Citations
On the classification of measure zero sets,
preprint (1983)
cited in:
- C. Laflamme, Some possible covers of measure zero sets , Coll. Math. 63 (1992), 211-218.
- C. Laflamme, A few sigma-ideals of measure zero sets related to their covers, Real Analysis Exchange 17(1) (1991/92), 362-370.
The existence of universal invariant semiregular
measures on groups, Proc. Amer. Math. Soc. 99 (1987),
507-508.
cited in:
- M. Laczkovich, Paradoxical decompositions: a survey of recent results, in:
First European Congress of Mathematics (Paris, July 6-10, 1992), Vol. II, Progr. Math., Vol. 120, Birkhauser, Basel, 159-184.
- S. Solecki, On Sets Nonmeasurable with Respect to Invariant Measures, Proceedings of the American Mathematical Society 119 (1993), 115-124.
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
The existence of universal invariant measures on
large sets, Fund. Math.133 (1989), 113-124.
cited in:
- M. Laczkovich, Paradoxical decompositions: a survey of recent results, in:
First European Congress of Mathematics (Paris, July 6-10, 1992), Vol. II, Progr. Math., Vol. 120, Birkhauser, Basel, 159-184.
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
On universal semiregular invariant measures,
Journal of Symbolic Logic 53 (1988), 1170-1176.
cited in:
- M. Laczkovich, Paradoxical decompositions: a survey of recent results, in:
First European Congress of Mathematics (Paris, July 6-10, 1992), Vol. II, Progr. Math., Vol. 120, Birkhauser, Basel, 159-184.
Extensions of isometrically invariant measures on
Euclidean spaces, Proc. Amer. Math. Soc. 110 (1990),
325-331.
cited in:
- M. Laczkovich, Paradoxical decompositions: a survey of recent results, in:
First European Congress of Mathematics (Paris, July 6-10, 1992), Vol. II, Progr. Math., Vol. 120, Birkhauser, Basel, 159-184.
- K. Ciesielski , Set Theoretic Real Analysis, J. Appl. Anal. 3(2) (1997), 143-190.
- M. Laczkovich, Paradoxes in measure theory, in: Handbook of Measure Theory, E. Pap, Ed. , Elsevier 2002, 83-123.
(2002), 285-302.
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
- A. B. Kharazishvili, Strange functions in real analysis, Chapman & Hall/CRC, 2006.
- A. B. Kharazishvili, A. Kirtadze, On nonmeasurable subgroups of uncountable
solvable groups, Georgian Mathematical Journal 14(3) (2007), 435-444.
- A. B. Kharazishvili, On thick subgroups of uncountable sigma-compact locally compact commutative groups,
Topology and its Applications 156 (14), 2009, 2364-2369.
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
- A. B. Kharazishvili, Some unsolved problems in measure theory, Proceedings of A. Razmadze
Mathematical Institute
Vol. 162 (2013), 59–77.
Extensions of measures invariant
under countable groups of transformations,
Trans. Amer. Math. Soc. 326
(1991), 211-226. (with A. Krawczyk).
cited in:
- K. Ciesielski, Set Theoretic Real Analysis , J. Appl. Anal.3(2) (1997), 143-190.
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
- A. B. Kharazishvili, A. P. Kirtadze, On Weakly Metrically Transitive Measures and Nonmeasurable Sets,
Real Anal. Exchange Volume 32(2) (2006), 553-562.
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
- P. S. Chami, N. Sookoo, Induced measures on mu**-measurable sets, Journal of
Interdisciplinary Mathematics 13(6), 2010, 691-702.
Paradoxical decompositions and invariant
measures, Proc. Amer. Math. Soc. 111 (1991), 533-539.
cited in:
- D. H. Fremlin, Real-valued-measurable cardinals,
in: Set Theory of the Reals, H. Judah, Ed., Bar-Ilan University (1993), 151-304.
- M. Laczkovich, Paradoxical decompositions: a survey of recent results, in:
First European Congress of Mathematics (Paris, July 6-10, 1992), Vol. II, Progr. Math., Vol. 120, Birkhauser, Basel, 159-184.
- M. Laczkovich, Paradoxes in measure theory, in: Handbook of Measure Theory, E. Pap, Ed. , Elsevier 2002, 83-123.
(2002), 285-302.
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
- A. Nowik, Hereditarily nonparadoxical sets revisited, Topology and its Applications, 161(2014), 377–385.
- P. Komjath, A remark on hereditarily nonparadoxical sets , Arch. for Math. Logic,
55(2016), 165–175.
When do equidecomposable sets have equal
measures?, Proc. Amer. Math. Soc. 113 (1991), 831-837.
cited in:
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
Strong Fubini axioms from measure extension
axioms, Comment. Math. Univ. Carolinae 33.2 (1992), 291-297.
cited in:
- R. D. Mabry, Subsets of the plane with constant linear shade, Real Analysis Exchange, 24(1) (1998/99), 35-38.
- D. H. Fremlin, Measure Theory, Vol. 5, Torres Fremlin, 2008.
The existence of invariant probability measures
for a group of transformations, Israel J. Math. 83 (1993),
343-352.
cited in:
- H. Becker and A. S. Kechris, Borel actions of Polish groups, Bulletin of the
American Mathematical Society, 28(2), (1993), 334-341.
- H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions,
Cambridge University Press, 1996.
- M. G. Nadkarni, Basic Ergodic Theory, Birkhauser, 1998.
- M. Laczkovich, Paradoxes in measure theory, in: Handbook of Measure Theory, E. Pap, Ed. , Elsevier 2002, 83-123.
(2002), 285-302.
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
The existence of invariant sigma-finite measures
for a group of transformations, Israel J. Math. 83 (1993),
275-287.
cited in:
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
- P. Niemiec, A note on invariant measures , Opuscula Mathematica, 31(3),
(2011), 425-431.
The existence of
nonmeasurable sets for invariant measures, Proc. Amer.
Math. Soc. 121 (1994), 579-584. (with M. Penconek)
cited in:
- W. Schindler, Measures
with Symmetry Properties Springer-Verlag, 2003.
When do sets admit congruent partitions,
Quart. J. Math. Oxford (2), 45 (1994), 255-265.
cited in:
- M. Laczkovich, Paradoxes in measure theory, in: Handbook of Measure Theory, E. Pap, Ed. , Elsevier 2002, 83-123.
(2002), 285-302.
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
Extending invariant measures on topological groups ,
in: The Proceedings of the Tenth Summer Conference on
Topology and Applications, Annals of the New York Academy of Sciences
788 (1996), 218-222.
cited in:
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
- R. Filipów, On the difference property of families of measurable functions, Colloq. Math. 97(2) (2003), 169-180.
- A. B. Kharazishvili, A. Kirtadze, On nonmeasurable subgroups of uncountable
solvable groups, Georgian Mathematical Journal 14(3) (2007), 435-444.
- A. B. Kharazishvili, On thick subgroups of uncountable sigma-compact locally compact commutative groups,
Topology and its Applications, 156(14), (2009), 2364-2369.
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
- A. B. Kharazishvili, Some unsolved problems in measure theory, Proceedings of A. Razmadze
Mathematical Institute
Vol. 162 (2013), 59–77.
Extending isometrically invariant measures
on R n - a solution to Ciesielski's query ,
Real Analysis Exchange 21 (1995/96), 582-589.
cited in:
- K. Ciesielski, Set Theoretic Real Analysis , J. Appl. Anal. 3(2) (1997), 143-190.
- M. Laczkovich, Paradoxes in measure theory, in: Handbook of Measure Theory, E. Pap, Ed. , Elsevier 2002, 83-123.
(2002), 285-302.
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
The uniqueness of Haar measure and set theory ,
Coll. Math. 74 (1997), 109-121.
<
cited in:
- A. B. Kharazishvili, Nonmeasurable sets and functions, Jan van Mill, Ed., Elsevier Science
B.V., 2004.
- A. P. Kirtadze, On the Uniqueness Property for invariant measures, Georgian
Math. Journal 12(3), (2005), 475-483.
- G. Pantsulaia, Invariant and quasiinvariant neasures in infinite-dimensional topological
vector spaces, Nova Science Publishers, Inc, 2007 .
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
- A. B. Kharazishvili, Some unsolved problems in measure theory, Proceedings of A. Razmadze
Mathematical Institute
Vol. 162 (2013), 59–77.
Strong Fubini properties of ideals ,
Fund. Math. 159 (1999), 135-152. (with I. Reclaw)
cited in:
- I. Recław, Fubini properties for sigma-centered sigma-ideals, preprint, http://mat.ug.edu.pl/~reclaw/publications.html.
- I. Recław, On the double difference property for functions with the Baire Property, preprint, http://mat.ug.edu.pl/~reclaw/publications.html.
- R. Filipów, On the difference property of the family of functions with the Baire property, Acta Math. Hungar.100(1-2) (2003), 97-104.
- T. Natkaniec, The I-almost constant
convergence of sequences of
real functions, Real Analysis Exchange 28(2) (2002/2003), 481-491.
- K. Ciesielski, M. Laczkovich, Strong Fubini properties for measure and category,
Fund. Math. 178(2) (2003), 171-188.
- É. Matheron and M. Zelený, Descriptive set theory of families of small sets,
Bull. Symbolic Logic 13(4) (2007), 482-537.
- M. R. Burke, N. D. Macheras, W. Strauss, Marginals and the product strong lifting problem , Topology Appl. 275 (2020), 107021, 20 pp.
Fubini properties of ideals ,
Real Analysis Exchange 25(1999/00), no.2, 565-578. (with I. Reclaw)
cited in:
- I. Recław, Fubini properties for sigma-centered sigma-ideals, preprint, http://mat.ug.edu.pl/~reclaw/publications.html.
- S.Solecki, A Fubini theorem, Topology and its Applications 154 (2007), 2462-2464.
- I. Farah, J. Zapletal, Between Maharam's and von Neumann's problems,
Math. Res. Lett. 11(5-6) (2004), 673-684.
- P. Borodulin-Nadzieja, Sz. Głab, Ideals with bases of unbounded Borel complexity,
Mathematical Logic Quarterly, 57 (2011), no. 6, 582-590.
- H. Becker, Cocycles and continuity , Trans. Amer. Math. Soc. 365 (2013), no. 2, 671-719.
- A. Paszkiewicz, On microscopic sets and Fubini property in all directions , Math. Slovaca 68 (2018), no. 5, 1041-1048.
- A. Cieślak; M. Michalski, Universal sets for ideals , Bull. Pol. Acad. Sci. Math. 66 (2018), no. 2, 157–166.
- T. Baumhauer, M. Goldstern, S. Shelah, The higher Cichoń diagram, Fund. Math. 252 (2021), no. 3, 241–314.
Extending Baire Property by countably many sets ,
Proc. Amer. Math. Soc. 129(2001), no.1, 271-278.
cited in:
- P. Kawa, J. Pawlikowski, Extending Baire Property by uncountably many sets, Journal of Symbolic Logic 75(3) (2010), 896-904.
Universally Meager Sets , Proc. Amer. Math. Soc. 129(2001),
no.6, 1793-1798.
cited in:
- A. Nowik, T. Weiss, Not every Q-set is perfectly meager in the transitive sense, Proc. Amer. Math. Soc.
128(10) (2000), 3017-3024.
- I. Recław, On a construction of universally null sets, Real Analysis Exchange, 27(1) (2001/02), 321-323.
- T. Bartoszynski, S. Shelah, Perfectly meager sets and universally null sets, Proc. Amer. Math. Soc. 130(12) (2002), 3701-3711.
- T. Bartoszynski, On perfectly meager sets, Proc. Amer. Math. Soc., 130(4) (2002), 1189-1195.
- O. Zindulka, Small opaque sets, Real Analysis Exchange 28(2), 2002/2003, 455-470.
- T. Bartoszynski, Remarks on small sets of reals, Proc. Amer. Math. Soc., 131(2) (2003), 625-630.
- T. Bartoszyński, B. Tsaban, Hereditary topological diagonalizations and the Menger-Hurewicz Conjectures, Proc. Amer. Math. Soc., 134(2) (2006), 605-615.
- P. Elias, Permitted sets are perfectly meager in transitive sense, preprint (2007),
http://ics.upjs.sk/~elias/publications/.
- B. Tsaban, L. Zdomsky, Scales, fields, and a problem of Hurewicz, J. Eur. Math. Soc. (JEMS) 10 (2008),
837-866.
- A. Nowik, P. Reardon, Uniform algebras in the Cantor and Baire space, Journal of Applied Analysis 14(2) (2008), 227-238.
- J. Kraszewski, Everywhere meagre and everywhere null sets, Houston journal of mathematics 35(1) (2009), 103-111.
- M. Sakai, Menger subsets of the Sorgenfrey line, Proc. Amer. Math. Soc. 137 (2009), 3129-3138.
- P. Elias, Dirichlet sets, Erdős-Kunen-Mauldin theorem, and analytic subgroups of the reals, Proc. Amer. Math. Soc., (2010).
- T. Banakh, N. Lyaskovska,
Constructing universally small subsets of a given packing index in Polish groups,
Colloq. Math. 125 (2011), no. 2, 213–220.
- O. Zindulka, Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps,
Fund. Math. 218(2) (2012), 95–119.
- O. Zindulka, Small sets of reals through the prism of fractal dimensions, Fund. Math. 218(2) (2012), 95–119.
- R. Pol, P. Zakrzewski, On Borel mappings and sigma-ideals generated by closed sets,
Adv. Math. 231 (2012), no. 2, 651-663.
- M. Korch, T. Weiss, On the Class of Perfectly Null Sets and Its Transitive Version,
Bulletin Polish Acad. Sci. Math. 64 (2016), 1-20.
- O. Zindulka, Strong measure zero and meager-additive sets through the prism of fractal measures, Comment. Math. Univ. Carolin. 60 (2019), 131–155.
- T. Banakh, N. Gabriyelyan, S.,
Baire category properties of some Baire type function spaces, Topology Appl. 272 (2020), 43 pp.
Some set-theoretic aspects of measure theory,
Cubo Matematica Educacional Vol. 3, no. 2 (2001), 75-88.
cited in:
- P.G.L. Porta Mana, A. Mansson, G. Bjork, The Laplace-Jaynes approach to induction,
preprint (2007), http://arxiv.org/PS_cache/physics/pdf/0703/0703126v2.pdf.
Measures on algebraic-topological structures,
Handbook of Measure Theory, ed. E. Pap, Elsevier 2002, 1091-1130.
cited in:
- M. Laczkovich, Paradoxes in measure theory, in: Handbook of Measure Theory, E. Pap, Ed. , Elsevier 2002, 83-123.
(2002), 285-302.
- T. Banakh, Cardinal characteristics of the ideal of Haar null sets,Comment.Math.Univ.Carolinae 45(1) (2004), 119-137.
- P. Niemiec, Invariant measures for equicontinuous semigroups of continuous transformations of a compact Hausdorff space, Topology and its Applications 153(18) (2006), 3373-3382.
- B. D. Miller, On the existence of invariant probability measures for Borel actions of countable semigroups ,
preprint (2006), http://glimmeffros.googlepages.com/.
- A. B. Kharazishvili, Topics in Measure Theory and Real Analysis: The Measure Extension
Problem and Related Questions, Atlantis Studies in Mathematics, J. van Mill, Ed.,
Atlantis Press, 2009.
- A. B. Kharazishvili, Finite families of negligible sets and invariant extensions of the Lebesgue
measure, Proc. A. Razmadze Math. Inst., vol. 151, 2009, pp. 119-123.
- A. B. Kharazishvili, A combinatorial problem on translation-invariant extensions of the
Lebesgue measure, Expositiones Mathematicae 29 (2011), 150–158.
- P. Niemiec, A note on invariant measures, Opuscula Mathematica, 31(3),
(2011), 425-431.
- A. B. Kharazishvili, Measurability Properties of Vitali Sets , The American Mathematical Monthly,
Vol. 118, No. 8 (October 2011), pp. 693-703.
- A. B. Kharazishvili, Some unsolved problems in measure theory, Proceedings of A. Razmadze
Mathematical Institute
Vol. 162 (2013), 59–77.
- A. B. Kharazishvili, On Countable Almost Invariant Partitions of G-Spaces, Ukr. Math. J.
Vol. 66, Issue 4 (2014), 572–579.
- A. B. Kharazishvili, On measurability properties of Bernstein sets, Proceedings of A. Razmadze
Mathematical Institute, 164 (2014), 63-70.
- A. B. Kharazishvili, To the existence of projective absolutely nonmeasurable functions,
Proceedings of A. Razmadze
Mathematical Institute, 166 (2014), 95-102.
- A. B. Kharazishvili, Set Theoretical Aspects of Real Analysis , CRC Press
Taylor & Francis Group, 2015.
- A. B. Kharazishvili, A partition of an uncountable solvable group into three negligible subsets ,
Bulletin of TICMI Vol. 19, No. 1 (2015), 37-44.
- A. B. Kharazishvili, On negligible and absolutely nonmeasurable subsets of uncountable
solvable groups , Transactions of A. Razmadze Mathematical Institute 170 (2016), 69–74.
- A. B. Kharazishvili, On the cardinal number of the family of all invariant extensions of a
nonzero sigma-finite invariant measure , Transactions of A. Razmadze Mathematical Institute,
170 (2016), 200–204.
- M. de Jeu, J. Rozendaal, Disintegration of positive isometric group representations on Lp-spaces ,
Positivity (2017), 673-710.
- A. B. Kharazishvili, Some remarks on the Steinhaus property for invariant extensions of the Lebesgue measure , Eur. J. Math. 5 (2019), no. 1, 81–90.
On a construction of universally small sets,
Real Analysis Exchange 27(2) (2002), pp.1-6.
cited in:
- A. B. Kharazishvili, A. Razmadze, On additive absolutely nonmeasurable Sierpiński-Zygmund functions,
Real Anal. Exchange Volume 31(2) (2005), 553-560.
- A. B. Kharazishvili, Strange functions in real analysis, Chapman & Hall/CRC, 2006.
- A. B. Kharazishvili, A.P. Kirtadze, On extensions of partial functions,Expositiones Mathematicae
25(4) (2007), 345-353.
- A. B. Kharazishvili, A nonseparable extension of the Lebesgue measure without new nullsets,Real Anal. Exchange Volume 33(1) (2007), 263-274.
- A. B. Kharazishvili, On a bad descriptive structure of Minkowski's sum
of certain small sets in a topological vector space, Theory of Stochastic Processes
14(30), no. 2, (2008), 35-41.
- A. B. Kharazishvili, On measurability of algebraic sums of small sets, Studia Scientiarum Mathematicarum Hungarica 45(3) (2008), 433-442 .
- A. B. Kharazishvili, On Absolutely Nonmeasurable Sets and Functions, Georgian Mathematical Journal 15(2) (2008), 317--325.
- W. Kubis, B. Vejnar, Covering an uncountable square by countably many
continuous functions, Proc. Amer. Math. Soc. 140(12) (2012), 4359–4368.
- A. B. Kharazishvili, On almost measurable real-valued functions, Studia Scientiarum Mathematicarum Hungarica (2009), http://www.akademiai.com/content/c3783201716g5743/.
- O. Zindulka, Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps, Fund. Math. 218(2) (2012), 95–119.
- T. Banakh, N. Lyaskovska,
Constructing universally small subsets of a given packing index in Polish groups ,
Colloq. Math. 125 (2011), no. 2, 213-220.
- A. B. Kharazishvili, To the existence of projective absolutely nonmeasurable functions,
Proceedings of A. Razmadze
Mathematical Institute, 166 (2014), 95-102.
- A. B. Kharazishvili, Set Theoretical Aspects of Real Analysis , CRC Press
Taylor & Francis Group, 2015.
Fubini properties for filter--related $\sigma$-ideals,
Topology and its Applications 136/1-3 (2004), 239-249.
cited in:
- S. Solecki , A Fubini theorem, Topology and its Applications 154 (2007), 2462-2464.
On the uniqueness of measure and category \sigma-ideals on
2^{\omega},
Journal of Applied Analysis 13, No. 2 (2007), 249-257.
cited in:
- P. Borodulin-Nadzieja, Sz. Głab, Ideals with bases of unbounded Borel complexity,
Mathematical Logic Quarterly, 57 (2011), no. 6, 582–590.
Universally meager sets, II,
Topology and its Applications 155 (2008), 1445-1449.
cited in:
- A. Nowik, P. Reardon, Uniform algebras in the Cantor and Baire space, Journal of Applied Analysis 14(2) (2008), 227-238.
- O. Zindulka, Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps,
Fund. Math. 218(2) (2012), 95–119.
On nonmeasurable selectors of countable group actions. Fund. Math. 202 (2009), 281-294
cited in:
- A. B. Kharazishvili, On countable almost invariant partitions of G-spaces, Ukrainian Math. J. 66 (2014), no. 4, 572–579.
On the complexity of the ideal of absolute null sets,
Ukrainian Math. J., 64 (2012), no. 2, 275-276.
cited in:
- T. Banakh, The Solecki submeasures on groups, preprint, http://arxiv.org/abs/1211.0717.
On Borel mappings and sigma-ideals generated by closed sets (with R. Pol),
Adv. Math. 231 (2012), no. 2, 651-663.
cited in:
- V. Kanovei, M. Sabok, J. Zapletal, Canonical Ramsey Theory on Polish Spaces ,
Cambridge University Press, Cambridge, 2013.
- J. Zapletal, Analytic equivalence relations and the forcing method,
Bulletin of Symbolic Logic 19(4) (2013), 473-490.
- J. Zapletal, Dimension theory and forcing, Topology and its Applications 167 (2014), 31-35.
- R. Pol, Note on Borel mappings and dimension, Topology and its Applications 195 (2015),
275-283.
- R. Pol, P. Zakrzewski On Boolean algebras related to sigma-ideals generated by compact sets,
Advances in Mathematics 297 (2016).
- T. Kihara, Higher randomness and lim-sup forcing within and beyond hyperarithmetic,
Proceedings of the Singapore programme "Sets and Computation", 2016, to appear.
- T. Kihara, A. Pauly, Point degree spectra of represented spaces, arXiv:1405.6866v4 [math.GN].
- E. Pol, R. Pol, Isometric embeddings and continuous maps onto the irrationals, Monatsh. Math. 186 (2018), no. 2, 337–344.
- T. Kihara, Effective forcing with Cantor manifolds, arXiv:1702.02630v1 [math.LO].
- R. Pol, P. Zakrzewski On Borel maps, calibrated sigma-ideals and homogeneity, Trans. Amer. Math. Soc. 370 (2018), 8959-8978.
- T. Kihara, On a metric generalization of the tt-degrees and effective dimension theory, J. Symb. Log. 84 (2019), no. 2, 726–749.
- R. Pol, P. Zakrzewski On Mazurkiewicz's sets, thin ?-ideals of compact sets and the space of probability measures on the rationals, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 2, Paper No. 42, 16 pp.
On Borel sets belonging to every invariant ccc sigma-ideal on
2^omega. Proc. Amer. Math. Soc. 141 (2013), no. 3, 1055-1065.
cited in:
On invariant ccc sigma-ideals on 2^N.
Acta. Math. Hungar. 143 (2) (2014), 367-377.
cited in:
- Conley, Clinton T.; Marks, Andrew S.; Tucker-Drob, Robin D., Brooks' theorem for measurable colorings, Forum Math. Sigma 4 (2016), e16, 23 pp.
- Burke, M. R.; Macheras, N. D.; Strauss, W., Products of derived structures on topological spaces, Topology Appl. 201 (2016), 247–268.
A characterization of the meager ideal.
Comment. Math. Univ. Carolin. 56,1 (2015) 45–50.
cited in:
On Boolean algebras related to sigma-ideals
generated by compact sets. (with R. Pol)
Adv. Math. 297 (2016), 196-213.
cited in:
- R. Pol, P. Zakrzewski, On Borel maps, calibrated sigma-ideals
and homogeneity, Trans. Amer. Math. Soc. 370 (2018), 8959-8978.
Combinatorics of ideals – selectivity versus density. (with A. Kwela)
Comment. Math. Univ. Carolin. 58,2 (2017), 261-266.
cited in:
- M. Kwela, A. Nowik, Ideals of nowhere dense sets in some topologies on positive integers, Topology Appl. 248 (2018), 149-163.
On Borel maps, calibrated sigma-ideals
and homogeneity. (with R. Pol) Trans. Amer. Math. Soc. 370 (2018), 8959-8978.
cited in: