
Supplementary files

to ,,Improving Group Lasso for high-dimensional categorical data”

1 Notations

In the main paper we consider the Group Lasso in the form:

argmin
β

ℓ(β) + λ
r∑

k=1

||Wkβk||,

where ℓ(β) = 1
n

∑n
i=1[(x

T
i.β)

2/2 − yix
T
i.β] and Wk is a diagonal matrix with

(Wk)jj = ||xj,k||/
√
n. In this supplement we use the equivalent notation

argmin
β

ℓ̃(β) + λ̃
r∑

k=1

||W̃kβk||, (1)

where ℓ̃(β) = nℓ(β), λ̃ =
√
nλ, W̃k =

√
nWk. The new notation is more con-

venient in calculations. For simplicity, we drop all ,,tilde” signs in (1) in this
supplement. We hope that it will not lead to confusions. Similar changes have to
be done in the information criterion in the step (2b) of the PDMR algorithm.

In (1) we consider fixed weights ||xj,k|| in the Group Lasso, but in our theoret-
ical investigation they can be arbitrary. What is more, using our results we show
that the choice as in the main paper is optimal.

Let W1 = diag(w0,1, w1,1, . . . , wp1,1) and Wk = diag(w1,k, . . . , wpk,k), k =
2, . . . , r be diagonal nonrandom matrices with positive entries. Besides, W =
diag(W1, . . . ,Wr) is a p× p diagonal matrix with matrices Wk on the diagonal.

In the following we consider k ∈ {1, . . . , r} and for k = 2, . . . , r we have
j ∈ {1, . . . , pk}, while for k = 1 we have j ∈ {0, . . . , p1}. Let xj,k be a column
of X corresponding to the j-th level ofthe k-th factor. The additional notations are
xM = maxj,k ||xj,k||, xm = minj,k ||xj,k||, xW = maxj,k ||xj,k||/wj,k.

It is easy to see that ℓ̇(β) =
∑n

i=1(x
T
i.β − yi)xi., where ℓ̇ denotes a derivative

of ℓ. Besides, ℓ̇(β̊) = −XT ε for ε = (ε1, . . . , εn)
T . Next, for k = 1, . . . , r partial

derivatives of ℓ(β) corresponding to coordinates of βk are denoted by ℓ̇k(β).
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2 Auxiliary results

We consider the PDMR algorithm with arbitrary diagonal matrices Wk in Group
Lasso. The default setting from the main paper will be justified in Proposition 1.

First, we generalize a characteristic of linear models with continuous predic-
tors, which quantifies the degree of separation between the model Mβ̊ and other

models [24]. Let S = {1 ≤ k ≤ r : β̊k ̸= 0} and S̄ = {1, . . . , r} \ S. Notice that
S need not coincide with Mβ̊. For a ∈ (0, 1) and a diagonal matrix W we define a
cone

Ca,W = {v ∈ Rp :
∑
k∈S̄

||Wkvk|| ≤
∑
k∈S

||Wkvk||+ a|Wv|1}. (2)

A Cone Invertibility Factor (CIF) is defined as

ζa,W = inf
0̸=ν∈Ca,W

|W−1XTXv|∞
|ν|∞

. (3)

In the case that matrix XTX is orthogonal one can easily find a lower bound on
(3). For instance, for the default choice of weights Wk (i.e. (Wk)jj = ||xj,k||) we
have ζa,W ≥ xm for all a ∈ (0, 1), where we recall that xm = minj,k ||xj,k|| is
the square root of the minimal number of observations per level.

In the case n > p one usually uses the minimal eigenvalue of the matrix XTX
to express the strength of correlations between predictors. Obviously, in the high-
dimensional scenario this value is zero. Therefore, CIF can be viewed as a useful
analog of the minimal eigenvalue for the case p > n. In comparison to more pop-
ular restricted eigenvalues [3] or compatibility constants [22], CIF enables sharper
ℓ∞ estimation error bounds [24], [9], [26]. We explain precisely this fact in Sec-
tion 4 of this supplement. Finally, if all predictors are continuous, then (2) and (3)
are the same as the cone and CIF in [24].

2.1 Estimation consistency of Group Lasso

Now we establish an upper bound on an estimation error of the Group Lasso, which
can be applied to the high-dimensional scenario p >> n. Similar results can be
found in the literature, for instance in [14, Theorem 4.5], [23, Theorem 2.2], [12,
Theorem 5.1], [5, Theorem 8.1] or [4, Theorem III.6]. The main difference be-
tween those results and ours is that we measure the estimation error in the l∞
norm, which is all we need in partition selection, while in those papers there is a
mixture of l2 and l1 (or l∞) norms. Thus, relying on those papers we would need
more restrictive assumptions in our results. It is especially true for an orthogonal
design. At the end of this subsection we compare our results to [12, Theorem 5.1].
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Lemma 1. Suppose that assumptions (1), (2) from the main paper are satisfied and
a ∈ (0, 1). Then

Pβ̊

(
|β̂ − β̊|∞ > (1 + a)λζ−1

a,W

)
≤ 2p exp

(
− a2λ2

2σ2x2W

)
.

Thus, if λ2 = 2a−2σ2x2W log(2p/α) for some α ∈ (0, 1), then with probability at
least 1− α

|β̂ − β̊|2∞/σ2 ≤ 2(1 + a)2a−2x2W ζ−2
a,W log(2p/α). (4)

Proof. For k = 1, . . . , r using KKT for the Group Lasso estimator β̂, we have that
W−1

k ℓ̇k(β̂) = −λWkβ̂k/||Wkβ̂k|| for β̂k ̸= 0 and ||W−1
k ℓ̇k(β̂)|| ≤ λ for β̂k = 0.

Therefore, we obtain that |W−1ℓ̇(β̂)|∞ = maxk |W−1
k ℓ̇k(β̂)|∞ ≤ λ.

Recall that ℓ̇(β̊) = −XT ε and suppose that we are on an event A = {|W−1ℓ̇(β̊)|∞ ≤
aλ}. First, we prove that v := β̂ − β̊ ∈ Ca,W . Using differentiability of ℓ and Tay-

lor’s expanssion we have vT
[
ℓ̇(β̂)− ℓ̇(β̊)

]
= vT∇2ℓ(β̃)v for some β̃ between β̂

and β̊. Obviously, this expression is nonnegative, because ℓ is convex. Moreover,
vk = β̂k for k ∈ S̄, so we also obtain

vT
[
ℓ̇(β̂)− ℓ̇(β̊)

]
=

r∑
k=1

vTk ℓ̇k(β̂)−
r∑

k=1

vTk ℓ̇k(β̊)

=
∑
k∈S̄

β̂T
k ℓ̇k(β̂) +

∑
k∈S

vTk ℓ̇k(β̂)−
r∑

k=1

vTk ℓ̇k(β̊). (5)

Consider the first term in (5). Using KKT, it equals∑
k∈S̄,β̂k ̸=0

β̂T
k ℓ̇k(β̂) = −λ

∑
k∈S̄,β̂k ̸=0

||Wkβ̂k|| = −λ
∑
k∈S̄

||Wkvk||.

Similarly, we bound the second term in (5) by∑
k∈S

||Wkvk|| ||W−1
k ℓ̇k(β̂)|| ≤ λ

∑
k∈S

||Wkvk||.

The last term in (5) can be bounded using the fact that we are on the event A

r∑
k=1

|Wkvk|1|W−1
k ℓ̇k(β̊)|∞ ≤ aλ

r∑
k=1

|Wkvk|1.
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Joining the above facts we get that v ∈ Ca,W . Therefore, from the definition (3) we
have

ζa,W |β̂ − β̊|∞ ≤ max
1≤k≤r

|W−1
k ℓ̇k(β̂)−W−1

k ℓ̇k(β̊)|∞

≤ max
1≤k≤r

|W−1
k ℓ̇k(β̂)|∞ + max

1≤k≤r
|W−1

k ℓ̇k(β̊)|∞.

Using again KKT and the fact, that we are on A, we get |β̂− β̊|∞ ≤ (1+a)λζ−1
a,W .

Now we calculate probability of the event A. To do it, we use the following expo-
nential inequality for independent subgaussian variables εi, i = 1, . . . , n: for each
b > 0 and v ∈ Rn we have P (εT v/||v|| > b) ≤ exp

(
−b2/(2σ2)

)
. Using union

bounds and the definition of xW , we obtain

Pβ̊(A
c) ≤

∑
k,j

P
(
|xTj,kε|/wj,k > aλ

)
≤ 2

∑
j,k

exp

(
−

a2λ2w2
j,k

2σ2||xj,k||2

)

≤ 2p exp

(
− a2λ2

2σ2x2W

)
,

where we consider k ∈ {1, . . . , r} and for k = 2, . . . , r we have j ∈ {1, . . . , pk},
while for k = 1 we have j ∈ {0, . . . , p1}.

The proof of the second claim is straightforward.

The upper bound on the estimation error in Lemma 1 depends on the choice
of a weight matrix W. So, to find optimal weights we should minimize x2W ζ−2

a,W .
Solving this problem in the general case is difficult, so we restrict to the simplified
version of the problem in the next result.

Proposition 1. If XTX is orthogonal and weights are of the form wj,k = ||xj,k||q
for q ∈ R. Then for each a ∈ (0, 1) we have x2W ζ−2

a,W ≤ x−2
m (xM/xm)max(0,|2q−3|−1) =:

f(q) and argminq f(q) = [1, 2].

Proof. For a linear model with an orthogonal design we have |W−1XTXv|∞/|v|∞ ≥
minj,k ||xj,k||2−q for all v ∈ Rp. So, we can easily bound from above ζ−2

a,W by
x2q−4
m , when q ≤ 2 and x2q−4

M , when q > 2. The rest of the proof follows from the
fact that x2W equals x2−2q

M , when q ≤ 1 and x2−2q
m , when q > 1.

Thus, for an orthogonal design with the optimal weights (i.e. q ∈ [1, 2]) the up-
per bound in (4) behaves like x−2

m log p. Consider a balanced design, i.e. there are
n/pk observations on every level of k-factor. Then x−2

m = maxk pk/n and the up-
per bound on the estimation error of Group Lasso behaves like

√
maxk pk log p/n.

The assumption that a design is orthogonal is quite restrictive. The much more
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common case, especially for p >> n, is an almost orthogonal design, i.e. when
xj1,k1

Txj2,k2 = o(x2m) for (j1, k1) ̸= (j2, k2). In such a case weights wj,k =
||xj,k||q for q ∈ [1, 2] can be treated as almost optimal.

In the original paper on the Group Lasso [25] two choices of weights are pro-
posed. The first one, called “obvious”, gives a penalty of the form λ

∑
k ||βk||. In

the second one, called “preferred” they have a penalty λ
∑

k

√
pk||βk||. The latter

choice is more widely used in the literature [14], [23], [5]. Now we compare these
choices of weights to those obtained in Proposition 1. Notice that columns of X
are normalized in [25], which is not done in our paper. So, we start with writing
their penalty in our setting. We do it under a balanced design (it is defined in the
previous paragraph). Their first choice gives a penalty λ

√
n
∑

k p
−1/2
k ||βk||, while

the second one gives λ
√
n
∑

k ||βk||. On the other hand, by Proposition 1 for q = 1

we obtain λ
√
n
∑

k p
−1/2
k ||βk||, while for q = 2 we have λn

∑
k p

−1
k ||βk||. There-

fore, our optimal choice for q = 1 coincides with the “obvious” choice in [25].
However, the “preferred” choice in [25] leads to sub-optimal results. Obviously,
Proposition 1 deals with an orthogonal design, so our result is rather a starting point
of the thorough analysis on weights optimality.

Finally, notice that for an orthogonal and balanced design [12, Theorem 5.1]
bounds the estimation error of Group Lasso by x−2

m (maxk pk + log r), which is
greater than x−2

m log p in Lemma 1.

2.2 Partition selection of PDMR

In this section we state the main theoretical result concerning our algorithm. First,
we need to define the Kullback-Leibler (K-L) distance between the true model Mβ̊
and its submodels. The precise definition of a submodel and its cardinality is given
in Section 3 of this supplement. Roughly speaking, model M is a submodel of Mβ̊
(M ⊊ Mβ̊), if M contains at least one additional merging of levels comparing to
Mβ̊.

Let M be a submodel of Mβ̊ and k = |Mβ̊| − |M |. Denote

δk = ||Xβ̊ −XMβ∗
M ||2,

where β∗
M = argminβM

||Xβ̊ − XMβM ||2. A scaled K-L distance between Mβ̊
and its submodels is

δMβ̊
= min

k=1,...,|Mβ̊ |−1
min

M :M⊊Mβ̊ ,|Mβ̊ |−|M |=k

δk
k

. (6)

Different variants of the K-L distance have been used in the consistency analysis
of selection algorithms [16, Section 3.1], but δMβ̊

defined in (6) seems to lead to
optimal results [18, Theorem 1].
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In the next theorem we establish properties of the PDMR algorithm in partition
selection. We consider the default setting of weights in Group Lasso (i.e. (Wk)jj =
||xj,k|| ), so (3) simplifies to ζa.

Theorem 1. Suppose that assumptions (1) and (2) from the main paper are satis-
fied and there exists 0 < a < 1 such that

2a−2σ2 log(|Mβ̊|
2/(2 log 2)) ≤ λ2 <

min(∆2ζ2a , 4δMβ̊
)

16(1 + a)2
. (7)

Then

P (M̂PDMR ⊊ Mβ̊) ≤ (2p+ |Mβ̊|
2) exp

(
−a2λ2

2σ2

)
. (8)

The simplified version of the above result is given in Theorem 1 in the main
paper. The differences are:
(i) the case that |Mβ̊|

2 ≤ p is considered there, so log(|Mβ̊|
2/(2 log 2)) in (7) is

replaced by log p and |Mβ̊|
2 in (8) is replaced by p. Obviously, if |Mβ̊|

2 > p, then
log(|Mβ̊|

2/(2 log 2)) can be replaced by slightly larger 2 log p,
(ii) the sample size n does not appear explicitly in (7) and (8), because we use
different notation comparing to the main paper (see the beginning of section ,,No-
tations” in this supplement),
(iii) here the identifiability number κ is explicitly stated in (7).

Proof. We will establish two inequalities

P (Mβ̊ /∈ M) ≤ 2p exp

(
−a2λ2

2σ2

)
(9)

and

P (Mβ̊ ∈ M, M̂PDMR ⊊ Mβ̊) ≤ (2 log 2)−1|Mβ̊|
2 exp

(
− a2λ2

2σ2

)
. (10)

We start with (9). From Lemma 1 we know that

P (|β̂ − β̊|∞ ≤ (1 + a)λζ−1
a ) ≥ 1− 2p exp

(
−a2λ2

2σ2

)
.

Now we fix the k-th predictor and take indexes j1, j2 such that β̊j1,k = β̊j2,k,
i.e. they correspond to the same cluster in Mβ̊ . Let R = (1 + a)λζ−1

a . We obtain

|β̂j1,k − β̂j2,k| ≤ |β̂j1,k − β̊j1,k|+ |β̂j2,k − β̊j2,k| ≤ 2R. (11)
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On the other hand, if j1, j2 are such that β̊j1,k ̸= β̊j2,k, then

|β̂j1,k − β̂j2,k| ≥ |β̊j1,k − β̊j2,k| − |β̂j1,k − β̊j1,k| − |β̂j2,k − β̊j2,k| ≥ ∆− 2R > 2R,

because ∆ > R by assumption the (7). Therefore, there is a separation between en-
tries of a dissimilarity matrix Dk in the clustering step of PDMR. Namely, entries
corresponding to indexes from the same true cluster are smaller than those corre-
sponding to distinct true clusters. The first step of complete linkage clustering uses
the dissimilarity matrix Dk, then in consecutive steps this matrix is updated as fol-
lows: a distance between two clusters A and B is defined as maxa∈A,b∈B |β̂a,k −
β̂b,k|. Therefore, in some step of clustering we obtain true partitioning of levels
of the k-th factor and all cutting heights in hk to that step are not larger than 2R,
while subsequent coefficients of hk are larger than 2R. Clearly, threshold 2R does
not depend on k. Therefore, this separation property is also satisfied after taking all
cutting heights together and sorting increasingly. Thus, the true model is contained
in the nested family M with high probability.

Now, we consider (10). Notice that

P (Mβ̊ ∈ M, M̂PDMR ⊂ Mβ̊)

≤ P
(
∃M :LM⊊LM

β̊
ℓ(β̂M ) + λ2|M |/2 < ℓ(β̂Mβ̊

) + λ2|Mβ̊|/2
)

(12)

and we recall that β̂M is a minimum loss estimator over Rp with constraints deter-
mined by the model M. Technical details of this constrained minimization is given
in Section 3 of these supplementary materials. Denote k = |Mβ̊| − |M |. We can

calculate that δk = ||(I −HM )Xβ̊||2 and

ℓ(β̂M ) = δk/2 + εT (I −HM )Xβ̊ + εT (I−HM )ε/2− yT y/2,

in particular ℓ(β̂Mβ̊
) = εT (I−HMβ̊

)ε/2−yT y/2. Since HMβ̊
−HM is a projection

matrix, we have

ℓ(β̂M )− ℓ(β̂Mβ̊
) ≥ δk/2 + εT (I −HM )Xβ̊

and we can bound the rhs of (12) by

P
(
∃M :LM⊊LM

β̊
− 2εT (I −HM )Xβ̊ ≥ δk − kλ2

)
.

Clearly, we have δk ≥ kδMβ̊
, so above probability is bounded by

P

(
∃M :LM⊊LM

β̊

−εT (I −HM )Xβ̊√
δk

≥
√
kδMβ̊

(
1− λ2

δMβ̊

)
/2

)
. (13)
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To estimate (13) we use union bounds with the exponential inequality for subgaus-
sian random variables (see the proof of Lemma 1). Thus, we bound (13) from
above by

|Mβ̊ |−1∑
k=1

Nk exp

(
−
kδMβ̊

8σ2

(
1− λ2

δMβ̊

)2
)
, (14)

where Nk is a number of models M such that LM ⊊ LMβ̊
and |M | = |Mβ̊| − k.

Notice that the value in (14) is the largest, if Mβ̊ consists of one factor on |Mβ̊|

levels, which we assume in the following. In this case Nk =
{ |Mβ̊ |
|Mβ̊ |−k

}
, where

{
r
s

}
is a Stirling number of the second kind, i.e. a number of ways to partition a set of
r objects into s non-empty subsets.

From the assumption λ2 ≤ δMβ̊
/(2 + 2a)2 we obtain

λ2/δMβ̊
≤ f1(a), where f1(a) = 1 + 2a2 −

√
(1 + 2a2)2 − 1, (15)

which gives
4a2λ2

δMβ̊

≤
(
1− λ2

δMβ̊

)2

. (16)

Therefore, we estimate (14) by

|Mβ̊ |−1∑
k=1

{ |Mβ̊|
|Mβ̊| − k

}
exp

(
−ka2λ2

2σ2

)

= exp

(
−|Mβ̊|

a2λ2

2σ2

) |Mβ̊ |∑
k=1

{|Mβ̊|
k

}
exp

(
ka2λ2

2σ2

)
− 1. (17)

The sum in (17) is called a Touchard polynomial. Its value is closely related to
moments of Poisson random variables (see Lemma 2 given below). Therefore,
(17) can be estimated by Lemma 3 (given below) as

exp

[
|Mβ̊|

2 exp

(
−a2λ2

2σ2

)
/2

]
− 1.

Using the inequality exp(c)−1 ≤ log(2)−1c for 0 ≤ c ≤ log(2), we finish the
proof.

Lemma 2 ([15], Proposition 3.3.2). For every n ≥ 0 and x > 0, one has that
E[K(x)]n =

∑n
k=1

{
n
k

}
xk, where K(x) is a Poisson random variable with pa-

rameter x.
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Lemma 3 ([1], Theorem 1). Under assumptions of Lemma 2 we have

E[K(x)/x]n ≤
(

n/x

log(1 + n/x)

)n

≤ exp(n2/(2x)).

3 Models and constrained minimization

For simplicity, we consider the case that all predictors are factors. But the extension
to the general case is straighforward.

We recall that each model M is defined as a sequence M = (P1, P2, . . . , Pr),
where Pk is some partition of a set of levels of the k-th factor, i.e. {0, 1, . . . , pk}.
We will show that every model M corresponds to a linear space

LM = {β ∈ Rp : A0,Mβ = 0}, (18)

where a matrix A0,M is defined in the following subsection.

3.1 Matrix A0,M

Suppose that Pk = C1,k ∪ C2,k ∪ Cjk,k, so jk is a number of clusters that the set
{0, 1, . . . , pk} is divided. In further considerations we fix the ordering between
clusters. We also suppose that reference levels (i.e. zero levels) belong to C1,k for
each k. Let sj,k be the smallest element in Cj,k. In particular, s1,k = 0.

Fix β ∈ Rp. We recall that β = (βT
1 , β

T
2 , . . . , β

T
r )

T , where β1 = (β0,1, β1,1, . . . , βp1,1)
T ∈

Rp1+1 and βk = (β1,k, β2,k, β3,k, . . . , βpk,k)
T ∈ Rpk for k = 2, . . . , r. Now we

change the ordering between coordinates of β according to the ordering defined by
a model M in the following way:

β = (βs1,1,1, βs2,1,1, . . . , βsj1,1,1︸ ︷︷ ︸
group 1

, βs2,2,2, . . . , βsj2,2,2︸ ︷︷ ︸
group 2

, . . . , βs2,r,2, . . . , βsjr,r,r︸ ︷︷ ︸
group r

, remaining coefficients).

(19)
In other words, levels of the first factor are partitioned as {0, 1, . . . , p1} = C1,1 ∪
C2,1 ∪ Cj1,1 and the smallest numbers in these clusters are s1,1, s2,1, . . . , sj1,1, re-
spectively. So, group 1 consists of the corresponding coefficients of β1 ∈ Rp1+1.
Next, levels of the second factor are partitioned as {0, 1, . . . , p2} = C1,2 ∪ C2,2 ∪
Cj2,2 and the smallest numbers in these clusters are s1,2, s2,2, . . . , sj2,2, respec-
tively. So, group 2 consists of the corresponding coefficients of β2 ∈ Rp2 . In
particular, group 2 does not contain βs1,2,2, because s1,2 corresponds to a cluster,
which contains a reference level of the second factor and we do not include coeffi-
cients corresponding to reference levels in vector β (cf. Section 2 in the main part
of the paper, the only exception is a reference level of the first factor). The same
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proceeding relates to the following factors. At the end, we write all coefficients,
which were not used before. They are called remaining coefficients in (19).

To make this new ordering more transparent we consider the example that we
have two factors: the first one with 8 levels and the second one with 7 levels. So,
p1 = 7, p2 = 6 and p = 14. Let M = (P1, P2) be as follows: P1 = {0, 2, 6} ∪
{3, 4, 5} ∪ {1, 7}, P2 = {0, 4} ∪ {1, 2, 6} ∪ {3, 5}. Then

β = (β0,1, β3,1, β1,1, β1,2, β3,2, β2,1, β6,1, β4,1, β5,1, β7,1, β4,2, β2,2, β6,2, β5,2).

Let m be a number of clusters indicated by the model M, which do not contain
reference levels plus one, i.e. m = j1 + (j2 − 1) + . . . + (jk − 1). The matrix
A0M is a (p − m) × p matrix of a form (BM , Ip−m) for a (p − m) × m matrix
BM and the identity matrix Ip−m, where the matrix BM is constructed as follows:
first, we define a connection between columns of BM and the first m coordinates
of (19) as follows: the first column of BM corresponds to βs1,1,1, the second one
corresponds to βs2,1,1 etc. Analogously, columns of Ip−m correspond to the last
p −m coordinates of (19) (i.e. those called remaining coefficients). Now we find
any 1 in the matrix Ip−m, say it is in a column t∗ and a row t∗ of the matrix Ip−m.
This column corresponds to some coordinate in (19), say βj∗,k∗ . It means that this
column corresponds to the j∗-th level of the k∗-th factor. Now we check to which
cluster this level belongs to. Then we find the smallest element in this cluster, say
r∗. If r∗ ̸= 0 or r∗ = 0 but k∗ = 1, then we take the matrix BM and write −1 in its
column corresponding to coordinate βr∗,k∗ and the row t∗. The remaining entries
in BM are filled in by zeroes.

In the above example we have m = 5 and

A0,M =

β0,1 β3,1 β1,1 β1,2 β3,2 β2,1 β6,1 β4,1 β5,1 β7,1 β4,2 β2,2 β6,2 β5,2

−1
−1
0
0
0
0
0
0
0

0
0
−1
−1
0
0
0
0
0

0
0
0
0
−1
0
0
0
0

0
0
0
0
0
0
−1
−1
0

0
0
0
0
0
0
0
0
−1

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
1


.

Therefore, the space LM defined in (18) consists of those vectors β, which deter-
mines the same partitions of factors’ levels (and the same as given by M ). These
partitions are also coded by A0,M .

10



3.2 Constrained minimization

In the paper we have many places where we consider β̂M , which is a minimum
loss estimator over Rp with constraints determined by the model M . Now we
can precisely define this minimization as argminβ∈LM

ℓ(β). In this subsection we
show that this constrained minimization can be replaced by the unconstrained one.

Let A1,M = (Im,0m×(p−m)) be a (m×p)-complement of A0,M to a invertible
matrix AM , that is:

AM =

[
A1,M

A0,M

]
and A−1

M =
[
A1

M |A0
M

]
=
[

Im
−BM

|0m×(p−m)

Ip−m

]
,

where A−1
M is calculated using the Schur complement.

Let βM be an arbitrary element of LM and ξM = A1,MβM , then βM =
A1

MξM . Indeed, we have

βM = A−1
M AMβM = A−1

M

[
A1,MβM
A0,MβM

]
=
[
A1

M |A0
M

] [ ξM
0p−m

]
= A1

MξM .

Therefore, LM in (18) can be equivalently expressed as

LM = {A1
Mξ : ξ ∈ Rm}.

Therefore, LM can be viewed as a linear space spanned by columns of A1
M . The

dimension of the space LM is called a size of the model M and denoted by |M |.
Clearly, we have |M | = m, so |M | is a number of different non-reference levels
(again with an exception for the first factor) indicated by the model M.

Fix the model M. We change the ordering of columns in X according to
the ordering induced by M, as in (19). Then a matrix ZM = XA1

M is simply
the matrix X with appropriate columns deleted or added to each other according
to partitions in the model M = (P1, . . . , Pr). We also have XβM = ZMξM .
We assume that the considered models are sufficiently sparse, which means that
r(ZM ) = |M | ≤ m̄, where m̄ < min(n, p) and r(ZM ) is the rank of ZM .

Therefore, constrained minimization argminβ∈LM
ℓ(β) can be replaced by

the unconstrained one as follows: we compute an ordinary least squares estima-
tor with a design matrix ZM , i.e. ξ̂M = (ZT

MZM )−1ZT
My. Then we calculate

β̂M = A1
M ξ̂M .

Finally, we also need the following notation of a projection matrix HM =
ZM (ZT

MZM )−1ZT
M .

11



3.3 Submodels

Now we can easily define submodels, namely M1 is a submodel of M2, if LM1 ⊂
LM2 . Roughly speaking, partitions induced by M1 and M2 are the same (LM1 =
LM2) or partitions induced by M1 contains at least one additional merging of levels
comparing to those induced by M2 (LM1 ⊊ LM2). Finally, a model determined by
a vector β is such M that β ∈ LM and M has the smallest size among all models
with this property. It is denoted Mβ.

4 Cone invertibility factor (CIF)

Consider linear model (1) from the main paper with numerical predictors only.
Let T be the set of indices corresponding to the support of the true vector β̊ and
T ′ = {1, . . . , p} \ T. Let βT and βT ′ be the restrictions of the vector θ ∈ Rp to the
indices from T and T ′, respectively. Now, for a ∈ (0, 1) we consider a cone

Ca = {θ ∈ Rp : |θT ′ |1 ≤
1 + a

1− a
|θT |1} .

In the case when p >> n three different characteristics measuring the potential
for consistent estimation of the model parameters have been introduced:
- the restricted eigenvalue [3]:

REa = inf
0̸=θ∈Ca

θTXTXθ

|θ|22
,

- the compatibility factor [5]:

Ka = inf
0̸=θ∈Ca

|T |θTXTXθ

|θT |21
,

- the cone invertibility factor (CIF, [24]): for q ≥ 1

ζa,q = inf
0̸=θ∈Ca

|T |1/q|XTXθ|∞
|θ|q

.

Relations between the above quantities are discussed, for instance, in van de Geer
and Bühlmann [22], Ye and Zhang [24], Huang et al. [8]. Moreover, notice that
ζa,∞ is the same as (3), if we omit weight matrix W.

We use CIF, since this factor allows for a sharp formulation of convergency
results for all lq norms with q ≥ 1. Indeed, the following estimation bounds are
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established for Lasso with numerical predictors (see Huang et al. [8, Section 3]):
with probability close to one

|β̂ − β̊|1 ≤ 2(1 + a)|T |λ
(1− a)Ka

=: R1
a (20)

|β̂ − β̊|2 ≤ (1 + a)|T |1/2λ
REa

=: R2
a (21)

|β̂ − β̊|q ≤ (1 + a)|T |1/qλ
ζa,q

=: R3
a,q (22)

Such estimation bounds are the main tool to prove selection consistency of modi-
fications of Lasso such as Thresholded Lasso, Adaptive Lasso or algorithms with
nonconvex penalties (SCAD, MCP). Indeed, these inequalities are used to prove
separability of Lasso, i.e. for each j ∈ T and k /∈ T we have |β̂j | ≥ |β̂k|. To get it
one has to assume additionally that β̊min = minj∈T |β̊j | is bounded from below by
twice the right-hand side of (20), (21) or (22). The latter condition means that the
signal has to be large enough. Obviously, one wants this condition to be as weak as
possible. Below we show that the right-hand side of (20), (21), (22) is the smallest
for CIF with q = ∞.

Clearly, R3
a,q is the smallest for q = ∞. Besides, for each β ∈ Ca we have

|β|1 ≤ 2|βT |1/(1−a) and |βT |21 ≤ |T ||β|22. These two facts imply that Ka ≥ REa

and
√
REaKa ≤ 2ζa,2/(1− a). Therefore, we obtain

R3
a,∞ ≤ R3

a,2 ≤
2(1 + a)|T |1/2λ
(1− a)

√
REaKa

≤ 2(1 + a)|T |1/2λ
(1− a)REa

≤ 2R2
a/(1− a).

Taking a not to close to one (for instance, a = 0.5) we obtain that (22) with q = ∞
is not larger than (21) with respect to the constant. However, it is possible that
Ka >> REa [22], which means that R3

a,∞ might be significantly smaller than R2
a.

Finally, for β ∈ Ca we have |β|∞ ≤ (1 + a)|βT |1/(1− a), which gives Ka ≤
2(1 + a)|T |ζa,∞/(1 − a)2. Consequenlty, R3

a,∞ ≤ (1 + a)R1
a/(1 − a), so R3

a,∞
is at most R1

a, if one takes a close to zero. Again, we can show the example that
R3

a,∞ is significanlty larger than R1
a. Consider the orthonormal case XTX = I.

Then ζa,∞ = 1 and Ka = inf 0̸=θ∈Ca

|T ||θ|22
|θT |21

≥ 1. On the other hand, Ka is smaller

than |T ||β|22
|βT |21

for any β ∈ Ca. Take a vector d ∈ Rp such that d has ones on the set T

and zeroes elsewhere. Clearly, d ∈ Ca for any a. Therefore, Ka ≤ |T ||d|22
|dT |21

= 1, so

we have Ka = 1. Consequently, R1
a = 2(1+a)|T |λ

(1−a) , so R1
a = 2|T |

1−aR
3
a,∞ > |T |R3

a,∞.

Therefore, R1
a is significantly larger than R3

a,∞, if |T | can tend to infinity.
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5 Description of real data sets and additional results of
experiments

We investigate five real data sets: the first two with binary responses and the next
three with continuous responses:
- the Adult data set [11] contains data from the 1994 US census. It contains 32,561
observations in a file adult.data and 16,281 observations in a file adult.test.
The response represents whether the individual’s income is higher than 50,000
USD per year or not. We preprocessed the data as in [20], i.e. we combined
two files together, removed 4 variables representing either irrelevant (fnlwgt) or
redundant (education-num) features or with values for the most part equal to zero
(capital-gain and capital-loss) and then removed the observations with missing
values. Preprocessing resulted in 45,222 observations with 2 continuous and 8 cat-
egorical variables with p = 93;
- the Promoter data set [7], [21] contains E. Coli genetic sequences of length 57.
The response indicates whether the region represents a gene promoter. We removed
the name variable and further worked with a data set consisting of 106 observations
with 57 categorical variables, each with 4 levels representing 4 nucleotides, thus
with p = 172.

Adult and Promoter data sets are available at the UCI Machine Learning Repos-
itory [6],
- the Airbnb data set reports rental price for a number of hosts offering rental in the
Airbnb service and is available from insideairbnb.com. The host is characterised by
a number of features like the neighbourhood, number of rooms, is it kids friendly,
the length of rental history, reviews etc. We follow [19] in using the same dated
version of the data set and in preprocessing the data as in [17], i.e. we compute
numeric sentiment for reviews or otherwise transform features into numbers and
normalize them (including the log transformation of the rental price), with the fol-
lowing exceptions: (1) we retain the host id, street and neighbourhood columns as
categorical variables, with 39393, 311 and 204 levels, respectively and (2) we skip
the feature selection step, since ability of considered methods to screen predictors
is one of the things we want to test in this paper. This preprocessing procedure
resulted in 49,976 observations with 765 variables (out of which 3 are categorical)
with p = 40668;
- the Insurance data set [10] contains data describing attributes of life insurance
applicants. The response is an 8-level ordinal variable measuring insurance risk of
the applicant, which we treat as a continuous response. We preprocessed the data
as in [20], i.e. we removed the irrelevant id variable and 13 variables with missing
values. Preprocessing resulted in 59,381 observations with 5 continuous and 108
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Table 1: Execution time of methods.
Dataset PDMR DMR SCOPE-8 SCOPE-32

Setting 1, snr=3, 11.67 15.25 335.6 332.03
Setting 2, snr=3, 11.57 15.56 371.91 353.68
Setting 3, snr=3, 11.47 15.11 352.84 370.06
Setting 4, snr=3, 11.48 15.21 361.14 326.89
Setting 5, snr=3, 12.71 16.81 504.25 764.15
Setting 6, snr=3, 12.17 16.49 712.94 1253.64
Setting 1, snr=4, 11.54 15.26 352.8 320.09
Setting 2, snr=4, 11.5 15.36 406.26 349.75
Setting 3, snr=4, 11.3 15.15 391.03 364.08
Setting 4, snr=4, 11.18 15.01 379.97 312.04
Setting 5, snr=4, 12.53 16.46 505.87 791.67
Setting 6, snr=4, 12.51 16.19 726.14 1255.18

categorical variables with p = 823;
- the Antigua data set [2] contains data concerning maize fertilizer experiments on
the Island of Antigua and is available at the R package DAAG [13]. The response
measures harvest. We removed the irrelevant id variable and one observation with
a clearly outlying value of ears variable. We treat plot as a categorical variable and
further worked with a data set consisting of 287 observations with 1 continuous
and 4 categorical variables with p = 58.

Finally, in Table 1 we state execution times of procedures. In the main paper
only results for SNR=3 are included. Here we see that results for SNR=4 are
similar.
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