEST 155, 293, 347, 399,
412, 426, 508, 568, 634, 660, 679,
702, 716, 723, 732, 821, 945, 1000

GL_FRAMEBUFFER_SRGB 1087
GL_MULTISAMPLE 472
GL_POLYGON_OFFSET_FILL 567,
568, 630, 702, 1000

GL_PRIMITIVE_RESTART 296
GL_PROGRAM_POINT_SIZE 193
GL_SAMPLE_SHADING 528
GL_SCISSOR_TEST 449

glEnableVertexAttribArray 25,
148, 149, 364, 501, 537, 618, 798,
1067

glewGetErrorString 32
glewInit 32, 35, 95, 482
glFinish 83, 156, 829, 843, 1122, 1123
glFlush 14, 83, 155, 156, 293, 399, 412,

426, 508, 567, 568, 660, 678, 679,
681, 716, 723, 732, 750, 774, . . .

glFramebufferParameteri 800
glFramebufferRenderbuffer 510
glFramebufferTexture 501, 502,

560, 629, 649, 677, 699, 714, 750,
774, 827, 842, 1128

glFrontFace 160, 1144
glfwCreateWindow 48, 50, 55, 470,

670
glfwDestroyWindow 50, 55
glfwFocusWindow 55
glfwGetCursorPos 401
glfwGetJoystickAxes 53
glfwGetJoystickButtons 53
glfwGetMonitorPhysicalSize 83
glfwGetMouseButton 668
glfwGetProcAddress 55, 96
glfwGetVideoMode 83
glfwHideWindow 54
glfwIconifyWindow 54
glfwInit 670
glfwJoystickPresent 53
glfwMakeContextCurrent 50, 670,

1124
glfwMaximizeWindow 55
glfwPollEvents 52, 53
glfwPostEmptyEvent 55, 81, 1124
glfwRestoreWindow 55

glfwSetCharCallback 50, 52, 402
glfwSetCursorPosCallback 50
glfwSetErrorCallback 48, 50, 670
glfwSetFramebufferSizeCallback

50, 54
glfwSetKeyCallback 50, 52, 402
glfwSetMouseButtonCallback 50,

51
glfwSetScrollCallback 52, 670
glfwSetWindowPos 54
glfwSetWindowRefreshCallback

50
glfwSetWindowShouldClose 49,

402, 668
glfwSetWindowSize 54
glfwSetWindowTitle 55
glfwSetWindowUserPointer 55
glfwShowWindow 55
glfwSwapBuffers 81, 82, 681, 1124
glfwTerminate 48, 50, 670
glfwWaitEvents 50, 52, 53, 55, 82
glfwWindowHint 48, 101, 470, 471,

668, 681
glfwWindowShouldClose 50, 52
glGenBuffers 99, 145, 149, 150, 224,

257–259, 268, 364, 501, 508, 537,
584, 585, 587, 617, 624, 755, 798, . . .

glGenerateMipmap 691
glGenerateTextureMipmap 464,

465, 474, 476, 511
glGenFramebuffers 501, 510, 560,

628, 649, 699, 714, 750, 774, 800,
827, 842, 1129

glGenProgramPipelines 98
glGenRenderbuffers 510
glGenSamplers 474, 755
glGenTextures 464, 465, 476, 479,

501, 508, 509, 560, 628, 648, 649,
677, 691, 699, 714, 778, 827, . . .

glGenVertexArrays 15, 147, 149, 262,
364, 501, 537, 617, 798, 1067

glGetActiveUniformBlockiv 144,
145

glGetActiveUniformsiv 145, 197,
224, 229, 267

glGetBufferSubData 21, 100, 638,
885, 896, 911, 926, 1163, 1172, 1173

SKOROWIDZ 1205

glGetCompressedTexImage 477
glGetError 36, 86, 100, 101
glGetIntegeri_v 211, 269, 270
glGetIntegerv 21, 34, 35, 95, 210, 211,

223, 246, 266, 269, 270, 375, 479
glGetNamedBufferSubData 801,

802, 821, 833
glGetProcAddresses 670
glGetProgramBinary 98
glGetProgramInfoLog 92
glGetProgramInterfaceiv 273, 274
glGetProgramiv 92, 98, 211
glGetProgramResourceIndex 268
glGetProgramResourceiv 268, 274
glGetProgramResourceLocation

274
glGetProgramResourceName 274
glGetShaderInfoLog 21, 89, 90
glGetShaderiv 90, 96
glGetString 85
glGetStringi 95
glGetSubroutineIndex 190, 453
glGetSubroutineUniformLocation

190, 453
glGetTexImage2D 21
glGetTextureHandleARB 483
glGetTextureImage 462, 463, 477
glGetTextureLevelParameteriv

477
glGetUniformBlockIndex 144, 145,

223, 224
glGetUniformIndices 144, 145, 224
glGetUniformLocation 186, 339,

444, 558, 582, 614, 647, 997, 1158
glIsEnabled 20
glIsProgram 274
glLineWidth 311
glLinkProgram 15, 92, 93, 97, 144, 411
glMakeTextureHandleNon-

ResidentARB 483
glMakeTextureHandleResidentARB

483
glMapBuffer 637
glMapBufferRange 637
glMemoryBarrier 212, 588, 620, 651,

652, 716, 723, 732, 848, 893, 979,
992, 994, 1145, 1153, 1159

glMinSampleShading 528
glMultiDrawArrays 418
glMultiDrawElements 418
glNamedBufferData 148, 509
glNamedBufferSubData 148, 509
glNamedRenderbufferStorage 510
glPatchParameterfv 288, 377
glPatchParameteri 278, 291, 292,

341
glPointSize 153, 154, 364, 620, 1068
glPolygonMode 363, 364, 412, 414,

426, 446, 503, 504, 565, 566, 589,
676, 801, 842, 993

glPolygonOffset 567, 568, 570, 573,
574, 630, 702, 719, 1000

glPrimitiveRestartIndex 296
glProgramParameteri 97
glProvokingVertex 312, 938
glReadPixels 511
glRenderbufferStorage 510
glSamplerParameteri 755
glScissor 449
glShaderBinary 95, 96
glShaderSource 15, 89, 90, 96
glShaderStorageBlockBinding

267, 269
glSpecializeShaderARB 95, 96
glTexImage1D 1003
glTexImage2D 462, 472–474, 477,

500, 501, 510, 628, 629, 648, 1086
glTexParameterfv 473, 509
glTexParameteri 464–466, 472, 474,

476, 479, 501, 509, 560, 562, 629,
677, 692, 699, 750, 774, . . .

glTexStorage1D 778
glTexStorage2D 464, 465, 476, 478,

510, 560, 649, 677, 690, 691, 699,
714, 827, 842, 1128

glTexStorage3D 677
glTexSubImage2D 462, 464, 465, 476,

510, 692, 693
glTextureParameterfv 509
glTextureParameteri 477, 509
glTextureStorage2D 471
glUniform1f 36, 306, 341, 651, 723,

732, 774
glUniform1i 185, 445, 447, 468, 525,

1206 SKOROWIDZ

565, 588, 589, 651, 723, 732, 755,
978, 992, 1000, 1144, 1163, 1173

glUniform1ui 341, 1146, 1148, 1151,
1158, 1159, 1162, 1163, 1167, 1172, 1173

glUniform3f 36
glUniform3fv 36, 341
glUniform4fv 620
glUniformBlockBinding 145, 224,

267
glUniformSubroutinesuiv 190, 453
glUnmapBuffer 638
glUseProgram 14, 25, 93, 153, 154, 157,

158, 185, 233, 235, 259, 261, 264,
291–293, 306, 341, 364, 399, . . .

glUseProgramStages 98
glutCreateSubwindow 43
glutCreateWindow 15, 43
glutDestroyWindow 14, 46, 158
glutDisplayFunc 15, 44
glutFullScreen 46
glutGet 83
glutGetModifiers 44
glutGetProcAddress 40, 96
glutHideWindow 47
glutIconifyWindow 47
glutIdleFunc 45, 46, 52, 60, 172, 173,

956
glutInit 15, 42, 159, 362
glutInitContextFlags 15, 43, 101
glutInitContextProfile 15, 43
glutInitContextVersion 15, 42
glutInitDisplayMode 15, 43, 472,

681
glutInitWindowSize 15, 43
glutJoystickFunc 45
glutKeyboardFunc 15, 44
glutLeaveMainLoop 43, 46, 156, 159,

173
glutMainLoop 15, 42, 43, 46, 52, 159
glutMotionFunc 44, 166
glutMouseFunc 44
glutPassiveMotionFunc 45
glutPopWindow 46
glutPositionWindow 46
glutPostRedisplay 44, 46
glutPostWindowRedisplay 44, 46,

65, 81, 156, 157, 171, 173, 266, 343

glutPushWindow 46, 55
glutReshapeFunc 44, 152
glutReshapeWindow 46
glutSetCursor 47
glutSetOption 43, 47, 472
glutSetWindow 43, 47, 48, 51
glutSetWindowTitle 46, 366
glutShowWindow 47
glutSwapBuffers 14, 16, 81, 82, 156
glutTimerFunc 45, 46
glVertexAttrib3fv 148
glVertexAttrib4f 364
glVertexAttrib4ub 148
glVertexAttribDivisor 405, 418
glVertexAttribIPointer 148
glVertexAttribLPointer 148
glVertexAttribPointer 25,

148–150, 155, 364, 501, 537, 618, 798,
1067

glViewport 54, 132, 139, 153, 342, 347,
397, 508, 567, 568, 630, 660, 678,
702, 750, 774, 800, 820, 842, . . .

glViewportArrayv 819, 820
glXChooseFBConfig 62, 681
glXChooseVisual 62
glXCreateContextAttribsARB 62,

63
glXDestroyContext 64, 67
glXGetProcAddress 30, 40, 55, 63,

96
glXMakeCurrent 64, 65, 950
glXSwapBuffers 57, 60, 82, 952
GPUMatrixRefineMesh 1036
GPUmeshRefinement 919, 920, 978
GPUmeshRefinementMatrix 927,

1035
GPUMultSparseMatricesf 1172

GPUMultSparseMatrixVectorf

1163

GPUSMultSparseMatrixVectorf

841, 1162
GPUTransposeSparsef 1167

GrabInput 867, 873
groupMemoryBarrier 212, 1152
imageStore 208, 646, 647, 685, 717,

718, 726, 727, 734, 735, 777, 849,
1119, 1120

SKOROWIDZ 1207

InitGLXContext 62, 949
InitMyGLXWindow 64, 948
InitRGBXColourmap 868

InitWGLContext 75, 101
InitWGLExtensions 74

InitXServerConnection 61

IsGLExtensionPresent 95

kl_Articulate 324, 330, 331, 336,
592, 635, 662, 979, 980, 982, 1030

kl_DefaultTransform 324, 330
kl_DestroyLinkage 322, 595
kl_NewJoint 325, 326, 327, 335, 583,

974, 989, 990
kl_NewLink 325, 326, 583, 624, 974,

989
kl_NewLinkage 321, 325, 334, 583,

623, 624, 973, 974, 989
kl_NewObject 323, 334, 583, 624, 974,

989, 990
kl_NewObjRef 325, 326, 585, 587, 625,

976, 977, 991
kl_Redraw 332, 342, 979–981
kl_SetArtParam 328, 592, 635, 662,

980
kl_SetJointBtr 328, 335
kl_SetJointFtr 328, 335, 583, 974,

989
LinkShaderProgram 92, 96, 145, 232,

256, 290, 339, 396, 444, 499, 558,
559, 582, 614, 647, 892, 939, . . .

LoadSPIRVFile 97

M3diagLUDecompf 1071, 1072, 1073
M3diagLUSolvef 1071, 1072, 1073,

1074
M4x4Copyf 122

M4x4Frustumf 135, 153, 343, 347, 397,
496, 503, 506, 546, 548, 568, 644,
659, 701, 826, 827

M4x4Identf 118, 120, 152, 321, 323,
329, 353, 366, 501, 547

M4x4InvertAffineIsometryf 547
M4x4Invertf 128, 129, 130, 328, 503
M4x4InvTranslatefv 120, 177, 397,

655
M4x4InvTranslateMfv 170, 234, 399,

507, 655
M4x4LookAtf 1041

M4x4LUDecompf 126, 127, 130, 644,
1044, 1071

M4x4LUDetf 129

M4x4LUSolvef 127, 128, 644
M4x4MInvTranslatefv 177
M4x4RotateVfv 170
M4x4MRotateVfv 424
M4x4MRotateXf 425, 988
M4x4MRotateYf 974, 988
M4x4MRotateZf 974, 988
M4x4MScalef 424, 624, 988
M4x4MTranslatef 366
M4x4Multf 126, 127, 289, 331, 360, 365,

397, 506, 561, 563, 644, 684, 826,
832

M4x4MultMP3f 124, 125, 324, 325, 358,
503, 626, 822, 988

M4x4MultMTV3f 124, 125, 177, 178
M4x4MultMTVf 124, 234, 399, 507, 655
M4x4MultMV3f 124, 125, 626, 822, 1040
M4x4MultMVf 124, 324, 325, 425
M4x4Orthof 137, 139, 261, 546, 548,

569, 1104, 1106, 1107
M4x4QuatRotationf 1054

M4x4RotateP2Vf 123, 974, 975, 989
M4x4RotatePVf 123

M4x4RotateVf 119, 121, 165, 174, 234,
329, 397

M4x4RotateVfv 120, 121, 170, 177, 178,
399, 416, 507, 655

M4x4RotateXf 118, 121, 335, 359, 583,
624

M4x4RotateYf 118, 121, 335, 359
M4x4RotateZf 118, 121, 359, 425, 989
M4x4RotationFromPointsf 1039,

1040

M4x4Scalef 118, 121, 334, 360, 366,
397, 583, 624

M4x4Scalefv 121

M4x4SkewFrustumf 644, 656, 658,
682, 683

M4x4Translatef 118, 120, 152, 169,
234, 264, 329, 335, 360, 397, 424,
583, 644, 974, 988

M4x4Translatefv 120

M4x4TranslateMfv 425
M4x4Transposef 129, 130, 329

1208 SKOROWIDZ

M4x4UTLTSolvef 129, 130
M4x4ViewPVf 832
memoryBarrier 212
memoryBarrierAtomicCounter 212
memoryBarrierBuffer 212
memoryBarrierImage 212
memoryBarrierShared 212
NewButton 871, 951, 983, 1029
NewEmptyWidget 870

NewLineEditor 875
NewSlidebarf 875, 983
NewStorageBuffer 268, 389, 390,

469, 585, 800, 801, 809, 812, 821,
823, 977

NewSwitch 872, 951, 983, 1029
NewUniformBindingPoint 223

NewUniformBuffer 224, 441
NewWidget 860, 870, 871, 875, 955,

1017
NewWinMenu 859, 951, 953, 1029
PeekMessageA 72
PostClientMessageEvent 66, 955,

956, 1099, 1101
PostExposeEvent 66, 82, 867, 952
PostMenuExposeEvent 864, 865,

866, 867, 952, 955, 983, 1028
PostQuitMessage 70, 71
PrintGLVersion 85, 950
PrintProgramResources 274

PrintResourceNames 274
QuatAnglef 1055, 1056
QuatArcInterpf 1056

QuatLDivf 1054

QuatMultf 1054, 1076
QuatRDivf 1054, 1076
QuatRotVf 1055

QuatSlerpdeBoorf 1075, 1076, 1077
QuatSlerpf 1056, 1076, 1077
RegisterClassA 70
RotVQuatf 1055

SlidebarfInput 873

SlidebarfRedraw 874

SwapBuffers 72
SwitchInput 871

SwitchRedraw 872

TimerInit 78, 79, 174, 341, 425, 943,
981

TimerTic 78, 79, 173, 427, 634
TimerToc 78, 79, 634, 1122
TimerTocTic 78, 80, 336, 400, 427,

592, 635, 660, 662, 1033
TranslateEventMsg 862, 867
TranslateMessage 72
UngrabInput 867, 873, 874
V3CompRotationsf 165, 166, 169, 170,

177, 398, 416, 656
V3CrossProductf 125, 126, 166, 503,

1040, 1041
V3DotProductf 177, 416, 503, 655,

832, 1040, 1041
V3Normalisef 126, 626, 1040, 1041
V3ReflectPointf 126, 503
V3Subtractf 1041
V4DotProductf 1020
V4Interpolatef 992
WaitMessage 72
wglChoosePixelFormatARB 472
wglDeleteContext 73
wglGetProcAddress 96
wglMakeCurrent 73
WinMenuInput 864

WinMenuRedraw 859

XCloseDisplay 59, 65, 948
XCopyArea 865
XCreateColormap 64, 949
XCreateGC 869, 950
XCreatePixmap 859, 865
XCreateWindow 64, 65, 949
XDefineCursor 67
XDestroySubwindows 948
XDestroyWindow 64, 67, 948
XDrawRectangle 871, 872, 875
XDrawString 871, 872
XFillPolygon 1029
XFillRectangle 859, 871, 872, 875,

1028
XFillRectangles 1029
XFlush 1101
XFree 62, 64, 949
XFreeColormap 64, 949
XFreeGC 948
XFreePixmap 860, 865
XGetGeometry 66
XGetWindowAttributes 66

SKOROWIDZ 1209

XIconifyWindow 67
XInitThreads 62, 1097
XInternAtom 62, 947, 948, 1098
XLookupString 863
XLowerWindow 67
XMapWindow 64, 65, 67, 949
XMoveResizeWindow 67, 957, 1034
XMoveWindow 67
XNextEvent 56, 59, 67, 957, 1101
XOpenDisplay 62, 1097
XQueryPointer 866
XRaiseWindow 67
XResizeWindow 67
XRestackWindows 67
XSendEvent 66, 1101
XSetBackground 871, 872
XSetErrorHandler 67
XSetFont 870
XSetForeground 859, 871, 872, 875,

1028
XSetIOErrorHandler 67
XSetWMName 67
XSetWMProtocols 64, 949
XStoreName 950
XUnmapWindow 67

profil OpenGL-a
dla systemów wbudowanych 180
podstawowy 19, 180
zgodności 19, 180

program
glslangValidator 94, 96, 270, 404
pozwalaj 931

program szaderów 24
promień

pierwotny 694
wtórny 694, 696, 697

prosta niewłaściwa 486
prostopadłość wektorów 114, 752
prototyp podprogramu 189
przechwytywanie procedur OpenGL-a

98–100
przeciążanie nazw w GLSL-u 184, 190, 199,

676
przeciekanie koloru 729, 853
przekształcenie

afiniczne 105, 111, 136, 283, 432, 484,
515, 522, 529, 1038, 1042, 1058

część liniowa 111, 115, 117, 124, 283,
415, 417, 524, 1039

interpretacja dualna 112, 168
reprezentacja jednorodna 111
wektor przesunięcia 111, 283, 1039

liniowe 111, 131, 531, 784, 1084
perspektywiczne 529
rzutowe 105, 484

przełącznik 871, 940, 1005
przestrzeń

afiniczna 107
Banacha 784
euklidesowa 114
liniowa 106, 107, 752

przeszukiwanie grafu w głąb 315, 320, 797
przybliżenie Schlicka 763, 775
punkt

bezpośrednio oświetlony 543, 557
bieli 1082–1084

D65 1084
dowiązania 26, 145, 146, 222, 269, 613,

890, 898, 899, 912, 960, 979, 1153,
1191

tekstury 21, 479, 555, 561, 565, 569,
754, 827

niewłaściwy 485, 549
punktowe źródło światła 215, 450, 452, 543,

572, 739
punkty

kolokacji 799, 809, 811, 822, 826, 828
kontrolne 330, 370, 571, 575, 578, 580,

586, 597, 985, 988, 1058, 1075, 1126,
1132

R
radiancja 455, 729, 731, 740–743, 745, 746,

748, 764, 769, 771, 778, 779, 783,
787, 788, 841, 842, 849

radiometria 739
Ramamoorthi, Ravi 746, 753
receptory światła w oku 739, 1079
Reeves, William 572
referencja obiektu w łańcuchu

kinematycznym 317, 319, 330,
584, 586

regiony Woronoja 731
rejestrowanie ruchu 1044
reprezentacja siatki nieregularnej 877–887

1210 SKOROWIDZ

w pamięci CPU 879–880
w pamięci GPU 880–887

restart prymitywu 296, 302, 368, 794
rozdzielczość ekranu 84, 654
rozkład

Beckmanna-Spizzichino 761, 772
kierunków wektorów normalnych

mikrościanek 760, 765
macierzy
biegunowy 1044
na czynniki trójkątne 126, 1044, 1071
względem wartości szczególnych
1043, 1186

normalny Gaussa 764
Trowbridge’a-Reitza 761

rozmycie obiektów w ruchu 639, 661, 680
rozszerzenia

języka GLSL 181
standardu OpenGL 19, 30
GL_ARB_bindless_texture 482
GL_ARB_gl_spirv 95
GL_NV_gpu_shader5 483
sprawdzanie obecności 95

równania ruchu cząsteczki 607
równanie

bilansu energetycznego 743, 781, 782,
784

całkowe Fredholma 784
Laplace’a 752
soczewki 640

ruch kulisty 1050, 1074
rysowanie na wielu warstwach 639,

671–680, 683
rzut 1191

na sferę 280, 787, 1106–1107, 1112
ortogonalny (prostopadły) 114, 136,

540, 752, 787
panoramiczny 1103–1106, 1112, 1191
perspektywiczny 133–136, 221, 237,

544, 546, 817, 820, 1103, 1112, 1191
równoległy 136–138, 221, 544, 546,

1103, 1191
środkowy 754, 787

S
Salesin, David 572
schemat

Falka 106, 1171

Hornera 221, 371, 380
Shoemake, Ken 1052
siatka kontrolna 370, 380, 407
Silicon Graphics 17, 40
skaner pliku tekstowego 349–352
składanie przekształceń afinicznych 112
składowa alfa 150, 196, 215, 250, 252, 612,

621, 722
składowe trójchromatyczne 1080
skuteczność świetlna 741
skybox 689, 746, 854
Słońce 215, 313, 332, 335, 340, 348, 433, 572,

741, 1081, 1084
SPIR-V 87, 93–97, 199, 270–272, 404, 454
splot 457, 720

sferyczny 771
sprzątanie 48, 56, 60, 157–159, 233, 257, 260,

294, 322, 366, 427, 502, 559, 562,
595, 622, 630, 823, 947, 968, . . .

stałe specjalizacji szadera 96
standard IEEE-754 181, 615
stary OpenGL 19, 29, 37, 40, 43, 63, 133, 142,

150, 180, 237, 639, 680, 931
stella octangula 162
steradian 739
stereoskopia 63, 136, 680–684
stopień

swobody 313
ściany siatki 879
wierzchołka siatki 879

stożek 535
strumień

energetyczny 739, 741, 743, 746, 782
świetlny 739, 741

subtraktywne mieszanie barw 1088
sumy prefiksowe 812, 836, 838, 894, 898,

900–903, 905, 906, 914, 915, 917,
923, 958, 1151–1153, 1178

suwak 858, 873, 957
symbol klawisza 861
szader 18

fragmentów 16, 24, 142, 218, 252, 271,
338, 409, 436–438, 453, 460, 499,
521, 531, 541, 555, 613, 631, . . .

kwalifikatory wejścia 199
kwalifikatory wyjścia 199, 449
zmienne wbudowane 195–196

SKOROWIDZ 1211

geometrii 23, 217, 240, 241, 243, 285,
298, 307, 385, 459, 486, 520, 554,
673, 675, 704, 705, 747, 806, . . .

kwalifikatory wejścia i wyjścia 198
zmienne wbudowane 194–195

obliczeniowy 185, 209–212, 578, 597,
601, 610, 645, 684, 716, 724, 727,
732, 734, 736, 756, 775, 802, 814, . . .

zmienne wbudowane 210–211
rozdrabniania 23, 279, 282, 284, 337,

379–384, 430, 458, 517–519, 550,
552, 672, 1063

kwalifikator wejścia 198, 296
zmienne wbudowane 194

sterowania rozdrabnianiem 23, 278,
281, 337, 377, 429, 596

kwalifikator wyjścia 198
zmienne wbudowane 193–194

wierzchołków 16, 22, 88, 141, 214, 216,
240, 251, 277, 306, 376, 408, 498,
612, 703, 747, 806, 809, 829, . . .

zmienne wbudowane 193
wierzchołków 1118

szereg Neumanna 784, 788
szeroki zakres dynamiczny 645, 712, 750
sześcian 160, 162

Ś
ściany siatki 877, 937, 939, 940, 958
śledzenie promieni 696, 697, 769
środek rzutowania 133, 639
światłość 741

T

tablica
deklaracja w GLSL-u 184
indeksów wierzchołków 146, 150, 154,

367
punktów dowiązania 26, 146, 267
w buforze magazynowym 267

taśma trójkątowa 147, 164, 218, 242, 296,
368, 486, 535, 1109, 1143

z przyległościami 300–309
teksel 28, 205, 455
tekstura 28, 205, 455, 472–485, 495, 497,

647, 686, 1002, 1065, 1191
bez dowiązania 482–483

irradiancji 746–751, 754, 756, 772,
788–790, 797, 799, 802, 841, 843,
849, 851

jednowymiarowa 775, 1003
kostkowa 688–697, 746, 772, 774, 780,

854
mgły 627
obszaru cienia 550, 562, 627, 851
proceduralna 28, 455, 494, 528–529
odkształceń 513, 522, 529–534

przefiltrowanej radiancji 772, 778, 779
radiancji otoczenia 774
rezydentna 483
skompresowana 474–479
wielopoziomowa 780
wielowarstwowa 677

test
maski 24, 449, 636
nożyczek 24, 449, 636
widoczności 24, 55, 132, 135, 196, 199,

260, 449, 621, 636
Texas Instruments 1186
TLS 1187
torus 419, 421–423
triangulacja Delaunaya 377
trójkąty z przyległościami 297, 299
tryb

izolinii 279
natychmiastowy rysowania 17, 29, 855,

1017
pracy potoku przetwarzania grafiki 159
GL_LINE_LOOP 159
GL_LINE_STRIP 159
GL_LINE_STRIP_ADJACENCY 299
GL_LINES 159
GL_LINES_ADJACENCY 297–299
GL_PATCHES 297
GL_POINTS 159
GL_TRIANGLE_FAN 159, 493
GL_TRIANGLE_STRIP 159
GL_TRIANGLE_STRIP_ADJACENCY

300–309
GL_TRIANGLES 159
GL_TRIANGLES_ADJACENCY

299–300
twierdzenie

Cauchy’ego 107, 1047

1212 SKOROWIDZ

Pitagorasa 84, 752
Pohlkego 138

tworzenie obrazu poza oknem 495, 550, 627,
645–652, 671–680, 682, 711–738,
819–823, 827–831

typy w GLSL-u
macierzowe 181–183
podprogramów 190
proste 181
strukturalne 183
tablicowe 184
wektorowe 181–183
zamknięte 182, 208, 483, 687, 688

typy zamknięte 83

U

uchwyt tekstury 483
układ

cząsteczek 607–613, 616–623, 663, 680
odniesienia 108, 109, 496
równań
liniowych 127, 310, 484, 786, 1044,
1070

nieliniowych 314, 530, 1075
współrzędnych
Adobe RGB 1084, 1087
barycentrycznych 109
CIE XYZ 1081, 1087
CIELab 1088
HSL 1089–1090
HSV 1089–1090
izometryczny 115, 415
kartezjańskich 108, 496
kostki jednostkowej 552, 735
kostki standardowej 137, 140, 164,
216, 284, 346, 385, 489, 503, 525,
529, 545, 553, 621, 672, 718, 747, . . .

lewoskrętny 117
modelu 138, 139, 151, 528, 531
obserwatora 133, 138, 140, 142, 167,
168, 170, 284, 414, 488, 545, 553,
642, 643, 657, 820, 1103, 1107

obserwatora odbitego w lustrze 496,
503

obserwatora przesuniętego 643, 672
obserwatora związanego z elementem
826

obserwatora związanego ze źródłem
światła 545, 546, 573

okna 44, 132, 167, 199, 250, 254, 568,
718

prawoskrętny 117, 133
sRGB 1084, 1085
świata 114, 140, 142, 151, 168, 170, 172,
234, 284, 385, 414, 486, 503, 531,
545, 553, 597, 642, 643, 652, 654, . . .

tekstury 498
zmiennych w bloku
packed 197
shared 197
std140 197, 229, 270
std430 197, 756, 790, 808, 1153

Unix 31, 39
unormowane funkcje B-sklejane 1057, 1069
uprawnienia administratora 32, 1091
uśrednianie siatki 887, 910–919, 939

V
Vulkan 7, 20, 39, 55, 94, 100, 143, 185, 193,

454, 638, 1019, 1179, 1183, 1187

W
wachlarz trójkątów 147, 159, 162, 296
walec 305–309
warstwy obrazu końcowego 671, 680
warstwy walidacyjne 100
wartość bezwzględna kwaternionu 1046,

1048
wartość własna macierzy 1042–1045
warunki

brzegowe 1070, 1078
interpolacyjne 1007, 1078

wąski zakres dynamiczny 645
wątek dżojstika 1097, 1101
wczesne testy fragmentów 449
wektor 106, 1192

idealnego odbicia światła 433
jednostkowy 114, 115, 119, 165, 167, 218,

371, 450, 497, 513, 752, 756, 766,
783, 1037

normalny
mikrościanki 539, 760, 763, 765
obrazu płaszczyzny 283
powierzchni 213, 215, 283, 285–287,
295, 301, 371, 382, 385, 433, 450,

SKOROWIDZ 1213

513, 514, 518, 531, 534–536, . . .
powierzchni zaburzonej 514, 522
trójkąta 216, 218, 283, 304, 385, 486,
490, 521, 555, 673, 769, 789, 792,
795, 844, 937, 965, 967, 1114

swobodny 107–109, 111, 112, 114, 283,
519

własny macierzy 1042, 1044
zerowy 107, 385, 430, 521, 965

wektory
liniowo niezależne 107, 513, 515
liniowo zależne 107, 385, 414, 1048
pseudolosowe 616, 617
wzajemnie prostopadłe 114, 752

wersja
języka GLSL 85, 141, 180
standardu OpenGL 34, 85, 95

wersory osi 108, 138, 415, 496, 549
węzły

funkcji sklejanych 1057, 1069
interpolacyjne 1005, 1017, 1069, 1078
krzywej sklejanej 297, 299, 1058
kwadratury 746, 772
płata B-sklejanego 1058

widmo światła 1079
widzenie dzienne 1079
wiek cząsteczki 609, 612, 621
wielokrotne próbkowanie 196, 469, 528,

639, 643, 687, 711, 948
wielomiany bazowe Bernsteina 369, 1058
wierzchołki siatki

brzegowe 877, 913, 962
wewnętrzne 877, 912, 962

wieże Hanoi 431
wihajster 855, 858, 860, 867, 940, 1005, 1182

obrazu 953
osi czasu 1005–1018
pusty 858, 869

Williams, Lance 456
Windows 31, 37, 39, 68–77, 83, 101, 472, 855
wirtualny ekran 84
wizual 63, 949
własność otoczki wypukłej 370, 1058
współczynnik załamania światła 202, 742,

744, 763, 765, 770, 1037
współczynniki

dwumianowe Newtona 372, 380

kształtu 786, 787, 789, 823
współrzędne

barycentryczne 109, 113, 170, 194, 281,
300, 310, 811, 1081, 1126

cienia 552, 555
jednorodne 108, 131, 132, 134, 139, 150,

221, 245, 309, 317, 373, 376, 382,
384, 484, 529, 557, 597, 689, . . .

wagowa 108, 109, 111, 221, 222, 382,
384, 484, 485, 492, 518, 549, 704

kartezjańskie 108, 134, 150, 170, 194,
221, 317, 373, 384, 529, 557, 961, 962,
1185

sferyczne 746, 752
tekstury 182, 456–459, 468, 555, 675,

792, 995, 1002
w dziedzinie płata OpenGL-a 280, 281,

384, 428, 457, 1063
wartości domyślne dla wierzchołka

150
wstawianie węzłów 1059
wstęga Möbiusa 878
Wydawnictwo PWN 1185
wyznacznik 107, 116, 117, 127, 130, 204, 1042,

1044, 1047
wzory

Cardana 1043
Cramera 127

wzór
de Moivre’a 1116
Mansfielda-de Boora-Coxa 1057

X

XWindow 3, 30, 31, 56–66, 101, 681,
855–876, 931–1034, 1091, 1096–1102

Z

zadanie dobrze określone 1069, 1074
zagęszczanie siatki 877–930, 937, 939, 979,

1002, 1145
załamanie światła 202, 765, 1037
załączniki bufora ramki 497, 550, 559, 628,

630, 648, 674, 677, 681, 712, 822,
827, 1188

zasada
Helmholtza 434, 742–744, 763, 765
minimalizacji zaskoczeń 1185
zachowania energii 215, 739, 743–745

1214 SKOROWIDZ

zasłanianie otoczenia w przestrzeni obrazu
728–738

zbiór
Cantora 1134
Julii 1133
Mandelbrota 1116–1124, 1133

zenit 414, 450
Ziemia 313, 315, 332, 335, 337, 340, 348
złota proporcja 147, 645
złożenie przekształceń 111, 140, 165, 1042
zmiana układu współrzędnych 112
zmienna

gl_ClipDistance 193, 195, 245, 1139,
1140

gl_CullDistance 193, 195, 246
gl_FragCoord 139, 195, 252–254, 272,

310, 450, 492, 522, 524, 525, 533,
706, 713, 808, 811, 1120, 1125

gl_FragDepth 196, 450, 514, 522, 706
gl_FrontFacing 195, 498, 499, 675
gl_GlobalInvocationID 211, 579,

600, 604, 611, 646, 685, 717, 726,
727, 734, 757, 777, 805, 814, . . .

gl_HelperInvocation 195
gl_InstanceID 193, 376, 408, 810,

934, 937, 965, 995, 1134
gl_InvocationID 193, 194, 240, 241,

278, 281, 337, 377, 429, 597,
673–675, 685, 705, 748, 830

gl_Layer 194, 195, 673–675, 705, 747,
748, 1184

gl_LocalInvocationID 211, 835
gl_LocalInvocationIndex 211
gl_MaxPatchVertices 193, 194
gl_NumWorkGroups 210, 757, 777, 831
gl_PatchVerticesIn 193, 194
gl_PerVertex 192, 193, 194, 217, 498,

550
gl_PointCoord 195
gl_PointSize 192
gl_Position 14, 16, 141, 142, 192, 214,

216, 217, 239–244, 251, 277–282,
284, 285, 298, 307, 308, 337, . . .

gl_PrimitiveID 193–195, 807, 808,
844, 845

gl_PrimitiveIDIn 806, 807, 844
gl_SampleID 195
gl_SampleMask 196
gl_SampleMaskIn 196
gl_SamplePosition 196
gl_TessCoord 194, 280–282, 384,

430, 458, 459, 518, 519, 551, 553,
672, 1063, 1064

gl_TessLevelInner 193, 194, 278,
281, 288, 296, 336, 337, 376, 377,
429, 596, 597, 1061

gl_TessLevelOuter 193, 194, 278,
279, 281, 296, 337, 376, 377, 429,
596, 597, 1061

gl_VertexID 14, 16, 193, 250, 251, 306,
307, 407, 408, 414, 418, 493, 498,
810, 934, 937, 995, 1118

gl_ViewportIndex 195, 829, 830
gl_WorkGroupID 210, 835
gl_WorkGroupSize 210, 1184

zmienne
globalne 185
interfejsu 25, 98, 185, 191, 197
wbudowane 25, 192–196, 210–211

jednolite 26, 140, 185, 196, 208, 468, 891
wskazujące podprogramy 182, 186,
190–191, 452–454

statyczne 148, 162, 305, 363
współdzielone 185, 210, 818
zakres widoczności 184

Ź
źródła światła

powierzchniowe 740, 782
punktowe 215, 450, 452, 543, 572, 739,

766–770, 783, 791, 849

Cz. I–III Cz. III
ISBN 978-83-971793-0-1

9 7 8 8 3 9 7 1 7 9 3 0 1

ISBN 978-83-971793-3-2

9 7 8 8 3 9 7 1 7 9 3 3 2

Drugie wydanie książki OpenGL i GLSL (nie taki krótki kurs) jest poprawione, przez usu-
nięcie błędów znalezionych w wydaniu pierwszym i ponowne zaimplementowanie aplikacji
ilustrujących sposób korzystania ze standardu OpenGL, poszerzone, o nowe aplikacje reali-
zujące różne algorytmy za pomocą karty gra�cznej, i pogłębione, przez dodanie bardziej
szczegółowych opisów teoretycznych podstaw gra�ki komputerowej. Dołączony do książki
pakiet oprogramowania jest przygotowany do kompilowania i uruchamiania w systemach
Linux/X Window i Windows.

Część III zawiera wiadomości uzupełniające:

● opis prostego interfejsu użytkownika w środowisku X Window,

● opis i implementację algorytmu zagęszczania siatek reprezentujących powierzchnie gładkie,

● aplikację rysującą taką powierzchnię,

● łańcuch kinematyczny umożliwiający animowanie odkształceń powierzchni,

● opis i implementację sposobu wprawiania animacji w ruch,

● opis zastosowania kwaternionów do reprezentowania i animowania obrotów w przestrzeni,

● opis krzywych i powierzchni B-sklejanych, umożliwiających modelowanie obiektów bar-
dziej skomplikowanych niż płaty Béziera,

● podstawy kolorymetrii,

● sposób użycia dżojstika w aplikacjach X Window,

● sposoby nieliniowego rzutowania przestrzeni na płaskie obrazy,

● sposoby rysowania obiektów fraktalowych: zbioru Mandelbrota, piramidy Sierpińskiego
i gąbki Mengera,

● algorytmy masywnie równoległych obliczeń na karcie gra�cznej niezwiązanych bezpośred-
nio z gra�ką: sumowania długich ciągów, obliczania sum pre�ksowych, sortowania i prze-
twarzania nieregularnych macierzy rzadkich.

