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I - From Biology to Mathematics: Citations

E. Kant, (1790),Critique de la raison pure, Traduction Francaise, Press Univ.
de France, 1967
Living systems: Special structures organized and with the a bility to chase a
purpose.

E. Schrödinger, P. Dirac , (1933),What is Life?
Living systems have the ability to extract entropy to keep th eir own at low
levels.

R. May , (2003), Science
In the physical sciences, mathematical theory and experimental investigation have
always marched together. Mathematics has been less intrusive in the life sciences,

possibly because they have been until recently descriptive, lacking the invariance
principles and fundamental natural constants of physics.
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I - From Biology to Mathematics: Citations

Greller, Tobin and Poste , (1996),Invasion and Metastasis
Tumor cellular populations are characterized by progression distributions, progression

velocities and progression dependent growth rates. Major genetic changes alter the
tumor dynamics as each subpopulation moves further away from genetic normality.

Hanahan and Weinberg, The Hallmarks of Cancer , (2000),Cell
Six critical changes in cell physiology that characterize malignant cancer growth.
These six changes - self-suf�ciency in growth signals, insensitivity to anti-growth

signals, evading apoptosis, limitless replicative potential, sustained angiogenesis, and
tissue invasion and metastasis, all incorporate some aspect of genetic mutation and

evolutionary selection leading to malignant progression.Indeed, it is well accepted
that the onset of cancer occurs through a sequence of geneticmutations and

evolutionary selection leading to malignancy, a concept not yet well addressed through
mathematical modeling.
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I - From Biology to Mathematics: Complexity

FIVE K EY CHARACTERISTICS OF L IVING SYSTEMS

I H ETEROGENEOUS EXPRESSION OF STRATEGIC ABILITY: depends on the

position and state of the surrounding entities and on enviro nmental
conditions.

II EVOLVE IN TIME AND LEARN Darwinian Mutations caused by successive,
rapid, selections of entities which become resistent to environmental actions.

III M ODIFY THE LAWS OF CLASSICAL MECHANICS Moreover, in some cases,
generate proliferative/destructive events.

IV H ETEROGENEITY OF COMPONENTS Multicellular systems contain from
millions to a few copies of each of thousands of different com ponents, each

with speci�c interactions (differently from the physical s ystems).

V M ULTISCALE A SPECTSBiological systems are multiscale: events at the

cellular scale depend on the dynamics of the molecular scale.
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From Biology to Mathematics: System Biology, Mod-
ule's Theory

� REDUCING COMPLEXITY BY DECOMPOSING THE OVERALL SYSTEM INTO

SEVERAL INTERACTING SUBSYSTEMS.

� SYSTEMS BIOLOGY (Woose, 2004): aims to develop a system-level
understanding of biological systems by means of a set of prin ciples and

methodologies that links the behaviors of molecules to syst em characteristics
and functions.

� M ODULE ' S THEORY (Hartwell et all., 1999): decomposing the overall system

into several interacting subsystems, each of them characterized by a lower
order of complexity.

� FUNCTIONAL SUBSYSTEM : a collection of entities, which have the ability to
express the same ability regarded as a scalar variable. The whole system is

constituted by several interacting functional subsystems .
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From Biology to Mathematics: Multiscale Aspects

THE SUB-CELLULAR SCALE : The evolution of a cell is regulated by the genes

contained in its nucleus. Receptors on the cell surface can receive signals
which can activate or suppress genes ( uncontrolled cell pro liferation, or cell

death- so-called apoptosis)

THE CELLULAR SCALE : cell-cell interactions are key elements at all stages of

tumor formation (tumor cells-host cells, or among tumor cel ls-tumor cells,
tumor cells-immune cells).

THE MACROSCOPIC SCALE: the growth of tumor cells, if not stopped by the

cell-cell interactions will form a mass characterized by three zones: an external
proliferating layer, an intermediate layer in which there a re clusters of

quiescent tumor cells, and an inner zone with necrotic cells . Angiogenic
process is often described macroscopically.
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From Biology to Mathematics: From Biology to Math-
ematics

M ULTISCALE REPRESENTATION OF TUMOR GROWTH : gene interactions

(stochastic games), cells (kinetic theory), tissues (continuum mechanics), mixed
(hybrid models).
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From Biology to Mathematics: Five Key Questions

1. Can mathematics contribute to reduce the complexity of the o verall system
by reducing it into suitable subsystems?

2.Can mathematics offer tools suitable to describe complex biological systems
and, and speci�cally, cancer phenomena?

3. How the dynamics at the molecular and cellular scales can be described by
mathematical equations which include the modeling of inter actions between
micro and macro environments?

4. How the dynamics at the molecular scale is transferred to the scale of cells
including mutations, competition with the immune system an d reaction to
therapeutical actions?

5. How far the state-of-the-art is from the development of a mul tiscale
biological-mathematical theory of cancer phenomena?
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From Biology to Mathematics: From a Dilemma to a
Challenge to Mathematicians

Dilemma: Should mathematics attempt to reproduce experiments by
equations whose parameters are identi�ed on the basis of emp irical data? Or,
in alternative, mathematics should develop new structures , hopefully a new
theory, suitable to capture the complexity of the biologica l phenomena and
�nally basing experiments on theoretical foundations?

Personal opinion: The con�ict is not wise considering that both
conceptual approaches should march together. However, the idea of
describing complex systems by simple mathematics it is too n aive. Indeed, the
reproduction of experiments is not related to the true essen ce of biology.

Challenges for applied mathematicians: Mathematical problems
generated by applications of models to real biological prob lems are very
dif�cult.
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The Kinetic Theory for Active Particles

� The system is constituted by a large number of interacting ent ities, called
active particles organized into n interacting functional subsystems labeled

by the indexes i = 1 ; : : : ; n.

� The variable charged to describe the state of each particles is called

microscopic state , which is denoted by the variable w = f x ; v ; ug, where
x 2 D x is position , v 2 D v is mechanical state , e.g. linear velocity, and

u 2 D u is the biological function or activity .

� The description of the overall state of the system is de�ned by the
distribution function f i , called generalized distribution function

f i = f i (t; x ; v ; u) [0; T ] � D x � D v � D u ! IR + ;

f (t; x ; v ; u) dx dv du denotes the number of active particles whose state, at
time t, is in the elementary volume of the space of microscopic states.
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The Kinetic Theory for Active Particles

Macroscopic quantities (given by weighted moments). For instance the local
size of the i th functional subsystem

� [f i ](t; x ) =
Z

D v � D u

f i (t; x ; v ; u) dv du ;

Focusing on activity terms, the local activation is computed as follows:

aj [f i ](t; x ) =
Z

D v � D u

uj f i (t; x ; v ; u) dv du ;

while the local activation density is given by:

ad
j [f i ](t; x ) =

aj [f i ](t; x )
� [f i ](t; x )

=
1

� [f i ](t; x )

Z

D v � D u

uj f i (t; x ; v ; u) dv du:

Multiscale Methods to Model Complex Multicellular Systems – p. 18/62



The Kinetic Theory for Active Particles

D ERIVATION OF M ATHEMATICAL STRUCTURES

The derivation of the evolution equation for the f i s is obtained by a balance

for net �ow of active particles in the elementary volume of th e space of the
microscopic state by transport and interactions. The follow ing following active

particles are involved in the interactions:

� Test particles with microscopic state (x ; v ; u), at the time t, and distribution

function is f = f (t; x ; v ; u).

� Field particles with microscopic state (x � ; v � ; u� ), at the time t, and
distribution function is f � = f (t; x � ; v � ; u� ).

� Candidate particles with microscopic state (x � ; v � ; u� ), and distribution

function is f � = f (t; x � ; v � ; u� ).

Conservative interactions : particles modify their microscopic state;

Non conservative interactions : proliferation or destruction of particles
in their microscopic state.
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The Kinetic Theory for Active Particles

THE M ATHEMATICAL STRUCTURES

The mathematical framework refers to the evolution in time an d space of the
test particle f i

df i

dt
dx dv =

�
Gi [f ] � L i [f ] + Si [f ]

�
dx dv ;

where interactions of candidate and test particles refers t o the �eld particles

and f = f f i gn
i =1 . Moreover,

� Gi [f ] denotes thegain of candidate particles into the state x v ; u of the test
particle;

� L i [f ] models the loss of test particles;

� Si [f ] models proliferation/destruction of test particles in their
microscopic state.

Multiscale Methods to Model Complex Multicellular Systems – p. 20/62



The Kinetic Theory for Active Particles: The interac-
tions

Interactions involve candidate particles of the hth population with �eld
particles of the k th population:

H.2.1. The candidate and test particles in x , with state v � ; u� and v ; u,

respectively, interact with the �eld particles in x � , with state v � ; u� located in
its interaction domain 
 , x � 2 
 .

C 

T

F F

F

F

F

H.2.2. Interactions are weighted by a suitable term � hk [� ](x � ), that can be

interpreted as an interaction rate , which depends on the local density in
the position of the �eld particles.

H.2.3. The distance and topological distribution of the intensity of the

interactions is weighted by a function phk (x ; x � ) such that:
R


 phk (x ; x � ) dx � = 1 :
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The Kinetic Theory for Active Particles

H.2.4. The candidate particle modi�es its state according to the pro bability
density A de�ned as follows:

A hk (v � ! v ; u� ! ujv � ; v � ; u� ; u� ) ;

where A denotes the probability density that a candidate particles with state
v � ; u� reaches the statev ; u after an interaction with the �led particles with

statev � ; u� , while the test particle looses its state v and u after interactions
with �eld particles with velocity v � and activity u� .

H.2.5. The test particle, in x , can proliferate, due to encounters with �eld

particles in x � , with rate � i
hk (x ; x � ), which denotes the proliferation rate into

the functional subsystem i , due the encounter of particles belonging the

functional subsystems h and k. Destructive events can occur only within the
same population with rate � i

ik (x ; x � ).
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The Kinetic Theory for Active Particles

Cells during proliferation can move from one population to t he other.

F F F

F C FF

T

T

FF FF FF T

i + 1

i

i � 1

Remark. The following factorization :

A hk (�) = Bhk (u� ! u; ju� ; u� ) � C hk (v � ! v jv � ; v � ; u� ; u� ) ;

can be used in a variety of applications.

A , B, and Care, for positive de�ned f , probability densities:
Z

D v � D u

A hk (v � ! v ; u� ! u jv � ; v � ; u� ; u� ) dv du = 1 ; 8 v � ; v � u� ; u� :

Z

D u

Bhk (u� ! u; ju� ; u� ) du =
Z

D v

Chk (v � ! v jv � ; v � ; u� ; u� ) dv = 1 :
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The Kinetic Theory for Active Particles: General
Framework

�
@t + v � @x

�
f i (t; x ; v ; u)

=
� nX

j =1

�
Gij [f ] � L ij [f ]

�
+

nX

h =1

nX

k =1

Si
hk [f ]

�
(t; x ; v ; u)

=
Z

�
� ij [� j ](t; x � )pij (x ; x � ) Bij (u� ! uju� ; u� ) Chk (v � ! v jv � ; v � ; u� ; u� )

� f i (t; x ; v � ; u� )f j (t; x � ; v � ; u� ) dv � dv � du� du� dx � ;

� f i (t; x ; v )
Z

�
� ij [� j ](t; x � )pij (x ; x � ) f j (t; x � ; v � ; u� ) dv � du� dx �

+
Z

� � D u

� hk [� k ](t; x � )phk (x ; x � ) � i
hk (u� ; u� )

� f h (t; x ; v ; u� )f k (t; x � ; v � ; u� ) dv � du� du� dx � ;

where � = 
 � D 2
v � D 2

u ;, � = 
 � D v � D u .
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The Kinetic Theory for Active Particles: Open Systems

Modeling macroscopic actionsmeans the identi�cation of the term
K i = K i (t; x ; u) supposed to be a known function of its arguments. The action

K i acts over the variable u for each functional subsystem. The resulting
equation, for i = 1 ; : : : ; n is as follows:

(@t + v � @x ) f i (t; x ; v ; u) + @u (K i (t; x ; u) f i (t; x ; v ; u)) = J i [f ]:

Modeling microscopic actions means modeling of functional subsystems

generated by the outer system. Their representation can be delivered by the
distribution functions:

gr (t; x ; w) ; r = 1 ; : : : ; m ; w 2 D w = D u :

depending on time, space and on a variable w modeling the activity of the

outer functional subsystem.
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The Kinetic Theory for Active Particles: The Frame-
work

(@t + v � @x ) f i (t; x ; v ; u) = J i [f ](t; x ; v ; u) + Qi [f ; g](t; x ; v ; u) ;

Qi [f ; g] =
rX

j =1

Ce
ir [f ; g](t; x ; v ; u) +

nX

h =1

nX

r =1

Se
hr (i )[f ; g](t; x ; v ; u) ;

Ce
ij [�] =

Z

�
� e

ij [� j ](t; x � )pe
ij (x ; x � ) B ij (u� ! uju� ; u� )Chk (v � ! v jv � ; v � ; u� ; u� )

� f i (t; x ; v � ; u� )gr (t; x � ; v � ; w� ) dv � dv � du� dw� dx � ;

� f i (t; x ; v )
Z

�
� e

ij [� j ](t; x � )pe
ij (x ; x � ) gr (t; x � ; v � ; w� ) dv � dw� dx � :

Se
hk (i )[�] =

Z

� � D u

� e
hk [� k ](t; x � )phk (x ; x � ) � e

hk (i )( u� ; u� )

� f h (t; x ; v ; u� )gk (t; x � ; v � ; u� ) dv � du� dw� dx � ;
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The Kinetic Theory for Active Particles

� � e
hk models the encounter rates between thek th external action with state w�

and the hth candidate particle with state u� .

� B e
ij (u� ! u; v � ) denotes the probability density that the candidate particl e

the i th population with state u� ; h falls into the state u of the same population
due to interactions with the j th action with state w� .

� Ce
ij (v � ! v jv � ; v � ; u� ; w� ) models the velocity dynamics, conditioned by the

activity of the interacting pairs.

� � e
hk (i )( u� ; v� ; u) models the net proliferation into the i th population, due to

interactions, which occur with rate � hk , of the candidate particle of the

population hth with state u� with the k th action with state v� .
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The Kinetic Theory for Active Particles

@t f i (t; u ) + F i (t ) @u f i (t; u ) = J i [f ](t; u ) + Qi [f ](t; u )

=
nX

j =1

Z

D u � D u

� ij (u� ; u� )Bij (u� ; u� ; u)f i (t; u � )f j (t; u � ) du� du�

� f i (t; u )
nX

j =1

Z

D u

� ij (u; u � )f j (t; u � ) du�

+
nX

h =1

nX

k =1

Z

D u � D u

� hk (u� ; u� )� i
hk (u; u � )f h (t; u � )f k (t; u � ) du� du� ;

+
mX

r =1

Z

D u � D v

� e
ij (u� ; v� )Cij (u� ; v� ; u)f i (t; u � )gr (t; u � ) du� dv�

� f i (t; u )
mX

r =1

Z

D v

� � (u; v � )gr (t; v � ) dv�

+
rX

h =1

mX

r =1

Z

D u

Z

D u

� e
hk (u� ; v� )� e

hk (i )( u� ; v� ; u)f h (t; u � )gr (t; v � ) du� dv� ;
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Gene: a union of genomic sequences encoding a coher-

ent set of potentially overlapping functional products
(GERSTEIN ET AL, Genome Research17(2007) 669-681).

Gene Mutation : a permanent change in the DNA se-
quence that makes up a gene (a normal allele is changed

to a rare and abnormal variant):

� Hereditary (germline): inherited from a parent;

� Acquired (somatic): acquired during a person lifetime
(physical or chemical exogenous agents, mistake dur-

ing DNA replication), e.g. Tumor .

Immune System: a complex of cells (leukocytes or

white blood cells ) and molecules which provides a de-
fense against pathogenic agents

� Capability of distinguishing between “self” and “non-
self” entities;

� Learning;
� Memory of previous encounters with foreign “non-

self” agents.
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Keloid: Dermal tumor that forms during a protracted wound
healing process characterized by increased deposition of

extracellular matrix by �broblast cells

D W OLFRAM ET AL , Hypertrophic scars and keloids–a

review of their pathophysiology, risk factors, and thera-
peutic management, Dermatol Surg. 35 (2009) 171-81.

Triggering Causes: remain elusive and there is no
satisfactory treatment for this disorder.

Medical Hypotheses:

� Viruses:

P. ALONSO ET AL , Keloids: A viral hypothesis, Medical
Hypotheses, 70 (2008) 156-166.

� Genetic Susceptibility and Mutations :
M. N ASSIRI ET AL, Gene expression pro�ling reveals

alteration of caspase 6 and 14 transcripts in normal
skin of keloid-prone patients, Arch Dermatol Res., 301

(2009) 183-188.
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

CELL SUBSYSTEMS, A CTIVITY , AND D ISTRIBUTION FUNCTIONS

Cell Subsystems Activity Distribution Function

Normal Fibroblasts (NFc) Proliferation f 1 ( t; u )

Activated Viruses (AV) Aggressiveness f 2 ( t; u )

Keloid Fibroblasts (KFc) Proliferation f 3 ( t; u )

Malignant (Mc) Progression f 4 ( t; u )

Immune System (ISc) Activation f 5 ( t; u )
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Parameter Biological Meaning

� Heterogeneity rate of (KFc)

� Proliferation rate of (KFc)

� i Proliferation rate of (ISc)

� Destruction rate of (AV) and (Mc) by (ISc)

� i Destruction rate of (ISc)by (AV) and (Mc)


 Mutation rate of (NFc) in (KFc)

� Mutation rate of (KFc) in (Mc)

� Scale factor
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

INTERACTIONS AND PARAMETERS

Interactions (NFc) (AV) (KFc) (Mc) (ISc)

(NFc)

Proliferative " 2 �

Destructive � "�

Transitive "
 


(AV)

Conservative "�

Proliferative "� "�

Destructive � �

(KFc)

Conservative �

Proliferative � �

Destructive � " 2 � � " 2 �

Transitive �

(Mc)

Conservative " 2 �

Proliferative "�

Destructive � �

(ISc)
Proliferative � i " 2 � i � i

Destructive � i � " 2 � i � i
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

THE M ATHEMATICAL M ODEL

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@t f 1 = "
�

" �
Z 1

0
f 1 ( t; u ) du � �

Z 1

0
f 2 ( t; u ) du

�
f 1 ( t; u ) ;

@t f 2 =
�

"�
Z 1

0
[ f 1 ( t; u ) + f 5 ( t; u )] du � �

Z 1

0
f 5 ( t; u ) du

�
f 2 ( t; u ) � f 2 ( t; u )

Z 1

0
f 1 ( t; u ) du

+ f 2 ( t; u � � � )
Z 1

0
f 1 ( t; u ) du ;

@t f 3 =
�

�
Z 1

0
f 1 ( t; u ) du � (1 � � + " 2 � )

Z 1

0
f 2 ( t; u ) du

�
f 3 ( t; u ) � " 2 � f 3 ( t; u )

Z 1

0
f 5 ( t; u ) du

+ f 3 ( t; u � � )
Z 1

0
f 2 ( t; u ) du + 


�
�

Z 1

0
f 1 ( t; u ) du +

Z 1

0
f 2 ( t; u ) du

�
f 1 ( t; u ) ;

@t f 4 =
�

( "� � 1)
Z 1

0
f 2 ( t; u ) du � �

Z 1

0
f 5 ( t; u ) du

�
f 4 ( t; u ) + � f 3 ( t; u )

Z 1

0
f 2 ( t; u ) du

+ f 4 ( t; u � " 2 � )
Z 1

0
f 2 ( t; u ) du ;

@t f 5 = � i
� Z 1

0
[ f 2 ( t; u ) + f 4 ( t; u )] du + " 2

Z 1

0
f 3 ( t; u ) du

�
f 5 ( t; u ) � � i f 5 ( t; u )

Z 1

0
u f 2 ( t; u ) du

� � i
� Z 1

0
u f 4 ( t; u ) du + " 2

Z 1

0
u f 3 ( t; u ) du

�
f 5 ( t; u ) :
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Initial Conditions and Fixed Parameters

INITIAL CONDITIONS :

� The number of Normal Fibroblasts in the wound is equal to the number of

Activated Virus , i.e. f 1(0; u) = f 2(0; u);
� ISchave reached the wound (sentinel level), f 5 (0; u);

� Keloid Fibroblasts and Mc are not initially present, f 3(0; u) = f 4(0; u) = 0 .

PARAMETERS IN EVERY SIMULATIONS :

� The mutation rate of the Normal Fibroblasts to Keloid Fibroblasts is not
negligible ( 
 = 0 :4);

� The destructive ability of the ISc is quite low ( � = 0 :3);
� The non-self cells have an intermediate ability to inhibit th e response of the

ISc(� i = 0 :5);
� The scale factor is� = 0 :5.

THE VALUES OF THE PARAMETERS � , � , � i , AND � ARE SET CASE-WISE.
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Sensitivity Analysis of the Parameter �

PARAMETERS:

� Weak Keloid Fibroblasts proliferation ( � = 0 :4);
� Low proliferation of the ISc(� i = 0 ; 35);
� The probability that Keloid Fibroblasts becomeMc is not negligible

(� = 0 :5).

EXPECTED A SYMPTOTIC BEHAVIOUR :

Increasing ampli�cation of the heterogeneity phenomena of the non-self
entities, and correspondingly increase the chances to develop malignant

effects.

TEST CASES:

� Simulations for values of � 2 [0; 0:35];
� Simulations for values of � 2 (0:35; 0:5];

� Simulations for values of � 2 (0:5; 1].
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and Immune System Competition

Simulations for Values of � 2 [0; 0:35]
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n i

Figure 1: Time evolution of the densities of Keloid Fibroblasts (solid line ) and
of Mc (dashed line) for � = 0 :3. The low magnitude of the progression rate

never allows the number of Mc to overcome the number of Keloid Fibroblasts
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Figure 2: The distribution functions of AV (top panels) and Keloid Fibroblasts

(bottom panels) for � = 0 :1 and � = 0 :3.
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Simulations for Values of � 2 [0; 0:35]
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Figure 3: The distribution function of the Mc for � = 0 :1 (left panel) and � = 0 :3 (right panel ).

BIOLOGICAL INTERPRETATION :

These simulations may represent the failure of the normal wou nd healing
process where, because of the low number of non-self entities with a high level

of heterogeneity, the IScwould avoid the formation of keloid and malignant
effects.
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Simulations for Values of � 2 (0:35; 0:5]
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Figure 4: Time evolution of Keloid Fibroblasts (solid line ) and of Mc (dashed

line) for � = 0 :4 and � = 0 :5 (t.p). Distribution function of Mc (b.p.).
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Figure 5: Time evolution of the density of the IScfor � = 0 :5.

BIOLOGICAL INTERPRETATION :
These simulations may represent a failure of the normal wound healing

process where the keloid formation, which depends on how lon g it takes the
IScto deplete the Keloid Fibroblasts , would prevail malignant effects.
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Simulations for Values of � 2 (0:5; 1]
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Figure 6: Time evolution of KFc (solid line ) and Mc, � = 0 :8. Distribution

function of Mc and AV .
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Sensitivity Analysis of the Parameter � i

FIXED PARAMETERS:

Letting the magnitude of the parameters so that a high manife station of
heterogeneity and aggressiveness is manifest speci�cally setting � = 0 :8,
� = 0 :4, � = 0 :5.

EXPECTED A SYMPTOTIC BEHAVIOUR :
It is expected that increasing values of � i produce a higher activation of the

immune system and sequently a more ef�cient ability to contr ast the non-self
cells.

TEST CASES:
� Simulations for � i = 0 ;

� Simulations for � i 2 ]0; 0:55];
� � i 2 ]0:55; 1].
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Simulations for � i 2 ]0:55; 1]
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Figure 7: Distribution function of the NFc and Keloid Fibroblasts for � i = 0 : 8 .

BIOLOGICAL INTERPRETATION :

The immune system prevents the formation of malignant tumors , but the
genetic susceptibility of the patient does not avoid the pos sibility of the keloid

formation.

Multiscale Methods to Model Complex Multicellular Systems – p. 45/62



Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations for f 1(0; u) = g10 (u), f 2(0; u) = g0(u), and f 5(0; u) = g1(u)

This assumption means that the Activated Viruses have not reached the
wound ( n[f 2 ](0) = 0 ) and after the injury the number of Normal Fibroblasts is

greater than the number of the ISc, namely n[f 5 ](0) < n [f 1 ](0) .
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Figure 8: Time evolution of the Keloid Fibroblasts and Isc and the distribution

function of Keloid Fibroblasts .
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Simulations Summary

FIXED FREE SIMULATION RESULTS AND BIOLOGICAL

PARAMETERS PARAMETER INTERPRETATION

Onset of Keloid Fibroblasts and Mc

Mc never overcome Keloid Fibroblasts

� = 0 : 2 Low number of the high activity non-self cells

Depletion of the Mc and Activated Viruses by ISc

Normal Fibroblasts proliferates again

� = 0 : 4

� i = 0 : 35 Mc overcome Normal Fibroblasts


 = 0 : 4 High activity levels for Keloid Fibroblasts and Mc

� = 0 : 5 � = 0 : 5 Low number of the Activated Viruses with high activity

� I = 0 : 5 Normal Fibroblasts are not able to proliferate

� = 0 : 3 Partial depletion of the low activity non-self cells

� = 0 : 5

Mc overcome Keloid Fibroblasts more and more

High proliferation of Activated Viruses

� = 0 : 8 High number of the high activity non-self cells

Inhibition of the ISc after competition

Destruction of the Normal Fibroblasts
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Simulations Summary

FIXED FREE SIMULATION RESULTS AND BIOLOGICAL

PARAMETERS PARAMETER INTERPRETATION

Untrammeled increasing of the non-self cells

� = 0 : 4 High levels of proliferation of the Activated Viruses and Ke loid Fibroblasts

� = 0 : 8 � i = 0 High levels of progression of the Mc


 = 0 : 4 Total inhibition of the ISc

� = 0 : 5 Destruction of Normal Fibroblasts

� I = 0 : 5

� = 0 : 3

� = 0 : 5 Depletion of the non-self entities by ISc

� i = 0 : 8 Revival of the Proliferation of the Normal Fibroblasts

Rebirth of Keloid Fibroblasts because genetic susceptibility
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From Microscopic to Macroscopic

� N.B., A. BELLOUQUID , J. NIETO, AND J. SOLER, Complexity and Mathematical

Tools Toward the Modelling of Multicellular Growing Systems, 20, (2010) . Let us

consider a stochastic perturbation in velocity of the whole system,

(@t + v � r x ) f i = � i L i [f i ] + J i [f ] + Qi [f ; g] ;

� � i is the turning rate or turning frequency, hence � i = 1
� i

is the mean run
time.

� The linear transport term describes the dynamics of biologic al organisms

modelled by a velocity-jump process,

L i [f i ] =
Z

D v

�
Ti (v

� ! v )f i (t; x ; v � ; u) � Ti (v ! v � )f i (t; x ; v ; u)
�

dv � ;

where Ti (v � ! v ) is, for the i th subsystem, the probability kernel for the new
velocity v 2 D v assuming that the previous velocity was v � .
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The hypotheses on the turning operators L i are as follows:

H.1. Each turning operator L i satis�es the following solvability conditions:
Z

D v

L i [f ] dv =
Z

D v

v L i [f ] dv = 0 : (1)

H.2. There exists a unique function

M i
�; U 2 L 1(D v ; (1 + jv j) dv );

for all � � 0 and U 2 D v , verifying

L i (M
i
�; U ) = 0 ;

Z

D v

M i
�; U (v ) dv = �;

Z

D v

v M i
�; U (v ) dv = � U :

Here, variables t, x and u act as parameters. These hypotheses allow to derive
macroscopic scale hyperbolic systems.
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Let us consider a hyperbolic scalingformally corresponding to the following
choice of scale:

t ! " t ; x ! " x ) t � =
1
"

;

which produces the following non-dimensional model:

" (@t + v � r x ) f "
i = L i [f

"
i ] + " qi J "

i [f " ] + " Q "
i [f " ; g]; i = 1 ; 2; 3; 4;

The closed system interaction operator is scaled as follows

J "
i [f " ] =

4X

j =1

�
Gij [f " ] � L ij [f " ]

�
(t; x ; v ; u) + " � i

4X

j =1

4X

k =1

Si
jk [f " ];

where we have retained the same notation for the non-dimensi onal gain Gij ,

lost L ij and proliferative/destructive Si
jk term.
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From Microscopic to Macroscopic

The hyperbolic macroscopic behavior is deduced from the limi t " ! 0. First,

taking " = 0 we formally obtain L i [f 0
i ] = 0 , so eachf 0

i veri�es the conditions
of hypothesis H.2. Then, we have four limiting distributions of the form

f 0
i = M � 0

i ;U 0
i

corresponding to our four subsystems, and we have to study th e

equations satis�ed by the equilibrium variables � 0
i and U 0

i . To do that,

integration over v yields:

@t �
"
i + div (� "

i U "
i )

= " qi � 1
4X

j =1

Z

D v

�
Gij [f " ] � L ij [f " ]

�
dv + " qi + � i � 1

4X

j =1

4X

k =1

Z

D v

Si
jk [f " ]dv

+ " qi � 1
mX

j =1

Z

D v

�
Ge

ij [f " ] � L e
ij [f " ]

�
dv + " qi + � i � 1

mX

j =1

Z

D v

Se
ij [f " ; g]dv :
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From Microscopic to Macroscopic

Analogous calculations for the momentum equation yield:

@t (�
"
i U "

i ) + Div
� Z

D v

v 
 v f "
i dv

�

= " qi � 1
4X

j =1

Z

D v

v
�

Gij [f " ] � L ij [f " ]
�

dv + " qi + � i � 1
4X

h =1

4X

k =1

Z

D v

v Si
hk [f " ]dv

+ " qi � 1
mX

j =1

Z

D v

v
�

Ge
ij [f " ] � L e

ij [f " ]
�

dv + " qi + � i � 1
mX

j =1

Z

D v

v Se
ij [f " ; g]dv :

Moreover we use the pressure tensor P 0
i as a measure of the statistical

variation in velocity around the expected mean velocity U 0
i ,

P 0
i (t; x; u ) =

Z

D v

(v � U 0
i ) 
 (v � U 0

i ) f 0
i dv :

Z

D v

v 
 v M � 0
i ;U 0

i
dv = P 0

i + � 0
i (U 0

i 
 U 0
i ):
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Perturbation of the equilibrium f i = M i
� 0

i ;U 0
i

+ "h i , with M = f M i
� 0

i ;U 0
i
g4

i =1 :

@t �
0
i + div (� 0

i U 0
i ) = O(" qi )

+ " qi � 1
4X

j =1

Z

D v

�
Gij [M ] � L ij [M ]

�
dv + " qi + � i � 1

4X

j =1

4X

k =1

Z

D v

Si
jk [M ]dv

+ " qi � 1
mX

j =1

Z

D v

�
Ge

ij [M ; g] � L e
ij [M ; g]

�
dv + " qi + � i � 1

mX

j =1

Z

D v

Se
ij [M ; g]dv ;

@t (�
0
i U 0

i ) + Div
� Z

D v

v 
 v M � 0
i ;U 0

i
dv

�
= O(" qi )

+ " qi � 1
4X

j =1

Z

D v

v
�

Gij [M ] � L ij [M ]
�

dv + " qi + � i � 1
4X

h =1

4X

k =1

Z

D v

v Si
hk [M ]dv

+ " qi � 1
mX

j =1

Z

D v

v
�

Ge
ij [M ; g] � L e

ij [M ; g]
�

dv + " qi + � i � 1
mX

j =1

Z

D v

v Se
ij [M ; g]dv :
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Case 1.� i � 0 and qi > 1: This is the simple conservative hyperbolic system:

8
>><

>>:

@t � 0
i + div (� 0

i U 0
i ) = 0 ;

@t (� 0
i U 0

i ) + Div
�
� 0

i (U 0
i 
 U 0

i ) + P 0 �
= 0 :

Case 2.� i > 0 and qi = 1 : In this case we preserve a source term related to
conservative actions, and therapy actions into the closed system:
8
>>>>>>>>><

>>>>>>>>>:

@t � 0
i + div (� 0

i U 0
i ) =

P 4
j =1

R
D v

�
Gij [M ] � L ij [M ]

�
dv

+
P m

j =1

R
D v

�
Ge

ij [M ; g] � L e
ij [M ; g]

�
dv ;

@t (� 0
i U 0

i ) + Div
�
� 0

i (U 0
i 
 U 0

i ) + P 0
�

=
P 4

j =1

R
D v

v
�

Gij [M ] � L ij [M ]
�

dv

+
P m

j =1

R
D v

v
�

Ge
ij [M ; g] � L e

ij [M ; g]
�

dv :
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From Microscopic to Macroscopic

Case 3.� i = 0 and qi = 1 : In this last case we preserve all the macroscopic

information about the closed system, including proliferat ive, destructive
interactions, and therapy actions:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

@t �
0
i + div (� 0

i U 0
i ) =

4X

j =1

Z

D v

�
Gij [M ] � L ij [M ] +

4X

k =1

Si
jk [M ]

�
dv

+
mX

j =1

Z

D v

�
Ge

ij [M ; g] � L e
ij [M ; g] + Se

ij [M ; g]
�

dv ;

@t (�
0
i U 0

i ) + Div
�
� 0

i (U 0
i 
 U 0

i ) + P 0 �

=
4X

j =1

Z

D v

v
�

Gij [M ; g] � L ij [M ; g] +
4X

k =1

Si
jk [M ]

�
dv

+
mX

j =1

Z

D v

v
�

Ge
ij [M ; g] � L e

ij [M ; g] + Se
ij [M ; g]

�
dv :
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From Microscopic to Macroscopic

Theorem Let f " verify

kf " kC (0 ;1 ;L p ( D x � D v � D u )) 4 � C < 1

for somep > 2, and such that eachf "
i converges pointwise. We also assume that the

microscopic state space has �nite measure and that the probability densitiesBjk , Cjk ,

Be
jk andBe

jk are bounded functions while the interactions rates� ij and� e
ij , intensity

ratespij andpe
ij and proliferation/destruction rates� i

ij are all square integrable with

respect to their variables. Finally, we assume that� 1
i;j and� 2

i;j are continuous. Then,
the pointwise limit off " is the vector valued functionM = f M i

� 0
i ;U 0

i
g4

i =1 given by

hypothesis H.2. with

� 0
i = lim

" ! 0
� [f "

i ]; U [f 0
i ] = lim

" ! 0
U "

i ;

i.e., the weak and pointwise limits of the local density velocity of f " . Moreover, in the
three regimes introduced above, the limiting densities� 0

i and velocitiesU 0
i verify the

three case considered above.

Multiscale Methods to Model Complex Multicellular Systems – p. 58/62



From Microscopic to Macroscopic

� Possibly, the mathematical structure we have seen refers a new class of

equations. A rigorous framework is delivered for the deriva tion of models,
when a mathematical description of cell interactions can be derived, by

phenomenological interpretation, from empirical data. On the other hand,
only when the above interactions are delivered by a theoreti cal interpretation

delivered within the framework of biological sciences, the n we may talk about
a biological-mathematical theory .

� The various theoretical approaches known in the literature p ostulate
probabilistic models of gene expression, while gene intera ctions among genes

and with the outer environments should be taken into account . Considering
that a robust theory is not yet available, a conjecture is here proposed

developing at the molecular scale some ideas already exploited at the cellular
scale. This conjecture is proposed in what follows at a prelim inary stage still

waiting to be properly developed.
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From Microscopic to Macroscopic

The interaction scheme from the lower to the higher scale can be represented

as follows:
h
L ' = N ['; ' ] + M [';  ]

i
!

h
L f = J [f ] + Q[f; ' ]

i
;

that corresponds to the following dynamics:

� The evolution of the system at the lower scale is determined by the
interaction between active particles within the populatio n, and with particles

of the outer environment.

� The evolution of the system at the higher scale is determined b y the
interaction between active particles, of both populations among themselves,

and, for each of them, with particles of the lower system.

� A simpli�ed approach consists in modelling the parameters o f the equation

at the cellular scale using the distance d('; ' 0) of the distribution ' form the
initial distribution ' 0 .
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From Microscopic to Macroscopic

Let us now consider the coupling with the lower scale, where t he overall state

is de�ned by the distribution function of gene expression:

' = ' (t; v ) : [0; T ] � D v ! IR + ;

over the microscopic state v 2 D v of the interacting entities regarded as active

particles.

The system at the lower scale interacts with the outer environ ment, that has
the ability of modifying the gene expression by an action of t he type

 =  (t; v ) : [0; T ] � D ! IR + ;
Z T

0

Z

D
 (t ; v) dv dt � M ;

for some constant M .
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From Microscopic to Macroscopic

8
>>>>><

>>>>>:

@t n = div x

0

@D n
nr x n

q
n2 + D 2

n
c2 jr x nj2

� n�
r x S

p
1 + jr x Sj2

1

A + H (n; S);

@t S = r x (D S � r x S) + K (n; S);

where n and S denote, respectively, the density of the cells and of the

chemoattractant
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