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% | - From Biology to Mathematics: Citations
I

E. Kant, (1790),Critique de la raison pure, Traduction Francaise, Press Uniyv.
de France, 1967

Living systems: Special structures organized and with the a bility to chase a
purpose.

E. Schrddinger, P. Dirac, (1933),What is Life?
Living systems have the ability to extract entropy to keep th eir own at low
levels.

R. May, (2003), Science

In the physical sciences, mathematical theory and expetahniavestigation have
always marched together. Mathematics has been less werusihe life sciences,
possibly because they have been until recently descripasiang the invariance
principles and fundamental natural constants of physics.
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% | - From Biology to Mathematics: Citations
]

Greller, Tobin and Poste , (1996),/Invasion and Metastasis

Tumor cellular populations are characterized by progmsdistributions, progression
velocities and progression dependent growth rates. Magoetic changes alter the
tumor dynamics as each subpopulation moves further away @ienetic normality.

Hanahan and Weinberg, The Hallmarks of Cancer , (2000),Cell

Six critical changes in cell physiology that characterizdignant cancer growth.
These six changes - self-suf ciency in growth signals,nsgeity to anti-growth
signals, evading apoptosis, limitless replicative posnsustained angiogenesis, and
tissue invasion and metastasis, all incorporate some tspgenetic mutation and
evolutionary selection leading to malignant progressimleed, it is well accepted
that the onset of cancer occurs through a sequence of gengéatons and
evolutionary selection leading to malignancy, a concepiabwell addressed through
mathematical modeling.
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| - From Biology to Mathematics: Complexity

FIVE KEY CHARACTERISTICS OF LIVING SYSTEMS

| HETEROGENEOUS EXPRESSION OF STRATEGIC ABILITY depends on the
position and state of the surrounding entities and on enviro nmental
conditions.

I EVOLVE IN TIME AND LEARN Darwinian Mutations caused by successive,
rapid, selections of entities which become resistent to environmental actions.

Il MODIFY THE LAWS OF CLASSICAL MECHANICS Moreover, in some cases,
generate proliferative/destructive events.

IV HETEROGENEITY OF COMPONENTS Multicellular systems contain from
millions to a few copies of each of thousands of different com ponents, each
with speci c interactions (differently from the physical s ystems).

V MuLTIsCcALE AsPEcCTSBIological systems are multiscale: events at the
cellular scale depend on the dynamics of the molecular scale.
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From Biology to Mathematics: System Biology, Mod-
ule's Theory

REDUCING COMPLEXITY BY DECOMPOSING THE OVERALL SYSTEM INTO
SEVERAL INTERACTING SUBSYSTEMS

SYSTEMS BIOLOGY (Woose, 2004): aims to develop a system-level
understanding of biological systems by means of a set of prin ciples and
methodologies that links the behaviors of molecules to syst em characteristics
and functions.

MODULE'S THEORY (Hartwell et all., 1999). decomposing the overall system
Into several interacting subsystems, each of them characteaized by a lower
order of complexity.

FUNCTIONAL SUBSYSTEM: a collection of entities, which have the ability to

express the same ability regarded as a scalar variable. The wlole system is
constituted by several interacting functional subsystems .
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From Biology to Mathematics: Multiscale Aspects

THE SUB-CELLULAR SCALE: The evolution of a cell is regulated by the genes
contained in its nucleus. Receptors on the cell surface can eceive signals
which can activate or suppress genes ( uncontrolled cell pro liferation, or cell
death- so-called apoptosis)

THE CELLULAR SCALE : cell-cell interactions are key elements at all stages of
tumor formation (tumor cells-host cells, or among tumor cel Is-tumor cells,
tumor cells-immune cells).

THE MACROSCOPIC SCALE: the growth of tumor cells, if not stopped by the
cell-cell interactions will form a mass characterized by three zonesan external
proliferating layer, an intermediate layer in which there a re clusters of
qguiescent tumor cells, and an inner zone with necrotic cells . Angiogenic
process is often described macroscopically.
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From Biology to Mathematics: From Biology to Math-
ematics

MULTISCALE REPRESENTATION OF TUMOR GROWTH : gene interactions
(stochastic gamgscells (kinetic theory, tissues (continuum mechanigs mixed

(hybrid models

Kinetic theory Hybrid models

Stochastic games for active particles ﬁ

Continuum mechanic

Tumor tissue
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% From Biology to Mathematics: Five Key Questions
I

1. Can mathematics contribute to reduce the complexity of the o verall system
by reducing it into suitable subsystems?

2.Can mathematics offer tools suitable to describe complex biological systems
and, and speci cally, cancer phenomena?

3. How the dynamics at the molecular and cellular scales can be described by
mathematical equations which include the modeling of inter actions between
micro and macro environments?

4. How the dynamics at the molecular scale is transferred to the scale of cells
including mutations, competition with the immune system an d reaction to
therapeutical actions?

5. How far the state-of-the-art is from the development of a mul tiscale
biological-mathematical theory of cancer phenomena?
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From Biology to Mathematics: From a Dilemma to a
Challenge to Mathematicians

Dilemma: Should mathematics attempt to reproduce experiments by
equations whose parameters are identi ed on the basis of emp irical data? Or,
In alternative, mathematics should develop new structures , hopefully a new
theory, suitable to capture the complexity of the biologica | phenomena and
nally basing experiments on theoretical foundations?

Personal opinion:  The con ict is not wise considering that both
conceptual approaches should march together. However, the idea of
describing complex systems by simple mathematics it is too n aive. Indeed, the
reproduction of experiments is not related to the true essen ce of biology.

Challenges for applied mathematicians: Mathematical problems
generated by applications of models to real biological prob lems are very
dif cult,
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The Kinetic Theory for Active Particles

The system is constituted by a large number of interacting ent ities, called
active particles organized into n interacting functional subsystems labeled

The variable charged to describe the state of each particles s called
microscopic state , which is denoted by the variable w = fx ; v ; ug, where
X 2 Dy is position ,v 2 D, is mechanical state , e.g. linear velocity, and
u 2 Dy is the biological function or activity .

The description of the overall state of the system is de ned by the
distribution function f;, called generalized distribution function

fi = fi(t;x;v;u) [0;T] Dx Dy Duyg! Ry+;

f (t; x;v;u) dx dv du denotes the number of active particles whose state, at
time t, is in the elementary volume of the space of microscopic states.
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The Kinetic Theory for Active Particles

Macroscopic quantities (given by weighted moments). For instance the local

size of the i™ functional subsystem
V4
[fi](t; x) = fi(t;x;v;u)dv du;

Dv Du

Focusing on activity terms, the local activation is computed as follows:
Z
a [fi](t; x) = uj fi(t; x;v;u)dvdu;
Dy Dy
while the local activation density s given by:
Z
a [fil(t; x) _ 1

FIEX)  HIEx) o, o, EXVIWdvAY

a'[fi1(t; x) =
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The Kinetic Theory for Active Particles

D ERIVATION OF M ATHEMATICAL STRUCTURES

The derivation of the evolution equation for the f;sis obtained by a balance
for net ow of active particles in the elementary volume of th e space of the
microscopic state by transport and interactions. The follow ing following active
particles are involved in the interactions:

Test particles with microscopic state (x;Vv;u), at the time t, and distribution
functionis f = f (t; x;v; u).

Field particles with microscopic state (x ;v ;u ), at the time t, and
distribution functionis f = f(t;x ;v ;u ).

Candidate particles with microscopic state (x ;v ;u ), and distribution
functionis f = f(t;x ;v ;u ).

Conservative interactions : particles modify their microscopic state;
Non conservative interactions . proliferation or destruction of particles
In their microscopic state.
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The Kinetic Theory for Active Particles

THE M ATHEMATICAL STRUCTURES

The mathematical framework refers to the evolution in time an d space of the
test particle f;

%dxdv: Gi[f] Li[f]+ Si[f] dxdv;

where interactions of candidate and test particles refers to the eld particles
and f = ffig-, . Moreover,

Gi[f] denotes the gain of candidate particles into the state xv ;u of the test
particle;

Li[f] models the l0Ss of test particles;

Si [f] models proliferation/destruction of test particles in their
microscopic state.
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The Kinetic Theory for Active Patrticles: The interac-
tions

Interactions involve candidate particles of the h"™ population with eld
particles of the k™ population:

H.2.1. The candidate and test particles in x, with state v ;u and v;u,
respectively, interact with the eld particlesin x , with state v ;u located in
Its interaction domain  ,x 2

H.2.2. Interactions are weighted by a suitable term [ ](x ), that can be
interpreted as an interaction rate , which depends on the local density in
the position of the eld particles.

H.2.3. The distance and topological distribution of the intensity of the
igteractions IS weighted by a function pnk (X; X ) such that:
Phk (X;X )dx =1:

Multiscale Methods to Model Complex Multicellular Systems
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The Kinetic Theory for Active Particles

o

H.2.4. The candidate particle modi es its state according to the pro bability
density A de ned as follows:

An(v ' v;u ! uyv ;v ;u;u);

where A denotes the probability density that a candidate particles with state
V ;U reaches the statev;u after an interaction with the led particles with
statev ;u , while the test particle looses its state v and u after interactions
with eld particles with velocity v and activity u .

H.2.5. The test particle, in x, can proliferate, due to encounters with eld
particles in x , withrate |, (x;x ), which denotes the proliferation rate into
the functional subsystem i, due the encounter of particles belonging the
functional subsystems h and k. Destructive events can occur only within the
same population with rate |, (x;x ).
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The Kinetic Theory for Active Particles

Cells during proliferation can move from one populationtot he other.

Remark. The following factorization :
Ak ()=Bw(u ! u;ju;u) Cw(v ! Vvjv ;v ;u;u);

can be used in a variety of applications.

A, B, and Care, for positive de ned f , probability densities:
Z

Anx(v ' v;u ! ujv ;v ;u;u)dvdu=1; 8v ;v U ;u:
Dv Dy

Z Z

Bk (u ! u;ju ;u)du= Gk(v ! Vvjv ;v ;u;u)dv=1:
Dy Dy
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The Kinetic Theory for Active Particles: General
Framework

@+v @ fi(t;x;v;u)
X0 XX
= Gy [f] Ly[f] + S [f] (& x;v;u)

j=1 h=1 k=1
Z

i [l x )pg (x;x )Bj (u ! uju;u)Gu(v ! vijv ;v u,u)
fi(t;x;v 'Zu i(t;x ;v ;u)dv dv du du dx ;

fi(t; x;v) i [t x )pi (x;x )fj(tx ;v ;u )dv du dx
Z

+ ok [ k(6 X )P (XX ) e (U su )
Dy
fr(t;x;v;u )f(t;x ;v ;u )dv du du dx ;

where = DZ D2; = D, Du..
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The Kinetic Theory for Active Particles: Open Systems

Modeling macroscopic actions means the identi cation of the term
Ki = Ki(t; x;u) supposed to be a known function of its arguments. The action
K acts over the variable u for each functional subsystem. The resulting

(@+v @) fi(t;x;v;u)+ @ (Ki(t; x;u) fi(t; x;v;u) = Ji[f]:

Modeling microscopic actions means modeling of functional subsystems
generated by the outer system. Their representation can be ddivered by the
distribution functions:

o (t; x;w); r=1;:::;m; w2Dy=Dy:

depending on time, space and on a variable w modeling the activity of the
outer functional subsystem.
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The Kinetic Theory for Active Particles: The Frame-
work

(@+v @) fi(t;x;v;u)= Ji[f](t; x;v;u)+ Qi[f;g](t; x;v;u);

X XX
Qilf;gl=  Ci[f;9](t; x;v;u)+ She (DIf; 91(6 x;v;u);
j=1 h=1 r=1
Z
Ci[] = i L1 x )p; (3x )Bj(u ! uju ;u )Ch(v ! Vv ;v su;u)

fi(t; x;v 'Zu )or(t;x ;v ;w )dv dv du dw dx ;

fi(t;x;v) F Ll x )pi 0Gx )or(tx ;v ;w )dv dw dx

Sk (N[ = i [ (8 X )P (x5 ) ki (I)(u su)

Dy
fn(t;x;v;u )ok(t; x ;v ;u )dv du dw dx ;
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The Kinetic Theory for Active Particles

o

¢ models the encounter rates between thek™ external action with state w
and the h™ candidate particle  with state u .

Bi (u ! u;v ) denotes the probability density that the candidate particl e
the i" population with state u : h falls into the state u of the same population
due to interactions with the j™ action with state w .

Ci (v ! vjv ;v ;u ;w ) models the velocity dynamics, conditioned by the
activity of the interacting pairs.

¢ (i)(u ;v :u) models the net proliferation into the i population, due to
interactions, which occur with rate ¢ , of the candidate particle of the
population h™ with state u with the k™ action with state v .
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The Kinetic Theory for Active Particles

@fi(t;u)

Fi(t%@fi(t;u): Ji[f](t;u) + Qi[f](t;u)
X
i (U ;u)Bj (u;u ;uwfi(tu )fj(t;u )du du

X] Z
fi(t;u) i (u;u )fj(t,u )du
ji=t Pu
x o 4 |
k(U ;U ) h(usu )fr(Gu )f(tu )du du ;
h=1 k=1 Pu Du
i Z

5 (u ;v )G (u v sufi(tbu )g(tu )du dv

s Z

fi(t;u) (u;v )or(t;v ) dv
r=1 Duv

i xn Z Z

nk (U 5V ) p (D)(u ;v u)fp(tu ) (v )du dv
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Gene a union of genomic sequences encoding a coher-
ent set of potentially overlapping functional products
(GERSTEIN ET AL, Genome Researchl7 (2007) 669-681).

Gene Mutation: a permanent change in the DNA se-
guence that makes up a gene (a normal allele is changed
to a rare and abnormal variant):

Hereditary (germline): inherited from a parent;
Acquired (somatic): acquired during a person lifetime
(physical or chemical exogenous agents, mistake dur-

iIng DNA replication), e.g. Tumor.

Immune System: a complex of cells (leukocytes or
white blood cells) and molecules which provides a de-
fense against pathogenic agents

Capability of distinguishing between “self” and “non-

self” entities;
Learning;
Memory of previous encounters with foreign “non-
Self agents' Multiscale Methods to Model Complex Multicellular Systems - p. 30/6



Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Keloid Dermal tumor that forms during a protracted wound
healing process characterized by increased deposition of
extracellular matrix by broblast cells

D WOLFRAM ET AL, Hypertrophic scars and keloids—a
review of their pathophysiology, risk factors, and thera-
peutic management, Dermatol Surg. 35(2009) 171-81.

Triggering Causes: remain elusive and there is no
satisfactory treatment for this disorder.

Medical Hypotheses:

Viruses:
P. ALONSO ET AL, Keloids: A viral hypothesis, Medical

Hypotheses, 70 (2008) 156-166.

Genetic Susceptibility and Mutations :
M. N ASSIRI ET AL, Gene expression pro ling reveals
alteration of caspase 6 and 14 transcripts in normal
skin of keloid-prone patients, Arch Dermatol Res., 301

(2009) 183-188.
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Modeling Keloid Formation, Progression, Mutations,

and Immune System Competition

CELL SUBSYSTEMS ACTIVITY, AND DISTRIBUTION FUNCTIONS

Cell Subsystems Activity Distribution Function
Normal Fibroblasts (NFc) Proliferation f1(t;u)
Activated Viruses (AV) Aggressiveness fo(t;u)

Keloid Fibroblasts (KFc) Proliferation fa(t;u)
Malignant (Mc) Progression fa(t;u)
Immune System (ISc) Activation fs(t;u)
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Parameter Biological Meaning

Heterogeneity rate of (KFc)

Proliferation rate of (KFc)

i Proliferation rate of (1Sc)

Destruction rate of (AV) and (Mc) by (1Sc)

i Destruction rate of (1Sc)by (AV) and (Mc)

Mutation rate of (NFc) in (KFc)

Mutation rate of (KFc)in (Mc)

Scale factor
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

INTERACTIONS AND PARAMETERS

Interactions

(NFc)

(AV)

(KFc)

(Mc)

(ISc)

(NFc)

Proliferative
Destructive
Transitive

(AV)

Conservative
Proliferative
Destructive

(KFc)

Conservative
Proliferative
Destructive
Transitive

(Mc)

Conservative
Proliferative
Destructive

(ISc)

Proliferative
Destructive

n2 .
|
n? i
|
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

THE MATHEMATICAL MODEL

1
f1(tbu ) du fo(tbu )du fq(tbu ),
0

8
@fp =
Z Z Z
@Qfo= " 0 [f1(ttu )+ fg(t,u )] du 0 fg(tbu )du fo(tiu ) fo(tiu ) 0 f1(tu ) du
Z
+fo(tiu ) 0 f1(tu ) du;

Z1 Z1 ) Z1
" f g(tbu) fg(ttu ) du
0

Qfsz = f1(ttu ) du (1 + ") fo(tbtu )du fg(tiu)
0 0
Z1 Z1 Z1
+f3(tu ) fo(ttu )du + f1(ttu )du + fo(tbtu )du fq(tiu );
0 0 0

Z Z Z
@fg= (" 1) fo(tbu ) du fg(t,tu )du fya(t,tu )+ f g(tu) fo(ttu ) du
0 0 0

z

5 1
") fo(t,u ) du;
0

V4 "221 Z

@fg = 01 [fo(tbu )+ fga(tbu )] du + fg(tbtu )du fg(tiu ) i fs(tbu) 01 uf o(t;u ) du

Z1 "221

i 0 uf 2(ttu )du + uf g(ttu )du fg(tu ):
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Initial Conditions and Fixed Parameters

INITIAL CONDITIONS :

The number of Normal Fibroblasts in the wound is equal to the number of
Activated Virus , i.e.f1(0;u) = f2(0; u);

|ISc have reached the wound (sentinel level), fs5(0; u);

Keloid Fibroblasts and Mc are not initially present, f3(0;u) = f4(0;u)=0.

PARAMETERS IN EVERY SIMULATIONS :

The mutation rate of the Normal Fibroblasts to Keloid Fibroblasts is not
negligible ( = 0:4);

The destructive ability of the [IScis quite low ( = 0:3);

The non-self cells have an intermediate ability to inhibit th e response of the
ISc( i =0:5);

The scale factoris =0:5.

THE VALUES OF THE PARAMETERS , , i, AND ARE SET CASEWISE.
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Sensitivity Analysis of the Parameter

PARAMETERS:
Weak Keloid Fibroblasts proliferation ( = 0:4);
Low proliferation of the 1Sc( i =0;35);
The probability that Keloid Fibroblasts becomeMc is not negligible

( =0:5).

EXPECTEDASYMPTOTIC BEHAVIOUR :
Increasing ampli cation of the heterogeneity phenomena of the non-self
entities, and correspondingly increase the chances to devdop malignant

effects.

TESTCASES.
Simulations for values of 2 [0; 0:35];
Simulations for values of 2 (0:35; 0:5];
Simulations for values of 2 (0:5; 1].
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations for Values of 2 [0; 0:35]

30

25

20

10

Figure 1: Time evolution of the densities of Keloid Fibroblasts (solid line) and
of Mc (dashed line) for = 0:3. The low magnitude of the progression rate
never allows the number of Mc to overcome the number of Keloid Fibroblasts
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

10 10

Figure 2: The distribution functions of AV (top panels) and Keloid Fibroblasts
(bottom panels)for =0:1and =0:3.
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations for Values of 2 [0; 0:35]

f,(tu)
f4(t,u)

Figure 3: The distribution function of the Mc for =0 :1 (left panel) and = 0 :3 (right panel ).

BIOLOGICAL INTERPRETATION
These simulations may represent the failure of the normal wou nd healing

process where, because of the low number of non-self entities with a high level
of heterogeneity, the IScwould avoid the formation of keloid and malignant

effects.
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations for Values of 2 (0:35; 0:5]

40 T T T 25
35
20
30
25 [ 15 -
20} ] o
15} ] 10f
10
5 L
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Figure 4. Time evolution of Keloid Fibroblasts (solid line) and of Mc (dashed
line) for =0:4and =0:5(t.p). Distribution function of Mc (b.p.).
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Figure 5: Time evolution of the density of the I1Scfor =0:5.

BIOLOGICAL INTERPRETATION

These simulations may represent a failure of the normal wound healing
process where the keloid formation, which depends on how lon g it takes the
|IScto deplete the Keloid Fibroblasts , would prevail malignant effects.
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations for Values of 2 (0:5;1]
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Figure 6: Time evolution of KFc (solid line) and Mc, = 0:8. Distribution
function of Mc and AV.

Multiscale Methods to Model Complex Multicellular Systems - p. 43/6



Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Sensitivity Analysis of the Parameter

FIXED PARAMETERS:
Letting the magnitude of the parameters so that a high manife station of

heterogeneity and aggressiveness is manifest speci cally setting = 0:8,
=0:4, =0:5.

EXPECTEDASYMPTOTIC BEHAVIOUR :
It is expected that increasing values of ; produce a higher activation of the
Immune system and sequently a more ef cient ability to contr ast the non-self

cells.
TESTCASES
Simulations for ; =0;
Simulations for ; 2]0; 0:55];
i 2]0:55; 1].
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations for ; 2]0:55; 1]

Flgure (. Distribution function of the NFc and Keloid Fibroblasts for | =0 :8.

BIOLOGICAL INTERPRETATION :
The immune system prevents the formation of malignant tumors , but the

genetic susceptibility of the patient does not avoid the pos sibility of the keloid
formation.
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations for f1(0;u) = gio(u), f2(0;u) = go(u), and f5(0;u) = gi(u)

This assumption means that the Activated Viruses have not reached the
wound ( n[f2](0) = 0 ) and after the injury the number of Normal Fibroblasts is
greater than the number of the I1Sc, namely n[fs](0) < n [f1](0).

140

120¢

100¢

80r

60r

40f

201

Figure 8: Time evolution of the Keloid Fibroblasts and Isc and the distribution
function of Keloid Fibroblasts .
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations Summary

FIXED FREE SIMULATION RESULTS AND BIOLOGICAL
PARAMETERS PARAMETER INTERPRETATION

Onset of Keloid Fibroblasts and Mc

Mc never overcome Keloid Fibroblasts

=0 :2 Low number of the high activity non-self cells
Depletion of the Mc and Activated Viruses by I1Sc
Normal Fibroblasts proliferates again

=0 :4
i =0:35 Mc overcome Normal Fibroblasts

=0 :4 High activity levels for Keloid Fibroblasts and Mc

=0 :5 =0 :5 Low number of the Activated Viruses with high activity
| =0:5 Normal Fibroblasts are not able to proliferate

=0 :3 Partial depletion of the low activity non-self cells

Mc overcome Keloid Fibroblasts more and more
High proliferation of Activated Viruses

=0 :8 High number of the high activity non-self cells
Inhibition of the I1Sc after competition
Destruction of the Normal Fibroblasts
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Modeling Keloid Formation, Progression, Mutations,
and Immune System Competition

Simulations Summary

FIXED FREE SIMULATION RESULTS AND BIOLOGICAL

PARAMETERS PARAMETER INTERPRETATION

Untrammeled increasing of the non-self cells

=0 :4 High levels of proliferation of the Activated Viruses and Ke loid Fibroblasts

=0 :8 i =0 High levels of progression of the Mc

=0 :4 Total inhibition of the ISc

=0 :5 Destruction of Normal Fibroblasts
| =0 :5

=0 :3

=0 :5 Depletion of the non-self entities by 1Sc

i =0:8 Revival of the Proliferation of the Normal Fibroblasts

Rebirth of Keloid Fibroblasts because genetic susceptibility
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% From Microscopic to Macroscopic

N.B., A. BELLOUQUID, J. NIETO, AND J. SLER, Complexity and Mathematical
Tools Toward the Modelling of Multicellular Growing Systen20, (2010) . Let us

consider a stochastic perturbation in velocity of the whole system,
(@+ v 1) fi= iLilfi]+ Ji[f]+ Qilf;9];

i Is the turning rate or turning frequency, hence ; = il IS the mean run
time.

The linear transport term describes the dynamics of biologic al organisms

modelled by a velocity-jump process,
Z

Li[fi] = Ti(v ' vfi(t;x;v ;u) Ti(v! v )fi(t;x;v;u) dv ;
Dy

where Ti(v ! v)is, forthe i"" subsystem, the probability kernel for the new
velocity v 2 D, assuming that the previous velocity was v .
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From Microscopic to Macroscopic

The hypotheses on the turning operators L; are as follows:

H.1. Each turning operator L; satis es the following solvability conditions:
Z Z

Li[f ]dv = vL;[f]dv =0: (1)

Dy Dv
H.2. There exists a unique function
Miy 2 LY(Dy; @+ jvj)dv);

for all Oand U 2 D,, verifying
Z Z

Li(Mi;U):O; Mi;U(v)dv: ; vMi;U(v)dv: U:
Dy Dy

Here, variables t, x and u act as parameters. These hypotheses allow to derive
macroscopic scale hyperbolic systems.
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From Microscopic to Macroscopic

Let us consider a hyperbolic scalinformally corresponding to the following
choice of scale:

t! "t; x ! o"x ) ot :%;
which produces the following non-dimensional model:
@+ v r ) fi = Lilfi 1+ NI I+ Qi 9l 1=1;234

The closed system interaction operator is scaled as follows

Lo ,, ,, XX
Ji[f1l= | Gi[f] Li[f] (Ex;v;u)+ "' Si [f 1;

j=1 j=1 k=1

where we have retained the same notation for the non-dimensi onal gain Gj; ,

lost Lj and proliferative/destructive Sjik term.
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From Microscopic to Macroscopic

The hyperbolic macroscopic behavior is deduced from the limi t" ! 0. First,
taking " = 0 we formally obtain L;[f°] =0, so eachf veri es the conditions
of hypothesis H.2. Then, we have four limiting distributions of the form

fO=M 0,y 0 corresponding to our four subsystems, and we have to study th e
equations satis ed by the equilibrium variables ? and U?. To do that,
integration over v yields:

@ +div(Uj)
XL -- .. o 2
= "9 Gi[f'1] Ly[f] dv+"%* S\ [f 1dv
j=1 DPv j=1 k=1 Dv
xn £ xn £
+na Gilf ] Li[f] dv+ra™i? S [f ;gldv:
j=1 Pv j=1 Pv
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From Microscopic to Macroscopic

Analogous calculations for the momentum equation yield:

Z
@( ;U;)+ Div v v dv
Dy
| X4 Z . ., . . X4 X4 Z . "
= ng 1 VvV Gij [f ] Lij [f ] dv + nait i 4 \ Shk [f ]dV
j=1 Dv h=1 k=1 Dv
x4 X £
+ a1 v Gi[f'] L{[f] dv+"a* i ? vS§[f ;gldv:
j=1 Dv j=t DPv

Moreover we use the pressure tensor P as a measure of the statistical

variation in velocity around the expected mean velocity U?,
Z

P (t;x;u) = (v U)) (v U)fidv:

Z
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From Microscopic to Macroscopic

Perturbation of the equilibrium f; = M i?iU? + "hi,with M = fM iiO;uiogi4=1:

@ 7+ div( 7U7)= O("™)

XL Lo et
4 Gy [M] Ly[M] dv+"4" Sji [M ]dv
j=1 Dv j=1 k=1 Dv
x4 x £
e T Gi Mgl LMl av ettt S Mgy
j=1 DPv j=1 DPv
Z
@( YU?) + Div V. VM o odv = O("")
D, i i
XL L XXl |
+ " v Gj[M] Lj[M] dv+ " %" V St [M Jv
j=1 Dv h=1 k=1 Dv
o 4 x £
+na v Gi[M;g] Lj[M;g] dv+"9* i ? vSj [M;gldv:
j=1 Dv j=t DPv
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From Microscopic to Macroscopic

Casel.; Oandg > 1: Thisis the simple conservative hyperbolic system:
8
3 @ 7+ div( U?)=0
3

@( YU?)+ Div P(UY U+ P° =0:

Case 2. ; > 0and g = 1: Inthis case we preserve a source term related to
conservative actions, and therapy actions into the closed system:

Gj[M;g] Lj[M;g] dv;

Jl Dy

8
% @ 0+ dIV( 09y = Pj4:1 RDV Gij[M] Lj[M] dv

P R
@( OUO)"‘ Div_ (U U+ P° =" [ [v GjM] Lj[M]dv

v Gj[M;g] Lj[M;g] dv:

.:1 D,
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From Microscopic to Macroscopic

Case 3. ; =0 and g = 1: Inthis last case we preserve all the macroscopic
information about the closed system, including proliferat ive, destructive
interactions, and therapy actions:
xt 4 X
P+ div( fUP) = Gi[M] LjMI]+  Sj[M] dv
j=1 Dv k=1

Gi [M;g]l Lj[M;gl+ Sf[M;g] dv;

an

Dv

@( 7U7)+ Div (U7 UY)+ P

_x Z X4
v Gj[M;g] Lj[M;g]+ Sik [M] dv
=1 Dv " 7 k=1
+ v Gj[M;g] Lj[M;g]l+ Sj[M;g] dv:

j:]_ DV
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% From Microscopic to Macroscopic

Theorem Letf verify
kf kco1 Loy Dy Dypt C<1

for somep > 2, and such that each converges pointwise. We also assume that the
microscopic state space has nite measure and that the IplitpaensitiesB , Gk ,

ik andBj, are bounded functions while the interactions ratgsand j , intensity
ratesp; andp; and proliferation/destruction rateéj are all square integrable with
respect to their variables. Finally, we assume th‘;\t and ,ZJ are continuous. Then,
the pointwise limit of " is the vector valued functiol = fM'o. oGy given by
hypothesis H.2. with o

P=lim [ U= lim Ujs

l.e., the weak and pointwise limits of the local densitycigtaff-. Moreover, in the
three regimes introduced above, the limiting densitfeand velocitied) ? verify the
three case considered above.
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From Microscopic to Macroscopic

o

Possibly, the mathematical structure we have seen refers a rew class of
equations. A rigorous framework is delivered for the deriva tion of models,
when a mathematical description of cell interactions can be derived, by
phenomenological interpretation, from empirical data. On the other hand,
only when the above interactions are delivered by a theoreti cal interpretation
delivered within the framework of biological sciences, the n we may talk about
a biological-mathematical theory

The various theoretical approaches known in the literature p ostulate
probabilistic models of gene expression, while gene intera ctions among genes
and with the outer environments should be taken into account . Considering
that a robust theory is not yet available, a conjecture is here proposed
developing at the molecular scale some ideas already exploited at the cellular
scale. This conjecture is proposed in what follows at a prelim inary stage still
waiting to be properly developed.
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% From Microscopic to Macroscopic

The interaction scheme from the lower to the higher scale can be represented
as follows:

h i h i

L' =N[" ]+M[; 1 ! Lf=J[f]+ Q[f;" ] ;

that corresponds to the following dynamics:

The evolution of the system at the lower scale is determined by the
interaction between active particles within the populatio n, and with particles
of the outer environment.

The evolution of the system at the higher scale is determined by the
Interaction between active particles, of both populations among themselves,
and, for each of them, with particles of the lower system.

A simpli ed approach consists in modelling the parameters o f the equation
at the cellular scale using the distance d(';' o) of the distribution ' form the
initial distribution ' .
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From Microscopic to Macroscopic

Let us now consider the coupling with the lower scale, where t he overall state
IS de ned by the distribution function of gene expression:

=" (tv) . [0;T] Dv! R4

over the microscopic statev 2 D, of the interacting entities regarded as active
particles.

The system at the lower scale interacts with the outer environ ment, that has
the ability of modifying the gene expression by an action of t he type
Z Z
= (t;v) : [0;T] D! R ; (t;v)dvdt M;
0 D

for some constantM .

Multiscale Methods to Model Complex Multicellular Systems

—p.61/6



From Microscopic to Macroscopic

0 1
nr N r «S

n p . .

1+ jr xSj?

@n = divy @D, g A+ H(n;S);

D2 . .
N2+ —4jr xnj?

WA AW 00

@S =71 x(Ds r xS)+ K(n;S);

where n and S denote, respectively, the density of the cells and of the
chemoattractant
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