Interpreted nets

Ludwik Czaja
Institute of Informatics, Warsaw University, lczaja@mimuw.edu.pl

Abstract. The nets considered here are an extension of Petri nets in two aspects.
In the semantical aspect, there is no one firing rule common to all transitions, but every
transition is treated as an operator on data stored in its entry places and return results
in its exit places. A state (marking) is a mapping of places (variables) into a given
data structure, while interpretation is a mapping of transitions into a set of state
transformers. Locality of transition’s activity is like in Petri nets. In the structural
aspect, entry and exit places to a transition are ordered. A concatenation of such nets
is defined, hence their calculus (a monoid). This allows for combining small nets into
large ones, in particular designing a computation and control parts separately, then
putting them together into one. Such extended nets may produce, in particular, other
nets. A number of properties of the operation on nets and their decomposition are
demonstrated.

1. Introduction

Consider a Petri net structure, that is a bipartite directed graph. Imagine
that places may hold arbitrary data, while transitions represent arbitrary opera-
tors on the data stored in their entry places and return results in exit places. In
such a model the state (marking) of the net is a mapping of places into a given
data structure, while interpretation is a mapping of transitions into a set of state
transformers. To ensure locality of transition’s activity, we require that it has no
effect outside entry and exit places. The main feature of such "abstract" nets is
that each transition is assigned an individual firing rule, in contrast to one firing
rule common to all transitions as in Petri nets. Although transitions may assume
various interpretations, one may regard a union of these interpretations as one
interpretation of the net. The passage from the Petri net firing rule to interpre-
tation as a mapping of a set (of transitions) into a set (of state transformers)
reminds historical development of a notion of function: from one expression with
a free variable(s), via a set of expressions conditionally selected, to a subset of
Cartesian product of two sets. A data structure may be a collection of arbitrary
objects with appropriate operations the state transformers may perform, e.g. a
set of real numbers with arithmetic operations as in Example 3.1, or even nets
with some composition operations as in Example 5.1. Thus, arbitrarily complex
actions on whatever data are incorporated into net’s semantics, not only rules
imposing partial order of transition firing. The ability to impose such order is
encoded in semantics of Petri nets - their principal feature - while account of
computing is (sometimes) put down in comments attached to transitions and

does not influence net behaviour at all. The nets developed here resemble pro-
grams (parallel in general), i.e. collections of statements, data structures and
control mechanisms. Only the latter are present in Petri nets, that become a
special case of the "abstract" nets. Although there are a number of the so-called
higher level types of nets (e.g. [Gen-Lau 81], [Jen 81]), or object nets (e.g. [Val
98]), the level of abstraction considered here seems to go further.

Another issue explored is a composition of nets, called concatenation, since
it retains the main properties of an ordinary concatenation. This allows for com-
bining small nets into large ones, in particular designing a computation and
control parts separately, then putting them together into one by concatenation.
A number of properties of the operation on nets are demonstrated. Composition
(and decomposition) of nets has been treated extensively in literature (e.g. [Bra
80], [Maz 84]), however it concerned nets with "Petri-like" interpretations, in
which case the question of decomposability has a rather trivial answer (Proposi-
tion 4.1). It turns out that such nets are decomposable in any possible way, but
usually it is not so with other interpretations.

The idea of interpreted nets originates in [Cza 85|, but here is presented in
a different setting and further developed.

2. Interpreted nets with ordered pre/post-sets of
transitions

Let X and A be sets - a universe of variables, called net-places, and a universe
of values the variables may assume, respectively. A transition over X is a pair
t=("t,t—) where —t, t are finite, possibly empty (denoted &) sequences of
distinct elements from X, i.e. —t, t— € X*. ”t is an ordered pre-set and t—
an ordered post-set of t. By T the universe of all transitions is denoted. A net-
structure is any subset of T. Denote by ®t, t®* sets of elements occurring in the
sequences —t, t— respectively and let us call *t* = *tUt* a neighbourhood of
t. For a net-structure T'C T let *T* = UteT *t*. A wvaluation of the set *T°°,
called a marking of the net-structure 7', is any total function M : *7T* — A and
let M be the set of all markings. An interpretation It of T with each transition
t € T associates a partial function I'r(t) : My — My denoted for short by tir
and, for M, M’ € dom(t!T) (a domain of t/7) satisfying:

(i) tfr(M)|*T**t* = M|*T**t* (activity of ¢ has no effect outside *t*)
(ii) If M|*t® = M’|*t* then tIT(M)|*t® = tIr(M’)|*t* (activity of ¢ depends
on *t* only)

It follows from (i) that empty, i.e. isolated transition ¢ = (g,¢) does not change
marking, i.e. t/7(M) = M. If M &€ dom(t'*) then say "t is firable at M in
the net-structure T". An interpreted net is P = (T, Ir), its semantics is a
binary relation P'T = User tIT. (#7 is treated as a binary relation defined by
(M, M'") € tIt iff M’ = t!7(M)). The reflexive and transitive closure (PT)*
is a reachability relation in the net P.

Example 2.1. For Place/Transition nets with arrow-weights 1 and unbounded
capacity of places: A = {0,1,2,...} and the interpretation t! of transition t € T
is defined by M’ =tI(M) iff

M(z)—1if z €t
(Ve e ®t: M(zx) >0)AM (z) =< M(z)+1if xet®

M(x) else

Example 2.2. A transition ¢ = (Tt, ¢~) may represent an assignment state-
ment (Y1, Y2, -, Ym) := f(T1, T2, ..., Tn) With z129...2, = 7t and y1y2,...Ym =
t~, computing a value of the atomic term f(x1,z2,...,2,) and storing it in
all y1,¥2, ..., Ym. Thus, the interpretation t! is defined by M’ = tI(M) iff
ooy | flx1,2a,...,zn) if © occurs in ¢t

M'(z) = M(z) else

For instance, the statement 2z := z/y computing a quotient of real numbers
(with a symbol of "undefined", i.e. A = RU{L}) stored in variables (places)
xy = ~t and returning result in z =¢— is a transition

X t
Q z Here it is seen that the order of the pre-set places matters.
Y
IRt M (y) #0

Thus ¢(M)(2) = M(w), £1(M)(y) = M(y), E(M)(z) = 4 20" 7

A set of such transitions is a net which may (but not always does!) represent
a general assignment statement, that is such that the term on the right side of
":=" may be nested, i.e. not atomic. For instance, if ¢, = (zy,u) represents
u:=xz/y, t2 = (uz,w) represents w := u + z, then the net-structure {t1,t2}
representing w := x/y + z and pictured as:

X l]

u
u=xly—>O~, b

y w=u+z—()w isinterpreted as:

HM)(s) =4 L if s=uAM(y)=0 tﬁ(Mﬂs)_{M(s)

Interpretation of nets for assignment statements conforms to their computer’s
realisation (if an order of executing transitions is imposed by another net mod-
elling instruction counter, see Example 3.1): fetching a value from a memory cell
(place) does not change its contents.

Since a net-structure T is defined as a set of transitions, any partition of
this set is a trivial decomposition of T'. If any component net-structure is inter-
preted by interpretation I restricted to the component, then we may speak of

a decomposition of the net P = (T,Ir) wrt a partition of the set T (of its
transitions). In the following, we examine decomposition wrt a partition of the
set *T* (of places).

3. Concatenation of nets

First, let us define concatenation of transitions ¢ = (7t, t7) t' = (7t/, '7):
t-t' = (7t 7', 7 t'7) if each sequence —t —~t’ and ¢~ '~ contains distinct
elements (i.e. *tN *¢ =0 =1¢*N ¢'*) and undefined otherwise.

Second, let transitions in a net-structure 7' be labelled: Iy : Ly — T is a
labelling function in 7, where Lr is a set of labels in T'. Say then "a labels t" if

at

Ir(a) =t, pictorially: 0 7 In what follows, we will consider labelled
net-structures only and denote them also by 7', possibly with indices.

Third, for the labelled net-structures Ty, To with *77 N *Ty = () and labelling
lr,, 1, respectively, define their concatenation: ¢ € T} ¢ Tp iff either (¢ =
t1 -t where t; € Ty, ta € T» and for a certain label a € Ly, N Lp,:
Ir,(a) = t1, Ip,(a) =t3) or (t € Ty UT, otherwise). In words: T; e Ty is
a set of concatenations of transitions identically labelled in both constituents;
a transition in T; for which there is no transition in 7; (when j # i) labelled
identically, remains in T} e T5 as it is in 7;. Labelling Irer, in 77 @ 75 is:
Iryery(a) = t1 - te in the first case and Iper,(a) = Ir,(a) if Ir(a) € T;
(i = 1,2) in the second. Note that due to *T7 N *Ty =) the concatenation
of labelled net-structures is well defined. Finally, given nets P, = (11, Ir,),
Py = (I, Ir,), interpretation I7 of a transition ¢t € T = Ty e Ty is defined
by tlr (M) = tiTl (M|*T?) U t;TZ (M|*Ty) where t; € T; (i = 1,2) is such
that ¢ = ¢; - to in the first case and t; = t in the second. In the latter case
t; = (e,e) for j # i. Concatenation of P; and P, is defined as P = (T, Ir) =
Py e P, = (T) T, IT e1,). This conforms to the intuitively expected behaviour
of P because of:

Proposition 3.1 Fori=1,2:
I I
" (M)PTY) Uty (M|*Ts) if t = t1 -t and Ja:lg,(a) =t; € T;

T
thr (M) = § ™ (M|*T®) U M|*T$ if t=t; €T} and not the first case

I

ty2(M|*Tg) U M|*Ty if t =ty € Ty and not the first case

Proof: obvious due to *T7 N *T3 =0 and (i) in Section 2 O
A desired property of net concatenation is associativity:

Proposition 3.2 For nets P; = (T}, Ir,) (i=1,2,3) let *Tf N TP =
when Z;éj Then: Pl.(Pg.Pg) = (P]_ .Pz).Pg.

Proof: For t; €T;, Iy, : Ly, = T; let eg. Ipy(a) =t; and no transition
in Ty and T3 is labelled by a, Ip,(b) = to, In(b) = t3 and no transition

in Ty is labelled by b. Thus, Irer;(b) = t2 -t3, hence Ipemery)(a) = t1,
IT,o(Tyers)(b) = t2 - 3. On the other hand, Irer,(a) = t1, Irer,(b) = to,
hence (7 em)e7; (@) = t1, l(TyeTs)emy (D) = t2 @ t3. Considering other cases of
labelling, we get analogous outcome. Therefore, T} e (T e T3) = (T ¢ T5) o T5.
By definition of I, e, we immediately get I o(1ye7y) = [(Ty0Tm)em U

Due to Proposition 3.2, one may write P; e Pye...e P, denoted O?:l P;. Note
that for the Petri net interpretation (Example 2.1) operator (O}_; reduces to
the commonly known (commutative) parallel composition of nets with "gluing
together" transitions labelled identically in different constituents cf. [Maz 95].

Example 3.1. Net P, = {a:(ay,u), b:(uz,w)} in Fig.3.1 interpreted as in
Example 2.2, represents computation of statements wu:=z/y and w=1u+ z
in unspecified order. Net P> = {a:(c1,c2), b:(ca,c3)} in Fig.3.2 with Petri net
interpretation as in Example 2.1, represents a control (instruction counter) for
p.

X at,;

by
O . b,
o o S We W W
z
Fig.3.1 Net P, Fig.3.2 Net P,

Net P3 = P, @ P, = {a:(zycy,uce), b:(uzce, wes)} in Fig.3.3, represents correct
computation of statement w := z/y+z in the desired order of firing transitions,
if the initial marking of P is M(c1) =1, M(ce) = M(c3) =0.

Ow

a:t oD uO\ b'l‘g. q
O Slumnl = %m
C/O Cz(/ Ocs

F1g33 Net P3 = Pl [PQ

4. Decomposition of nets wrt partition of
(sets of) places

We shall formulate conditions ensuring that behaviour of a net can be ex-
pressed by behaviour of its components. Given net P = (T, It), let us look
for nets P, = (Ti,Ir,), (i = 1,..,n) with °*T N *T? = () when i # j,
such that P = ;_,; Pi. For instance, the net in Fig.3.2 can be decomposed

ap; a.p, ¢ b:q,

as Py = Q1 e()2e ()3 where Q1 = O_’E Q= PO~]

bigy ¢
Qs = | O, each Q; with Petri net interpretation. Decomposition into
Q1,Q2, Q3 corresponds to partition {{c1},{ca}, {cs}} of the set {c1,ca,c3}. Ob-
viously, for any partition of this set there is a corresponding decomposition of Ps,
¢ a.p; ¢ b:q;
e.g. to {{c1,c2}, {c3}} corresponds decomposition into O—| O \

b:q, e
and |:|—>d In general, we have:

Proposition 4.1 FEach Petri net can be decomposed in as many ways as
there are partitions of (the set of) its places. In other words, for each partition,
there exists a corresponding decomposition of the net.

Proof: For a Petrinet P = (T, Ir) let {5y, ..., Sy} be a partition of *T"*. For
S; take transitions adjacent to places in S;, change their names but retain labels,
remove places not belonging to S; and define a net-structure 7; to be the set of
such modified transitions. Define interpretation I, by I, (M|S;) = It (M)|S;
where M is a marking of T'. Obviously, P= Py e...e P, [

On the other hand, the net P; in Fig.3.1 (not a Petri net!) cannot be decomposed
at all, since neither transition a:t; nor b:ts can be split so that concatenation
of its components would yield interpretation of ¢; as division or ¢y as addition.
Thus, the only partition of {x,y, z,u, w} for which there exists a decomposition
of Py is trivial: {{z,y, z,u,w}}.

Each decomposition ();_; P, of P = (T,Ir) defines a unique partition
{*T7,...,*Tn} of *T* where P, = (I;,Ir,). But for some partitions, no
corresponding non-trivial decomposition of P may exist, as shows the latter ex-
ample. We aim at characterising partitions for which there exist decompositions
of a given net.

Definition 4.1 (functional partitions)
Given net P = (T,Ir), a partition {S,...,S,} of *T* is functional wrt P iff
for every t €T
(a) If M|S; = M'|S; then tir(M)|S; = tIr(M')|S; provided that
M, M’ € dom(t!r) for i=1,..,n
(b) If My,..., M, € dom(t!r) then M € dom(t'r) where M =Ji_, M;|S;

For example, the only functional partition of the set of places in the net in Fig.3.1
is {{z,y, z,u,w}}, while every partition of the set of places in the net in Fig.3.2
is functional.

Theorem 4.1 A net P = (T,Ir) is decomposable wrt a partition
{S1, ..., Sn} of *T* iff the partition is functional wrt P.

Proof. (=). Let P be decomposable wrt {5, ..., S, }: there are nets P; with
P = @?:1 P, P, = ({T;,Ir,), *T} = S;. By definition of net concatenation:

T T
thr(M) = Ui, t,;"" (M|S;) for any marking M € dom(t'r). Since t,"* are

i=1"Ti

I I
functions then M|S, = M'|S, = t,'* (M|Sk) = t,"* (M'|Sk) provided that
M, M' € dom(t!r). By property of restriction "|" and by S;NSy = for i # k:

Hr (V)] Sk = (Ul £ (M]S:))|Sk = £ (M]Sk)

i=1" ,
the (M")|Se = (Uiy £, (M]S:))|Sk =t (M| Sk)
Therefore, we get M|S, = M'|Sy = tir (M)|S, = tir (M’)|S), that is point
(a) in Definition 4.1. To prove (b), suppose My, ..., M, € dom(tr) and
M = Up_; Mg|Sk. Thus, M|S; = M;|S;, i = 1,..,n. Since tlr(M) =

IT. n IT- n IT'
Ui ;" (M1S:) = Uiy ;" (M;S;) and thr (M) = UiZ ¢, (M|S;), then

M € dom(tir).
(<). Let {51, ..., 5.} be a functional partition of *T"* wrt P. We look for nets

I
P = (T;,Iz,),i =1,...,nsuch that *Tp =S;, tir (M) =;_, t;" (M|S;), that
is P=(Q;_, P;. Foratransitiont = (¢, t~) denote t|.S; = (Tt]S;, t7 |S,),
where ¢ S;, etc. is projection of the sequence —t onto the set S; (i.e. ~¢]S;

is 7t with all members ¢ S; deleted), and let T]S; = {t]S;: t € T'}. Define
T, =T|S; and tZ-ITi (M;) = tIr (M)|S;, where M is arbitrary marking in P
in which ¢ is firable and satisfying M|S; = M;. Obviously, T =T e ...eT,,
so it remains to show t'r (M) = tiTl (Mi)uU ..U thT" (M,). By definition of
tiITi: thi (M;) = tIr (M})|S;, where M]: *T* — A is a certain marking in P
in which ¢ is firable and satisfying M/|S; = M;. Since M]|S; = M]/|S; then
applying points (a) and (b) in Definition 4.1 and th" (M) = thr (M])|S;, we
get tlr (M)|S; = tTr (M])|S; = tiITi (M;) which implies t'r (M) = tiTl (M) U
Ut (M) O

In the "<" part of the proof we have taken arbitrary ordering of Si, ..., Sy, and
defined sets of places in the components P; as *T;* = S;. Thus, the composition
(O}, P; does not depend on the ordering. This property accounts for behaviour
of the whole net P as localised in its components P; and implies immediately:

Corollary 4.1 If P = Py e...e P, then for any permutation ki, ..., k, of
indices 1,...,n: P = Py, ... P, . In such cases concatenation of nets works
as operator "||" on Petri nets - the parallel composition with merged transitions
identically labelled.

In general, a net may be decomposed in several ways, e.g. look back at Propo-
sition 4.1. However we have:

Proposition 4.2 For a fixed (functional) partition {Si,...,S,} of the
(set of) places in a net P = (T,Ir), decomposition P = O;_,(T;, Ir,) with
*T? =S; is unique (up to the order of components).

Proof: Suppose P = (T}, I1s) with *T}* = S; (we assume the same
order of components corresponding to the same sets .S; in both decompositions

of P). Then T =T;, since S; NSk =10 when j# k. If M is a marking of T’
such that a transition ¢ € T is firable at M then t/7(M) = |, thi (M|S;)
for some ty,...,t, € T; and t7 (M) =", t! Iz (M|S;) for somet],...,t), € T}.

i=1"
But ¢ =t;, because t; and ¢; are components (both corresponding to the set
S;, le. *ti® = *t? C S;) of the same transition ¢ split in the two supposed

decompositions of P. Thus ¢ I} (M|S;) = th" (M]S;) since T} =T;. O

If a decomposition is atomic, that is such that no component is decomposable,
then it is unique (up to the order of components):

Theorem 4.2 The atomic decomposition of a net P = (T, I7) is unique,
ie. if P=Q@ ;P = O; P are two of its atomic decompositions then
n = m and sequences Pi,..,P, and Pj,.., P, are permutations of each

m
other.

Proof. Due to Theorem 4.1, these decompositions yield some functional
partitions S = {S1,...,5.}, S = {97,...,5,,}, of the set *T* with classes
S; and S} atomic, i.e. not further fractionisable (in other words, atomic nets P;
and Pj yield only trivial decomposition {S;} and {S}} of the set of their places).
Suppose S # S’ that is, either certain S; ¢ §' or certain S ¢ S. Let, e.g.
S; ¢S" and let x € S;. Obviously x € S} €S for a certain S (because S and
S’ are partitions of the same set) and = ¢ S, and x ¢ S} for k#1i, | # 7,
(because S; N Sk = 0, Si NSy = (). Suppose S; # Si. Then, eg. y € S;
and y ¢ S%. Now, apply assumption on the atomicity of (sub)nets F; and Pj: x
and y as places belonging to one atomic class, cannot be separated by another
functional partition of *T'® (otherwise interpretation Iz could not be composed
of interpretations of the component subnets determined by this partition), which
happens in partition §'. Therefore S; = S} implying S =§'. By Proposition
4.2 we get the uniqueness of the atomic decomposition of P. [J

Example 4.1 The net Ppgreda = (T,Ir) in Fig.4.1 represents parallel
computation of the sum z + y of non-negative integer numbers x and y. The
initial values are stored in places z and y, the result on termination - in y. A
small place holding a token points to an operation (transition) to be executed.
Initially sp only holds a token, on termination - s5. Permitted operations are
adding and subtracting 1 (if possible) and comparing with 0. The net-structure
is T = {a:tog, bitq, c:ta, d:ts}. Transition a:tg represents empty statement. In-
terpretation It of the (labelled) transitions is:

0 if s=581Vs=sy
(M, M) € t{" & M(s;) = M(s2) =1AM'(s)={ 1 if s=sg
M (s) else
0 if s=s3
1 if =391

/ It _ / _
(M, M"Y et} & M(s3) =1AM'(s) = M(s)—1if 5=

M(s) else

if s=sg
if (s=s3Vs=s4)AM(z)>0

0
1
, Ir - ’ _
(M, M) € 137 & M(so) = IAM(5) = § | 4 T 00 M(a) = 0
M

(s) else
0 if s=us4
’ Ir o ’ o 1 if § = S92
(M, M") ets" & M(sqg) =1AM'(s) = M(s)+ 1if s—1y
M(s) else

Fig.4.1 Parallel computation of y:=z +y

Decomposition of the net in Fig.4.1 into control (Peert) and computation (Peoryp)
part is in Fig.4.2 and Fig.4.3: Pparadd = Peont ® Peomp. The respective partition
of the set of places is {{50, $1,52, 83, 54, 85} {z, y}} decomp0s1t10n of transitions
is to=1tg-(g,€), tg =ty -1y, tg=1ty-ly, ts=1ts-ts. Obviously, each part is
further decomposable.

s at, 5 b:t; city d:t}
O > < O | x:=x-1 | | x>0 | |y,~=y+]|
So
~—0O Oo— x y
Oss
Fig.4.2 Control part Fig.4.3 Computation part

5. Final remarks

Concatenation of nets defined in Section 3 is a partial operation: it is de-
fined only when sets of places in both nets are disjoint. Otherwise multiple
occurrences of the same place in a transition might happen. For example, if

{a:(z,y)} ® {a:(z,2)} = {a:(zz,yz)}, one may face a confusion when inter-
pretation is imposed (e.g. if # in the net {a:(z,y)} holds a real number, while
in {a:(z,2)} - a truth value). A dual operation on nets is their union: since
a net-structure is a set of transitions and its interpretation is a mapping of
the transitions into relations between markings, the set-theoretic union may be
applied to nets. But to avoid another confusion, disjointness of sets of transi-
tion labels in both operands must be required. Otherwise different transitions
might be assigned to the same label. For example, if {a:(x,y)} U {a:(z,2)} =
{a:(x,y), a:(x,z)}, transitions (x,y) and (x,z) are labelled by a in the result.
This violates requirement that labelleing is a function. One may ask whether the
distribution law holds if nets P, and P, have different transition labels and Ps
has different than P, and P, places, i.e. whether Ps; e (P; U Py) = Pze P; U Pse
P,? The answer is no, as shows the counterexample with P, = {a:(z,y)},
Py = {b:(z,2)}, P3 = {a:(u,v)}. Therefore, the restrictions imposed on con-
catenation and union of nets are too severe if one expects to get a semiring (even
partial) of nets with such operations. Nonetheless, concatenation and union are
quite powerfull means to combine small nets into large ones and to infer be-
haviour of the latter from behaviour of the former. Consider a ("meta") net in
Example 5.1 specifying production of the net in Example 4.1. It visualises, by
the way, how "abstract" nets may be used to construct nets.

Example 5.1 Let the universe of values (contents) of places be A =2T U
{0,1}. In Fig.5.1 a "meta" net is depicted whose large places hold nets while
small - 0 or 1 (absence or presence of control token). The data structure is
(A, e,U,+, —), with operations: concatenation and union of nets and addition
and subtraction of 1. If the net initially is marked as in Fig.5.1 then on ter-
mination, in the place M the net structure in Fig.4.1 will appear. Transition
labels and names of control places in the "meta" net are immaterial thus omit-
ted. Interpretation of the control part is as in Petri nets, interpretation of the
computing part is mutatis mutandis analogous to that in Example 4.1.

Fig.5.1 Net specifying step-by-step construction of net in Fig.4.1

References
[Bra 80] W. Brauer (ed.): Net Theory and Applications, LNCS 84 (1980)

[Cza 85] L. Czaja: Making Nets Abstract and Structured, in: Advances in Petri
Nets 1985 (G. Goos and J. Hartmanis eds.), Lecture Notes in Computer Science
222

[Gen-Lau 81] H. Genrich, K. Lautenbach: System Modelling with High Level
Petri Nets, Theoretical Computer Science 13(1981), pp. 109-136

[Jen 81] K. Jensen: Coloured Petri Nets and Invariant Method, Theoretical Com-
puter Science 14(1981), pp. 317-336

[Maz 84] A. Mazurkiewicz: Semantics of Concurrent Systems: A Modular Fized
Point Trace Approach, Institute of Applied Mathematics and Computer Science,
University of Leiden, The Netherlands, Internal Report (1984)

[Maz 95] A. Mazurkiewicz: Introduction to Trace Theory, in: The Book of Traces,
(V. Diekert and G. Rosenberg eds.), World Scientific 1995

[Rei 85] W. Reisig: Petri Nets, An Introduction, EATCS Monographs on Theo-
retical Computer Science, Springer Verlag, 1985

[Val 98] R. Valk: Petri nets as token objects. An introduction to elementary object
nets, In J. Desel and M. Silva, editors, Applications and Theory of Petri Nets
1998. Proceedings, volume 1420, pages 1-25. Springer-Verlag, 1998.

