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Abstract
Timed basic parallel processes (TBPP) extend communication-free Petri nets (aka. BPP or commut-
ative context-free grammars) by a global notion of time. TBPP can be seen as an extension of timed
automata (TA) with context-free branching rules, and as such may be used to model networks of
independent timed automata with process creation. We show that the coverability and reachability
problems (with unary encoded target multiplicities) are PSPACE-complete and EXPTIME-complete,
respectively. For the special case of 1-clock TBPP, both are NP-complete and hence not more
complex than for untimed BPP. This contrasts with known super-Ackermannian-completeness and
undecidability results for general timed Petri nets. As a result of independent interest, and basis for
our NP upper bounds, we show that the reachability relation of 1-clock TA can be expressed by a
formula of polynomial size in the existential fragment of linear arithmetic, which improves on recent
results from the literature.
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1 Introduction

We study safety properties of unbounded networks of timed processes, where time is global
and elapses at the same rate for every process. Each process is a timed automaton (TA) [7]
controlling its own set of private clocks, not accessible to the other processes. A process can
dynamically create new sub-processes, which are thereafter independent from each other and
their parent, and can also terminate its execution and disappear from the network.

While such systems can be conveniently modelled in timed Petri nets (TdPN), verification
problems for this model are either undecidable or prohibitively complex: The reachability
problem is undecidable even when individual processes carry only one clock [41] and the
coverability problem is undecidable for two or more clocks. In the one-clock case coverability
remains decidable but its complexity is hyper-Ackermannian [6, 28].

These hardness results however require unrestricted synchronization between processes,
which motivates us to study of the communication-free fragment of TdPN, called timed basic
parallel processes (TBPP) in this paper. This model subsumes both TA and communication-
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free Petri nets (a.k.a. BPP [14, 24]). The general picture that we obtain is that extending
communication-free Petri nets by a global notion of time comes at no extra cost in the
complexity of safety checking, and it improves on the prohibitive complexities of TdPN.

Our contributions. We show that the TBPP coverability problem is PSPACE-complete,
matching same complexity for TA [7, 25], and that the more general TBPP reachability
problem is EXPTIME-complete, thus improving on the undecidability of TdPN. The lower
bounds already hold for TBPP with two clocks if constants are encoded in binary; EXPTIME-
hardness for reachability with no restriction on the number of clocks holds for constants
in {0, 1}. The upper bounds are obtained by reduction to TA reachability and reachability
games [30], and assume that process multiplicities in target configurations are given in unary.

In the single-clock case, we show that both TBPP coverability and reachability are
NP-complete, matching the same complexity for (untimed) BPP [24]. This paves the way
for the automatic verification of unbounded networks of 1-clock timed processes, which
is currently lacking in mainstream verification tools such as UPPAAL [34] and KRONOS
[46]. The NP lower bound already holds when the target configuration has size 2; when
it has size one, 1-clock TBPP coverability becomes NL-complete, again matching the same
complexity for 1-clock TA [33] (and we conjecture that 1-clock reachability is in PTIME under
the same restriction).

As a contribution of independent interest, we show that the ternary reachability relation of
1-clock TA can be expressed by a formula of existential linear arithmetic (∃LA) of polynomial
size. By ternary reachability relation we mean the family of relations {→pq} s.t. µ

δ→pq ν

holds if from control location p and clock valuation µ ∈ Rk≥0 it is possible to reach control
location q and clock valuation ν ∈ Rk≥0 in exactly δ ∈ R≥0 time. This should be contrasted
with analogous results (cf. [27]) which construct formulas of exponential size, even in the
case of 1-clock TA. Since the satisfiability problem for ∃LA is decidable in NP, we obtain a
NP upper bound to decide ternary reachability →pq. We show that the logical approach
is optimal by providing a matching NP lower bound for the same problem. Our NP upper
bounds for the 1-clock TBPP coverability and reachability problems are obtained as an
application of our logical expressibility result above, and the fact that ∃LA is in NP; as a
further technical ingredient we use polynomial bounds on the piecewise-linear description of
value functions in 1-clock priced timed games [29].

Related research. Starting from the seminal PSPACE-completeness result of the nonempti-
ness problem for TA [7] (cf. also [25]), a rich literature has emerged considered more challen-
ging verification problems, including the symbolic description of the reachability relation
[20, 22, 31, 23, 27]. There are many natural generalizations of TA to add extra modelling cap-
abilities, including time Petri Nets [36, 38] (which associate timing constraints to transitions)
the already mentioned timed Petri nets (TdPN) [41, 6, 28] (where tokens carry clocks which
are tested by transitions), networks of timed processes [5], several variants of timed pushdown
automata [12, 21, 8, 43, 2, 40, 9, 19, 18], timed communicating automata [32, 16, 4, 15], and
their lossy variant [1], and timed process calculi based on Milners CCS (e.g. [10]). While
decision problems for TdPN have prohibitive complexity/are undecidable, it has recently been
shown that structural safety properties are PSPACE-complete using forward accelerations [3].

Outline. In Section 2 we define TBPP and their reachability and coverability decision
problems. In Section 3 we show that the reachability relation for 1-clock timed automata
can be expressed in polynomial time in an existential formula of linear arithmetic, and that
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the latter logic is in NP. We apply this result in Sec. 4 to show that the reachability and
coverability problems for 1-clock TBPP is NP-complete. Finally, in Section 5 we study the
case of TBPP with k ≥ 2 clocks, and in Section 6 we draw conclusions. Full proofs can be
found in the technical report [17].

2 Preliminaries

Notations. We use N and R≥0 to denote the sets of nonnegative integers and reals, respect-
ively. For c ∈ R≥0 we write int(c) ∈ N for its integer part and frac(c) def= c − int(c) for its
fractional part. For a set X , we use X ∗ to denote the set of finite sequences over X and X⊕
to denote the set of finite multisets over X , i.e., functions NX . We denote the empty multiset
by ∅, we denote the union of two multisets α, β ∈ NX by α+ β, which is defined point-wise,
and by α ≤ β we denote the natural partial order on multisets, also defined point-wise. The
size of a multiset α ∈ NX is |α| =

∑
X∈X α(X). We overload notation and we let X ∈ X

denote the singleton multiset of size 1 containing element X. For example, if X,Y ∈ X , then
the multiset consisting of 1 occurrence of X and 2 of Y will be denoted by α = X + Y + Y ;
it has size |α| = 3.

Clocks. Let C be a finite set of clocks. A clock valuation is a function µ ∈ RC≥0 assigning a
nonnegative real to every clock. For t ∈ R≥0, we write µ+ t for the valuation that maps clock
x ∈ C to µ(x) + t. For a clock x ∈ C and a clock or constant e ∈ C ∪ N let µ[x := e] be the
valuation ν s.t. ν(x) = µ(e) and ν(z) = µ(z) for every other clock z 6= x (where we assume
µ(k) = k for a constant k ∈ N); for a sequence of assignments R = (x1 := e1; · · · ;xn := en)
let µ[R] = µ[x1 := e1] · · · [xn := en]. A clock constraint is a conjunction of linear inequalities
of the form c ./ k, where c ∈ C, k ∈ N, and ./ ∈ {<,≤,=,≥, >}; we also allow true for the
trivial constraint which is always satisfied. We write µ |= ϕ to denote that the valuation µ
satisfies the constraint ϕ.

Timed basic parallel processes. A timed basic parallel process (TBPP) consists of finite
sets C, X , and R of clocks, nonterminal symbols, and rules. Each rule is of the form

X
ϕ;R==⇒ α

where X ∈ X is a nonterminal, ϕ is a clock constraint, R is a sequence of assignments of
the form x := e, where e is either a constant in N or a clock in C, and α ∈ X⊕ is a finite
multiset of successor nonterminals1. Whenever the test ϕ ≡ true is trivial, or R is the empty
sequence, we just omit the corresponding component and just write X ϕ=⇒ α, X R=⇒ α, or
X =⇒ α. Finally, we say that we reset the clock xi if we assign it to 0.

Henceforth, we assume w.l.o.g. that the size |α| is at most 2. A rule with α = ∅ is called
a vanishing rule, and a rule with |α| = 2 is called a branching rule. We will write k-TBPP to
denote the class of TBPP with k clocks.

A process is a pair (X,µ) ∈ X × RC≥0 comprised of a nonterminal X and a clock
valuation µ, and a configuration α is a multiset of processes, i.e., α ∈ (X × RC≥0)⊕. For
a process P = (X,µ) and t ∈ R≥0, we denote by P + t the process (X,µ + t), and for a

1 We note that clock updates x := k with k ∈ N can be encoded with only a polynomial blow-up by
replacing them with x := 0, while recording in the finite control the last update k, and replacing a
test x ./ h with x ./ h − k. We use them as a syntactic sugar to simplify the presentation of some
constructions.
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15:4 Timed Basic Parallel Processes

configuration α = P1 + · · ·+ Pn, we denote by α+ t the configuration Q1 + · · ·+Qn, where
Q1 = P1 + t, . . . , Qn = Pn + t. The semantics of a TBPP (C,X ,R) is given by an infinite
timed transition system (C,→), where C = (X × RC≥0)⊕ is the set of configurations, and
→⊆ C × R≥0 × C is the transition relation between configurations. There are two kinds
of transitions:

Time elapse: For every configuration α ∈ C and t ∈ R≥0, there is a transition α t−→ α + t

in which all clocks in all processes are simultaneously increased by t. In particular, the
empty configuration stutters: ∅ t−→ ∅, for every t ∈ R≥0.

Discrete transitions: For every configuration γ = α+ (X,µ) +β ∈ C and rule X ϕ;R==⇒ Y +Z

s.t. µ |= ϕ there is a transition γ 0−−→ α+(Y, ν)+(Z, ν)+β, where ν = µ[R]. Analogously,

rules X ϕ;R==⇒ Y and X ϕ;R==⇒ ∅ induce transitions γ 0−−→ α+ (Y, ν) + β and γ 0−−→ α+ β.

A run starting in α and ending in β is a sequence of transitions α = α0
t1−−→ α1 · · ·

tn−−→ αn = β.
We write α t−−→ β whenever there is a run as above where the sum of delays is t = t1 + · · ·+ tn,
and we write α ∗−−→ β whenever α t−−→ β for some t ∈ R≥0.

TBPP generalise several known models: A timed automaton (TA) [7] is a TBPP without
branching rules; in the context of TA, we will sometimes call nonterminals with the more
standard name of control locations. Untimed basic parallel processes (BPP) [14, 24] are TBPP
over the empty set of clocks X = ∅. TBPP can also be seen as a structural restriction of
timed Petri nets [6, 28] where each transition consumes only one token at a time.

TBPP are related to alternating timed automata (ATA) [37, 35]: Branching in TBPP
rules corresponds to universal transitions in ATA. However, ATA offer additional means of
synchronisation between the different branches of a run tree: While in a TBPP synchronisation
is possible only through the elapse of time, in an ATA all branches must read the same timed
input word.

Decision problems. We are interested in checking safety properties of TBPP in the form of
the following decision problems. The reachability problem asks whether a target configuration
is reachable from a source configuration.

Input: A TBPP (C,X ,R), an initial X ∈ X and target nonterminals T1, . . . , Tn ∈ X .
Question: Does (X,~0) ∗−−→ (T1,~0) + · · ·+ (Tn,~0) hold?

It is crucial that we reach all processes in the target configurations at the same time, which
provides an external form of global synchronisation between processes.

Motivated both by complexity considerations and applications for safety checking, we
study the coverability problem, where it suffices to reach some configuration larger than the
given target in the multiset order. For configurations α, β ∈ (X × RC≥0)⊕, let α ∗−−→·≥ β

whenever there exists γ ∈ (X × RC≥0)⊕ s.t. α ∗−−→ γ ≥ β.

Input: A TBPP (C,X ,R), an initial X ∈ X and target nonterminals T1, . . . , Tn ∈ X .
Question: Does (X,~0) ∗−−→·≥ (T1,~0) + · · ·+ (Tn,~0)?

The simple reachability/coverability problems are as above but with the restriction that
the target configuration is of size 1, i.e., a single process. Notice that this is a proper
restriction, since reachability and coverability do not reduce in general to their simple variant.
Finally, the non-emptiness problem is the special case of the reachability problem where the
target configuration α is the empty multiset ∅.
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In all decision problems above the restriction to zero-valued clocks in the initial process
is mere convenience, since we could introduce a new initial nonterminal Y and a transition
Y

x1:=µ(x1);...;xn:=µ(xn)===============⇒ X initialising the clocks to the initial values provided by the (rational)
clock valuation µ ∈ QC≥0. Similarly, if we wanted to reach the final configuration α = (X1, µ1)+
(X2, µ2) with µ1, µ2 ∈ QC≥0, then we could add two nonterminals Y1, Y2 and two new rules

X1
x1=µ1(x1)∧···∧xn=µ1(xn);x1:=0;...;xn:=0===========================⇒ Y1 and X2

x1=µ2(x1)∧···∧xn=µ2(xn);x1:=0;...;xn:=0===========================⇒ Y2

and check whether X ∗−−→ (Y1,~0) + (Y2,~0) holds. (It is standard to transform TBPP with
constraints of the form xi = k with k ∈ Q≥0 in the form xi = k with k ∈ N.) Similarly, the
restriction of having just one initial nonterminal process is also w.l.o.g., since if we wanted to
check reachability from (X1,~0) + (X2,~0) we could just add a new initial nonterminal X and
a branching rule X =⇒ X1 +X2.

For complexity considerations we will assume that all constants appearing in clock
constraints are given in binary encoding, and that the multiplicities of target processes
are in unary.

3 Reachability Relations of One-Clock Timed Automata

In this section we show that the reachability relation of 1-clock TA is expressible as an
existential formula of linear arithmetic of polynomial size. Since the latter fragment is in NP,
this gives an NP algorithm to check whether a family of TA can reach the respective final
locations at the same time. This result will be applied in Sec. 4 to show that coverability and
reachability of 1-TBPP are in NP. We first show that existential linear arithmetic is in NP
(which is an observation of independent interest), and then how to express the reachability
relation of 1-TA in existential linear arithmetic in polynomial time.

The set of terms t is generated by the following abstract grammar

s, t ::= x | k | btc | frac(t) | −t | s+ t | k · t,

where x is a rational variable, k ∈ Z is an integer constant encoded in binary, btc represents
the integral part of t, and frac(t) its fractional part. Linear arithmetic (LA) is the first order
language with atomic proposition of the form s ≤ t [45], we denote by ∃LA its existential
fragment, and by qf-LA its quantifier-free fragment. Linear arithmetic generalises both
Presburger arithmetic (PA) and rational arithmetic (RA), whose existential fragments are
known to be in NP [39, 26]. This can be generalised to ∃LA. (The same result can be derived
from the analysis of [11, Theorem 3.1]).

I Theorem 1. The existential fragment ∃LA of LA is in NP.

Let A = (C,X ,R) be a k-TA. The ternary reachability relation of A is the family of
relations {→XY }X,Y ∈X , where each →XY⊆ RC≥0 × R≥0 × RC≥0 is defined as: µ δ→XY ν

iff (X,µ) δ−−→ (Y, ν). We say that the reachability relation is expressed by a family of LA
formulas {ϕXY }X,Y ∈X if

µ
δ→XY ν iff (µ, δ, ν) |= ϕXY (~x, t, ~y), for every X,Y ∈ X , µ, ν ∈ RC≥0, δ ∈ R≥0.

In the formula ϕXY (~x, t, ~y), ~x are k variables representing the clock values in location X at
the beginning of the run, ~y are k variables representing the clock values in location Y at the
end of the run, and t is a single variable representing the total time elapsed during the run.
In the rest of this section, we assume that the TA has only one clock X = {x}.

CONCUR 2019



15:6 Timed Basic Parallel Processes

The main result of this section is that 1-TA reachability relations are expressible by ∃LA
formulas constructible in polynomial time.

I Theorem 2. Let A be a 1-TA. The reachability relation {→XY }X,Y ∈X is expressible as a
family of formulas {ϕXY }X,Y ∈X of existential linear arithmetic ∃LA in polynomial time.

In the rest of the section we prove the theorem above. We begin with some preliminaries.

Interval abstraction. We replace the integer value of the clock x by its interval [33]. Let
0 = k0 < k1 < · · · < kn < kn+1 =∞ be all integer constants appearing in constraints of A,
and let the set of intervals be the following totally ordered set:

Λ = {{k0} < (k0, k1) < {k1} < · · · < (kn−1, kn) < {kn} < (kn, kn+1)} .

Clearly, we can resolve any constraint of A by looking at the interval λ ∈ Λ. We write λ |= ϕ

whenever v |= ϕ for some v ∈ λ (whose choice does not matter by the definition of λ).

The construction. Let A = ({x} ,X ,R) be a TA. In order to simplify the presentation
below, we assume w.l.o.g. that the only clock updates are resets x := 0 (cf. footnote 1). We
build an NFA B = (Σ, Q,→) where Σ contains symbols (r, ε) and (r,Xλ) for every transition
r ∈ R of A and interval λ ∈ Λ, and an additional symbol τ representing time elapse, and
Q = X × Λ is a set of states of the form (X,λ), where X ∈ X is a control location of
A and λ ∈ Λ is an interval. Transitions →⊆ Q × Σ × Q are defined as follows. A rule
r = X

ϕ;R==⇒ Y ∈ R of A generates one or more transitions in B of the form

(X,λ) (r,a)−−−→ (Y, µ)

whenever λ |= ϕ and any of the following two conditions is satisfied:
the clock is not reset i.e R is equal x := x, and µ = λ, a = ε, or
the clock is reset x := 0, µ = {0}, and the automaton emits a tick a = Xλ.

A time elapse transition is simulated in B by transitions of the form

(X,λ) τ−−→ (X,µ), λ ≤ µ (the total ordering on intervals).

Reachability relation of A. For a set of finite words L ⊆ Σ∗, let ψL(~y) be a formula of
existential Presburger arithmetic with a free integral variable yλ for every interval λ ∈ Λ
counting the number of symbols of the form (r,Xλ), for some r ∈ R. The formula ψL can be
computed from the Parikh image of L: By [44, Theorem 4], a formula ψ̃L(~z) of existential
Presburger arithmetic can be computed in linear time from an NFA (or even a context-free
grammar) recognising L, and then one just defines ψL(~y) ≡ ∃~z ·ψ̃L(~z)∧

∧
λ∈Λ yλ =

∑
r∈R zr,λ.

Let Lcd be the regular language recognised by B by making c initial and d final, and let
Λ = {λ0, . . . , λ2n+1} contain 2n + 2 intervals. Let ψcd(x, t, x′) be a formula of existential
Presburger arithmetic computing the total elapsed time t, given the initial x and final x′
values of the unique clock:

ψcd(x, t, x′) ≡ ∃y0, . . . , y2n+1 · ψLcd
(by0c, . . . , by2n+1c) ∧

∃z0, . . . , z2n+1 ·
∧
λi∈Λ

(zi ∈ yi · λi) ∧ t = x′ − x+
∑
λi∈Λ

zi, where

z ∈ y · λ ≡
{
a · y < z < b · y if λ = (a, b),
z = a · y if λ = {a} .



L. Clemente, P. Hofman, and P. Totzke 15:7

Intuitively, yi represents the total number of times the clock is reset while in interval λi, and
zi represents the sum of the values of the clock when it is reset in interval λi. For control
locations X,Y of A, let

ϕXY (x, t, x′) ≡
∨

λ,µ∈Λ

{x ∈ λ ∧ x′ ∈ µ ∧ ψcd(x, t, x′) | c = (X,λ), d = (Y, µ)}.

The correctness of the construction is stated below.

I Lemma 3. For every configurations (X,u) and (Y, v) of A and total time elapse δ ≥ 0,

u
δ→XY v iff (u, δ, v) |= ϕXY (x, t, x′).

We conclude this section by applying Theorem 2 to solve the 1-TA ternary reachability
problem. The ternary reachability problem takes as input a TA A as above, with two
distinguished control locations X,Y ∈ X , and a total duration δ ∈ Q (encoded in binary),
and asks whether (~0) δ→XY (~0). The result below shows that computing 1-TA reachability
relations is optimal in order to solve the ternary reachability problem.

I Theorem 4. The ternary reachability problem for 1-TA is NP-complete.

Proof. For the upper bound, apply Theorem 2 to construct in polynomial time a formula of
∃LA expressing the reachability relation and check satisfiability in NP thanks to Theorem 1.

The lower bound can be seen by reduction from SubsetSum. Let S = {a1, . . . , ak} ⊆ N
and a ∈ N be the input to the subset sum problem, whereby we look for a subset S ′ ⊆ S
s.t. a =

∑
b∈S′ b. We construct a TA with a single clock x and locations X = {X0, . . . , Xk},

where X0 is the initial location and Xk the target. A path through the system describes a
subset by spending exactly 0 or ai time in location Xi (see Figure 1). In the constructed
automaton, (X1, 0) a−−→ (Xk, 0) iff the subset sum instance was positive. J

X0 X1 X2 Xk−1 Xk

x = a1;x := 0

x = 0

x = a2;x := 0

x = 0

x = ak;x := 0

x = 0

Figure 1 Reduction from subset sum to 1-TA (ternary) reachability. We have (X0, 0) t−−→ (Xk, 0)
iff t =

∑
b∈S′ b for some subset S ′ ⊆ {a1, . . . , ak}.

4 One-Clock TBPP

As a warm-up we note that the simple coverability problem for 1-TBPP, where the target
has size one, is inter-reducible with the reachability problem for 1-clock TA and hence
NL-complete [33].

I Theorem 5. The simple coverability problem for 1-clock TBPP is NL-complete.

Proof. The lower bound is trivial since 1-TBPP generalize 1-TA. For the other direction we
can transform a given TBPP into a TA by replacing branching rules of the form X

ϕ,R==⇒ Y +Z

with two rules X ϕ,R==⇒ Y and X ϕ,R==⇒ Z. In the constructed TA we have (X,µ) ∗−−→ (Y, ν) if,

and only if, (X,µ) ∗−−→ (Y, ν) + γ for some γ in the original TBPP. J

CONCUR 2019
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The construction above works because the target is a single process and so there are no
constraints on the other processes in γ, which were produced as side-effects by the branching
rules. The (non-simple) 1-TBPP coverability problem is in fact NP-complete. Indeed, even for
untimed BPP, coverability is NP-hard, and this holds already when target sets are encoded
in unary (which is the setting we are considering here) [24]. We show that for 1-TBPP this
lower bound already holds if the target has fixed size 2.

I Lemma 6. Coverability is NP-hard for 1-TBPP already for target sets of size ≥ 2.

Proof. We proceed by reduction from subset sum as in Theorem 4. The only difference
will be that here, we use one extra process to keep track of the total elapsed time. Let
S = {a1, . . . , ak} ⊆ N and t ∈ N be the input to the subset sum problem. We construct
a 1-TBPP with nonterminals X = {S,X0, . . . , Xk, Y }, where S is the initial nonterminal
and Y will be used to keep track of the total time elapsed. The rules are as in the proof
of Theorem 4, and additionally we have an initial branching rule S x=0==⇒ X0 + Y . We have

(S, 0) ∗−−→·≥ (Xk, 0) + (Y, t) if, and only if, t =
∑
b∈B b for some subset S ′ ⊆ S. J

In the remainder of this section we will argue (Theorem 11) that a matching NP upper
bound even holds for the reachability problem for 1-TBPP. Let us first motivate the key idea
behind the construction. Consider the following TBPP coverability query:

(S, 0) ∗−−→·≥ (A, 0) + (B, 0). (†)

If (†) holds, then there is a derivation tree witnessing that (S, 0) ∗−−→ (A, 0) + (B, 0) + γ for
some configuration γ. The least common ancestor of leaves (A, 0) and (B, 0) is some process
(C, c) ∈ (X × R≥0). Consider the TA A obtained from the TBPP by replacing branching
rules X ϕ;R==⇒ Xi +Xj with linear rules X ϕ;R==⇒ Xi and X

ϕ;R==⇒ Xj , and let the reachability
relation of A be expressed by ∃LA formulas {ϕXY }X,Y ∈X , which are of polynomial size
by Theorem 2. Then our original coverability query (†) is equivalent to satisfiability the
following ∃LA formula:

ψ ≡ ∃t0, t1, c ∈ R · (ϕSC(0, t0, c) ∧ ϕCA(c, t1, 0) ∧ ϕCB(c, t1, 0)) .

More generally, for any coverability query (S, 0) ∗−−→·≥ α the number of common ancestors
is linear in |α|, and thus we obtain a ∃LA formula ψ of polynomial size, whose satisfiability
we can check in NP thanks to Theorem 1.

I Theorem 7. The coverability problem for 1-clock TBPP is NP-complete.

In order to witness reachability instances we need to refine the argument above to restrict
the TA in such a way that they do not accidentally produce processes that cannot be removed
in time. To illustrate this point, consider a 1-TBPP with rules

X
x=0==⇒ Y + Z and Z

x>0==⇒ ∅.

Clearly (X, 0) ∗−−→ (Y, 0) holds in the TA with rules X x=0==⇒ Y and X x=0==⇒ Z instead of the
branching rule above. In the TBPP however, (X, 0) cannot reach (Y, 0) because the branching
rule produces a process (Z, 0), which needs a positive amount of time to be rewritten to ∅.
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I Definition 8. For a nonterminal X let VanishX ⊆ R2 be the binary predicate such that

VanishX(x, t) if (X,x) t−−→ ∅

Intuitively, VanishX(x, t) holds if the configuration (X,x) can vanish in time at most t.
The time it takes to remove a processes (Z, z) can be computed as the value of a one-

clock priced timed game [13, 29]. These are two-player games played on 1-clock TA where
players aim to minimize/maximize the cost of a play leading up to a designated target state.
Nonnegative costs may be incurred either by taking transitions, or by letting time elapse.
In the latter case, the incurred cost is a linear function of time, determined by the current
control-state. Bouyer et al. [13] prove that such games admit ε-optimal strategies for both
players, so have well-defined cost value functions determining the best cost as a function
of control-states and clock valuation. They prove that these value functions are in fact
piecewise-linear. Hansen et al. [29] later show that the piecewise-linear description has only
polynomially many line segments and can be computed in polynomial time2. We derive the
following lemma.

I Lemma 9. A qf-LA formula expressing VanishX is effectively computable in polyno-
mial time. More precisely, there is a set I of polynomially many consecutive intervals
{a0}(a0, a1){a1}(a1, a2){a2}, . . . (ak,∞) so that

VanishX(x, t) ≡
∨

0≤i≤k
(x = ai ∧ t ≥i ci) ∨ (ai < x < ai+1 ∧ t ≥i ci − bix),

where the ai, ci ∈ R can be represented using polynomially many bits, ≥i∈ {≥, >} and
bi ∈ {0, 1}, for all 0 ≤ i < k.

Proof (Sketch). One can construct a one-clock priced timed game in which minimizer’s
strategies correspond to derivation trees. To do this, let unary rules X ϕ;R==⇒ Y carry over

as transitions between (minimizer) states X,Y ; vanishing rules X ϕ=⇒ ∅ are replaced by
transitions leading to a new target state ⊥, which has a clock-resetting self-loop. Branching
rules X ϕ;R==⇒ Y + Z can be implemented by rules X ϕ=⇒ [Y,Z, ϕ], [Y, Z, ϕ] ϕ;R==⇒ Y and

[Y,Z, ϕ] ϕ;R==⇒ Z, where X,Y, Z are minimizer states and [Y, Z, ϕ] is a maximizer state. The
cost of staying in a state is 1, transitions carry no costs. Moreover, we need to prevent
maximizer from elapsing time from the states she controls. For this reason, we consider an
extension of price timed games where maximizer cannot elapse time. In the constructed
game, minimizer has a strategy to reach (⊥, 0) from (X,x) at cost t iff (X,x) t−−→ ∅. The
result now follows from [29, Theorem 4.11] (with minor adaptations in order to consider the
more restrictive case where maximizer cannot elapse time) that computes value functions
for the cost of reachability in priced timed games. These are piecewise-linear with only
polynomially many line segments of slopes 0 or 1 which allows to present VanishX in qf-LA
as stated. J

Lemma 9 allows us to compute a polynomial number of intervals I sufficient to describe
the VanishX predicates. We will call a pair (X, I) ∈ X ×I a region here. A crucial ingredient
for our construction will be timed automata that are restricted in which regions they are
allowed to produce as side-effects. To simplify notations let us assume w.l.o.g. that the given

2 This observation was already made, without proof, in [42, Sec. 7.2.2].
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TBPP has no resets along branching rules. Let I(r) ∈ I denote the unique interval containing
r ∈ R≥0, and for a subset S ⊆ X × I of regions write “Z ∈ S” for the clock constraint
expressing that (Z, I(x)) ∈ S. More precisely,

Z ∈ S ≡
∨

(Z,(ai,ai+1))∈S

ai < x < ai+1 ∨
∨

(Z,{ai}))∈S

ai = x.

I Definition 10. Let S ⊆ X × I be a set of regions for the 1-TBPP ({x},X ,R). We define
a timed automaton TAS = ({x},X ,RS) so that RS contains all of the rules in R with rhs
of size 1 and none of the vanishing rules. Moreover, every branching rule X ϕ=⇒ Y + Z in R
introduces

a rule X ϕ′=⇒ Y guarded by ϕ′ def= ϕ ∧ Z ∈ S, and

a rule X ϕ′=⇒ Z guarded by ϕ′ def= ϕ ∧ Y ∈ S.

I Theorem 11. The reachability problem for 1-clock TBPP is in NP.

Proof. Suppose that there is a derivation tree witnessing a positive instance of the reachability
problem and so that all branches leading to targets have duration τ . We can represent a
node by a triple (A, a, â) ∈ (X × R × R), where (A, a) is a TBPP process and the third
component â is the total time elapsed so far. Call a node (A, a, â) productive if it lies on a
branch from root to some target node. Naturally, every node (A, a, â) has a unique region
(A, I(a)) associated with it. For a productive node let us write

S(A, a, â)

for the set of regions of nodes which are descendants of (A, a, â) which are non-productive
but have a productive parent. See Figure 2 (left) for an illustration. Observe that

1. The sets S(A, a, â) can only decrease along a branch from root to a target.
2. If (A, a, â) has a productive descendant (C, c, ĉ) such that S(A, a, â) = S(C, c, ĉ), then

(A, a) ĉ−â−−−→ (C, c) in the timed automaton TAS .
3. Suppose (A, a, â) has only one productive child (C, c, ĉ) and that S(A, a, â) ⊃ S(C, c, ĉ).

Then it must also have another child (B, b, b̂) s.t. VanishB(b, τ − b̂) holds.
The first two conditions are immediate from the definitions of S and TAS . To see the
third, note that the S(A, a, â) ⊃ S(C, c, ĉ) implies that (A, a, â) has some non-productive
descendant (B, b, b̂) whose region (B, I(b)) is not in S(C, c, ĉ). Since (C, c, ĉ) is the only
productive child, that descendant must already be a child of (A, a, â). Finally, observe
that every non-productive node (B, b, b̂) satisfies VanishB(b, τ − b̂), as otherwise one of
its descendants is present at time τ , and thus must be a target node, contradicting the
non-productivity assumption.

The conditions above allow us to use labelled trees of polynomial size as reachability
witnesses: These witnesses are labelled trees as above where only as polynomial number of
checkpoints along branches from root to target are kept: A checkpoint is either the least
common ancestor of two target nodes (in which case a corresponding branching rule must
exist), or otherwise it is a triple of nodes as described by condition (3), where a region
(B, I(b)) is produced for the last time. The remaining paths between checkpoints are positive
reachability instances of timed automata TAS , as in condition (2), where the bottom-most
automata TAS satisfy that if (U, I) ∈ S then (z, 0) ∈ VanishU for all z ∈ I. Cf. Figure 2
(right). Notice that the existence of a witness of this form is expressible as a polynomially
large ∃LA formula thanks to Lemma 9 and Theorem 2.



L. Clemente, P. Hofman, and P. Totzke 15:11

(A, a, â)

(B, b, b̂) (C, c, ĉ)

(U, 0, 0)

(A, a, â)

(B, b, b̂)

(T1, 0, τ) (T2, 0, τ)

(C, c, ĉ)

(T3, 0, τ)

Figure 2 Left: Nodes on the red branch are productive, grey sub-trees are non-productive.
S(A, a, â) contains the regions of nodes in the dotted region. It holds that S(A, a, â) ⊇ S(C, c, ĉ)
and the inequality is strict iff (B, I(b)) ∈ S(C, c, ĉ). Right: small reachability witnesses contain
checkpoint where two productive branches split (in blue) or where the allowed side-effects S strictly
decrease (red). The intermediate paths are runs of S-restricted TA.

Clearly, every full derivation tree gives rise to a witness of this form. Conversely, assume
a witness tree as above exists. One can build a partial derivation tree by unfolding all
intermediate TA paths between consecutive checkpoints. It remains to show that whenever
some TAS uses a rule A ϕ=⇒ C originating from a TBPP rule A ϕ=⇒ B + C to produce a
productive node (C, c, ĉ) then the node (B, b, b̂) produced as side-effect can vanish in time
τ − b̂, i.e., we have to show that then VanishB(b, τ − b̂).

W.l.o.g. let VanishB(x, t) ≡ t ≥ d− xf (the case with > is analogous) for some d ∈ R≥0
and f ∈ {0, 1}. Observe that the region (B, I(b)) is in S by definition of TAS and that the
witness contains a later node (B, b′, b̂′) with VanishB(b′, τ − b̂′), and thus

τ − b̂′ ≥ d− b′f.

Notice also that b′ ≥ b+ b̂′ − b̂ as in the worst-case no reset appears on the path between
the parent of (B, b, b̂) and (B, b′, b̂′). Together with the inequality above we derive that
τ − b̂ ≥ d− bf , meaning that indeed VanishB(b, τ − b̂) holds, as required. J

5 Multi-Clock TBPP

In this section we consider the complexities of coverability and reachability problems for
TBPP with multiple clocks. For the upper bounds we will reduce to the reachability problem
for TA [7] and to solving reachability games for TA [30].

I Theorem 12. The coverability problem for k-TBPP with k ≥ 2 clocks is PSPACE-complete.

Proof. The lower bound already holds for the reachability problem of 2-clock TA [25] and
hence for the simple TBPP coverability. For the upper bound, consider an instance where
A = (C,X ,R) is a k-TBPP and T1, . . . , Tm are the target nonterminals. We reduce to the
reachability problem for TA B = (C′,X ′,R′) with exponentially many control states X ′,
but only |C′| = O(k · |X | ·m) many clocks. The result then follows by the classical region
construction of [7], which requires space logarithmic in the number of nonterminals and

CONCUR 2019



15:12 Timed Basic Parallel Processes

polynomial in the number of clocks. The main idea of this construction is to introduce
(exponentially many) new nonterminals and rules to simulate the original behaviour on
bounded configurations only.

Let n = m + 2. We have a clock xX,i ∈ C′ for every original clock x ∈ C, nonterminal
X ∈ X , and index 1 ≤ i ≤ n, and a nonterminal of the form [α] ∈ R′ for every multiset
α ∈ X⊕ of size at most |α| ≤ n. Since we are solving the coverability problem, we do not need
to address vanishing rules X ϕ;R==⇒ ∅ in R, which are ignored. We will use clock assignments
SX,i ≡

∧
i≤j≤n−1 xX,j := xX,j+1 shifting by one position the clocks corresponding to

occurrences j = i, i+ 1, . . . , n− 1 of X. We have three families of rules:
1. (unary rules). For each rule X

ϕ;R==⇒ Y in R and multiset β ∈ X⊕ of the form
β = γ +X + δ of size |β| ≤ n, for some γ, δ ∈ X⊕, we have a corresponding rule in R′

[β]
ϕ|X,i;R|X,i;Y,j ;SX,i

=============⇒ [γ + Y + δ]

for every occurrence 1 ≤ i ≤ β(X) of X in β and for j = β(Y ) + 1, where ϕ|X,i is
obtained from ϕ by replacing each clock x with xX,i, and R|X,i;Y,j is obtained from R by
replacing every assignment x := y by xY,j := xX,i, and x := 0 by xY,j := 0.

2. (branching rules). Let X =⇒ Y +Z in R be a branching rule. We assume w.l.o.g. that
it has no tests and no assignments, and that X,Y, Z are pairwise distinct. We add rules
in R′

[α+X] R;SX,i====⇒ [β], with β = α+ Y + Z and |β| ≤ n,

for all 1 ≤ i ≤ α(X) and α ∈ X⊕, where R ≡
∧
x∈C xY,β(Y ) := xX,i ∧ xZ,β(Z) := xX,i

copies each clock xX,i into xY,β(Y ) and xZ,β(Z), and SX,i was defined earlier.
3. (shrinking rules). We also add rules that remove unnecessary nonterminals: For every

β = α+X ∈ X⊕ with |β| ≤ n and index 1 ≤ i ≤ β(X) denoting which occurrence of X
in β we want to remove, we have a rule [α+X] Si=⇒ [α] in R′.

It remains to argue that (X,~0) ∗−−→ (T1,~0) + · · ·+ (Tn,~0) in A if, and only if, ([X],~0) ∗−−→
([T1 + · · · + Tn],~0) in B. This can be proven via induction on the depth of the derivation
tree, where the induction hypothesis is that every configuration α of size at most n can be
covered in with a derivation tree of depth d in A if, and only if, in the timed automaton B
the configuration [α] can be reached via a path of length at most d. J

I Theorem 13. The reachability problem for TBPP is EXPTIME-complete. Moreover,
EXPTIME-hardness already holds for k-TBPP emptiness, if 1) k ≥ 2 is any fixed number of
clocks, or 2) k is part of the input but only 0 or 1 appear as constants in clock constraints.

In the remainder of this section contains a proof of this result, in three steps: In the first step
(Lemma 14) we show an EXPTIME upper bound for the special case of simple reachability,
i.e., when the target configuration has size 1. As a second step (Lemma 15) we reduce general
case to simple reachability and thereby prove the upper bound claimed in Theorem 13. As a
third step (Lemma 16), we prove the corresponding lower bound.

I Lemma 14 (Simple reachability). The simple reachability problem for TBPP is in EXPTIME.
More precisely, the complexity is exponential in the number of clocks and the maximal clock
constant, and polynomial in the number of nonterminals.
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Proof (Sketch). We reduce to TA reachability games, where two players (Min and Max)
alternatingly determine a path of a TA, by letting the player who owns the current nonterminal
pick time elapse and a valid successor configuration. Min and Max aim to minimize/maximize
the time until the play first visits a target nonterminal T . TA reachability games can be
solved in EXPTIME, with the precise time complexity claimed above [30, Theorem 5]. The
idea of the construction is to let Min produce a derivation tree along the branch that leads
to (unique) target process. Whenever she proposes to go along branching rule, Max gets
to claim that the other sibling, not on the main branch, cannot be removed until the main
branch ends. This can be faithfully implemented by storing only the current configuration
on the main branch plus one more configuration (of Max’s choosing) that takes the longest
time to vanish. Min can develop both independently but must apply time delays to both
simultaneously. Min wins the game if she can reach the target nonterminal and before that
moment all the other branches have vanished. J

I Lemma 15. The reachability problem for TBPP is in EXPTIME.

Proof. First notice that the special case of reachability of the empty target set trivially
reduces to the simple reachability problem by adding a dummy nonterminal, which is created
once at the beginning and has to be the only one left at the end. Suppose we have an instance
of the k-TBPP reachability problem with target nonterminals T1, T2, . . . , Tm. We will create
an instance of simple reachability where the number of nonterminals increases exponentially
but the number of clocks is O(k · |X | ·m). In both cases, the claim follows from Lemma 14.

We introduce a nonterminal [β] for every multiset β ∈ X⊕ of size |β| ≤ n := m+ 2, and
we have the same three family of rules as in proof of Theorem 12, where the last family 3. is
replaced by the family below:
3’. We add extra branching rules in order to maintain nonterminals [β] corresponding to small

multisets |β| ≤ n. Let β ∈ X⊕ of size |β| ≤ n and consider a partitioning β = β1 + β2,
for some β1, β2 ∈ X⊕. We identify β with the set β = {(X, i) | X ∈ X , 1 ≤ i ≤ β(X)}
of pairs (X, i), where i denotes the i-th occurrence of X in β (if any), and similarly for
β1, β2. We add a branching rule

[β] =⇒ (β, f, β1) + (β, f, β2),

where (β, f, βi) are intermediate locations, for every bijection f : β → β1 ∪ β2 assigning
an occurrence of X in β to an occurrence of X either in β1 or β2. We then have clock
reassigning (non-branching) rules

(β, f, β1) S1=⇒ [β1] and (β, f, β2) S2=⇒ [β2],

where S1 ≡
∧
x∈C

∧
X∈X

∧
1≤i≤β1(X) xX,i := xf−1(X,i) and similarly for S2. J

I Lemma 16. The non-emptiness problem for TBPP is EXPTIME-hard already in discrete
time, for 1) TBPP with constants in {0, 1} (where the number of clocks is part of the input),
and 2) for k-TBPP for every fixed number of clocks k ≥ 2.

6 Conclusion

We introduced basic parallel processes extended with global time and studied the complexities
of several natural decision problems, including variants of the coverability and reachability
problems. Table 1 summarizes our findings.
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The exact complexity status of the simple reachability problem for 1-TBPP is left open.
An NP upper bound holds from the (general) reachability problem (by Theorem 11) and
PTIME-hardness comes from the emptiness problem for context-free grammars. We conjecture
that a matching polynomial-time upper bound holds.

Also left open for future work are succinct versions the coverability and reachability
problems, where the target size is given in binary. A reduction from subset-sum games [25]
shows that the succinct coverability problem for 1-TBPP is PSPACE-hard. This implies that
our technique showing the NP-membership for the non-succinct version of the coverability
problem (cf. Theorem 7) does not extend to the succinct variant, and new ideas are needed.

Table 1 Results on TBPP and 1-clock TBPP. The decision problems are complete for the stated
complexity class. Simple Coverability/Reachability refer to the variants where the target has size 1.

Emptiness Simple
Coverability

Coverability Simple
Reachability

Reachability

TBPP EXPTIME
[Lem 16], [30]

PSPACE
[Thm 12]

PSPACE
[Thm 12]

EXPTIME
[Thm 14]

EXPTIME
[Thm 13]

1-TBPP PTIME
[33]

NL
[33]

NP
[Thm 7]

PTIME / NP NP
[Thm 11]
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