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Abstract. This document contains the proofs from chapter 4 of the
paper ”"Time distribution in Structural Workflow Nets”.

1 Cumulative Distribution Function
Let’s compute the cumulative distribution function for random variable X with
density being an exponential polynomial:
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The cumulative distribution function of the random variable X is given by:
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For ¢t < 0 we have F(t) = 0. Further calculations are made with the assump-
tion that ¢ > 0.
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The value of derivative fg a;jxte % dxr was computed using the Mathe-
matica software. Function I is defined by:
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Finally, the cumulative distribution function of the random variable X with
density g(x) is given by:
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2 Sum

Consider random variable being the sum of n independent random variables
Xi,...,Xn. We will denote it by SUM (X7, ...,X,), its density by sx, .. x,,
and its cdf by Sx, .. x,-

Proposition 1. For the sum of independent random variables X,..., X, we
have:

SUM(Xy,...,X,) = SUM(Xsay, .-, Xsm)) 0€ Sy (3)

SUM(Xq,...,X,)(t) =SUM(SUM(X1,...,Xn-1),Xn) (4)

Proof. These equalities follow directly from associativity and commutativity of
the sum operation.

From proposition 1 we deduce that in order to compute the density of sum
of n independent random variables it is sufficient to know how to compute the
density of sum of two such variables.

The following proposition is well known:

Proposition 2. The density of sum of independent continuous random vari-
ables is random variable with density being the convolution of densities of argu-
ments.

The easy conclusion from this proposition is:

Proposition 3. The density of sum of two independent random variables X
and Y with densities fx and fy, such that fx(z) =0 and fy(x) =0 forx <0
and continuous for x > 0 is given by:
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Let’s compute the density of sum of two independent random variables X
and Y with densities f(z) and g(x) being exponential polynomials:
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We will obtain the result which is also the exponential polynomial. Densities
f and g fulfill the assumptions of proposition 3. For ¢t < 0 sx y(t) = 0. For t > 0
we have:
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We will consider two cases. In the first case (a; ; = Ok,1), we add to the result
the following component (the derivative was computed using the Mathematica
software):
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Observe, that we can rewrite this component as:
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In the second case, when «;; # Bk, we add to the result the following
component:
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This derivative was also computed using the Mathematica software and is
equal to:
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where function I" is defined by equation 1. So we have:
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Let’s represent component I, so that Iy = I 1 — I 2, where:
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The density function being sum of components of the form I, I>; and I5»,
has the desired form. We will simplify it. Observe that the proposition 3 allows us
to write sx v (t) = sy, x(t). Observe also that all exponents of e in formulas of the
form I5; occur in the formula for the density of Y, and all exponents of e in the
formula I 2 occur in the density of X. Observe that since sx vy (t) = sy,x (), the
components of the form I; will be reduced (probably using the last observation).



The remained components of the form I 1, I 2 and I§71, 1572 (analogous formulas
from density of sy x(t)) must be equal. So we can conclude that the sum of
components of the form I 5 can be replaced by the sum of components of the
form I3 ; (which are simpler). As the final result we obtain the following formula
for the density of sx y:
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3 Maximum

Consider a random variable being maximum of n independent random variables
Xi,...,Xpn. We will denote it by MAX (X7, ..., X,), its density by mazx, . x,,
and cdf by MAXx, . . x.,

Proposition 4. For the maximum of independent random variables X1, ..., X,
we have:

MAX(Xl, . ,Xn) = MAX(X(;(D, . ,X(;(n)) d€ S, (10)

MAX(Xy,..., X)) = MAX(MAX(X1,...,Xn-1), Xn) (11)

Proof. These equalities follows directly from associativity and commutativity of
the maximum operation.

So as in the case of the sum it is sufficient to find the density of the max-
imum of two random variables. Let’s independent random variables X and Y
have densities f(z) and g(z) respectively, where f(x) and g(z) are exponential
polynomials given by:
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Proposition 5. The cumulative distribution function of the maximum of two
independent random variables X and Y with cumulative distribution functions
F and G is given by:

MAXxy(t) = F(t)G(t) (12)



Proof.

MAXxy(t) = P(MAX(X,Y) < t)
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So the cdf of MAXx y is given by:
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Observe that for ¢ < 0 we have mazxy (t) = 0, so we will continue our calcula-

tions with the assumption that ¢t > 0.
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After simplifying we obtain the following formula for mazx y (¢t >0
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