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Shapley Value for Games with
Externalities and Games on Graphs

The Shapley value [46] is one of the most important solution concepts
in coalitional game theory. It was originally defined for classical model of a
coalitional game, which is relevant to a wide range of economic and social
situations. However, while in certain cases the simplicity is the strength
of the classical coalitional game model, it often becomes a limitation. To
address this problem, a number of extensions have been proposed in the
literature. In this thesis, we study two important such extensions – to games
with externalities and graph-restricted games.

Games with externalities [53] are a richer model of coalitional games in
which the value of a coalition depends not only on its members, but also on
the arrangement of other players. Unfortunately, four axioms that uniquely
determine the Shapley value in classical coalitional games are not enough to
imply a unique value in games with externalities. In this thesis, we study
a method of strengthening the Null-Player Axiom by using α-parameterized
definition of the marginal contribution in games with externalities. We prove
that this approach yields a unique value for every α. Moreover, we show that
this method is indeed general, in that all the values that satisfy the direct
translation of Shapley’s axioms to games with externalities can be obtained
using this approach.

Graph-restricted games [36] model naturally-occurring scenarios where
coordination between any two players within a coalition is only possible if
there is a communication channel between them. Two fundamental solution
concepts that were proposed for such a game are the Shapley value and its
particular extension – the Myerson value. In this thesis we develop algorithms
to compute both values. Since the computation of either value involves vis-
iting all connected induced subgraphs of the graph underlying the game, we
start by developing a dedicated algorithm for this purpose and show that it
is the fastest known in the literature. Then, we use it as the cornerstone
upon which we build algorithms for the Shapley and Myerson values.
Keywords: Shapley value, coalitional games, externalities, graph-restricted
games, centrality metrics, Algorithmic Game Theory
ACM Classification: J.4, I.2.1
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Wartość Shapleya w Grach z Efektami
Zewnętrznymi i Grach na Grafach

Wartość Shapleya [46] jest jedną z najważniejszych metod podziału w teo-
rii gier koalicyjnych. Oryginalnie została zdefiniowana w klasycznym modelu
gier koalicyjnych, który jest dobrą ilustracją wielu ekonomicznych i społecz-
nych sytuacji. Chociaż prostota jest w wielu przypadkach siłą klasycznego
modelu gier koalicyjnych, często staje się jednak też jego ograniczeniem. Aby
poradzić sobie z tym problemem, kilka rozszerzeń gier koalicyjnych zostało
zaproponowanych w literaturze. W tej rozprawie zajmujemy się dwoma waż-
nymi rozszerzeniami – do gier z efektami zewnętrznymi oraz gier ograniczo-
nych grafem (ang. graph-restricted games).

Gry z efektami zewnętrznymi [53] są bogatszym modelem gier koalicyj-
nych, w którym wartość koalicji zależy nie tylko od jej członków, ale także
od rozmieszczenia innych graczy. Niestety, cztery aksjomaty, które implikują
wartość Shapleya w klasycznych grach koalicyjnych, nie są wystarczające,
aby implikować unikalną wartość w grach z efektami zewnętrznymi. W tej
rozprawie badamy metodę polegającą na wzmocnieniu Aksjomatu Gracza
Zerowego (ang. Null-Player Axiom), używając α-parametryzowanej defini-
cji wkładu marginalnego. Udowadniamy, że takie podejście daje unikalną
wartość dla każdego α. Ponadto, pokazujemy że jest ono ogólne: wszystkie
wartości, które spełniają bezpośrednie tłumaczenie aksjomatów Shapleya,
mogą być uzyskane z użyciem tego podejścia.

Gry ograniczone grafem [36] modelują naturalnie pojawiające się sytu-
acje, w których koordynacja dwóch graczy w ramach koalicji jest możliwa
tylko wtedy, gdy istnieje kanał komunikacji między nimi. Dwie podstawowe
koncepcje podziału, które zostały zaproponowane dla takich gier to wartość
Shapleya oraz jej rozszerzenie – wartość Myersona. W tej rozprawie propo-
nujemy algorytmy do obliczania obu wartości. Ponieważ obliczenie ich opiera
się na enumerowaniu wszystkich spójnych indukowanych podgrafów w grafie
gry, zaczynamy od opracowania algorytmu dedykowanego do tego celu i po-
kazujemy, że jest szybszy niż inne algorytmy w literaturze. Potem używamy
go jako podstawę algorytmów do obliczania wartości Shapleya i Myersona.
Słowa kluczowe: wartość Shapleya, gry koalicyjne, efekty zewnętrzne, gry
ograniczone grafem, miary centralności, algorytmiczna teoria gier
Klasyfikacja ACM: J.4, I.2.1
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OVERVIEW

The problem of how to fairly divide a surplus obtained through coopera-
tion is one of the most fundamental issues studied in coalitional game

theory. It is relevant to a wide range of economic and social situations, from
sharing the cost of a local wastewater treatment plant, through dividing the
annual profit of a joint venture enterprise, to determining power in voting
bodies. Assuming that the coalition of all the players (i.e. the grand coali-
tion) forms, Shapley [46] defined a unique division scheme, called the Shapley
value, which satisfies four intuitive axioms: it distributes all payoff among
the players (Efficiency) in a linear way (Additivity) while treating symmetric
players equally (Symmetry) and ignoring players with no influence on payoffs
(Null-Player Axiom).

The Shapley value has been originally defined for classical coalitional
games, which are built on the following two simple assumptions: every group
of players is allowed to form a coalition and performance of every coalition is
to be rewarded with a real-valued payoff being completely independent from
the performance or payoffs of other coalitions. However, while in certain
cases the simplicity is the strength of the classical coalitional game model,
it often becomes a limitation. Indeed, the classical model is too simple to
adequately represent various real-life situations.

To address the above problem, a number of extensions have been pro-
posed in the literature. One especially vivid direction of research is how to
extend the classical coalitional game model so to account for externalities
from coalition formation. Such externalities, as formalized by Thrall and
Lucas [53], occur in all the situations where the value of a group depends not
only on its members, but also on the arrangement of other players. In other
words, there is an external impact on the value of a group. As a matter of
fact, externalities are common in many real-life situations, e.g., the merger
of two companies affects the profit of its competitor. Unfortunately, in such
settings four axioms proposed by Shapley are not enough to imply a unique
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value. For the last fifty years the problem how to extend Shapley value to
games with externalities has not been resolved. This issue is the focus of
Part I of our work.

In Part II we depart from games with externalities and study games
on graphs. In the model proposed by Myerson [36] called graph-restricted
games agents (or players) can communicate and cooperate only with agents
that they know or are connected to. Such restrictions emerge in social net-
works analysis, but also in sensor networks, telecommunications or trade
agreements, which makes it one of the most recent application of coalitional
games. Now, if we extend the game defined only for connected groups to full
coalitional game, then by calculating Shapley value we can obtain a value of
a player in graph-restricted game. Unfortunately, calculating Shapley value
in general requires enumerating of all 2n coalitions. To this end, we show that
traversing only connected coalitions is sufficient to calculate Shapley value in
graph-restricted games and propose dedicated algorithms for this purpose.

COALITIONAL GAMES

We finish the overview by introducing basic notations of coalitional games.
We will associate players with natural numbers, thus set of players is
N = {1, 2, . . . , n}. By a coalition (denoted by S) we mean any non-empty
subset of N . Now, a game is given by a function v that associates a real value
with every coalition, i.e., v : 2N → R. As is customary in the literature, we
assume that the coalition of all players (i.e., grand coalition) will form. Then
the outcome of the game (or the value of the game) is some distribution of
jointly achieved payoff v(N) between them – ϕ denotes a vector of payoffs
and ϕi is the share of player i. Now, Shapley’s axioms are formalized as
follows:

• Efficiency (the entire available payoff is distributed among players):∑
i∈N ϕi(v) = v(N) for every game v;

• Symmetry (payoffs do not depend on the players’ names):
ϕ(f(v)) = f(ϕ)(v) for every game v and every bijection f : N → N

where f(v)(S)
def
= v({f(i) | i ∈ S}) and f(ϕ)

def
= ϕf(i);1

1Function f is a permutation, but we reserve this word to interpreting a sequence. Formally,
f(S) is an image of S: f(S) def

= {f(i) | i ∈ S}. Now, game v and value ϕ are functions, thus
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• Additivity (the sum of payoffs in two separate games equals the payoff
in a combined game): ϕ(v1 + v2) = ϕ(v1) + ϕ(v2) for all the games
v1, v2, (v1 + v2)(S)

def
= v1(S) + v2(S);

• Null-Player Axiom (players that do not have an impact on the value
of any coalition should get nothing): if ∀S⊆N,i∈Sv(S ∪ {i})− v(S) = 0
then ϕi(v) = 0 for every game v and player i ∈ N .

As a rationalization of his value, Shapley [46, p. 39] presented the following
bargaining process (or bargaining procedure). Assume that players enter the
grand coalition in a random order. As a player enters, he receives a payoff
that equals his marginal contribution to the group of players that he joins
(i.e., v(S∪{i})−v(S) when i joins coalition S). Now, the Shapley value is the
expected outcome of player’s contributions over all orders (permutations).

To formalize this definition, let us denote the set of all permutations of S
by Ω(S). As is common in combinatorics, we identify permutation π ∈ Ω(S)
with a corresponding ordering. Formally, π : {1, 2, . . . , |S|} → S. We will
denote the set of agents that appear in permutation π after i by Cπ

i , i.e.,
Cπ
i

def
= {π(j) | j > π−1(i)}. Now, the Shapley value can be calculated with

the following formula:

SVi(v) =
1

|N |!
∑

π∈Ω(N)

v(Cπ
i ∪ {i})− v(Cπ

i ). (1)

As we look closely on the bargaining process we can see that a given marginal
contribution of player i to coalition S is counted multiple times: for every
permutation in which players S comes before i and all others, i.e., N\(S∪{i}),
after, player i will contribute v(S ∪ {i}) − v(S). This observation leads to
the more concise form of the formula for Shapley value:

SVi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)). (2)

We will use both formulas later.

f(v) and f(ϕ) are function compositions: (f(v))(S) = v(f(S)) and f(ϕi) = ϕf(i). Intuitively,
value of S in game f(v) equals the value of a coalition obtained by replacing all players i from S
with f(i). For example, if f exchange 1 and 2, then f(v)({1, 3}) = v({2, 3}).
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CHAPTER 1

INTRODUCTION TO PART I

Shapley studied environments when one cooperative arrangement does
not impose any externalities on any other cooperative arrangements.

However, such an assumption is clearly untenable in many practical economic
situations of interest. For example, on the oligopolistic market, joint R&D
projects increase the competitive edge of cooperating companies. Similarly,
the extent of pollution reduction achieved by an international treaty depends
not only on the signatories to the treaty, but also on similar agreements
among non-participants. Extending the Shapley value to all such settings
has been a subject of ongoing debate in the literature for more than fifty
years. This issue is also the focus of Part I of our work.

A natural requirement for a fair division scheme is that it remunerates
the players of a coalitional game based on their contribution to the surplus
generated through cooperation. For example, in Shapley’s axiomatization,
the Null-Player Axiom requires that no payoff will be allocated to players
that make zero contribution to any possible coalition in the game. The key
issue, then, is how such a contribution should be measured.

In the context of cooperative games, the marginal contribution of a player
to a coalition is the difference between the value of this coalition with and
without the player. It can be also understood as a loss incurred by the re-
maining players should the player leave a given coalition. Considering this
latter intuition, the Shapley value is defined as the average marginal contri-
bution of a player, taken over all possible ways to dissolve the grand coalition
by removing players one after the other in a queue (i.e. permutation) un-
til the empty coalition is obtained. In any given permutation, the marginal
contribution of a particular player is assigned deterministically as it does not

7



8 CHAPTER 1. INTRODUCTION TO PART I

play a role in what a player does after leaving a coalition. This is, however,
not the case in games with externalities, where the definition of the marginal
contribution becomes much more intricate.

When externalities are present, the value of the coalition that a player
has left may be influenced by which coalition, if any, this player subsequently
joins. In other words, the choice of a player’s action after it leaves a coalition
may result in different values of the player’s marginal contribution to that
coalition. One way to account for all such values is to assume that a player
can choose to join different coalitions with different probabilities – we will
denote the set of such probabilities (or weights) by α. Then, in games with
externalities, the sequential dissolution of the grand coalition according to a
given permutation of players can be viewed as a stochastic process, rather
than a deterministic one. The marginal contribution of a player is then the
difference between the value of the coalition with the player and the expected
value of this coalition when the player has left.

In games with externalities, not only the definition of the marginal contri-
bution but also the axiomatization of the value becomes more involved, and
it can be easily shown that the standard translation of Shapley’s axioms to
games with externalities does not yield a unique value. A number of meth-
ods have been developed in the literature to address this issue. Some, such
as [11] and [25], obtain uniqueness by modifying some of Shapley’s original
axioms. Other contributors add new axioms (and sometimes drop some of
the original ones), moving increasingly further away from Shapley’s original
axiomatization. For instance, Grabisch and Funaki used Markovian and Er-
godic Axioms and modified the Symmetry and the Null-Player Axioms [19].
Yet another method is to build extensions to games with externalities relying
on alternative axiomatizations of the original Shapley value, such as Myer-
son’s [38] balanced-contribution axiomatization or Young’s [55] monotonicity
axiomatization.

Now, in all of the above approaches, the payoff scheme can be defined in
terms of marginal contributions parameterized by α. This naturally raises
the question of the extent to which the α-weighting approach can be used
to capture other values. Until now, the most general result in this spirit
was obtained for the third method: Fujinaka [15] proved that, for any α,
Young’s monotonicity axiomatization, parametrized with α, guarantees a
unique value. However, no such study for Shapley’s original axiomatization
exists in the literature.

Therefore, in our work, we focus on the first method, that is, we study how
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Shapley’s original axiomatization can be adapted to games with externalities
using marginal contributions parametrized with α-weights. We will refer to
this approach as the marginality approach.

We begin by proving that, for every value of α, Shapley’s original axioms
of Efficiency, Symmetry, Additivity and the α-parametrized Null-Player Ax-
iom yield a unique extension of the Shapley value for games with externalities.
We will refer to this value as the α-value. The results of [11, 25], focusing
on two particular sets of weights α, can be considered as special cases of this
general theorem. Furthermore, the theorem is a counterpart of Fujinaka’s
result for Young’s axiomatization [15]. We then extend the analysis of the
marginality approach as follows.

A fundamental question arising with respect to α-value is: which values
– either among those already proposed in the literature or any new potential
ones – can be defined as an α-value? A key result of our work is that we
prove the marginality approach encompasses all values that satisfy Shapley’s
original axiomatization and exactly those.

Next, we analyze how properties of an α-value translate into properties of
weights α. In particular, we focus on the axioms known as Weak Monotonic-
ity, Strong Monotonicity, Strong Symmetry, and Strong Null-Player. Weak
(Strong) Monotonicity states that, if we increase the value of a coalition con-
taining a player, the payoff of this player will not decrease (will increase).
We prove that α-value satisfies Weak (Strong) Monotonicity if and only if
weights α are non-negative (positive). The Strong Symmetry axiom requires
that the value of any coalition has a symmetric influence not only on the
payoffs of its members but also on the payoffs of all non-members. We prove
that the α-value satisfies Strong Symmetry if and only if weights α are such
that the permutation in which players leave the grand coalition does not
affect the probability that a given coalition structure is eventually created.
We say that weights α satisfying this condition are interlace resistant. As
a corollary to this result we have that the average approach to translating
the Shapley value to games with externalities, proposed by Macho-Stadler et
al. [29], is a subclass of the marginality approach and is equivalent to the
marginality approach used with interlace resistant weights.

The Strong Null-Player Axiom states that a player who does not have
an impact on the values of coalitions in the game does not affect the payoff
division – that is, if we remove a null-player the payoffs from the game will
stay the same. We prove that if α-value satisfies Strong Symmetry then it
satisfies the Strong Null-Player Axiom if and only if weights α are such that
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the probability of joining a particular coalition depends only on the other
coalitions in the coalition structure and not on the coalition that is being
left. This condition on weights α we call expansion resistance.

Although the interlace and expansion resistance conditions may at first
appear somewhat arbitrary, they are in fact key to understanding the rela-
tionship between the α-parameterized Shapley axiomatization and the Myer-
son axiomatization based on the concept of balanced contributions extended
to games with externalities. In this respect, we prove that the α-value sat-
isfies Myerson’s axioms (Efficiency, α-parametrized Balanced Contributions)
if and only if α is interlace and expansion resistant.

The remainder of Part I is organized as follows:
• In Chapter 2, we present the basic definitions and notation that we use

throughout the paper and formally introduce the marginality approach.
• In Chapter 3, we present marginality approach on a case study: we

propose a new definition of weights α and derive an existing value
using marginality approach.

Next, our main results are presented in the following chapters:
• In Chapter 4, we prove that α-parametrized Shapley’s axiomatization

(Efficiency, Symmetry, Additivity and α-parametrized Null-Player Ax-
iom) yields a unique value for every weighting α (called α-value). Fur-
thermore, we show that every value which satisfies Shapley’s original
axiomatization can be derived using α-parametrized axiomatization
with some weights α.

• In Chapter 5, we characterize what conditions must be met for value
to satisfy Weak Monotonicity, Strong Monotonicity, Strong Symmetry
or the Strong Null-Player Axiom. To this end, we introduce a notion
of weights’ interlace and expansion resistance. Then, we prove that
Myerson’s α-parametrized axiomatization is equivalent to Shapley’s if
and only if weights are interlace and expansion resistant.

• In Chapter 6, we analyze all the existing definitions of weights α in
the context of properties analyzed in the previous chapter and discuss
different axiomatization.

• In Chapter 7, we develop a general approximation algorithm to calcu-
late α-value for any α, which is the first approximation algorithm to
calculate any extension of Shapley value to games with externalities.



CHAPTER 2

MARGINALITY APPROACH

In this chapter we introduce marginality approach to extending Shapley
value to games with externalities. We start with basic definitions and our

notation.

Note: This chapter is based on [51].

2.1 PRELIMINARIES

In the overview of our work we already introduced the set of players
N = {1, 2, . . . , n} and the notion of a coalition (denoted S) as a subset
of N . Now, a partition of players (denoted P ) can be formalized as a par-
tition of N , that is, a set of disjoint coalitions whose union is N . Here, for
technical convenience, we will assume that every partition contains artificial,
empty coalition, i.e., ∅ ∈ P for every partition P .1 The number of non-empty
coalitions in P is denoted |P |. Now, a pair (S, P ), where P is a partition of
N and S ∈ P , is called an embedded coalition. The set of all partitions and
the set of all embedded coalitions over N are denoted by P(N) and EC(N)
(or simply, P and EC when the set of players is clear from the context).

In the basic definition of a coalitional game a value is assigned to every
coalition. That way it can only model environments in which coalition have
the same value no matter how other players are arranged, i.e., what coalitions
they form. To model externalities we introduce games in partition-function

1This common assumption is convenient whenever we talk about a transfer of a player – creat-
ing a new coalition can be considered a transfer to the empty one.

11



12 CHAPTER 2. MARGINALITY APPROACH

form: here function v associates a real number with every embedded coali-
tion, i.e., v : EC → R. In Part I, whenever we talk about game, we mean
game in a partition function form.

In various parts of the paper we will make use of the class of simple games
〈e(S,P )〉(S,P )∈EC where only one coalition in one partition has non-zero payoff:

e(S,P )(S, P ) = 1 and e(S,P )(S̃, P̃ ) = 0 otherwise.

We use a shorthand notation for set subtraction and set union operations:
N−S

def
= N \ S and S+{i}

def
= S ∪ {i}. Often, we omit brackets for a singleton

set and simply write S+i. For partitions, if P ∈ P(N), then P−i (or P−S) is a
partition of players over N \S (or N \{i}). To denote the partition obtained
by the transfer of player i to coalition T in partition P , we introduce the
following notation:

τTi (P )
def
= P \ {P (i), T} ∪ {P (i)−i, T+i},

where P (i) denotes i’s coalition in P . In particular, τ ∅i
def
= P−i ∪ {i}. Finally,

the partition obtained from P by the transfer of a group of players S to a
new coalition will be denoted P[S]: P[S]

def
= {T \ S | T ∈ P} ∪ {S}.

We end this section by translating Shapley’s axiom to the environment
with the externalities. This set of axioms we call a direct translation of
Shapley’s axioms.

• Efficiency (the entire available payoff is distributed among players):∑
i∈N ϕi(v) = v(N, {N, ∅}) for every game v;

• Symmetry (payoffs do not depend on the players’ names):
ϕ(f(v)) = f(ϕ)(v) for every game v and every bijection f : N → N ;2

• Additivity (the sum of payoffs in two separate games equals the payoff
in a combined game):
ϕ(β1v1 + β2v2) = β1ϕ(v1) + β2ϕ(v2) for all the games v1, v2 and
scalars β1, β2 ∈ R, (v1 + v2)(S, P )

def
= v1(S, P ) + v2(S, P ) and

(βv)(S, P )
def
= β · v(S, P );

2Please see the overview of the thesis for formal definition of f(v) and f(ϕ). Here, we specify
the missing part: f(P ) def

= {f(S) | S ∈ P} and f(S, P ) def
= (f(S), f(P )).
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• Null-Player Axiom (players that do not have an impact on the value
of any coalition should get nothing):
if ∀(S,P )∈EC,i∈S∀T∈Pv(S, P )−v(S−i, τ

T
i (P )) = 0 then ϕi(v) = 0 for every

game v and player i ∈ N .

Translation of Efficiency and Symmetry is straightforward. Translation of
Additivity is consistent with [7, 29, 33]. In the original axiomatization,
Shapley used a weaker version: ϕ(v1 + v2) = ϕ(v1) + ϕ(v2). In games
without externalities, it was enough to imply that the value is linear; thus,
the payoff division does not depend on the unit it is calculated with (i.e.,
ϕ(βv) = βϕ(v)). However, in games with externalities, the weaker version of
Additivity combined with Shapley’s other three axioms implies that the value
can be scaled, but only by rational numbers (see [29] for details). While we
are not aware of real-life applications in which irrational values of coalitions
occur, for consistency with the literature, we allow irrational numbers in the
function domain; thus, we strengthen Additivity by the linearity condition.
However, we retain the name Additivity, as we feel this is a natural trans-
lation of this axiom to games with externalities. Finally, translation of the
Null-Player Axiom is a strict definition that corresponds to the understand-
ing that a null-player is not supposed to have any impact on the game. We
will discuss stronger version of the Null-Player Axiom in the next section.

2.2 PARAMETRIZED AXIOMATIZATION

In this section we introduce the marginality approach to extending the notion
of the Shapley value to games with externalities. We begin by presenting the
origins of this approach, traces of which can be already found in Bolger [7],
and which have been then subsequently used by a few authors to develop
their particular extensions [11, 25].

Let us start by considering the following example of a simple game with
externalities, where it is easily visible that Shapley’s original axiomatization
does not imply a unique value.

Example 1. LetN = {1, 2, 3} be the set of players and the partition function v be
defined as follows: v({1, 2}, {{1, 2}, {3}, ∅}) = a, v({2}, {{1}, {2}, {3}, ∅}) = b,
v({2}, {{1, 3}, {2}, ∅}) = c, and v(S, P ) = 0 for all the remaining embedded
coalitions. Thus, only coalitions {1, 2} and {2} have non-zero value in this game.
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Now, let us consider a payoff ϕ1(v) of player 1 in this game: according to the ex-
tensions of the Shapley value to games with externalities by Pham do and Norde
[11], McQuillin [33], Bolger [7], Macho-Stadler et al. [29], and Hu and Yang
[25], respectively, equals:

ϕ1(v) =


1
6
(a− b) in the case of Pham do and Norde

1
6
(a− c) in the case of McQuillin

1
6
(a− b+c

2
) in the case of Bolger and Macho-Stadler et al.

1
6
(a− 3b+2c

5
) in the case of Hu and Yang

As can be seen, although each of these extensions satisfies the direct translation
of all four original axioms to games with externalities,3 they yield very different
payoffs.

The main challenge in constructing a value for games with externalities
comes from the fact that it is not straightforward to evaluate the role played
by particular players in a setting where evaluating coalitions can be ambigu-
ous, i.e., where embedded coalitions may have different values depending on
the partition they are embedded within. All extensions in the literature, in-
cluding the ones in Example 1, are, in fact, methods to address this problem.

The marginality approach aims to extend the notion of the Shapley value
with an axiomatization which is as close to the original one as possible.
Whereas, as we have seen in Section 2.1, the translation of Efficiency, Sym-
metry and Additivity to games with externalities is straightforward, this is
not entirely truth with the Null-Player Axiom. In the direct (or strict) trans-
lation of this axiom, a player is called a null-player if he never has any effect
on the value of any coalition. It means that all his transfers outside a given
coalition should not change the value of this coalition.

Example 2. In Example 1, player 1 is a null-player in a strict sense if a = b = c.
This is because the marginal contribution of player 1 to {1, 2} in
{{1, 2}, {3}, ∅} considering its transfer to coalition {3} is equal to
v({1, 2}, {{1, 2}, {3}, ∅}) − v({1}, {{1}, {2, 3}, ∅}) = a − c = 0, under the
assumption that a = c. Analogously, creating a new coalition (i.e., transferring
to an empty one) yields no contribution. Furthermore, it is not difficult to observe
that this holds for any other marginal contribution associated with a transfer of
player 1 within any partition as payoffs before and after such a transfer equal
zero.

3See below for discussion on the Null-Player Axiom.
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We will call marginal contributions associated with a given transfer within
a partition (such as those considered in Example 2) elementary marginal
contributions.

Now, the marginality approach is based on the more general view of the
contribution: given a partition, although particular transfers may change the
value of the embedded coalition, the overall marginal contribution in this
partition may still equal zero. For instance, let us set b = a+ r and c = a− r
in Example 1. Despite the fact that elementary marginal contributions are
non-zero, the overall marginal contribution is zero, if we assume that both
transfers are evaluated equally. It is, then, a less strict translation of the Null-
Player Axiom in which we require that the overall marginal contribution is
zero but not necessarily elementary marginal contributions.

From the above analysis it follows that to specify the marginal contri-
bution in the marginality approach, one needs to indicate which transfers
are considered and in which proportion. Although, in theory, any function of
elementary marginal contributions is admissible, we restrict ourselves only to
affine4 combinations of elementary marginal contributions. This assumption
is justified, as we show that these weights are enough to obtain every value
that meets Shapley’s axioms (see Theorem 4 for details). Formally,

[mcαi (v)](S, P )
def
=

∑
T∈P−S

αi(S−i, τ
T
i (P ))[v(S, P )− v(S−i, τ

T
i (P ))],

where αi : {(S, P ) ∈ EC | i 6∈ S} → R denotes weights of a given transfer
under the assumptions that:

(a) αi(S, P ) = αf(i)(f(S), f(P )) for every bijection f : N → N and
(S, P ) ∈ EC such that i 6∈ S (to satisfy Symmetry); and

(b)
∑

T∈P−S αi(S−i, τ
T
i (P )) = 1 for every (S, P ) ∈ EC such that i ∈ S (for

normalization).

Note that αi(S, P ) is the weight associated with i’s transfer from coalition
S+i that results in partition P . For example, the weight of transfer of player
1 from ({1, 2}, {{1, 2}, {3}, ∅}) to {3} is denoted by α1({2}, {{2}, {1, 3}, ∅}).
The definition of marginal contribution based on the weights α will be called

4Linear combination
∑
αixi is called affine when weights sum up to one:

∑
αi = 1.
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α-marginality.5
Now, we define the α-parametrized version of the Null-Player Axiom as

follows:

α-Null-Player Axiom (players that do not contribute to the value
of any coalition should get nothing): if ∀(S,P )∈EC,i∈S[mcαi (v)](S, P ) = 0
then ϕi(v) = 0 for every game v and player i ∈ N .

As we will see in Chapter 4, Shapley’s α-parametrized axiomatization, that
is, Efficiency, Symmetry, Additivity, and α-Null-Player Axiom, is enough to
obtain uniqueness for every α. Defining an extension of the Shapley value to
games with externalities with such strengthening constitutes the marginality
approach.

We end this chapter with an example of weights. In the simplest and
chronologically the first definition by Bolger [7], all transfers are considered
equally important:

[mcα
B

i (v)](S, P )
def
=

∑
T∈P−S

1

|P−i|
(v(S, P )− v(S−i, τ

T
i (P ))).

However, this equality has been questioned, as a change caused by forming
a new coalition can be argued a better or worse assessment of the contribution
of a player than transfer to other existing coalition (see the next chapter for
details). Moreover, transfer to a bigger coalition can be considered more
likely than a the small one. Because of that, including steady-marginality
from Chapter 3, four other weightings α have been proposed in the literature
[11, 29, 25]. We will discuss all of them in Chapter 6.

5For the generality of the approach, we allow negative weights. However, we show in Sec-
tion 5.2 that negative weights produce non-monotonic values; thus, we believe that they should
not be used. Non-negative weights have a natural interpretation as the probability of transfer and
we will refer to this intuition freely.



CHAPTER 3

STEADY MARGINALITY:
A CASE STUDY

Two important extensions of the Shapley value to games with external-
ities are externality-free value proposed by Pham Do and Norde [11]

and McQuillin’s value full-of-externalities [33]. Both can be considered as
reference points for other extensions, as, under certain conditions, they limit
the space of possible extensions at two opposite extremes.

While the externality-free value has been proposed using the marginality
approach, McQuillin to derive his value added three non-marginality based
axioms. The key of them was recursion that required the value to be a fixed-
point solution (i.e. if we consider a value to be a game by itself, then the value
computed for such a game should not change). Nevertheless, marginality-
based axiomatization of the McQuillin value that connects to the original
Shapley value has remained unknown.

In this chapter we close this gap by proposing a new definition of a
marginal contribution; we present new weighting α that allows us to de-
rive the extension of the Shapley value proposed by McQuillin. Our weights
are dual to the one proposed by Pham Do and Norde and recently, in an im-
portant publication, considered by De Clippel and Serrano. In other words,
we close the picture, so that the two opposite values for games with exter-
nalities that limit the space of many other extensions, are now based on the
marginality principle.

Our new approach to marginality, which we call a steady marginality,
differs from those proposed earlier in the literature ([7, 11, 25]). To compute
player’s marginal contribution to a coalition we compare the value of the

17
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coalition with the specific player with the value of the coalition obtained by
the transfer of the player to another coalition, existing in the partition (so
the number of coalitions is steady). Thus, we do not include the value of a
coalition in a partition when a specific player forms a new singleton coalition.

The rest of this chapter is organized as follows. In Section 3.1, we present
externality-free value and full-of-externalities value. In Section 3.2, we intro-
duce our new definition of marginality. In Section 3.3, we define a new class
of games and prove they form a basis of space of games with externalities.
In Section 3.4, we present the main result of this chapter – we prove that
there exists only one value which satisfies all our axioms and that this value
is equal to one proposed earlier by McQuillin. A comparison of all exist-
ing definitions of marginality, including the steady marginality, will be the
subject of Chapter 6.

Note: This chapter is based on [48].

3.1 TWO VALUES

In this section we introduce externality-free and full-of-externalities values.
Both values can be obtained using a minor modification of Shapley’s for-
mula (2). In this formula, we iterate over all coalitions and for each one we
add/remove its value multiplied by some weight. This technique cannot be
directly applied to games with externalities, as a value of a coalition depends
on the partition of outside players. Both values overcome this problem by
taking the value of a coalition from only one partition. Thus, they do not take
into consideration all information about the players’ performance provided
by the game.

In the externality-free value, proposed by Pham Do and Norde, the value
of a coalition is taken from the partition in which all other players are alone,
hence no externalities from merging coalitions affect it:

v̂free(S)
def
= v(S, {S} ∪ {{j} | j ∈ N \ S}).

The value takes the form:

ϕfreei (v)
def
= SVi(v̂

free) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v̂free(S∪{i})−v̂free(S)).
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The second value, proposed by McQuillin, called by us full-of-externalities,
is dual to the externality-free one. Here, the value of S is taken from the
partition, in which all other players are in one coalition:

v̂McQ(S)
def
= v(S, {S,N \ S, ∅}).

Thus, the value of S is affected by all externalities from merging coalitions.
Now, McQuillin value takes the form:

ϕMcQ
i (v)

def
= SVi(v̂

McQ)=
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v̂McQ(S∪{i})−v̂McQ(S)).

In a more general approach the value of a coalition S can be a weighted
average over all possible values that coalition obtains in different partitions.
This approach was formalized by Macho-Stadler et al. as an average approach
[29]. We will describe it in Section 5.3. Both values described in this section
are the borderline cases in this approach.

3.2 STEADY MARGINALITY

In this section, we introduce our new definition of marginality.
We start by presenting the approach that leads to the externality-free

value. Pham Do and Norde [11] used only one non-zero weight for the transfer
of i to the empty coalition: αfreei (S, P ) = 1 if {i} ∈ P and αfreei (S, P ) = 0
otherwise. Their definition of the marginal contribution takes the form:

[mcα
free

i (v)](S, P )
def
= v(S, P )− v(S−i, P \ S ∪ {S−i, {i}}).

De Clippel and Serrano [10] justified this approach by treating the transfer
as a two-step process. In the first step, player i leaves the coalition S and
for a moment remains alone (i.e., creates a singleton coalition). An optional
second step consists of player i joining some coalition from P \S (in terms of
coalitions, {i} merges with another one). Although both steps may change
the value of S−i, the authors argue that only the first one corresponds to the
intrinsic marginal contribution – the influence from the second step comes
rather from the external effect of merging coalitions, not from i leaving S.
Discarding the impact of merging coalitions in marginal contribution leads
to the externality-free value.
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We will consider the transfer of i in a different way. Our first step will
consist of leaving coalition S and joining one of the other coalitions in par-
tition. In the second step, player i can exit his new coalition and create his
own. Thus, we look at the creating of a new coalition as an extra action,
which should not be included in the effect of i leaving coalition S. According
to this, the natural way to define the steady marginal contribution of player
i to (S, P ), is to take into account only the transfer to the other existing
coalition.

Definition 1. The steady marginal contribution of player i ∈ S to embedded coali-
tion (S, P ) ∈ EC such that S 6= N is defined as:

[mcα
full

i (v)](S, P )
def
=

∑
T∈P−S
T 6=∅

1

|P | − 1
(v(S, P )− v(S−i, τ

T
i (P )))

and [mcα
full

i (v)](N, {N, ∅}) def
= v(N, {N, ∅})− v(N−i, {N−i, {i}, ∅}).

In our new definition presented above the special case with S = N takes
place when creating a new coalition is the only option, i.e., no other coalition
exists. To diminish the importance of this special case let us introduce the
modified version of the size operator of the partition: |P |∅

def
= |P | if |P | ≥ 2

and |{N, ∅}|∅
def
= 2. Thus, the only difference is that we treat partition {N, ∅}

as a two-coalition partition (usually we count only non-empty coalitions and
|{N, ∅}| = 1). That way we can include the special case of {N, ∅} in a concise
definition: in the steady marginality we take into account only transfers that
do not modify |P |∅ of the partition.

Our approach can be justified by these real life examples in which creation
of a new coalition is rare and not likely. These include political parties or
million-dollar industries (such as oil oligopoly). In all such situations, our
approach is likely to lead to more proper results.

3.3 CONSTANT-COALITION GAMES

In this section we will introduce a new class of simple games – constant-
coalition games. These games will play a key role in the next section where
we prove the uniqueness of the αfull-parametrized axiomatization. The name
comes from the fact that in a given game every partition in which a coalition
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with non-zero value is embedded has exactly the same number of coalitions.
We show that the collection of such games is a basis of partition function
games.

First, we need some additional notation.

Definition 2. (R1 � R2) Let R1, R2 be two proper, non-empty subsets of two
partitions. We say that R2 can be reduced to R1 (denoted R1 � R2) if three
conditions are met:

(a) all players which appear in R1, appear in R2;

(b) two players which are in the same coalition in R1, are in the same coalition
in R2;

(c) two players which are not in the same coalition in R1 are not in the same
coalition in R2.

Assume R1 � R2. Based on the presented conditions, as we delete players
from R2 which are not in R1 we get exactly the R1 configuration. This
observation can be expressed in an alternative definition of the �-operator:

R1 � R2 ⇔ R1 ∪ {T} = (R2)[T ] for T =
⋃

T1∈R1

T1 \
⋃

T2∈R2

T2.

For example {{1, 2},{3}} � {{1, 2, 4},{3},{5}} but {{1, 2},{3}} 6� {{1, 2, 3}}
and {{1, 2},{3}} 6� {{1},{3, 4}}.

Now we can introduce a new basis for games with externalities.

Definition 3. For every embedded coalition (S, P ), the constant-coalition game
c(S,P ) is defined by

c(S,P )(S̃, P̃ )
def
=

{
(|P |∅ − 1)−|S̃\S| if (P̃−S̃ � P−S) and (|P |∅ = |P̃ |∅),
0 otherwise,

for every (S̃, P̃ ) ∈ EC.

Note that (P̃−S̃ � P−S) implies S ⊆ S̃ as we get Ñ \ S̃ ⊆ N \ S from the
(a) condition in Definition 2. Thus, in game c(S,P ) non-zero values have only
embedded coalitions formed from (S, P ) by some transition of players from
P \ {S} to S which does not change the number of the coalitions (in a | · |∅
operator sense).



22 CHAPTER 3. STEADY MARGINALITY: A CASE STUDY

Lemma 1. The collection of constant-coalition games is a basis of the partition
function games.

Proof. Let c = (c(S,P ))(S,P )∈EC be the vector of all games.
First, we show that the constant-coalition games are linearly independent.

Suppose the contrary. Then, there exists a vector of weights λ = (λ(S,P ))(S,P )∈EC
with at least one non-zero value such that λ × c =

∑
(S,P )∈EC λ(S,P )c

(S,P ) is
a zero vector. Let (S∗, P ∗) be the embedded coalition with a non-zero weight
λ(S∗,P ∗) 6= 0 and minimal S∗ (i.e. (S∗, P ∗) is the minimal element of the embedded-
coalition relation r: (S1, P1)r(S2, P2) ⇔ S1 ⊆ S2). Thus, for any other embed-
ded coalition (S, P ) either λ(S,P ) = 0 or S 6⊆ S∗ ⇒ c(S,P )(S∗, P ∗) = 0 (this
implication follows from the remarks after Definition 3). Then,∑

(S,P )∈EC

λ(S,P )c
(S,P )(S∗, P ∗) = λ(S∗,P ∗)c

(S∗,P ∗)(S∗, P ∗) = λ(S∗,P ∗) 6= 0,

contradicts our previous assumption.
The size of a collection of all constant-coalition games is equal to the dimen-

sion of the space of partition function games. Thus, a class of constant-coalition
games is a basis.

3.4 UNIQUENESS OF THE αfull-VALUE

In this section we show that there exists only one value that satisfies αfull-
parametrized Shapley’s axiomatization and that it is equivalent to the value
proposed by McQuillin.
Theorem 1. There is a unique value ϕα

full
satisfying Efficiency, Symmetry, Addi-

tivity and the αfull-Null-Player Axiom.

Proof. We will prove that in every constant-coalition game there exists only one
value which satisfies these axioms. Based on Additivity and Lemma 1 this implies
our thesis.

Let d ·c(S,P ) be a constant-coalition game multiplied by scalar d. We will show
that any player i from the coalition different than S is an αfull-null-player. Based
on the definition we have to prove that mcαfulli (d · c(S,P )) is a zero vector. To this
end, let us transform formula for steady marginal contribution using | · |∅ notation:

[mcα
full

i (v)](S, P )
def
=

∑
T∈P−S

|τTi (P )|∅=|P |∅

1

|P |∅ − 1
(v(S, P )− v(S−i, τ

T
i (P ))) (3.1)
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Thus, for every (S̃, P̃ ) ∈ EC such that i ∈ S̃ we want to show that
mcα

full

i (d · c(S̃,P̃ )) = 0 which, based on formula (3.1), is equivalent to∑
T∈P̃−S̃ ,

|τTi (P̃ )|∅=|P̃ |∅

c(S,P )(S̃, P̃ )− c(S,P )(S̃−i, τ
T
i (P̃ )) = 0.

We divide the proof into two cases with zero and non-zero value of c(S,P )(S̃, P̃ ).

Lemma 2. If c(S,P )(S̃, P̃ ) = 0 then, for every T ∈ P̃ \ {S̃},

c(S,P )(S̃−i, τ
T
i (P̃ )) = 0.

Proof. Based on the definition of the constant-coalition games we can deduce that
at least one of the following conditions occurs:

• P̃−S̃ 6� P−S: from the definition of �-operator we know that there is a
player in P̃−S̃ which is not in P−S , or there is a pair of players which are
together in one coalition structure and separated in the other one; it is easy
to see, that adding player i to some coalition in P̃−S̃ will not fix any of these
anomalies;

• |P |∅ 6= |P̃ |∅: if i is alone (S̃ = {i}) then, for every T ∈ P̃ \ {S̃},

c(S,P )(S̃−i, τ
T
i (P̃ )) = c(S,P )(∅, τTi (P̃ )) = 0;

otherwise, as we only consider the transfer of player i to the other existing
coalition, the number of the coalitions remains intact: |P |∅ 6= |τTi (P̃ )|∅.

Lemma 3. If c(S,P )(S̃, P̃ ) = x for x > 0 then there exists only one T ∈ P̃ \ {S̃}
such that c(S,P )(S̃−i, τ

T
i (P̃ )) has non-zero value. Moreover, this value is equal to

x(|P | − 1).

Proof. If c(S,P )(S̃, P̃ ) > 0 and c(S,P )(S̃−i, τ
T
i (P̃ )) > 0 then from the definition:

c(S,P )(S̃−i, τ
T
i (P̃ )) = (|P | − 1)−|S̃−i\S| = (|P | − 1) · (|P | − 1)−|S̃\S|

= (|P | − 1) · c(S,P )(S̃, P̃ )

which proves the values equality part.
First, we will consider a special case when transfer to the empty coalition

is allowed: if P̃ = {N, ∅}, then (S̃, τTi (P̃ )) equals (N−i, {N−i, {i}}). As we
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assumed i 6∈ S, we know that {i} � P−S and we are not changing the partition
size (|{N, ∅}|∅ = |{N−i, {i}}|∅) it follows that c(S,P )(N−i, {N−i, {i}}) > 0 which
finishes this case.

Now, assume that P̃ 6= {N, ∅}. Let Ti ∈ P \ S be the coalition of player i.
From the definition of constant-coalition games (Definition 3) we know that P−S
can be reduced to P̃−S̃ and both partitions have the same number of the coalitions:
|P−S| = |P̃−S̃|. As players from one coalition cannot be separated, there must be
some non-empty coalition T̃i in P̃−S̃ which can be reduced from Ti by deleting
players from S̃. Moreover, it must contain at least one player j (and j 6= i,
because i ∈ S̃). Thus, a transition to any other coalition than T̃i separates players
i and j which violates condition (c) in definition of �-operator (Definition 2) and
implies zero value in game c(S,P ). In τ T̃ii (P ) all conditions will be satisfied – (a)
is obviously satisfied as i 6∈ S and P̃−S̃ was already a subset of P−S; conditions
(b) and (c) are satisfied because additional player i have analogical relations as j,
who is already in the structure.

Again, we do not change the size of the partition. We have to check only one
special case when S̃ = {i}. But from c(S,P )(S̃, P̃ ) > 0 we get S ⊆ S̃ and as we
know that i 6∈ S we get S = ∅ which means that the game c(S,P ) is incorrect.

Thus, finally: c(S,P )(S̃−i, τ
T̃i
i (P̃ )) > 0.

From Lemma 2 and Lemma 3 we have that every player i 6∈ S is an αfull-null-
player. Based on the αfull-Null-Player Axiom, ϕfulli (d · c(S,P )) = 0 and based on
Symmetry and Efficiency we get:

ϕα
full

j (d · c(S,P )) =
1

|S|
·
∑
j∈S

ϕα
full

j (d · c(S,P )) =
d

|S|
· c(S,P )(N, {N, ∅}).

As our value ϕαfull clearly satisfies Efficiency, Additivity and Symmetry, the
only observation we need to add is that it also satisfies the αfull-Null-Player Ax-
iom. As players not from S are αfull-null-players and get nothing it is suffi-
cient to show that players from S are not αfull-null-players. But every player
j from S has a non-zero marginal contribution to (S, P ): c(S,P )(S, P ) = 1 and
c(S,P )(S−j, τ

T
j (P )) = 0 for every T ∈ P \ S. This concludes the proof of Theo-

rem 1.

We end this chapter by showing that our unique value is indeed equal to
the value proposed by McQuillin.

Theorem 2. Let v be a game with externalities. Then ϕMcQ(v) = ϕα
full

(v).
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Proof. Again, based on Additivity and linear property ϕ(c · v) = c · ϕ(v) of
both values, we will show the adequacy on the constant-coalition games. In the
proof of Theorem 1 we showed that ϕαfulli (c(S,P )) = 0 for every i 6∈ S and
ϕα

full

j (c(S,P )) = 1
|S| · c

(S,P )(N, {N, ∅}) for every j ∈ S.
Let (S, P ) be an embedded coalition. Now, assume that |P |∅ > 2. As

|{N, ∅}|∅ = 2 6= |P |∅, based on the definition of the constant-coalition games
(Definition 3) we get c(S,P )(N, {N, ∅}) = 0 and ϕαfulli (c(S,P )) = 0 for every player
i ∈ N . Also ϕMcQ

i (c(S,P )) = 0 for every player i ∈ N , because v̂McQ(S) = 0 for
every S ⊆ N as no embedded coalition of form (S̃, {S̃, N \ S̃}) has a non-zero
value in c(S,P ) (the reason here is the same – the partitions sizes do not match).

If |P |∅ = 2, then P has the form {S,N \ S} (and in the borderline case
P = {N, ∅}) and game c(S,{S,N\S}) assigns a non-zero value (equal 1) only to an
embedded coalition (S̃, {S̃, N \ S̃}) such that S ⊆ S̃. Hence, v̂McQ(S̃) = 1 when
S ⊆ S̃ and v̂(S̃) = 0 otherwise. Based on the basic Shapley’s axioms for v̂McQ

we get that ϕMcQ
i (c(S,P )) = 0 for i 6∈ S and ϕMcQ

j (e(S,P )) = Shj(v̂) = 1
|S| for

j ∈ S.
Finally, we check whether value ϕαfull gives the same results. As mentioned

at the beginning of the proof, for i 6∈ S, ϕαfulli (c(S,P )) = 0 and for j ∈ S holds
ϕα

full

j (c(S,P )) = 1
|S| · c

(S,P )(N, {N, ∅}) = 1
|S| . This concludes the proof.
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CHAPTER 4

GENERAL THEOREMS

In this chapter we provide our two main results concerning the marginality
approach. Theorem 3 states that Shapley’s α-parametrized axiomatiza-

tion, that is, Efficiency, Symmetry, Additivity, and α-Null-Player Axiom,
is enough to obtain uniqueness for every α and provides a formula for the
value. In Theorem 4, that follows, we show that all values that satisfy stan-
dard Shapley’s axioms can be derived using marginality approach. Finally,
we present the α-parametrized bargaining process that would produce the
corresponding value as the expected outcome.

Note: This chapter is based on [51].

4.1 UNIQUENESS OF THE MARGINALITY APPROACH

Before we proceed, let us introduce the notion of composition of weights
prαπ (S, P ). For all permutations π ∈ Ω(N \ S), let us define:

prαπ (S, P )
def
=

∏
i∈N−S

αi(S ∪ Cπ
i , P[S∪Cπi ]).

Thus, if players N \ S leave the grand coalition in order π and form parti-
tion P \ S, then prαπ (S, P ) is the product of weights associated with
these transfers. Recursively, if i is the last element of π: π = π′||i,
then prαπ (S, P )

def
= prαπ′(S+i, τ

S
i (P )) · αi(S, P ) with a borderline case

prαπ ({N}, {N, ∅}) = 1.

27
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For example, for permutation π = (1, 2, 3) and coalition {4} embedded
in partition {{1, 2}, {3}, {4}}, we have:

prαπ ({4}, {{4}, {1, 2}, {3}, ∅}) = α1({2, 3, 4}, {{2, 3, 4}, {1}, ∅}) ·
·α2({3, 4}, {{3, 4}, {1, 2}, ∅}) · α3({4}, {{4}, {1, 2}, {3}, ∅}).

Theorem 3. There exists a unique value (denoted α-value) that satisfies Effi-
ciency, Symmetry, Additivity and the α-Null-Player Axiom for every α.1 Moreover,
it satisfies the following formula:

ϕαi (v)
def
=

1

|N |!
∑

π∈Ω(N)

∑
P∈P

prαπ (∅, P )·[v(Cπ
i ∪{i}, P[Cπi ∪{i}])−v(Cπ

i , P[Cπi ])]. (4.1)

Proof. First we prove that ϕα satisfies all four axioms. Then, we show that this is
the only such value.
Part 1: We examine the axioms one by one. First, let us consider Efficiency. For
any permutation π and partition P , the elementary marginal contributions add up
to v(N, {N, ∅}); thus:∑
i∈N

ϕαi (v) =
1

|N |!
∑

π∈Ω(N)

∑
P∈P

prαπ (∅, P )
∑
i∈N

[v(Cπ
i ∪ {i}, P[Cπi ∪{i}])−v(Cπ

i , P[Cπi ])]

=
1

|N |!
∑

π∈Ω(N)

∑
P∈P

prαπ (∅, P ) · v(N, {N, ∅}) = v(N, {N, ∅}),

where the last transformation comes from the fact that weights of all partitions
sum up to one for every permutation:

∑
P∈P pr

α
π (∅, P ) = 1.

Formula (4.1) clearly shows that the value satisfies Symmetry and Additivity.
Regarding Symmetry, it does not favor any player, hence a permutation of coali-
tions’ values will permute payoffs accordingly. The value is additive asϕαi (v1+v2)
can be split into two expressions representing ϕαi (v1) and ϕαi (v2).

To see that ϕα satisfies the α-Null-Player Axiom let us calculate the weight of
a given elementary marginal contribution v(S, P )− v(S−i, τ

T
i (P )) using formula

(4.1). A transfer from (S, P ) occurs only in permutations where players from
N \ S (and only them) appear before player i. Let us assume that they appear
in order π ∈ Ω(N \ S). Then, regardless of the rest of the permutation, the

1Although we assumed a stronger definition of Additivity, our proof is based only on the
weaker version that does not force linearity: ϕ(v1 + v2) = ϕ(v1) + ϕ(v2). Consequently, the
theorem also holds for the weaker version.
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elementary marginal contribution under consideration is multiplied by product of
weights prαπ (S, P ). The transfer to coalition T causes this product to be multiplied
by αi(S−i, τTi (P )). Finally, we observe that the permutation and the arrangement
of the remaining players does not have an impact on the value (there are (|S|−1)!
such permutations). This is because, for a given permutation, the sum of products
of remaining transfers over all possible partitions sum up to one. Now, if we
collect all transfers from a given embedded coalition (S, P ) we get the following
formula:

ϕαi (v) =
∑

(S,P )∈EC,i∈S

(|S| − 1)!

|N |!
∑

π∈Ω(N−S)

prαπ (S, P ) · [mcαi (v)](S, P ). (4.2)

Part 2: Next, we will show that ϕα is the only value which satisfies all four
Shapley’s original axioms. To this end, let us recall the class of simple games
e(S,P ). This class forms the basis of the game space, i.e., every game can be defined
as a linear combination of games e(S,P ): v =

∑
(S,P )∈EC v(S, P ) · e(S,P ). Based

on Additivity, we have ϕ(v) =
∑

(S,P )∈EC ϕ(v(S, P ) · e(S,P )); thus, it is enough
to prove that the axioms imply a unique value in simple game e(S,P ) (multiplied
by a scalar). For this purpose, we will use the reverse induction on the size of S:
we will show that the value of game e(S,P ) can be calculated from the values of
simple games for bigger coalitions: e(S̃,P̃ ) where |S̃| > |S|. Our base case when
|S| = |N | comes from the Efficiency and Symmetry: ϕi(c · e(N,{N,∅})) = c

|N | for
every i.

First, let (S, P ) be any embedded coalition and assume that i 6∈ S. Let us
consider game ṽ combined from two simple games:

ṽ = c · [αi(S, P ) · e(S+i,τ
S
i (P )) + e(S,P )].

It is easy to observe that player i’s marginal contribution to (S+i, τ
S
i (P )) equals

zero, as with all other marginal contributions. Thus, from the Null-Player Axiom
ϕi(ṽ) = 0 and from Additivity:

ϕi(c · e(S,P )) = −ϕi(c · αi(S, P ) · e(S+i,τ
S
i (P ))), (4.3)

if i 6∈ S.
Now, let us assume otherwise, i.e., that i ∈ S and |S| < |N | (we already con-

sidered simple game e(N,{N,∅})). We have that v(N, {N, ∅}) = 0. From Efficiency,
we can evaluate the sum of payoffs of players from S as the opposite number to
the sum of payoffs of outside players (−

∑
j 6∈S ϕj(c · e(S,P ))). This sum, in turn,
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can be calculated with formula (4.3). Now, based on Symmetry, all players from
S divide their joint payoff equally:

ϕi(c · e(S,P )) =
1

|S|
∑
k∈S

ϕk(c · e(S,P ))

= − 1

|S|
∑
j 6∈S

ϕj(c · e(S,P ))

=
1

|S|
∑
j 6∈S

ϕj(c · αj(S, P ) · e(S+j ,τ
S
j (P ))),

if i ∈ S.
Thus, we provided two recursive equations for ϕi(c · e(S,P )) for both cases: i ∈ S
and i 6∈ S. This concludes our proof.

4.2 GENERALITY OF THE MARGINALITY

APPROACH

The marginality approach may seem arbitrary, that is, there may exist other
values that satisfy Shapley’s axiomatization but that cannot be uniquely de-
rived from α-parametrized Shapley’s axiomatization. This is, however, not
the case. The next theorem states that the marginality approach encom-
passes all values that satisfy Shapley’s axiomatization and exactly those.

Theorem 4. The value ϕ can be obtained using the marginality approach if and
only if it satisfies Efficiency, Symmetry, Additivity and the Null-Player Axiom.

Proof. In the proof of Theorem 3 we showed that every value obtained using the
marginality approach satisfies all four axioms. Thus, values that do not satisfy
these axioms cannot be obtained using the marginality approach.

Assume that ϕ satisfies all four axioms. We will prove that there exists a
weighting α such that ϕ also satisfies the α-Null-Player Axiom. Applying Theo-
rem 3, this will conclude the proof, as there exists only one value which satisfies
Efficiency, Symmetry, Additivity and the α-Null-Player Axiom. First, let us de-
compose game v into linear combination of simple games:

v =
∑

(S,P )∈EC

v(S, P ) · e(S,P ).
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Based on Additivity, we have that:

ϕi(v) =
∑

(S,P )∈EC

v(S, P ) · ϕi(e(S,P )). (4.4)

Now, let (S̃, P̃ ) ∈ EC be any embedded coalition such that i ∈ S̃. Consider
game ṽ = e(S̃,P̃ ) +

∑
T∈P̃−S̃

e(S̃−i,τTi (P̃ )) (i.e., only (S̃, P̃ ) and embedded coalitions

obtained by transfer of i outside S̃ have non-zero values). Player i is a null-
player in ṽ; thus, from the Null-player Axiom we have that ϕi(ṽ) = 0 and from
Additivity that ϕi(e(S̃,P̃ )) = −

∑
T∈P̃−S̃

ϕi(e
(S̃−i,τTi (P̃ ))). As (S̃, P̃ ) ∈ EC has

been chosen arbitrarily, it holds for every (S, P ) such that i ∈ S; thus, we can
transform equation (4.4) as follows:

ϕi(v) =
∑

(S,P )∈EC,i∈S

[v(S, P ) · ϕi(e(S,P )) +
∑
T∈P−S

v(S−i, τ
T
i (P ))ϕi(e

(S−i,τTi (P )))]

=
∑

(S,P )∈EC,i∈S

∑
T∈P−S

−ϕi(e(S−i,τTi (P )))[v(S, P )− v(S−i, τ
T
i (P ))].

Now, we can define αi(S, P ) = −ϕi(e
(S−i,τ

T
i (P )))

ϕi(e(S,P ))
:2 these are proper weights, as

they sum up to one for every (S, P ) and – based on Symmetry – are symmetrical
(ϕi(e(S,P )) = ϕπ(i)(e

(π(S),π(P ))) for every (S, P ) ∈ EC). The last transformation
shows that ϕ satisfies the α-Null-Player Axiom:

ϕi(v) =
∑

(S,P )∈EC,i∈S

ϕi(e
(S,P ))

∑
T∈P−S

αi(S, P )[v(S, P )− v(S−i, τ
T
i (P ))]

=
∑

(S,P )∈EC,i∈S

ϕi(e
(S,P ))[mcαi (v)](S, P ),

which concludes the proof.

4.3 BARGAINING PROCESS

To better understand how weights α affect the value assigned to a player, we
present the bargaining process that would produce the value as its expected

2When ϕi(e(S,P )) = 0 weights can be arbitrary, and do not have impact on the satisfiability of
the α-Null-player Axiom.
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outcome. To this end, we reverse the process presented by Shapley for the
value for games with no externalities and, additionally, investigate partitions
of players outside the grand coalition. For clarity of presentation, we limit
ourselves to positive weights which can be interpreted as the probability of a
transfer to occur.

Assume that players leave the grand coalition in a random order and
divide themselves into groups outside. In each step, one player departs and,
with the probability given by α, enters an existing group outside, or forms a
new group. As the result of the leave, the player is granted his elementary
marginal contribution, i.e., with the loss of a coalition he left. Now, the value
obtained using marginality approach with weights α is the expected outcome
of the player’s contribution.3

Chapter 6 contain the survey and the comparison of different weightings
α proposed in the literature, but to illustrate above discussion we will now
present the weights considered by Macho-Stadler et al.:

αMSt
i (S, P ) =

|P (i)−i|
|N | − |S|+ 1

under the convention that |∅| = 1. According to this definition, the effects
of transfers to bigger coalitions are taken with higher weights. Thus, if we
look at the weights α as probabilities, this definition states that a player is
more likely to transfer to a bigger coalition than to a smaller one. Interest-
ingly, this means that the formation of a given partition in the bargaining
process corresponds to the Chinese restaurant process, known in the field of
probability theory.

We have just shown that the marginality approach restricts all payoff
division schemes to those that satisfy Shapley’s axioms, i.e., α-values. In the
next chapter, we will analyze how some desirable properties of an α-value
translate into properties of weights α.

3To include negative weights in this process, one has to assign to players’ transfers weights
instead of probabilities. A composition of such weights for a given permutation will constitute
a weight of the resulting partition. A marginal contribution in a given permutation should be
calculated as a sum of all possible elementary marginal contributions multiplied by corresponding
weights.



CHAPTER 5

PROPERTIES OF THE VALUE

Marginality approach is build upon the weights associated with trans-
fers. This leads to the natural question of how weights will affect the

properties of the resulting value, and what conditions have to be met by the
weights to obtain a value with the given properties.

In this chapter, we provide certain links between properties of an α-
value and the properties of α-weights. We begin by identifying insignificant
weights, that is, weights which do not have any impact on a value (Section
5.1). Then, we show how the axioms of Weak/Strong Monotonicity, Strong
Symmetry, and the Strong Null-Player Axiom translate into properties of sig-
nificant weights α (Sections 5.2, 5.3, 5.4, respectively). Chapter ends with a
discussion how other axiomatizations – Young’s monotonicity axiomatization
and Myerson’s axiomatization based on the concept of balanced contribution
– can be translated to games with externalities and how they relate to the
original axiomatization proposed by Shapley (Section 5.5).
Note: This chapter is based on [51].

5.1 SIGNIFICANT AND INSIGNIFICANT WEIGHTS

If we analyze formula for the α-value (formula (4.2)) carefully, we can see
that most weights appear only in the products of weights and can be arbi-
trary when those products evaluate to zero. Moreover, weights of the form
αi(∅,__) appear only in marginal contributions of the form [mcαi (v)]({i}, P ).
These marginal contributions always evaluate to v({i}, P ), i.e., they are in-
dependent of weights. This leads us to the notion of significance.

33
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Significant weights: weight αi(S, P ) is called significant if (S, P ) is
probable and non-empty, i.e., if

∑
π∈Ω(N\(S∪{i})) pr

α
π (S+i, τ

S
i (P )) 6= 0

and S 6= ∅.

If we limit ourselves to non-negative weights, then αi(S, P ), such that S 6= ∅,
is significant if and only if there exists a permutation π such that prαπ (S, P )>0.
In turn, if all weights are positive, then all αi(S, P ) such that S 6= ∅ are sig-
nificant.

The following lemma states that only significant weights have an impact
on the value.

Lemma 4. Let α-marginality and α̂-marginality be two definitions of marginal
contribution. Then, α-value and α̂-value differs if and only if there exists an
embedded coalition (S, P ) such that α(S, P ) 6= α̂(S, P ) and both weights are
significant.

Proof. First, we will prove that insignificant weights do not change the value.
Based on equation (4.2), weight αi(∅, P ) appears only in the marginal contribution
[mcαi (v)]({i}, P−i∪{i}) =

∑
T∈P αi(∅, τTi (P ))[v({i}, P−i∪{i})− v(∅, τTi (P ))]

which simplifies to v({i}, P−i ∪{i}) (therefore the particular weights do not mat-
ter as long as they sum up to one). Now, let us consider in which place insignif-
icant weight αi(S, P ) with S 6= ∅ appears in equation (4.2). When we calcu-
late the payoff of player i, weight αi(S, P ) appears only in marginal contribu-
tion [mcαi (v)](S+i, τ

S
i (P )) preceded by

∑
π∈Ω(N\(S∪{i})) pr

α
π (S+i, τ

S
i (P )) which

equals zero. In the payoff of other players, αi(S, P ) appears in the sum∑
π̃∈N\S̃ pr

α
π̃ (S̃, P̃ ), where a given product is obtained by the sequence of trans-

fers that transform (N, {N, ∅}) into (S̃, P̃ ). Thus, αi(S, P ) appears only if all
other players from N \ S have transferred before i (and only them):∑

π̃∈N\S̃

prαπ̃ (S̃, P̃ ) =
∑

π2∈Ω(S\S̃)

∑
π1∈Ω(N\(S∪{i}))

prαπ1||i||π2(S̃, P̃ ).

Now, for a given permutation of players from S \ S̃: π2 ∈ Ω(S \ S̃), if we extract
the product of last |S| − |S̃| weights from the second sum, we see that the whole
sum is multiplied by

∑
π∈Ω(N\(S∪{i})) pr

α
π (S+i, τ

S
i (P ))·αi(S, P ). This equals zero

regardless of weight αi(S, P ).
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Now, we will prove that the significant weight has an impact on the value.
Assume that α and α̃ differ in at least one significant weight. Let (S, P ) be an
embedded coalition such that αi(S, P ) 6= α̂i(S, P ), both weights are significant
and αi(S̃, P̃ ) = α̂i(S̃, P̃ ) for every (S̃, P̃ ) with S ⊂ S̃. Now, consider simple
game e(S,P ). As prα1

π (S+i, τ
S
i (P )) = prα2

π (S+i, τ
S
i (P )) for every π and, from

weights significance, we have that
∑

π∈Ω(N\(S∪{i})) pr
α
π (S+i, τ

S
i (P )) 6= 0, then

from equation (4.2) we get ϕαi (v(S,P )) 6= ϕα̂i (v(S,P )).

This result indicates that we should only consider significant weight,
which is what we will do from now on.

Before we go any further, let us discuss how weights associated with ele-
mentary marginal contributions can be looked upon as weights of partitions.
To this end, let (S, P ) ∈ EC such that i 6∈ S and let αi(S, P ) be significant.
Then, there exists π ∈ Ω(N \ (S ∪{i})) such that prαπ (S+i, τ

S
i (P )) 6= 0. Now,

we have that:

αi(S, P ) =
prαπ||i(S, P )

prαπ (S+i, τSi (P ))
, (5.1)

that is, all significant weights α can be calculated from products prα. More-
over, if we use equation (5.1) for different embedded coalitions obtained by
the transfer of i from (S+i, τ

S
i (P )), we get that all products prα for bigger

coalitions can be obtained from products for smaller coalitions:
prαπ (S+i, τ

S
i (P )) =

∑
T∈P−S pr

α
π||i(S, τ

T
i (P )). That leads us to the observa-

tion that defining values of prαπ (∅, P ) for every π ∈ Ω(N) and every partition
P is equivalent to defining significant weights α. Based on the conditions
imposed on weights α, all weight compositions must sum up to one (i.e.,∑

P∈P pr
α
π (∅, P ) = 1 for every π ∈ Ω(N)) and must be symmetrical (i.e.,

prαπ1(∅, π1(P )) = prαπ2(∅, π2(P )) for every π ∈ Ω(N) and P ∈ P).
This simple (but useful) observation allows us to focus on the weights

of partitions (that may represent the probability that a given partition will
form) instead of considering elementary transfers. To give an example, Hu
and Yang argued that, independently of a permutation of players, all par-
titions should be equally likely to form [25]. Thus, prαHYπ (∅, P ) = 1

P(N)
for

every π ∈ Ω(N) and P ∈ P(N). That immediately implies weights α:

prα
HY

π (S, P ) =
|{R ∈ P(N) : R[S] = P[S]}|

|P(N)|



36 CHAPTER 5. PROPERTIES OF THE VALUE

and
αHYi (S, P ) =

|{R ∈ P(N) : R[S] = P[S]}|
|{R ∈ P(N) : R[S∪{i}] = P[S∪{i}]|

.

5.2 WEAK AND STRONG MONOTONICITY

One of the most desirable properties of the division scheme is the (Weak)
Monotonicity. It states, that if we increase the value of a particular coalition,
then the payoffs, that is the shares of the grand coalition value assigned to
its members, should not decrease. Analogously, the shares of non-members
should not increase. The fact that Myerson’s value violates Monotonicity is
the main reason why it was criticized in the literature as unintuitive [29, 10,
33]. Formally, we have the following definition:

Weak Monotonicity (increase of player’s contributions does not
decrease its payoff):
if v1(S+i, τ

S
i (P ))− v1(S, P ) ≥ v2(S+i, τ

S
i (P ))− v2(S, P ) holds for

every (S, P ) ∈ EC, such that i 6∈ S, then ϕi(v1) ≥ ϕi(v2).

This formulation agrees with definitions proposed by Macho-Stadler et al.
and De Clippel and Serrano, and differs from the one by McQuillin1.

Now, we prove that the necessary and sufficient condition for Weak Mono-
tonicity to be satisfied by an α-value is that weights α are non-negative.

Lemma 5. An α-value satisfies Weak Monotonicity if and only if αi(S, P ) ≥ 0 for
every significant weight.

Proof. First, let us transform one more time the formula for α-value:

ϕαi (v) =
∑

(S,P )∈EC
i 6∈S

|S|!
|N |!

∑
π∈Ω(N\S+i)

prαπ||i(S, P ) · [v(S+i, τ
S
i (P ))− v(S, P )]. (5.2)

1McQuillin in his definition required only that the increase of a coalition’s value causes
no decrease of payoffs of the members. Formally, he defined Weak Monotonicity as follows:
ϕi(e

(S,P )) ≥ 0 if i ∈ S. For linear values, this definition is equivalent to the following one: if
v1(S, P ) ≥ v2(S, P ) holds for every (S, P ) ∈ EC, such that i ∈ S, then ϕi(v1) ≥ ϕi(v2).
Indeed, in games with no externalities, this implies for symmetric values that other players’ pay-
offs do not increase. However, this is not the case when externalities are present. For example,
in a simple game e(S,P ) for (S, P ) = ({1}, {{1}, {2}, {3, 4}, ∅}) the following payoff scheme
ϕ1(e

(S,P )) = ϕ2(e
(S,P )) = a and ϕ3(e

(S,P )) = ϕ4(e
(S,P )) = −a does not violate Symmetry,

nor Weak Monotonicity.
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Thus, we see that in the formula for ϕαi the coefficient of marginal contribution
v(S+i, τ

S
i (P ))− v(S, P ) equals |S|!|N |!

∑
π∈Ω(N\S+i)

prαπ||i(S, P ) which is equivalent
to

|S|!
|N |!

∑
π∈Ω(N\S+i)

prαπ (S+i, τ
S
i (P )) · αi(S, P ).

If this coefficient is negative, then its increase will decrease the payoff. Thus, α-
value satisfies Weak Monotonicity if and only if all coefficients are non-negative.
If all weights are non-negative then all products of weights are non-negative (thus,
the condition is satisfied). In turn, using the reverse induction on |S|, we get that
all significant weights αi(S, P ) must be non-negative: from inductive assumption,
prαπ (S+i, τ

S
i (P )) ≥ 0 for every π ∈ Ω(N \ S+i), thus if the sum is greater than

zero, then (S, P ) is probable and must be non-negative. This concludes our proof.

In Weak Monotonicity, we require that the increase of a player’s contribu-
tion does not result in the decrease of their payoff. This, in particular, means
that we allow for a hypothetical situation where a player’s arbitrary big con-
tributions to some coalitions, although not negatively affecting his payoff,
may not affect his payoff at all. This would be discouraging for players. To
address this issue, we propose a notion of Strong Monotonicity:

Strong Monotonicity (increase of player’s contributions increases
its payoff): if v1(S+i, τ

S
i (P ))−v1(S, P ) ≥ v2(S+i, τ

S
i (P ))−v2(S, P )

holds for every (S, P ) ∈ EC, such that i 6∈ S and this inequality
is strict for at least one embedded coalition, then ϕi(v1) > ϕi(v2).

Lemma 6. α-value satisfies Strong Monotonicity if and only if αi(S, P ) > 0 for
every significant weight.

Proof. Proof is analogous to the proof of Lemma 5, but here all coefficients must
be positive (otherwise, if v(S+i, τ

S
i (P )) − v(S, P ) has zero coefficients, then the

payoff in game −e(S,P ) does not increase the payoff for player i).

The above lemma shows that Strong Monotonicity implies that, in the
stochastic process (which is built upon the α value), every transfer is possible.

Next, we will analyze the axiom of Strong Symmetry.
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5.3 STRONG SYMMETRY

Macho-Stadler et al. proposed a strengthening of the axiom of Symmetry
called Strong Symmetry. To look closer into this concept, let us consider
simple game e(S,P ) (where only particular S embedded in P has non-zero
value). From Symmetry, all players from S have the same payoff. In turn,
payoffs of players from N \S may differ between them. This may seem unfair,
as they all have the same role in this game: they must form specific partition
P for S to generate a value.

Let us then consider a bijection (i.e., one-to-one mapping) f :N\S→N\S.
The axiom of Strong Symmetry states that, if f(S,P )(v) is a game obtained by
exchanging the value of (S, P ) and (S, S ∪ f(P \ S)),2 then all of the payoffs
from game f(S,P )(v) are the same as payoffs from game v:

Strong Symmetry (the value of a coalition affects the payoffs of
outside players symmetrically):

• ϕ(f(v)) = f(ϕ)(v) for every game v and bijection f : N → N ;
• ϕ(f(S,P )(v)) = ϕ(v) for every game v and every bijection
f : N \ S → N \ S.

This definition is equivalent to the condition ϕi(e(S,P )) = ϕj(e
(S,P )) for every

i, j 6∈ S for linear values.
To translate this axiom to a property of the weight, we introduce the

concept of the interlace resistance.

Interlace resistance (product of weights should not depend on the
order of corresponding transfers):

prαπ1(S, P ) = prαπ2(S, P )

for every (S, P ) such that S 6= ∅ and every π1, π2 ∈ Ω(N \ S).

For non-negative weights this condition simplifies to the equivalence of
products of two weights.

2Formally, [f(S,P )(v)](S, P ) = v(S, S ∪ f(P \ S)), [f(S,P )(v)](S, S ∪ f(P \ S)) = v(S, P )

and [f(S,P )(v)](S̃, P̃ ) = v(S̃, P̃ ), otherwise. See Symmetry definition for a formal specification
of f(P ).
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Lemma 7. If weights α are non-negative, then α is interlace resistance if and
only if it satisfies αi(S, P ) · αj(S+i, τ

S
i (P )) = αj(S, P ) · αi(S+j, τ

S
j (P )) for all

significant weights such that i, j 6∈ S.

Proof. First, we prove that the above condition is necessary. Let (S, P ) be an
embedded coalition such that i, j 6∈ S, S 6= ∅ and (S, P ) is probable (note that, for
non-negative weights, if (S, P ) is probable then (S+i, τ

S
i (P )), (S+j, τ

S
j (P )) and

(S+ij, τ
S
j (τSi (P ))) are also probable). Let π be a permutation of N \ (S ∪ {i, j})

such that prαπ (S+ij, τ
S
ij(P )) > 0. Now, let us consider two different extensions

of permutation π: π||j||i, π||i||j ∈ Ω(N \ S) (i.e., the first one ends with (j, i),
and the second one with (i, j)). Now, the condition prαπ||j||i(S, P ) = prαπ||i||j(S, P )

simplifies to αi(S, P ) · αj(S+i, τ
S
i (P )) = αj(S, P ) · αi(S+j, τ

S
j (P )).

Next, we show that this condition is sufficient. This comes from the com-
binatorial fact that every permutation can be obtained from another using only
transpositions of the adjacent elements. More formally, assume that (S, P ) is an
embedded coalition with S 6= ∅ and π1, π2 are some permutations ofN−S . We will
prove that both products of weights prαπ1(S, P ), prαπ2(S, P ) are equal if the condi-
tion holds. To this end, we observe that if in both products a zero weight appears
then both are equal. If not, without loss of generality, all weights in prαπ1(S, P ) are
nonzero and significant. Based on the condition αi(S, P ) · αj(S+i, τ

S
i (P )) equals

αj(S, P ) · αi(S+j, τ
S
j (P )), transpositions of adjacent players in order π1 do not

change the product of weights. Thus, the proper sequence of transpositions will
yield that prαπ1(S, P ) = prαπ2(S, P ).

The following theorem shows that an α-value satisfies Strong Symmetry
if and only if weights are interlace resistant.

Theorem 5. An α-value satisfies Strong Symmetry if and only if α-marginality is
interlace resistant.

Proof. Assume that α is interlace resistant. We will prove that for every (S, P )
and i, j ∈ N \ S holds ϕαi (e(S,P )) = ϕαj (e(S,P )). This fact, based on Additivity,
will imply Strong Symmetry. Let πe ∈ Ω(N \ S) be any permutation. Based on
equation (5.2):

ϕαi (e(S,P )) = −|S|!(|N | − |S|+ 1)!

|N |!
· prαπe(S, P ) (5.3)

do not depend on the player i 6∈ S. Thus, ϕαi (e(S,P )) = ϕαj (e(S,P )).
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To prove that Strong Symmetry holds only for interlace resistant weights we
use the reverse induction on the size of S. Of course prαπ1(S, P ) = prαπ2(S, P ) = 1
when |S| = |N | − 1 for every permutation π1, π2 ∈ Ω(N \ S). Let us assume
that this equivalence holds when |S| > k. We will prove that it also holds when
|S| = k. Let π1, π2 ∈ Ω(N \ S) be two permutations, and without the loss of
generality assume i and j are the last players in π1, π2. Now, consider simple game
e(S,P ) in which (S, P ) is the only embedded coalition with non-zero value. Based
on Strong Symmetry, players i and j have equal payoffs: ϕαi (e(S,P )) = ϕαj (e(S,P )).
From equation (5.2):

ϕαi (e(S,P )) = − |S|!
|N |!

∑
π∈Ω(N\S+i)

prαπ (S+i, τ
S
i (P )) · αi(S, P ).

Based on the inductive assumption, product prαπ (S+i, τ
S
i (P )) does not depend on

the permutation π ∈ Ω(N \ S−i), thus ϕαi (e(S,P )) = − (|S|!)(|N |−|S|+1)!
|N |! prαπ1(S, P ).

Now, ϕαj (e(S,P )) = − (|S|!)(|N |−|S|+1)!
|N |! prαπ2(S, P ) implies prαπ1(S, P ) = prαπ2(S, P ).

When we consider the values that satisfy Strong Symmetry, the general
formula (4.2) can be simplified as follows:

ϕαi (v) =
∑

(S,P )∈EC,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

prα(S, P )[mcαi (v)](S, P ), (5.4)

where prα(S, P ) denotes prαπ (S, P ) for any permutation π ∈ Ω(N \ S),
as this product is equal for every permutation. Observe that v(S, P ) ap-
pears in the above formula multiplied by prα(S, P ) and v(S−i, τ

T
i (P )) by

prα(S, P ) · αi(S−i, τTi (P )) which equals prα(S−i, τ
T
i (P )). Thus, the value of

a coalition in a given partition is always preceded with the probability that
a given partition will form. This suggests the following, already mentioned
at the end of Section 3.1, algorithm for evaluating a fair division in a game
with externalities.

1. First, we create average game ṽ with no externalities from game v with
externalities. This is done by calculating the value of every coalition
as the average of its values in games with externalities:

ṽ(S) =
∑
P3S

a(S, P ) · v(S, P ),

where
∑

P3S a(S, P ) = 1 for every S.
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2. Then, we calculate the Shapley value for average game ṽ:

ϕ(v) = Sh(ṽ).

This approach, called the average approach, was introduced by Macho-Stadler
et al. They proved that the value that satisfies Shapley’s axioms can be con-
structed using the average approach if and only if it satisfies Strong Symmetry
(see Theorem 1 in [29]).

In our Theorem 4 we proved that marginality approach can produce every
value that satisfies Shapley’s axiom and Theorem 5 shows that the resulting
value satisfies Strong Symmetry if and only if weights are interlace resistant.
Thus, our two theorems combined with the result from Macho-Stadler et al.
imply that a value can be obtained using the average approach if and only
if it can be obtained using the marginality approach with interlace resistant
weights.

Corollary 1. The average approach is equivalent to the marginality approach
with interlace resistant weights.

Finally, in the next section we consider the Strong Null-Player Axiom.

5.4 STRONG NULL-PLAYER AXIOM

Another axiom proposed by Macho-Stadler et al. is the Strong Null-Player
Axiom. Consider a game v in which i is a null-player in a strict sense, i.e.,
i does not have an impact on the game whatsoever. In this case, the Null-
Player Axiom requires that player i has zero payoff: ϕi(v) = 0. But it does
not mean that he has no impact on the payoffs of others. In other words,
removing a null-player from the game may affect the payoffs of the remaining
players. Such a situation is infeasible if we rely on the Strong Null-Player
Axiom proposed by Macho-Stadler et al.:

Strong Null-Player Axiom (null-player does not have an impact
on the payoffs of others): if i is a null-player then ϕj(v) = ϕj(v−i)
for every j ∈ N , where v−i denotes the game without player i:
v−i(S−i, P−i)

def
= v(S, P ) for every (S, P ) such that i ∈ S.

When i is not a null-player, constructing the game v−i can be challenging.
This issue will be discussed in more detail in Section 5.5. However, the



42 CHAPTER 5. PROPERTIES OF THE VALUE

situation is much simpler when i is a null-player. This is because the value
of embedded coalition (S, P ) ∈ EC(N \ {i}) can be obtained by inserting i
to an arbitrary coalition in partition P , as all possible values are equal.

Let us now analyze the constraints imposed by the Strong Null-Player
Axiom on the values that satisfy Strong Symmetry. To this end, let us
introduce the expansion resistance property.

Expansion resistance (weight does not depend on the size of S):

αi(S, P ) = αi(S−j, P−j)

for all significant weights such that i 6∈ S and j ∈ S.

In terms of our bargaining process, this intuitive requirement says that
the probability of joining a coalition by a player should depend only on the
coalitions to choose from and not on the coalition that the player is leaving.
The following theorem states that, for values satisfying Strong Symmetry,
expansion resistance is necessary and sufficient to obtain the Strong Null-
Player Axiom.

Theorem 6. If an α-value satisfies Strong Symmetry then it satisfies the Strong
Null-Player Axiom if and only if α-marginality is expansion resistant.

Proof. In this proof we consider only α-values that satisfy Strong Symmetry. We
will show that expansion resistance is equivalent to satisfying the Strong Null-
Player Axiom by the sequence of equivalences.
PART 1: expansion resistance ⇔ prα(S, P ) = prα(S−i, P−i) for every (S, P )
such that i ∈ S;
It is clear that expansion resistance implies the condition from the right-hand side.
Also, if expansion resistance is not met, then products of weights must also dif-
fer: if (S, P ) is the smallest coalition such that αj(S, P ) 6= αj(S−i, P−i) then
prα(S+j, τ

S
j (P )) = prα((S−i)+j, τ

S
j (P−i)) and prα(S, P ) 6= prα(S−i, P−i).

PART 2: prα(S, P ) = prα(S−i, P−i) ⇔ ϕαj (e(S,P )) = |S|−1
|N | · ϕ

α
j (e(S−i,P−i)) for

i, j ∈ S
This step, which translate weights characteristic to the value property is immediate
from equation (5.4). Now, let us denote ṽ(S,P ) = e(S,P ) +

∑
T∈P−S e

(S−i,τTi (P )).

Thus, ṽ(S,P )
−i = e(S−i,P−i).

PART 3: ϕαj (e(S,P )) = |S|−1
|N | ·ϕ

α
j (e(S−i,P−i)) for i, j ∈ S ⇔ ϕαj (ṽ(S,P )) = ϕαj (ṽ

(S,P )
−i )

for j ∈ S and null-player i ∈ S
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The right-hand side of the equivalence comes from the Strong Null-Player Axiom
applied to game ṽ(S,P ). To prove equivalence, we will transform it using Additiv-
ity:

ϕαj (e(S,P )) +
∑
T∈P−S

ϕαj (e(S−i,τTi (P ))) = ϕαj (e(S−i,P−i)).

But based on Strong Symmetry all payoffs of players outside S−i in e(S−i,τTi (P ))

are equal, thus from Efficiency:

ϕαj (e(S−i,τTi (P ))) · (|S| − 1) = −ϕαi (e(S−i,τTi (P ))) · (|N | − |S|+ 1)

for every T ∈ P−S . Thus,

ϕαj (e(S−i,P−i)) = ϕαj (e(S,P ))− |N | − |S|+ 1

|S| − 1

∑
T∈P−S

ϕαi (e(S−i,τTi (P )))

= ϕαj (e(S,P )) +
|N | − |S|+ 1

|S| − 1
· ϕαi (e(S,P ))

=
|N |
|S| − 1

· ϕαj (e(S,P )),

where we used Symmetry ϕαi (e(S,P )) = ϕαj (e(S,P )) and the Null-Player Axiom for
equality

∑
T∈P−S ϕ

α
i (e(S−i,τTi (P ))) = −ϕαi (e(S,P )).

PART 4: ϕαj (ṽ(S,P )) = ϕαj (ṽ
(S,P )
−i ) for every (S, P ) such that j ∈ S and null-

player i ∈ S ⇔ Strong Null-Player Axiom
Of course the Strong Null-Player Axiom implies the left-hand side. On the other
hand, every game in which i is a null-player can be decomposed in the following
way:

v =
∑

(S,P ),i∈S

v(S, P ) · (e(S,P ) +
∑
T∈P−S

e(S−i,τTi (P ))) =
∑

(S,P ),i∈S

v(S, P ) · ṽ(S,P ).

Thus, again based on Additivity, if value ϕαj (ṽ(S,P )) = ϕαj (ṽ
(S,P )
−i ) holds for every

(S, P ) and j ∈ S, then ϕαj (v) = ϕαj (v−i). That implies also ϕαj (v) = ϕαj (v−i) for
j 6∈ S from Strong Symmetry and concludes our proof.
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5.5 RELATIONSHIP WITH YOUNG’S

AND MYERSON’S AXIOMATIZATIONS

In this section we discuss how Young’s and Myerson’s axiomatization of Shap-
ley value can be translated to games with externalities.

Young argues that the concept of (Weak) Monotonicity can be restated
as follows: if we consider two games such that in the first game all marginal
contributions of a player are not smaller than the corresponding marginal
contributions in the second game (i.e., the difference of vectors of marginal
contributions is non-negative in every coordinate), then the payoff in the
former game should not be smaller than the payoff in the latter game. This
yields another property, called the Marginality Axiom. This axiom says that
if marginal contributions are equal, then the payoffs should also be equal. In
other words, payoffs should depend only on the vector of marginal contribu-
tions. Young proved that the Shapley value is the only value which satisfies
Efficiency, Symmetry and the Marginality Axiom.

In games with externalities, we have to specify which definition of marginal
contribution we assume. That leads to the α-Marginality Axiom:

α-Marginality Axiom (payoff of a player depends only on his
marginal contributions): mcαi (v1) = mcαi (v2) ⇒ ϕi(v1) = ϕi(v2)
for every game v1, v2 and player i ∈ N .

Bolger [7] used Young’s axiomatization to derive his value (with an ad-
ditional Null-Player Axiom which is, in fact, redundant). Later, De Clippel
and Serrano proved that externality-free value proposed by Pham Do and
Norde (initially introduced using Shapley’s standard axiomatization) can be
also derived using this set of axioms [10]. Finally, Fujinaka provided a gen-
eral theorem: for every definition of marginal contribution there exists a
unique value which satisfies the Efficiency, Symmetry and α-Marginality Ax-
ioms [15]. For every α, the value proposed by Fujinaka based on Young’s
axiomatization is equal to our value (derived by Theorem 3). This means
that both axiomatizations are equivalent.

Corollary 2. Shapley’s marginality-based axiomatization (Efficiency, Symmetry,
Additivity and α-Null-Player Axiom) is equivalent to Young’s axiomatization (Ef-
ficiency, Symmetry and α-Marginality Axiom). Moreover, both axiomatizations
yield a unique value.
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Next, we will discuss an axiomatization proposed by Myerson [38] that
is based on the concept of Balanced Contributions. We translate this axiom
to games with externalities using our analysis of marginal contributions. It
comes out that not every value obtained using the marginality approach
satisfies the axiom of Balanced Contributions. Therefore, we characterize
which values satisfy Myerson’s concept using the properties of interlace and
expansion resistance.

The Balanced Contributions principle guarantees a certain notion of sta-
bility. We say that mutual contributions of players i and j are balanced, if the
withdrawal of player i from the game will result in the same loss to player j
as the withdrawal of j to i. More formally, ϕi(v)−ϕi(v−j) = ϕj(v)−ϕj(v−i).
Thus, the profit of cooperation is divided equally between players. It is im-
portant that this condition is met, as otherwise a player which gains less may
threaten the other to leave the game. This is why the Balanced Contribu-
tions principle is usually the key piece in the mechanisms that implement the
Shapley value (see, e.g., Perez-Castrillo et al. [42]).

To translate this axiom to games with externalities we need to define how
to calculate a game without a given player. In games without externalities,
the value of a coalition S without a player i is uniquely defined. In games
with externalities, different positions of i in the coalition structure may result
in different values of S. Let us consider the following example:

Example 3. Let us consider game v−1 created from game v in Example 1. We have
that v−1({2}, {{2}, {3}, ∅}) = b if we take value of {2} from {{1}, {2}, {3}, ∅}
and v−1({2}, {{2}, {3}, ∅}) = c if we take value from {{1, 3}, {2}, ∅}.

This resembles the problem with defining the marginal contribution we
faced before. Thus, we take a similar approach: from the value of coalition
S ∪ {i}, we subtract player’s i marginal contribution:

vα−i(S−i, P−i)
def
= v(S, P )−mcαi (S, P )

for every (S, P ) such that i ∈ S.3 Now, different definitions of marginal
contributions (i.e. weights α) result in different values of the game without a
player. Therefore, the corresponding axioms of Balanced Contributions will
also be different:

3It is worth noting that under this definition of the game without a player α-values that satisfy
Strong Symmetry and the Strong Null-Player Axiom satisfy also the Strong α-Null-Player Axiom
that states that if i is an α-null-player then ϕj(v) = ϕj(v

α
−i).
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α-Balanced Contributions (profit of cooperation is divided equally
between players): ϕi(v)−ϕi(vα−j) = ϕj(v)−ϕj(vα−i) for every game
v and i, j ∈ N .

The principle of Balanced Contributions combined with Efficiency auto-
matically yields a recursive formula for the unique value:

ϕi(v) =
1

|N |
(v(N, {N, ∅})− v({N−i, {N−i, {i}, ∅}) +

∑
j 6=i

ϕi(v
α
−j)). (5.5)

This comes from the sum of Balanced Contributions equations over all j ∈ N .
For games without externalities, Myerson proved that Efficiency and Bal-

anced Contributions imply the Shapley value (thus it is equivalent, in par-
ticular, to Shapley’s and Young’s axiomatizations). But this is not the case
in games with externalities – some α-values do not meet the corresponding
axiom of Balanced Contributions parametrized with α.

To characterize which values meet Balanced Contributions, we will use
the stronger versions of Symmetry and the Null-Player Axiom from Sections
5.3 and 5.4. To gain extra intuition behind it, note that if α-value still
assigns zero to a null-player i, even if we remove player j from the game
(thus, ϕαi (v−j) = 0), then Balanced Contributions implies the Strong Null-
Player Axiom: ϕαj (v) − ϕαj (v−i) = ϕαi (v) − ϕαi (v−j) = 0 − 0. On the other
hand, the axiom of Balanced Contributions asks for the balance between the
contributions of the two players contributions and ultimately implies Strong
Symmetry.

Theorem 7. Shapley’s marginality-based axiomatization (Efficiency, Symmetry,
Additivity and α-Null-Player Axiom) is equivalent to Myerson’s axiomatization
(Efficiency, α-Balanced Contributions) if and only if α is interlace and expansion
resistant.

Proof. Our proof is organized as follows: first we will argue that if α is inter-
lace and expansion resistant then the α-value satisfies α-Balanced Contributions.
Then, we will prove that α-Balanced Contributions implies the Strong Null-Player
Axiom and Strong Symmetry. This result combined with Theorems 5 and 6 that
link these axioms with properties of α will conclude the proof. Both parts of the
proof will be based on the linear decomposition of the game v to simple games
e(S,P ). If α-Balanced Contributions is satisfied, then it must work for every sim-
ple game. On the other hand, if α-Balanced Contributions works for every simple
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game then based on Additivity it must be satisfied also for every linear combina-
tion, thus every possible game v. Thus, the α-value satisfies α-Balanced Contri-
butions if and only if the following conditions are met:

(a) ϕi(e(S,P )) − 0 = ϕj(e
(S,P )) − 0 for i, j ∈ S; this condition comes directly

from Symmetry;

(b) ϕi(e(S,P ))− ϕi(e(S,P−j) · αj(S, P )) = ϕj(e
(S,P ))− 0 for i ∈ S, j 6∈ S;

(c) ϕi(e(S,P ))−ϕi(e(S,P−j) ·αj(S, P )) = ϕj(e
(S,P ))−ϕj(e(S,P−i) ·αi(S, P )) for

i, j 6∈ S.

The zeros in the equations come from the fact that game e(S,P ) without player
from S is a zero game. A few times in our proofs we will use the following
transformation:

ϕi(e
(S+j ,τ

S
j (P )) · αj(S, P )) = ϕj(e

(S+j ,τ
S
j (P )) · αj(S, P )) = ϕj(e

(S,P )), (5.6)

for i ∈ S, j 6∈ S, where first transformation comes from Symmetry of players i
and j (both players are in the only embedded coalition with the value), and second
– from the α-Null-Player Axiom.

First, assume α is interlace and expansion resistant (thus, α-value
satisfies Strong Symmetry and the Strong Null-Player Axiom) and consider
condition (b). From the Strong Null-Player Axiom and Strong Symmetry
ϕi(e

(S,P−j) · αj(S, P )) = |N |
|S|ϕi(e

(S+j ,τ
S
j (P )) · αj(S, P )) (this comes directly from

formula (5.4)). From equation (5.6) this expression equals |N ||S|ϕj(e
(S,P )), thus con-

dition (b) simplifies to ϕi(e(S,P )) = − |N |−|S||S| ϕj(e
(S,P )) which comes immediately

from Strong Symmetry.
Let us focus on condition (c). Here, ϕi(e(S,P )) = ϕj(e

(S,P )) (from Strong Sym-
metry) and condition simplifies to ϕi(e(S,P−j) ·αj(S, P )) = ϕj(e

(S,P−i) ·αi(S, P )).
We use the formula (5.4): ϕi(e(S,P−j) ·αj(S, P )) = |N |

|S|+1
ϕi(e

(S+j ,τ
S
j (P )) ·αj(S, P ))

which equals |N |
|S|+1

ϕi(e
(S+ij ,τ

S
i (τSj (P ))) ·αj(S, P )·αi(S+j, τ

S
j (P ))) from the α-Null-

Player Axiom. From Symmetry and the interlace resistant property we can replace
all i with j which is equal to the analogous transformation of the right-hand side
of the equation.

Secondly, we will prove that Efficiency and α-Balanced Contributions indeed
imply Strong Symmetry and the Strong Null-Player Axiom. Let %(v) denote
the number of players outside S in the smallest coalition with a non-zero value,
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i.e., %(v) = max(S,P ):v(S,P )6=0

∑
T∈P,T 6=S |T |. If v is a game of N players, then∑

T∈P,T 6=S |T | = |N | − |S|, but as we will consider games of various numbers
of players, we define this number by the size of partition P . We will use the in-
duction by %(v). If %(v) = 0 then v = e(N,{N,∅}) and both axioms are instantly
satisfied. Now, assume that Strong Symmetry and the Strong Null-Player Axiom
hold for games with %(v) < k. We will prove that it holds also for games in which
%(v) = k. Let (S, P ) be an embedded coalition such that

∑
T∈P,T 6=S |T | = k. Bal-

anced Contributions implies ϕi(e(S,P )) − ϕi(e(S,P−j) · αj(S, P )) = ϕj(e
(S,P )) for

i ∈ S, j 6∈ S (condition (b)). As %(e(S,P−j) · αj(S, P )) = k − 1, then from Strong
Symmetry and the Strong Null-Player Axiom ϕi(e

(S,P−j)) = |N |
|S|ϕi(e

(S+j ,τ
S
j (P )))

and using equation (5.6) we have ϕi(e(S,P )) = − |N |−|S||S| ϕj(e
(S,P )) which implies

Strong Symmetry (payoff of player j 6∈ S in game e(S,P ) is equal for every j).
Now, we will prove that the Strong Null-Player Axiom is also satisfied. As-

sume that i is a null-player in a strict sense. As argued in the proof of The-
orem 6, game v can be expressed as a linear combination of games of form
ṽ(S,P ) = e(S,P ) +

∑
T∈P−S e

(S−i,τTi (P )). It is enough to show that for every such

game, ϕj(ṽ(S,P )) = ϕj(ṽ
(S,P )
−i ) for every j ∈ N . If j ∈ S this follows automati-

cally from Balanced Contributions:

ϕj(ṽ
(S,P ))− ϕj(ṽ(S,P )

−i ) = ϕi(ṽ
(S,P ))− ϕi(ṽ(S,P )

−j ) = 0− 0.

Based on Strong Symmetry this concludes the proof: for every k 6∈ S, it oc-
curs that ϕk(ṽ(S,P )) = |S|−1

|N |−|S|ϕj(ṽ
(S,P )) and ϕk(ṽ

(S,P )
−i ) = |S|−1

|N |−|S|ϕj(ṽ
(S,P )
i ), thus

ϕk(ṽ
(S,P ))− ϕk(ṽ(S,P )

−i ) = 0.



CHAPTER 6

MARGINALITY DEFINITIONS AND

OTHER AXIOMATIZATIONS

There are several definitions of marginal contribution (i.e., weights α)
proposed in the literature. All of them have already appeared as exam-

ples in different parts of our work. In this chapter, we analyze them in the
context of properties introduced in the previous one (Section 6.1). Then, we
describe axiomatic results from the literature, both marginality-based and
other ones (Section 6.2).
Note: This chapter is based on [51].

6.1 ANALYSIS OF VARIOUS

MARGINALITY DEFINITIONS

Before proceeding, let us recall that P (i) denotes the coalition of player i in
a partition P .

We start with Bolger’s [7] definition of marginality, introduced after α-
weights at the end of Chapter 2 as the most straightforward solution to the
problem:

αBi (S, P ) =
1

|P−i|
.

It is based on an idea that for a given embedded coalition all transfers have
the same weight. All weights are positive and do not depend on the size
of S; thus, they satisfy the expansion resistance. Conversely, the interlace
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resistance is not satisfied, as creating a new coalition affects the weights of
joining an existing coalition. For example, if we consider two transfers from
coalition {1, 2, 3} embedded in ({1, 2, 3}, {4}, ∅), one of 2 that forms a new
coalition, and one of 3 that joins {4}, we have

αB3 ({1, 2}, {{1, 2}, {3, 4}, ∅}) · αB2 ({1}, {{1}, {2}, {3, 4}, ∅}) =
1

2

1

2
.

But if the order were flipped we have:

αB2 ({1, 3}, {{1, 3}, {2}, {4}, ∅}) · αB3 ({1}, {{1}, {2}, {3, 4}, ∅}) =
1

2

1

3
.

Thus,

prα
B

4||2||3({1}, {{1}, {2}, {3, 4}, ∅}) 6= prα
B

4||3||2({1}, {{1}, {2}, {3, 4}, ∅}).

The externality-free marginality proposed by Pham Do and Norde [11]
was introduced in Section 3.1 when we discussed two values that limit the
space of all extensions at two opposite extremes:

αfreei (S, P ) =

{
1 if P (i) = {i}
0 otherwise.

According to this definition, there exists only one transfer – that is forming
a new coalition – with non-zero weight. It is not difficult to notice that αfree
is expansion resistant, because the weight of a transfer from (S, P ) does not
depend on S. As far as the interlace resistance property is concerned, a
product of weights will evaluate to 1 (the only non-zero value) if and only if
the corresponding transfers always create a new coalition. Thus, the order
of transfers does not have an impact on the value. This means that weights
αfree are interlace resistant.

In Chapter 3 we used weights which are dual to the previous ones to
derive McQuillin’s value [33]:

αfulli (S, P ) =

{
1

|P−i|−1
if P (i) 6= {i} or P = {N−i, {i}, ∅}

0 otherwise.

Here, the zero weight is associated with forming a new coalition (unless i
leaves the grand coalition and there are no coalitions to join) and trans-
fers to all the other coalitions have equal probability. Analogously to the



6.1. ANALYSIS OF VARIOUS MARGINALITY DEFINITIONS 51

externality-free marginality, αfull is expansion resistant and also interlace re-
sistant. To see this, let us consider a product of weights that corresponds
to a given sequence of transfers. If any player forms a new coalition, the
product evaluates to zero; if not, the size of the partition does not change
and all weights equal 1

|P−i|−1
. Clearly, in both cases the power of weights does

not depend on the order of transfers.
Another concept, introduced in Section 4.3 to illustrate bargaining pro-

cess, was proposed by Macho-Stadler et al. [29]:

αMS
i (S, P ) =

|P (i)−i|∑
T∈P−S |T |

with the assumption that |∅| = 1. The authors assumed that weight of form-
ing a new coalition is relatively small, but when such a coalition becomes big-
ger, the player is more likely to join it. Here, expansion resistance is satisfied,
as S is not counted in the denominator. Now, consider interlace resistance.
We will prove that indeed αi(S, P )·αj(S+i, τ

S
i (P )) = αj(S, P )·αi(S+j, τ

S
j (P ))

for every embedded coalition (S, P ) such that i, j 6∈ S (based on Lemma 7
this condition is sufficient). The product of the denominators (which sim-
ply increases by one after every transfer) appears in the formula on both
sides. On the other hand, the numerator equals (|P (i)| − 1)(|P (j)| − 1) (and
(|P (i)| − 1)(|P (i)| − 2) if both players are in the same coalition) regardless
of the order of players.

The last marginality that results from the assumption that all partition
will be formed with the same probability was proposed by Hu and Yang [25].
We already mentioned it in Section 5.1. Here, weights are defined as follows:1

αHYi (S, P ) =
|{R ∈ P(N) : R[S] = P[S]}|

|{R ∈ P(N) : R[S∪{i}] = P[S∪{i}]|

Intuitively, the numerator equals the number of partitions that contain the
same partition of players N \ S. In the denominator, we assume that i has
not left S yet – we count partitions that contain the same partition of players
N \(S∪{i}). This marginality is not resistant to expansion, as the size of the
S affects the proportion between the numerator and the denominator. E.g.,
αHY3 ({1}, {{1}, {2}, {3}, ∅}) = 3

5
, and αHY3 ({1, 4}, {{1, 4}, {2}, {3}, ∅}) = 10

15
.

1Note that here N is the set of all players in P . As we consider α for (S−j , P−j) set N
changes.
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non-negative positive interlace
resistant

expansion
resistant

Bolger X X — X
Pham Do & Norde X — X X
Skibski (Chapter 3) X — X X
Hu & Yang X X X —
Macho-Stadler et al. X X X X

Table 6.1: The properties of existing weights in the marginality approach.

On the other hand, Hu and Yang’s marginality satisfies interlace resistance:
product of two consecutive weights αi(S, P ) · αj(S+i, τ

S
i (P )) simplifies to

|{R∈P(N):R−S=P−S}|
|{R∈P(N):R−(S∪{i,j})=P−(S∪{i,j})}|

regardless of order of i and j (again, this comes
from Lemma 7).

All the above observations are summarized in Table 6.1. As we can see,
most of the definitions of marginality satisfy our properties of the interlace
and expansion resistance. The only value that meets all four properties –
that is Weak and Strong Monotonicity, Strong Symmetry and the Strong
Null-Player Axiom – is the value proposed by Macho-Stadler et al.

Finally, we address the value proposed by Myerson [37]. It also satisfies
Shapley’s axioms and can be derived using the marginality approach. How-
ever, Myerson’s axiomatization based on the concept of carrier is far from
the marginality analysis and results in a complex weights that do not meet
any of the four properties. For instance, for N = {1, 2, 3} and coalition
{1, 2} embedded in partition {{1, 2}, {3}, ∅} the weight of transfer of 1 to a
new coalitions equals α1({2}, {{1}, {2}, {3}, ∅}) = 2, while joining player 3:
α1({2}, {{1, 3}, {2}, ∅}) = −1.

6.2 AXIOMATIC RESULTS

We can divide the work on extending the concept of the Shapley value to
games with externalities into three bodies of literature. First, we discuss the
marginality-based axiomatizations of values that satisfy Shapley’s axioms.
Next, we present other axiomatizations that yield values satisfying Shap-
ley’s axioms. Finally, we briefly address all the values that violate Shapley’s
axioms.

First, including our results from Chapter 3, three papers proposed new
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definitions of marginality and proved uniqueness based on Shapley’s standard
axiomatization [11, 25]. Pham Do and Norde, and Hu and Yang proposed
new values, while we provided a marginal axiomatization for McQuillin’s
value (discussed in Chapter 3). These uniqueness results are the special
cases of our Theorem 3. Some other authors used Young’s axiomatization
– Bolger modified it by adding an additional Null-Player Axiom to derive
his value [7]; and De Clippel and Serrano in their analysis of externality-
free value [10]. These results for Young’s axiomatization were generalized by
Fujinaka [15]. He was the first to propose a general formula for marginal
contribution as the affine combination of elementary marginal contributions.
Fujinaka proved that Young’s axiomatization parametrized by any weights α
implies a unique value. Our Theorem 3 is the equivalent of Fujinaka’s result
but for Shapley’s axiomatization.

Macho-Stadler, Perez-Castrillo and Wettstein [29] proposed the average
approach that was discussed in detail in Section 5.3, where we showed that
it is equivalent to the marginality approach with interlace resistant weights
(see Corollary 1)2. Using the average approach, the authors provided a value
using Shapley’s axioms together with Strong Symmetry (see Section 5.3) and
Similar Influence. This latter axiom says that, if we exchange the values of
two embedded coalitions in which players i and j appear in the first one
together and, in the second one, as singletons, then their payoffs should not
change. Although axiomatization departed from marginality, the authors
introduce a definition of marginal contribution and note that value can be
transformed as the weighted average of player’s marginal contributions.

McQuillin [33] analyzed extending the Shapley value to games with ex-
ternalities combined with Owen generalization [40]. If we specify how the
payoffs of players should be generalized for payoffs of coalition (to this end,
McQuillin provided a Rule of Generalization), then we can treat the payoffs
as a game (as all coalitions have assigned payoffs). McQuillin argued that
stability is reached when a given payoff is a fixed-point of this process (i.e. if
we consider a value to be a game by itself, then the value computed for such
a game should be the same). McQuillin called this requirement Recursion
and proved that combined with Rules of Generalization, Weak Monotonicity
and Shapley’s axioms implies a unique value.

2We note that a one-way proof for positive weights was already presented by Hu and Yang
[25]. More precisely, they proved that every value obtained using average approach with positive
weights can be derived using marginality approach.
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Myerson was the first to propose a new extension of the Shapley value to
games in a partition-function form [37]. He based his value on the concept of
Carrier. We say that a set C is a carrier if the value of any embedded coalition
is determined by a partition of players from C. Now, Carrier implies that, if
C is a carrier, then the payoff of the grand coalition is divided between players
from C. Against this, Myerson showed that there exists a unique value that
satisfies Symmetry, Additivity and Carrier. As the set of all players, N , is
clearly a carrier and, if i is a null-player, then N \ {i} is also a carrier, we
have that Carrier implies both Efficiency and the Null-Player Axiom. This
means that Myerson’s value satisfies all four of Shapley’s axioms.

Other authors proposed values that are rather far from Shapley’s under-
standing of fairness.

Albizuri et al. [2] argued that, in a game with externalities, a coalition
should be evaluated by the set of values it has, regardless of which parti-
tions these values correspond to. The authors combined this principle, called
Embedded Coalition Anonymity, with The Oligarchy Axiom (which can be
understood as the weakened Myerson axiom) and three of Shapley’s original
axioms: Efficiency, Additivity and Symmetry. The resulting value can be
derived as the Shapley value for a game without externalities calculated by
assigning to every coalition an arithmetic average of all its values in games
with externalities. Although, at first, it seems like a special case of the av-
erage approach, proposed weights violates the condition necessary to satisfy
the Null-Player Axiom (see Theorem 1 in [29]).

In a stochastic process described by us in Section 4.3, players leave the
grand coalition one by one. Grabisch and Funaki [19] formulate a different
process. They take as a starting point the partition containing singletons of
all players and consider all possible sequences of mergers which result in the
grand coalition. That said, the contribution of a player is evaluated as the
effect that the player merging with other coalitions makes on their values. If
a player enters some coalition alone, he is rewarded with the whole change of
its value, i.e., with the marginal contribution; but if he is already a part of a
coalition that merges with another one, Grabisch and Funaki argue that the
change of the value of the coalition they merge with should be divided equally
between him and other members of the coalition. This contradicts the Null-
Player Axiom, as a null-player is rewarded with a payoff even though the
coalition without him would cause the same impact on the merged coalition.

Finally, let us address the concepts proposed by Maskin [32] and Hafalir
[21]. Here, the authors discarded the assumption that the grand coalition
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will form and proposed to divide the payoff of the optimal coalition structure.
Maskin studied the coalition formation process and proposed an axiomatic
characterization of a value expected in this process. Hafalir proposed a mech-
anism that implements a unique payoff division and provided axiomatization
based on the idea of efficient-cover. These ideas, although interesting, result
in an axiomatization significantly different to Shapley’s.

We summarize the extensions of Shapley value to games with externalities
in Table 6.2.
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EFFICIENCY
SYMMETRY
ADDITIVITY
α-NULL-PLAYER AXIOM

α-MARGINALITY AXIOM
WEAK NULL-PLAYER AXIOM
STRONG SYMMETRY
SIMILAR INFLUENCE
WEAK MONOTONICITY
RULES OF GENERALIZATION
RECURSION
CARRIER
OLIGARCHY AXIOM
EMB. COALITION ANONYMITY
FULLY EFFICIENCY
EC ANONYMITY
EC ADDITIVITY
EC NULL-PLAYER AXIOM
COAL. PARETO OPTIMALITY
LIMITED EFFICIENCY
OPPORTUNITY WAGES
CONSISTENCY
SCV NULL-PLAYER AXIOM
SCV SYMMETRY
MARKOVIAN-ERGODIC AXIOM
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Table 6.2: Existing axiomatizations (that guarantee uniqueness) for various extensions
of Shapley value to games with externalities (× denotes the axiom used and ◦ denotes a
special case of the axiom). EC stands for Efficient-Cover, SCV – for the Scenario-value.



CHAPTER 7

APPROXIMATION OF THE SHAPLEY

VALUE

This chapter presents the first – to our knowledge – approximation algo-
rithm for evaluating extended Shapley values from the partition func-

tion form. We present the general scheme that works for every α-value (thus,
based on Theorem 4, every value that satisfies direct translation of Shapley’s
axioms to games with externalities). The general scheme is based on the
Monte Carlo sampling. In games without externalities the natural way is
to sample over all possible permutation and for a given permutation gather
players’ marginal contributions. In games with externalities we randomly
select not only permutation, but also partition. Here, the probability distri-
bution is given by the weights α and strongly depends on the value that is
approximated. Thus, for every existing α we specify how to choose a random
partition with the corresponding probability. Especially, we propose a new
method for selecting a random partition that is needed for Hu and Yang’s
value.
Note: This chapter is based on [50].

7.1 APPROXIMATION ALGORITHM

To approximate the extended Shapley value for any weighting α we will
use the following sampling process. Let the population be the set of pairs
(π, P ) ∈ Ω(N) × P . In one sample, given permutation π and partition
P , we will measure for each player i his elementary marginal contribution.
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Algorithm 1: Approximation of α-value
1 for all i ∈ N do ϕ̂αi ← 0;
2 for i← 1 to m do
3 π ← random permutation from Ω(N)
4 P ← random partition of set N with distribution prαπ (see Algorithm 2)
5 S ← ∅
6 for j ← |N | downto 1 do
7 vbefore ← v(S, P )
8 transfer player π−1(j) in P to S
9 vafter ← v(S, P )

10 ϕ̂απ(j) ← ϕ̂απ(j) + vafter − vbefore

11 for all i ∈ N do ϕ̂αi ← ϕ̂αi /m
12 return ϕ̂α

As visible in the formula for α-value in Theorem 3, elementary marginal
contributions do not occur with the same probability. Thus, to obtain an
unbiased estimate we will use probability sampling with the odds of selecting
a given sample (π, P ) equal prαπ (∅, P )/|N |!. To this end, we will select a
random permutation (each with equal probability: 1/|N |!) and then select
a partition with probability prαπ (∅, P ).1 It is important to note that this
probability depends on the definition of marginality (hence the α in the
superscript) and the difficulty of the sampling process may vary depending
on the definition adopted. We will address this issue later.

The pseudocode of this procedure is presented in Algorithm 1. Our pro-
cedure, which approximates α-value, is parametrized by the game v and
number of samples m. We will discuss the required number of samples at the
end of this section. The main for-loop sums samples elementary marginal
contributions (variable ϕ̂α). At the end, this sum is divided by the number
of samples. To compute the players’ contribution we reverse the process of
creating partition P from the grand coalition (according to the intuition out-
lined before): we sequentially transfer players to the new (empty at start)
coalition that represents a meeting point and measure the change of its value.

Now, let us focus on the randomized part of our algorithm (lines 3-4).

1Recall that, intuitively, prαπ (∅, P ) represents the probability that P will form if players leave
the meeting point in order π.
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Algorithm 2: Random partition of set N with distribution prαπ
1 switch α do
2 case externality-free weights
3 return {{i} | i ∈ N}
4 case full-of-externalities weights
5 return {N}
6 case Bolger’s weights
7 P ← ∅
8 for i← 1 to |N | do
9 m← random number from 1 to |P |+ 1

10 if m = |P |+ 1 then P ← P ∪ {π−1(i)}
11 else add π−1(i) to the coalition number m

12 return P
13 case Macho-Stadler’s et al. weights
14 P ← ∅
15 π2 ← random permutation from Ω(N)
16 for every cycle i, π(i), π(π(i)), . . . do
17 add cycle as a coalition to P

18 return P
19 case Hu and Yang’s weights
20 return random partition of set N (see Algorithm 3)

We generate a random permutation using a well-known Knuth shuffle [12].
As mentioned before, the selection of a partition depends on the definition of
α weights. That is why we are able to approximate all (marginality-based)
extensions of the Shapley value and, in particular, those already proposed in
the literature. We present the pseudocode in Algorithm 2.

EXTERNALITY-FREE VALUE

In the simplest concept of externality-free value, the whole probability is
assigned to creation of a new coalition. Thus, the only partition with non-
zero probability is the partition of singletons:

prα
free

π (∅, P )
def
= 1 if P = {{i} | i ∈ N},
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and prαfreeπ (∅, P )
def
= 0 otherwise. Here, selection of P is straightforward.

FULL-OF-EXTERNALITIES VALUE

To obtain this value, proposed by McQuillin, in Chapter 3 we used the
marginality that complements the previous one – the non-zero probabili-
ties are assigned to transfers to the existing coalitions (with special case for
the first player which must create a new coalition). If so, there will be only
one coalition outside and the grand coalition will form at the end. Thus, the
probability distribution simplifies to the following form:

prα
full

π (∅, P )
def
= 1 if P = {N},

and prα
full

π (∅, P )
def
= 0 otherwise. Again, the random selection simplifies to

generating one specific partition.

BOLGER VALUE

In Bolger’s definition of marginal contribution every transfer is equally likely.
The probability of partition prα

B

π (∅, P ) depends on the order in which the
players leave:2

prα
B

π (∅, P )
def
=

1

|P−π−1({1,2,...,|N |})|+ 1
· 1

|P−π−1({2,...,|N |})|+ 1
· · · 1

|P−π−1({|N |})|+ 1
,

where |P−π−1({k,...,|N |})| is the number of different coalitions of players from the
first k − 1 positions of permutation π. To select a partition with adequate
probability, we simulate the process of leaving as follows: we take players
from the permutation one by one and uniformly select one of the existing
coalitions to join or a new one to create.

MACHO-STADLER ET AL. VALUE

In the value proposed by Macho-Stadler et al. [29], the weights of the transfer
depend on the size of coalitions. Our approach to generate a random partition

2For example, consider prα
B

π (∅, {N−i, {i}}). If i is the last player in permutation π then
prα

B

π (∅, {N−i, {i}}) = 1
1
1
2
1
2 · · ·

1
2 = 1

2|N|−1 . On the other hand, if it is the first one:
prα

B

π (∅, {N−i, {i}}) = 1
1
1
2
1
3 · · ·

1
3 = 1

2·3|N|−2 .
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comes from the observation that probability

prα
MSt

π (∅, P ) =

∏
T∈P |T − 1|!
|N |!

equals the odds that a given partition will occur from the decomposition
into disjoint cycles of a randomly selected permutation. Thus, we can again
generate a random permutation with Knuth shuffle and divide players into
coalitions according to the cycles of this permutation.

HU AND YANG VALUE

Hu and Yang [25] designed their value in such a way that probabilities of
every partition are equal:

prα
HY

π (∅, P ) =
1

|P(N)|
.

To generate a random partition we introduce the following technique (Algo-
rithm 3).3 We will create the partition successively (loop in lines 4-9), for
each player selecting the coalition to join with probability that corresponds
to the number of partitions of N that cover (i.e., respect) the obtained partial
partition. For example, player 2 will join player 1 with probability Bell(n−1)

Bell(n)
.

This is because both players appear in Bell(n− 1) of Bell(n) partitions to-
gether. Now, the number of partitions of N that cover given partial partition
Pk of k players depends only on the number of coalitions in Pk. Thus, all the
probabilities of transfers to the existing coalitions are the same. Based on
this analysis, we will first randomly decide whether the player forms a new
coalition (line 6) and if not, we will pick any existing coalition, all with the
same probability (lines 8-9). We note here that the probability of creating
a new coalition by player k + 1 entering partition Pk can be precalculated,
i.e., calculated once, before the sampling. This can be done in O(n2) time
using dynamic programing. The proper pseudocode is presented in function
precalculation: W [i][j] represents a number of partitions that cover a given
partition P of i players with j coalitions and PoN [i][j] – the percentage of
these partitions in which player i+1 form a singleton coalition. What is also
important from the computational point of view, this ratio is not less that

1
|N | , thus we avoid precision problems that arises in other methods proposed
in the literature [52].

3We thank our students for proposing this method.
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Algorithm 3: Random partition of set N
1 function getRandomPartition begin
2 if PoN is not initialized then PoN ← precalculation()
3 P ← ∅
4 for i← 1 to |N | do
5 r ← random double from (0, 1)
6 if r < PoN [i][|P |] then P ← P ∪ {i}
7 else
8 m← random number from 1 to |P |
9 add i to the coalition number m in P

10 return P
11 function precalculation begin
12 n← |N |
13 PoN ← new array[n][n]; W ← new array[n][n]
14 for i← 1 to n do W [n][i]← 1
15 for i← n− 1 downto 1 do
16 for j ← 1 to i do
17 W [i][j]← W [i+ 1][j + 1] + k ·W [i+ 1][j]
18 PoN [i][j] = W [i+ 1][j + 1]/W [i][j]

19 return PoN

7.2 ERROR ANALYSIS

Let us briefly discuss the number of samples needed to obtain a required
precision of the result. It is clear from the Theorem 3 that the estimator
is unbiased: E[ϕ̂αi ] = ϕαi . The variance equals V [ϕ̂αi ] = σ2

m
where m is the

number of samples and σ2 is the variance of the population:

σ2 =
1

|N |!
∑

π∈Ω(N)

∑
P∈P

prαπ (∅, P )·([v(Cπ
i ∪{i}, P[Cπi ∪{i}])−v(Cπ

i , P[Cπi ])]−ϕαi (v))2.

Now, based on the central limit theorem, ϕ̂αi ∼ N(ϕαi ,
σ2

m
). Assume we want

to obtain an error not bigger than ε with the probability not smaller than
1−β, i.e., we need to satisfy the following inequality: P (|ϕ̂αi −ϕαi | ≤ ε) ≥ 1−β.
But P (|ϕ̂αi − ϕαi | ≤ ε) = Φ( ε·

√
m
σ

) − Φ(−ε·
√
m

σ
) = 2 · Φ( ε·

√
m
σ

) − 1 where Φ(x)
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Figure 7.1: Performance evaluation of Algorithm 1.

is the cumulative distribution function of the standard normal distribution.
Therefore, Φ( ε·

√
m
σ

) ≥ 1 − β
2
and finally: m ≥ σ2

ε2
· (Φ−1(1 − β

2
))2, where

Φ−1(x) is the quantile function, i.e., P (X ≥ Φ−1(x)) = x for X ∼ N(0, 1).
For example, for the uncertainty β = 0.01 holds Φ−1(0.995) ≈ 2.57.

Next, we need to find an upper bound for σ2. To this end, following
Castro et al. [9], we will assume that we know some limits mini,maxi on
the player’s marginal contribution, i.e., for every π ∈ Ω(N) and P ∈ P
mini ≤ v(Cπ

i ∪ {i}, P[Cπi ∪{i}]) − v(Cπ
i , P[Cπi ]) ≤ maxi. Then, the σ2 is max-

imized when all marginal contributions equal mini or maxi, and the av-
erage equals mini+maxi

2
(to achieve this, the sum of probabilities of maxi-

mal marginal contributions must equal the sum of probabilities of minimal
marginal contributions). Finally, σ2 ≤ (maxi−mini)2

4
.

7.3 PERFORMANCE EVALUATION

We test our algorithm on two distributions popular in the literature on coali-
tional games [27]:

• normal distribution: v(S, P ) = |S| · N(1, 0.1); here, the bounds are:
mini = −n · 0.6 + 1.3 and maxi = n · 0.6 + 0.7.
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• uniform distribution: v(S, P ) = |S| · U(0, 1); here, in a extreme case,
mini = −n+ 1 and maxi = n.

where, in the case of the normal distribution, we place the following addi-
tional limits: 0.7 ≤ N(1, 0.1) ≤ 1.3.4

Figure 7.1(a) presents the time performance of our algorithm for
n = 8, 9, . . . , 15 and compares it to the exact brute-force approach – the only
known alternative.5 For n = 11 our approximation algorithm outperforms
the exact brute-force at the first time. Already for n = 15, it would take
almost 4 hours to compute the exact output (extrapolated result), whereas
our algorithm returns the approximated solution in less than 7 seconds (with
the guaranteed error of 0.1).

Figure 7.1(b) shows that the maximal error obtained from the random
game is a few times lower than the theoretical error (for both distributions).
For instance, for game of 12 players, which takes the brute-force algorithm
more than 37 seconds to calculate, the maximal error of 0.018 is obtained
after 1.47 seconds (65K samples). Moreover, the error clearly tends to zero,
which shows that our estimator is indeed unbiased.

4These instances only happen with probability 0.14%.
5The simulations run on a PC-i7, 3.4 GHz and 8 GB of RAM.
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CHAPTER 8

INTRODUCTION TO PART II

While the conventional model of a coalitional game assumes that any
coalition can be created and may have an arbitrary value, there are

many realistic settings where this assumption does not hold. Often, agents
(or players) can communicate and cooperate only via some limited number of
bilateral channels. If there is no direct channel between two agents, coopera-
tion can be still possible indirectly, through an intermediary or a sequence of
them. However, when no direct or indirect connection exists between agents,
they cannot coordinate their activities. Such restrictions emerge in a variety
of domains including: sensor networks, telecommunications, social networks
analysis, trade agreements, political alliances, etc.

An influential approach for representing such scenarios was introduced by
Myerson [36], who described a coalitional game over a graph in which nodes
represent agents and edges represent communication channels between them.
Such a game is often called a graph-restricted game. Some of the literature
on graph-restricted games assumes that a coalition is feasible only if there
exists a (direct or indirect) communication channel between any two of its
members. Such a coalition is said to be connected, as it induces a connected
subgraph of the underlying graph. Other work allows for the existence of
both connected and disconnected coalitions. Here, disconnected coalitions
are either all assumed to have a value of 0 (as in the model formalized by
Amer and Gimenez [5]) or their values equal to the sum of values of the
disjoint components they are composed of (as formalized by Myerson [36]).

In our work, we study the computational aspects of the two key solution
concepts proposed for the above graph-restricted games, namely the Shapley
value and the Myerson value. Specifically:
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• In his seminal work, Shapley proposed a formula to quantify the con-
tribution of an individual agent to the outcome achieved by all agent
working together in one coalition. While this formula, known as the
Shapley value, satisfies many desirable properties, it is defined only
for settings where all (both connected and disconnected coalitions) are
feasible.

• On the other hand, Myerson proposed a solution concept for the set-
tings in which only connected coalitions are feasible [36]. This solution
concept, known as the Myerson value, also has a number of attractive
properties (see Section 8.1).

The computation of both of these values is challenging [34, 3]. As for the
Shapley value, Michalak et al. recently proposed an algorithm to compute
it for an arbitrary graph-restricted game [34]. As for the Myerson value, its
computational aspects were considered for certain classes of graphs and/or
games [3, 18, 13]. However, to date there is no algorithm for computing the
Myerson value in arbitrary graphs.

Our aim in this work is to develop efficient algorithms for computing the
Shapley value and the Myerson value. In particular, our contributions can
be summarised as follows:

• In Chapter 9, we propose a new algorithm for the enumeration of all
connected induced subgraphs of the graphs – one of the fundamental
operations in graph theory. We show that our algorithm is faster than
the state of the art, due to Moerkotte and Neumann [35]. We also show
that, unlike the state of the art, our algorithm can easily be extended
to capture extra information about each enumerated subgraph.

• In Chapter 10, building upon the above enumeration algorithm, we
propose two new algorithm to compute the Shapley and Myerson value
for graph-restricted games. We show that the algorithm for Shapley
value is faster than the state of the art, due to Michalak et al. [34].
Algorithm for the Myerson value is, to our knowledge, the first one in
the literature for arbitrary graph.

• In Chapter 11, we test both algorithms on an interesting application, re-
cently proposed by [28], who used the Shapley value of graph-restricted
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games to measure importance of different members of a terrorist net-
work. Our results suggest that the Myerson value-based measure is
more suitable for this application.

• In Chapter 12, we address the problem of approximation of Shapley
value for graph-based games – in many applications even the fastest
exact algorithms fail to return the result in a reasonable amount of
time. To this end, we propose an approximation algorithm for Shapley
value in graph-restricted games and for two more complex definitions
of a game used in the gatekeepers metric [44].

8.1 PRELIMINARIES

A graph G = (V,E) consists of vertices (or nodes) V and edges E ⊆ V × V .
Let V ′ ⊆ V be a subset of vertices and let E(V ′) ⊆ E denote the set of
all edges between them in G. Now, the subgraph induced by V ′ is the pair
(V ′, E(V ′)). Since in this paper we do not consider non-induced subgraphs,
we will often omit the word induced when there is no risk of confusion. A
subgraph is connected if its edges form a path between any two of its nodes.
We will denote the set of all connected induced subgraphs of G by C(G) (or
simply C wherever G is clear from the context). We say that v ∈ V is a
cut vertex in connected graph (V,E) if its removal splits the graph, i.e., if
(V \ {v}, E(V \ {v})) is not connected. If the subgraph induced by V ′ is not
connected, then it surely consists of several connected components, denoted
K(V ′) = {K1, K2, . . . , Km}. Finally, for any vertex v ∈ V , we denote by
N (v) the set of neighbours of v.

Having discussed some fundamental notions of graph theory, let us turn
now to cooperative game theory. The players in this part of our work are
represented by nodes in graph G. In other words, V is interpreted as the
set of players (or agents). Consequently, we will use the terms coalition and
subgraph interchangeably. Especially, a coalition S is said to be connected
if and only if the subgraph of G induced by S is connected. Otherwise, the
coalition is said to be disconnected. All other definitions are consistent with
the ones introduced in the overview of our work: ν, which denotes a game
without externalities, assigns to every coalition of agents a real number and
Shapley value, denoted by SV (ν) and defined with formulas (1) and (2),
returns an evaluation (worth) of every player in game ν.
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In graph-restricted games, which were first studied by Myerson [36], only
connected coalitions could be assigned an arbitrary value (as the agents
within are able to communicate and create value added). To formalise this
class of games, let us first consider a new value function which corresponds
to ν but is only defined over connected coalitions:

νG : C(G)→ R and ∀S∈C(G)νG(S) = ν(S)

This definition can be extended to incorporate disconnected coalitions;
this has been done in two ways:

• Myerson argued that it is natural to consider a disconnected coalition
as a set of disjoint, connected components. Each such component S ′
is, by definition, a coalition in C(G) whose members are able to attain
a payoff of νG(S ′) = ν(S ′). This leads to the following characteristic
function, defined over both connected and disconnected coalitions [36]:

νMG (S) =

{
ν(S) if S ∈ C(G)∑

Ki∈K(S) ν(Ki) otherwise,
(8.1)

where M stands for Myerson. In other words, the payoff available to
a disconnected coalition is the sum of payoffs of its connected compo-
nents.

• More recently, Amer and Gimenez [5] formalized an alternative ap-
proach to evaluate disconnected coalitions, where they assumed that
all such coalitions have a value of 0. Under this assumption, they de-
fined the following characteristic function of a simple game:1

νAG (S) =

{
1 if S ∈ C(G)

0 otherwise,
(8.2)

where A stands for Amer and Gimenez. The game with the above
function will be called a 0-1-connectivity game. This function was later
on extended by Lindelauf et al. [28] to:

νfG(S) =

{
f(S,G) if S ∈ C(G)

0 otherwise,
(8.3)

where f is an arbitrary function.
1Simple coalitional games are a popular class of games, where every coalition has a value of

either 1 or 0.
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Since νMG and νAG are defined over all 2|V | coalitions, the Shapley value can
be applied as a solution concept to both of these functions. However, this is
not the case with νG. Now, a celebrated result of Myerson [36] is the solution
concept he proposed for νG. In particular, Myerson showed that by allocating
to agent vi ∈ V the payoff MVi(νG), which is defined as follows:

MVi(νG) = SVi(ν
M
G ), (8.4)

we obtain the unique payoff division scheme that is efficient and rewards any
two connected agents equally from the bilateral connection between them.
This payoff division scheme is known as the Myerson value.
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CHAPTER 9

DFS ENUMERATION OF INDUCED

CONNECTED SUBGRAPHS

The enumeration of induced connected subgraphs is one of the funda-
mental algorithmic operations in many applications, e.g., cost-based

query optimization [35], computing topological indices for molecular graphs
[39], and searching for an optimal coalition structure in cooperative games
on graphs [54]. A number of algorithms have been proposed to perform
this operation. The early works include reverse search algorithms [6], and a
breadth-first search algorithm [47]. Both of these algorithms, however, per-
formed numerous redundant operations. This issue was later on resolved by
Moerkotte and Neumann [35].1

In this chapter, we present our algorithm for enumerating all induced
connected subgraphs, and then benchmark its performance against the state
of the art by Moerkotte and Neumann. Our algorithm offers not only better
performance, but also its depth-first search structure allows for gathering ad-
ditional information on the structure of each enumerated subgraph if needed.
This algorithm will be used in the subsequent chapters as the cornerstone
upon which we build our algorithms for computing the Shapley value and
the Myerson value for graph-restricted games.

Note: This chapter is based on [49].

1Recently, the same breadth-first search algorithm of Moerkotte and Neumann was re-
discovered by Voice et al. [54].
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9.1 OUR ALGORITHM

Broadly speaking, our enumeration algorithm traverses the graph in a depth-
first manner, and uses a divide-and-conquer technique. We start with a single
node and try to expand it to a bigger connected subgraph. Whenever a new
node is analyzed, we explore all its edges one by one, and when we find a
new – not yet discovered – node, we split the calculations into two parts:
in the first one, we add a new node to our subgraph; in the second one, we
mark this node as forbidden and never enter it again. Thus, the first part
enumerates subgraphs with, and the second one without, the new node.

The pseudocode is presented in Algorithm 4. First, let us describe the
recursive function DFSEnumerateRec. Whenever this function is called,
nodes in the graph can be divided into three groups: S – elements of the
subgraph; X – forbidden nodes (that we cannot include in the subgraph);
and others – not yet discovered nodes. Moreover, nodes in S are either
partially-processed or fully-processed. A node is fully-processed when all its
edges have been explored. What is crucial, as in the classic DFS algorithm, is
that all partially-processed nodes form a path to the root of the subgraph tree
(parameter path), i.e., we do not process another edge until the node from the
previous one is fully-processed. The last parameter of DFSEnumerateRec
is startIt, which – to avoid redundancy – indicates how many edges of the
last node on path have already been processed. This parameter is set to 1 as
we enter a new node (lines 4 and 10) and can be deduced from the neighbour
list whenever we backtrack from another node (line 14).2

Now, the goal of the function is to find all connected subgraphs that
contain subgraph S and contain no forbidden nodes X. To this end, we start
processing from the last node on the path (line 6), denoted v, and explore
sequentially all its edges (lines 7-11). Whenever we find a new node u (that
is neither forbidden nor included in S) we first enumerate all subgraphs with
u: here, we call DFSEnumerateRec with u added at the end of the path
of partially-processed nodes (line 10). Then, to enumerate all subgraphs
without u, we add it to the set of forbidden nodes (line 11) and proceed
with a new edge. Finally, when all edges have already been explored, we
remove v from the path and backtrack to the previous node (lines 12-15).
When we have finished processing the last node on the path (root), the set

2As function find(v) in line 14 is called multiple times, the proper values can be pre-calculated
in the main function DFSEnumerate and stored in the associative array to facilitate constant
access time.
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Algorithm 4: DFS Enumeration of Induced Connected Subgraphs
Input: Graph G=(V,E)
Output: List of all induced connected subgraphs of G

1 DFSEnumerate begin
2 sort nodes and list of neighbours by degree desc.;
3 for i← 1 to |V | do
4 DFSEnumerateRec(G, (vi), {vi}, {v1, . . . , vi−1}, 1);

5 DFSEnumerateRec(G, path, S,X, startIt) begin
6 v ← path.last();
7 for it← startIt to |N (v)| do
8 u← N (v).get(it); // it’s neighbour of v

9 if u 6∈ S ∧ u 6∈ X then
10 DFSEnumerateRec(G, (path, u), {u}, X, 1);
11 X ← X ∪ {u};

12 path.removeLast();
13 if path.length() > 0 then
14 startIt← N (path.last()).f ind(v) + 1;
15 DFSEnumerateRec(G, path, S,X, startIt);

16 else print S;

S constitutes a final connected subgraph (line 16).
In the main function DFSEnumerate (lines 1-4), the i-th step of the

loop enumerates all subgraphs in which the node with the smallest index is
vi (line 4). To this end, we simply mark previous nodes as forbidden and call
the function DFSEnumerateRec with the node vi as the initial subgraph.

The time complexity of our algorithm is linear in the number of connected
subgraphs: O(|C||E|). This follows from the fact that the number of steps
performed for a given connected subgraph is O(|E|). To see how this is
the case, consider a sequence of calls of DFSEnumerateRec that results
in printing subgraph S in line 16. We consider a subgraph to be final if
path is empty; thus, all nodes from S must be fully-processed. Moreover, all
other nodes are either forbidden or not-discovered; thus, they are not added
to path in this sequence (the recursive call in which we consider adding
a forbidden node to the subgraph is calculated in our analysis for other
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connected subgraph). Therefore, the lines 9-11 from the single loop are
entered once for every edge adjacent to a node in S, thus no more than 2|̇E|
times. Moreover, every call of the function decreases the number of edges to
discover, or decreases the number of nodes on the path; thus, other lines are
called no more than 2|̇E|+ |S| times. As |S| is connected, |S| ≤ |E|+ 1 and
the number of steps is O(|E|).

The running time of the algorithm depends on the order in which we
process nodes (line 3) and nodes’ neighbours (line 10). The optimal order of
nodes is an open problem. In our experimental analysis we found that the
order descending by the degree of the node can lead to a smaller number of
steps. Therefore in line 2 we sort the nodes accordingly.

9.2 DFS VS. BFS ENUMERATION OF INDUCED

CONNECTED SUBGRAPHS

To date, the state-of-the-art algorithm for enumerating connected induced
subgraphs was proposed by Moerkotte and Neumann [35]. As opposed to
our algorithm, which traverses the graph in a depth-first manner, their algo-
rithm uses breadth-first search. The pseudocode is presented in Algorithm 5.
Specifically, in the i-th step of the main function, EnumerateCSG, the al-
gorithm enumerates subgraphs with vi and without previous nodes. The
recursive function, named EnumerateCSGRec, is called with four parame-
ters: graph G, an Old part of the subgraph, a New part of the subgraph, and
the set of all nodes that we already considered, denoted X (the nodes from
the subgraph and nodes we have considered but have not included). Now,
EnumerateCSGRec outputs the current subgraph (Old∪New) and tries to
enlarge it. In order to do that, it lists all not-yet considered neighbours (set
N) and for every subset S ⊆ N analyzes an adequate extension – it calls
EnumerateCSGRec with the subgraph enlarged by S and set of considered
nodes expanded by all neighbours N .3

Our experiments show that the new algorithm outperforms BFS enumer-
ation two or even three times. In particular, Figure 9.1 depicts the running

3Our pseudocode is more detailed than the original. If we merge both parts of the subgraph
(Old and New) in the declaration (and calls) of EnumerateCSGRec, then to find neighbours
in lines 7-11 we have to consider also nodes from the old part of the subgraph. This is clearly
redundant, as all their neighbours are already in the set X .
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Algorithm 5: BFS Enumeration of Induced Connected Subgraphs
Input: Graph G=(V,E)
Output: List of all Induced Connected Subgraphs of G

1 EnumerateCSG begin
2 for i← 1 to |V | do
3 EnumerateCSGRec(G, ∅, {vi}, {v1, . . . , vi});

4 EnumerateCSGRec(G,Old,New,X) begin
5 print{Old ∪New};
6 N ← ∅; // not yet discovered neighbours of New

7 foreach v ∈ New do
8 foreach u ∈ N (v) do
9 if u 6∈ X ∪N then N ← N ∪ {u};

10 foreach S ⊆ N do
11 EnumerateCSGRec(G,Old ∪New, S,X ∪N);

time for scale-free graphs, typically used to model contact networks. Graphs
were generated using the preferential attachment generation model [1] with
parameter k = 4 (we obtained analogous results for different values of k).
For every n = 20, . . . , 30, the run time and confidence intervals are calculated
based on 500 random graphs (same for both algorithms). As can be seen,
as n increases, the ratio of both algorithms does not change and oscillates
at around 2.4. For instance, for n = 30, our algorithm takes on average 67
seconds, while it takes 161 seconds for BFS enumeration to finish.

To support our empirical results, we provide two lemmas, which show
that for cliques our algorithm performs approximately two times fewer steps
(examining edges is the key component of main loops in both algorithms).

Lemma 8. EnumerateCSG examines edges 2n−1(n2− 3n+ 2) + (n− 1) times
for an n-clique.

Proof. Let us calculate the number of steps needed to enumerate all connected
subgraphs with vk, but without previous nodes (i = k in line 3). In the first
call, EnumerateCSGRec(G, ∅, {vk}, {v1, . . . , vk}) checks all n−1 edges of vk,
acknowledge all nodes not from X as new neighbours and for every non-empty
subset S ⊆ {vk+1, . . . , vn} call EnumerateCSGRec(G, {vk}, S, V ) in line 11.
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Figure 9.1: Comparison between algorithms for enumerating induced connected
subgraphs: our new DFS-based algorithm and the state-of-the-art, BFS-based al-
gorithm by Moerkotte and Neumann.

In every such call all edges of subset S are considered (|S| · (n − 1)), but no
not-processed nodes are yet to found. Thus, no later calls take place and the total
number of steps equals:

n∑
k=1

((n− 1) +
∑

S⊆{vk+1,...,vn}

|S|(n− 1)) = (n− 1)
n∑
k=1

(n− k)2n−k−1

= 2n−1(n2 − 3n+ 2) + (n− 1).

Lemma 9. DFSEnumerate examines edges 2n−2(n2 − n+ 4)− (n+ 1) times
for an n-clique.

Proof. We will count how many times an edge from vk is processed. To do that,
we will consider all calls of function DFSEnumerateRec when vk is the last
node on the path. This happens in two situations: when we add vk to our subgraph,
thus we discover it for the first time (lines 4 and 10) and when we backtrack from
other node (line 15). We will consider them separately.

The main observation of our proof is as follows:
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Note 1. Whenever DFSEnumerateRec is called with vk at the end of path for
the first time (with startIt = 0) all nodes with lower id must be either forbidden
(inX) or partially-processed (in S and on path) and all nodes with higher id must
not be discovered yet.

This comes from the fact that we always consider a new node with the lowest
id and the previous nodes cannot be fully-processed as long as they have not fully-
processed neighbor. Now, all combination of the previous nodes must be possible
and all can be achieved only once (as we always divide the space of connected
subgraphs into disjoint parts), thus we discover node vk 2k−1 times.

Now, let us consider how many times we enter the node vk not for the first
time (thus, when we backtrack from other node vm). The following facts comes
from the Note 1:

• m > k (because we entered vk before vm),

• all nodes are discovered (otherwise, we wouldn’t backtrack from vm)

• all nodes with ids bigger than k are forbidden or fully-processed (partially-
processed node would imply that we entered him before vk);

• all nodes with id between k and m are forbidden (fully-processed node im-
plies that we entered vm before him).

And again, all nodes with ids lower than k are either forbidden or partially-
processed. As all combinations of nodes appear exactly one in DFS algorithm,
we backtrack from vm to vk exactly 2k−1 · 2n−m times.

That is enough to calculate how many times we consider an edge from node vk
– when we enter vk for the first time (with startIt = 0) we process all n−1 edges;
when we enter vk backtracking from vm last considered edge from vk must have
been (vk, vm), thus startIt = m−1 and we process the remaining (n−1)−(m−1)
edges:

n∑
k=1

2k−1(n− 1) +
n∑

m=k+1

2k−12n−m(n−m) = 2n−2(n2 − n+ 4)− (n+ 1).
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CHAPTER 10

ALGORITHMS FOR

THE GRAPH-RESTRICTED GAMES

In this chapter we present algorithms that calculate Shapley and Myerson
value for the graph-restricted games. Both algorithms are based on the

DFS-based enumeration of induced connected subgraphs presented in the
previous chapter.
Note: This chapter is based on [49].

10.1 SHAPLEY VALUE FOR

THE GRAPH-RESTRICTED GAMES

In this section, we present a new algorithm for calculating the Shapley value
for graph-restricted games based on formula (8.3) (i.e., connectivity games
by Amer and Gimenez [5] with arbitrary function f). As mentioned earlier in
the introduction, there already exists an algorithm designed for this purpose,
due to [34], and we aim to develop a more efficient algorithm.

First, we show that to calculate the Shapley value it is suffices to traverse
only the connected coalitions, because every non-zero marginal contribution
involves the addition, or removal, of an agent from a connected coalition.
In more detail, let S be an arbitrary connected coalition. Now, agents’
contributions can be divided into three groups:

(a) a cut vertex (i.e., a node whose removal disconnects the subgraph S)
contributes the entire value of the coalition, i.e., f(S);
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(b) any other member of S (whose removal does not disconnect S) con-
tribute the following change in the value: f(S) − f(S \ {v}) for node
v;

(c) finally, we have the nodes that are not members nor neighbours of S.
The addition of any such node disconnects S, implying that it makes
a negative contribution equal to −f(S).

Note that we did not consider the contribution of neighbours of S. This is be-
cause, for every such neighbour, v, its contribution will be taken into account
when dealing with S ∪ {v} instead of S. Above comments are summarized
in the following theorem:

Theorem 8. Shapley value for graph-restricted games based on formula (8.3)
(i.e., connectivity games by Amer and Gimenez [5] with arbitrary function f )
satisfies the following formula:

SVi(ν
f
G) =

∑
S∈C

mci(S),

where mci(S) stands for

mci(S)=


ξS f(S) if vi ∈ S and S \ {vi} 6∈ C,
ξS
(
f(S)− f(S \ {vi})

)
if vi ∈ S and S \ {vi} ∈ C,

−ξS∪{xi} f(S) if vi 6∈ S and S ∪ {vi} 6∈ C,
0 otherwise.

Proof. We will decompose the standard formula for the Shapley value (2) into
four cases, where a coalition with or without an agent is either connected or dis-
connected:

SVi(ν
f
G) =

∑
S⊆N,vi∈S

ξS
(
νfG(S)− νfG(S \ {vi})

)
=

∑
S⊆N,vi∈S

S∈C,S\{vi}∈C

ξS
(
f(S)− f(S \ {vi})

)
+

∑
S⊆N,vi∈S

S∈C,S\{vi}6∈C

ξS
(
f(S)− 0

)
+

∑
S⊆N,vi∈S

S 6∈C,S\{vi}∈C

ξS
(
0− f(S \ {vi})

)
+

∑
S⊆N,vi∈S

S 6∈C,S\{vi}6∈C

ξS
(
0− 0

)
,

where zeros for disconnected coalitions follow directly from the definition of
Amer and Gimenez connectivity game. Now, we remove the fourth case (which
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is 0), and in the third one we iterate through subsets S without vi (instead through
subsets with vi):

. . . =
∑

S⊆N,vi∈S
S∈C,S\{vi}∈C

ξS
(
f(S)− f(S \ {vi})

)
+

∑
S⊆N,vi∈S

S∈C,S\{vi}6∈C

ξS f(S)−
∑

S⊆N,vi 6∈S
S∪{vi}6∈C,S∈C

ξS∪{vi} f(S).

Thus, we can now traverse only connected coalitions as follows:

. . . =
∑

S∈C,vi∈S
S\{vi}∈C

ξS
(
f(S)−f(S \{vi})

)
+

∑
S∈C,vi∈S
S\{vi}6∈C

ξS f(S)−
∑

S∈C,vi 6∈S
S∪{vi}6∈C

ξS∪{vi} f(S).

This concludes the proof.

Based on the above observations it is crucial to not only enumerate all
connected subgraphs, but also identify the cut vertices, and the neighbours,
of each enumerated subgraph. As for the identification of neighbours, it can
easily be done. The harder part is to identify the cut vertices. To this end, in
[34], the authors combined Moerkotte and Neumann’s enumeration algorithm
with the state-of-the-art algorithm for finding cut vertices, due to Hopcroft
and Tarjan [23]. The way in Michalak et al. combined the two algorithms
involved some additional improvements, see their paper for more details.

Against this background, we present the first dedicated algorithm that
not only enumerates all connected subgraphs, but at the same time identifies
cut vertices in each subgraph. To make this possible, our algorithm traverses
all connected subgraphs in a depth-first-search (DFS) manner (as discussed
in the previous section). Consequently, unlike the case with Moerkotte and
Neumann’s breadth-first-search (BFS) technique, our DFS techniques en-
sures that the edges which are used to enlarge the subgraph always form
what is known as a Tremaux tree [23] – an important structure in graph the-
ory. More specifically, a Tremaux tree of graph G is a rooted spanning tree –
a subgraph consisting of all nodes and a subset of edges, which forms a tree,
with one node selected as a the root. Importantly, for any Tremaux tree, T ,
and any two nodes that have an edge between them in G, it is guaranteed
that one of those two nodes is an ancestor of the other in T . Now, let us show
how this property of Tremaux trees helps identify cut vertices in a subgraph.
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Algorithm 6: DFS-based algorithm for calculating Shapley value for the
graph-restricted games

Input: Graph G = (V,E), function ν : C → R
Output: Shapley value for game νfG

1 DFSConnSV (G) begin
2 sort nodes and list of neighbours by degree desc.;
3 for i← 1 to |V | do SVi(νfG) = 0;
4 for i← 1 to |V | do
5 DFSConnSV Rec(G, (vi), (∞), {vi}, {v1, . . . , vi−1}, ∅, ∅, 1);

6 DFSConnSV Rec(G, path, low, S,X, SC,XN, startIt) begin
7 v ← path.last(); l← low.last();
8 for it← startIt to |N (v)| do
9 u← N (v).get(it); // it’s neighbour of v

10 if u 6∈ S ∧ u 6∈ X then
11 DFSConnSV Rec(G, (path, u), (low,∞), S∪{u}, X, SC,XN, 1);
12 X ← X ∪ {u}; XN ← XN ∪ {u};
13 else if u ∈ X then XN ← XN ∪ {u};
14 else if (path.find(u) < low.last()) then
15 l← path.find(u);
16 low.updateLast(l);
17 path.removeLast(); low.removeLast();
18 if path.length() > 0 then
19 if l ≥ path.length() then SC.add(path.last());
20 else if l < low.last() then low.updateLast(l);
21 startIt← N (path.last()).f ind(v) + 1;
22 DFSConnSV Rec(G, path, low, S,X, SC,XN, startIt);

23 else
24 if v was added only once SC then SC.remove(v);
25 foreach vi ∈ SC do
26 SVi(ν

f
G)← SVi(ν

f
G) + ξS(f(S));

27 foreach vi ∈ S \ SC do
28 SVi(ν

f
G)← SVi(ν

f
G) + ξS(f(S)− f(S \ {vi}));

29 foreach vi ∈ V \ (S ∪XN) do
30 SVi(ν

f
G)← SVi(ν

f
G)− ξS∪{vi}(f(S));
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To this end, let v be an arbitrary node in G. Consider a subtree S rooted
at a child of v. The removal of v from graph G disconnects nodes from S if
and only if there is no edge in G that connects S to other parts of the graph.
From the property of Tremaux tree, all such potential edges would go to the
ancestors of v (we will call them backedges). Thus, to identify cut vertices,
it suffices to know the node nearest to the root that can be reached from the
children’s subtrees. This information can be easily updated recursively when
we backtrack in a depth-first search – for the subtree rooted at v, it is one
of the nodes connected to v or one of the nearest nodes that can be reached
from its subtrees.

The pseudocode is presented in Algorithm 6. To gather extra information,
we expand the recursive function from Algorithm 4 by a few new parameters.
Assume that a root is on level 1, and its children are on level 2, and so on.
Now, for each node v from the path, list low stores the lowest level that
can be reached from v (using already discovered edges) or its fully-processed
children. The set SC contains identified cut vertices. Now, whenever we add
a node v to a path (lines 5 and 11) we initialize its low to infinity. Then,
we update this value in two situations. The first is when we find a backedge
from v to the lower level (lines 14-16). The second is when we backtrack
from a child with a lower value (line 20, low for child equals l, parent is the
last node on the path). When we backtrack and child’s value is not lower
that the level of the parent (thus, subtree of a son does not have a backedge
to any node closer to the root) we add the parent node to the set of cut
vertices SC (line 19). Finally, in line 24, we remove root from the set of cut
vertices if it has only one child in a tree, i.e., was added to this set just one
time. The set of neighbours XN of the nodes in S can be easily updated
as we consider all edges of nodes in the main loop (lines 8-16). Now, based
on both sets, we calculate the Shapley value in lines 25-30 for every found
connected coalition. The asymptotic time of the algorithm has not changed
with respect to enumeration of connected subgraphs and equals O(|C||E|).1

In Figure 10.1 we compare the performance of our new algorithm with the
FasterSVCG proposed by Michalak et al. [34]. As in the comparison of DFS
and BFS enumeration in Section 9.2, here we generated 500 random scale-
free graphs for every size of graph n from 20 to 30 and computed average

1Note, that to obtain a constant time of path.find(u) operation in line 14 list path should be
enriched with a associative array or alternatively additional array of nodes’ levels can be passed
along.
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Figure 10.1: Comparison between algorithms for the Shapley value for connec-
tivity games: our new DFS-based algorithm vs. the state-of-the-art BFS-based
algorithm proposed by Michalak et al.

running time for both algorithms. As we can see, our DFS-based algorithm
is more than 5 times faster for every size n. Importantly, only part of the
advantage comes from the faster enumeration algorithm, which is 2-3 times
faster than the alternative used in FasterSVCG. Moreover, the advantage
increases very slightly with the number of nodes. We justify this as follows:
although the pessimistic number of steps for every found connected subgraph
in both enumeration algorithms equals O(E), for sparse graphs it does not
exceed a small constant. Thus, separate searching for the cut vertices, which
is a part of the FasterSVCG, is an additional action which takes linear time
in respect to the number of edges – O(E) – while our new algorithm performs
only O(V ) steps updating Shapley value for all nodes.

10.2 MYERSON VALUE FOR THE

GRAPH-RESTRICTED GAMES

In this section we present the first dedicated algorithm for computing the
Myerson value for arbitrary graph-restricted games. Depending on the def-
inition of function ν, the complexity of calculating the Myerson value may
vary. In our paper we do not make any assumption for the form of function
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ν: in our algorithm we treat ν as an oracle which gives the values, and for
the complexity analysis we assume it does that in a constant time.

As in the previous section, we can argue that only traversing connected
coalitions is necessary. Moreover, based on the oracle-assumption, we have
to go through all of them (the size of the input is the number of values of
ν). Thus, what is crucial is to minimize the number of steps performed for
every connected coalition. In this section we prove that in the context of the
Myerson value, identifying of cut vertices is not needed, and the number of
steps is linear in the size of graph nodes.

To this end, we will use the permutation interpretation of the Shapley
value (see formula (1)) and analyze the marginal contribution of a node,
but this time more thoroughly. Let π be a permutation and assume agents
that precede vi form the components K1, K2, . . . , Km, the first j of which
are connected to vi. Now, as in Myerson’s characteristic function value of a
coalition equals sum of values of it’s components, we can simplify marginal
contribution to ν(K1∪ . . .∪Kj ∪{vi})−ν(K1)− . . .−ν(Kj): all components
not connected with vi contributes their values to the value of a coalition with
and without vi. Now, instead of considering marginal contribution as a whole,
as in the previous section, we will decompose it into two parts: a positive
and a negative one. Thus, we will calculate separately how many times (i.e.,
for which of the permutations) the value of a coalition ν(K1∪ . . .∪Kj ∪{vi})
with vi is added, and how many times a value of a given coalition Kl without
vi is subtracted from his payoff.

Consider a connected coalition S and the Myerson value of vi:

• if vi is in S then the value of S is taken into account with a positive
sign whenever two conditions are met: (1) all nodes from S appear in
the permutation before vi, and (2) all neighbours of S appear in the
permutation after vi. This happens with a probability of (|S|−1)!·|N (S)|!

(|S|+|N (S)|)! ,
where N (S) is the set of neighbours of S.

• if vi is not in S, then the value of S is taken into account with a negative
sign, but only if all nodes from S appear in the permutation before v,
and all neighbours of S appear after vi, and vi is a neighbour of S
(otherwise, vi contributes to some other coalition). This happens with
a probability of |S|!·(|N (S)|−1)!

(|S|+|N (S)|)! .

It is worth noting that in the second case we allow neighbours of v that are
not connected to S to appear before vi. Although they change the coali-
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tion resulting from the appearance of vi and also the subtracted part of the
marginal contribution, the value of S is still a component of this part. Above
comments can be formalized into the following theorem.
Theorem 9. The Myerson value for graph-restricted games satisfies the following
formula:

MVi(νG) =
∑

S∈C,vi∈S

ζ1 ν(S)−
∑

S∈C,vi 6∈S
S∪{vi}∈C

ζ2 ν(S),

where

ζ1 =
(|S| − 1)!|N (S)|!
(|S|+ |N (S)|)!

, ζ2 =
|S|!(|N (S)| − 1)!

(|S|+ |N (S)|)!
and N (S) denotes the set of neighbours of coalition S.

Proof. Based on the result by Myerson, we have that MVi(νG) = SVi(ν
M
G ). In

other words, formula (1) for the Shapley value becomes:

MVi(νG) =
1

|V |!
∑
π∈Π

(
νMG (Sπi )− νMG (Sπi \ {vi})

)
. (10.1)

Now, let us consider contribution of agent vi to coalition S. Based on the definition
of game νMG , we have:

νMG (S)− νMG (S \ {vi}) =
∑

Kj∈K(S)

ν(Kj)−
∑

Kj∈K(S\{vi})

ν(Kj).

As connected components of S \{vi} which are not connected with vi will appear
in both sums, we can simplify the above formula to:

νMG (S)− νMG (S \ {vi}) = ν(Ki(S))−
∑

Kj∈K(Ki(S)\{vi})

ν(Kj),

where Ki(S) denotes component of vi in S.
Next, we reconsider formula (10.1) for the Myerson value. We have:

MVi(νG) =
1

|V |!
∑
π∈Π

(
ν(Ki(Sπi ))−

∑
Kj∈K(Ki(Sπi )\{vi})

ν(Kj)
)

=
∑

S∈C,vi∈S

|{π ∈ Π | S = Ki(Sπi )}|
|V |!

ν(S)

−
∑

S∈C,vi 6∈S

|{π ∈ Π|S ∈ K(Ki(Sπi ) \ {vi})}|
|V |!

ν(S) (10.2)
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In the first sum above, the condition S = Ki(Sπi ) means that S is the component
of vi in Sπi . Thus, given that vi ∈ S, this condition is equivalent to S ∈ K(Sπi ). In
the second sum, we count permutations in which S is one of the components that
vi merges into Ki(Sπi ). Thus, vi must be the neighbour of S, and S must be the
component of Sπi \ {vi}:

MVi(νG) =
∑

S∈C,vi∈S

|{π ∈ Π | S ∈ K(Sπi )}|
|V |!

ν(S)

−
∑

S∈C,vi 6∈S
S∪{vi}∈C

|{π ∈ Π | S ∈ K(Sπi \ {vi})}|
|V |!

ν(S)

Now, the first fraction is the probability that, in a random permutation, S will
be a component in a subgraph formed by vi and agents that precede vi. This will
be the case if and only if: (i) all agents S \ {vi} are in π before vi; and (ii) all
neighbours of S are in π after vi. Thus, this probability equals (|S|−1)!|N (S)|!

(|S|+|N (S)|)! as for
each |S|+ |N (S)| positions of agents S ∪N (S) in π there are (|S| − 1)!|N (S)|!
out of (|S|+ |N (S)|)! such orderings:

|{π ∈ Π | S = Ki(Sπi )}|
|V |!

=
(|S| − 1)!|N (S)|!
(|S|+ |N (S)|)!

= ζ1.

In the second sum, all agents from S must appear in permutation π before vi
and all other neighbours of S must be in π after vi. Analogously, the probability
equals |S|!(|N (S)|−1)!

(|S|+|N (S)|)! :

|{π ∈ Π | S ∈ K(Sπi \ {vi})}|
|V |!

=
|S|!(|N (S)| − 1)!

(|S|+ |N (S)|)!
= ζ2.

Based on the above observations, we construct our algorithm for comput-
ing the Myerson value based on our fast DFS-based algorithm for enumer-
ating connected subgraphs (Algorithm 7). As in our previous algorithm for
computing the Shapley value, here the set XN gathers neighbours of the set
S, and lines 19-22 update the Myerson value according to the aforementioned
marginal contribution analysis.
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Algorithm 7: DFS-based algorithm for calculating Myerson value for
graph-restricted games

Input: Graph G = (V,E), function ν : C → R
Output: Myerson value for game νG

1 DFSMyersonV (G) begin
2 sort nodes and list of neighbours by degree desc.;
3 for i← 1 to |V | do MVi(νf ) = 0;
4 for i← 1 to |V | do
5 DFSMyersonV Rec(G, (vi), {vi}, {v1, . . . , vi−1}, ∅, 1);

6 DFSMyersonV Rec(G, path, S,X,XN, startIt) begin
7 v ← path.last();
8 for it← startIt to |N (v)| do
9 u← N (v).get(it); // it’s neighbour of v

10 if u 6∈ S ∧ u 6∈ X then
11 DFSMyersonV Rec(G, (path, u), S ∪ {u}, X,XN, 1);
12 X ← X ∪ {u}; XN ← XN ∪ {u};
13 else if u ∈ X then XN ← XN ∪ {u};
14 path.removeLast();
15 if path.length() > 0 then
16 startIt← N (path.last()).f ind(v) + 1);
17 DFSMyersonV Rec(G, path, S,X,XN, startIt);

18 else
19 foreach vi ∈ S do
20 MVi(νG)←MVi(νG) + (|S|−1)!(|XN |)!

(|S|+|XN |)! ν(S);

21 foreach vi ∈ XN do
22 MVi(νG)←MVi(νG)− (|S|)!(|XN |−1)!

(|S|+|XN |)! ν(S);



CHAPTER 11

APPLICATION TO TERRORIST

NETWORKS

There is currently much interest in the possibility of applying social net-
work analysis techniques to investigate terrorist organizations [45]. A

particular attention is paid to the problem of identifying key terrorists. This
not only helps to understand the hierarchy within these organizations but
also allows for a more efficient deployment of scarce investigation resources
[26]. One possible approach to this problem is to try and infer the importance
of different individuals from the topology of the terrorist network. In graph
theory, such an inference can be obtained in various ways, depending on the
adopted centrality measures, i.e., the adopted way to measure the central-
ity, i.e., importance, of different nodes in a network, based on its topology.1
A number of researchers have proposed to incorporate game-theoretic tech-
niques into existing centrality measures [20, 17]. The basic idea behind such
game-theoretic centrality measures is to define a coalitional game over the
network and then to construct a ranking of nodes based on a chosen solution
concept. Although such an approach is often computationally challenging,
it has the following two advantages. Firstly, the combinatorial analysis of
the cooperative game, which is embedded in the solution concept, becomes a
combinatorial analysis of the network. Secondly, this approach is very flexi-
ble, as it can be changed along three dimensions: (i) the coalitional game can
be of an arbitrary form (e.g., partition function form); (ii) the value function
can also be arbitrary; and (iii) there are many available solution concepts,

1We refer the reader to [8, 14] for an overview of most commonly used centrality metrics.
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each based on different prescriptive and normative considerations.2

Note: This chapter is based on [49].

11.1 LINDELAUF ET AL.’S MEASURE

Lindelauf et al. tried to develop a centrality measure that assesses the role
played by individual terrorists in a way that accounts for the following two
factors: the terrorists’ role in connecting the network and additional intelli-
gence available about the terrorists. To this end, Lindelauf et al. proposed to
use the Shapley value for vfG as defined in formula (8.3). This function seems
to be suitable to achieve Lindelauf et al.’s goal. As discussed at the beginning
of Section 12.1, it assigns high marginal contributions to cut vertices. Such
vertices, by definition, play an important role in connecting various parts of
the network. As such, any agent who is a cut vertex will be called a pivotal
agent.

Furthermore, one can manipulate f(S,G) in formula (8.3) to incorporate
available information and analytical needs. In particular, to incorporate
additional intelligence on individual terrorist, the authors assigned weights
to both edges and nodes in G. Let us denote such weights by ωij and ωi,
respectively. Based on this, Lindelauf et al. proposed to use the following
alternative functions:

(a) f(S) = |E(S)|/
∑

(vi,vj)∈E(S) ωij,
(b) f(S) =

∑
vi∈S ωi.

In words, in (a) f(S) equals the number of edges in the connected coalition
divided by the sum of their weights and, in (b) by the sum of its nodes’
weights. As an example, the rationale behind function (b) is that terrorists
(nodes) with high weights “play an important part in the operation. When
such individuals team up, they have a significant effect on the potential success
of the operation.” [28, p. 237].

Summarising, the key idea of Lindelauf et al. was to develop a mea-
sure that evaluates the nodes based on two factors: their role in connecting
the network; and additional intelligence. At first glance, vfG seems to be a

2We refer the reader to the recent book by Maschler et al. [31] for an excellent overview of
solutions concepts in cooperative game theory.
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good candidate for this purpose. However, in what follows we will show the
disadvantages of this approach and propose an alternative.

We argue that, for sparse networks – and terrorist networks tend to be
sparse [26] – the connectivity factor is over-represented in the measure based
on SVi(v

f
G). As a result, we claim that the additional intelligence factor

hardly ever affects the ranking. To see how this is the case, it is sufficient
to examine the characteristic function νfG which (for reasonable f) results in
relatively very high marginal contributions assigned to pivotal agents, while
other agents are assigned incremental values or relatively very big negative
values.

To support our claim, let us perform a sensitivity analysis of Lindelauf et
al.’s centrality by (i) evaluating different forms of the function f(S,G) and
(ii) considering different weights of nodes. Regarding (i), we consider the
following general form of f(S,G):

f(S,G)=|S|α · |E(S)|β · (
∑
vi∈S

ωi/|S|)γ · (
∑

(vi,vj)∈E(S)

ωij/|E(S)|)δ, (11.1)

where α, β, γ, δ ∈ R are parameters for exponents. We set α and β to be
integer values between −2 and 2 and we impose the additional condition
that α + β ≥ 0 in order to preserve monotonicity. We performed our tests
on the terrorist network responsible for the World Trade Center attacks (36
nodes, 64 edges) [26]. This is a bigger version of the network originally
considered by Lindelauf et al., which only contained 19 nodes.

Table 11.1 presents the results of this sensitivity check. For each con-
figuration of parameters we calculated the ranking of nodes and compared
it with the ranking for the 0-1-connectivity game. Here, we concentrate on
the top

√
|V | = 6 terrorists, as the main goal of this application is to iden-

tify key players. The top part of Table 11.1 presents the average size of the
intersection of the top 6 terrorists in both rankings. In the lower part of
Table 11.1, for the top 6 terrorists from the 0-1-connectivity game, we calcu-
lated the average distance between their positions in both rankings, i.e. the
ranking from the 0-1-connectivity game and the ranking from f(S,G) (each
cell presents the maximum and minimum value of this average).

We observe that the top 6 members have changed in 15% of the tests.
Furthermore, in only 2% of the tests, more than one new node has been
identified as a key member. Also, within this group, changes of positions are
minor; the average change of position rarely exceeded 1.3. The dedicated
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α\β 2 1 0 -1 -2
γ\δ 1|0|-1 1|0|-1 1|0|-1 1|0|-1 1|0|-1

2 1|0|-1 6.0 6.0 5.9 5.9 4.9
1 1|0|-1 6.0 6.0 6.0 5.1 —
0 1|0|-1 6.0 6.0 5.7 — —
-1 1|0|-1 6.0 6.0 — — —
-2 1|0|-1 6.0 — — — —

α\β 2 1 0 -1 -2
γ\δ 1|0|-1 1|0|-1 1|0|-1 1|0|-1 1|0|-1

2 1|0|-1 1.3-1.3 1.3-1.3 1.3-1.3 0.7-1.3 1.3-2.5
1 1|0|-1 1.3-1.3 1.3-1.3 1.0-1.3 0.8-2.0 —
0 1|0|-1 1.3-1.3 1.0-1.3 0.0-1.0 — —
-1 1|0|-1 1.3-1.3 0.3-1.3 — — —
-2 1|0|-1 0.7-1.3 — — — —

Table 11.1: Comparison between top nodes based on games with the parametrized
characteristic function from formula (11.1) and the 0-1-connectivity game.

characteristic function proposed by Lindelauf et al. for the WTC network
obtained with parameters α = γ = 1 and β = δ = 0 yields the same group
of 6 terrorists ranked with only minor rotations.

The above simulations show that, for sparse networks, the choice of
f(S,G) essentially does not matter. The main reason behind this phe-
nomenon appears to be the fact that νfG assigns relatively very high con-
tributions to pivotal agents, and only incremental marginal contributions to
non-pivotal agents. This is magnified by the fact that we deal here with
a sparse network. Specifically in this network, out of all 6 billions induced
subgraphs, only 0.6% are connected. Furthermore, the average number of
pivotal agents in a connected subgraph was high (8 to be precise). Thus,
nodes that are crucial from the connectivity point of view will have a high
ranking because vfG favours pivotal agents.

As already mentioned, we also analysed the sensitivity of the characteris-
tic function νfG with respect to the weights ωi (these weights were permuted
at random in our experiments). We focused on the second function pro-
posed by Lindelauf et al., i.e., f(S) =

∑
vi∈S ωi. Here, only 3% out of 600
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α\β 2 1 0 -1 -2
γ\δ 1|0|-1 1|0|-1 1|0|-1 1|0|-1 1|0|-1

2 1|0|-1 4.8 4.7 4.3 1.1 0.0
1 1|0|-1 5.0 4.9 1.1 0.0 —
0 1|0|-1 4.4 4.2 0.0 — —
-1 1|0|-1 3.3 0.8 — — —
-2 1|0|-1 1.1 — — — —

α\β 2 1 0 -1 -2
γ\δ 1|0|-1 1|0|-1 1|0|-1 1|0|-1 1|0|-1

2 1|0|-1 1.2-2.3 1.0-2.2 0.8-4.2 6.7-24.5 23.8-28.2
1 1|0|-1 1.2-2.8 1.0-2.8 8.8-28.0 21.3-28.3 —
0 1|0|-1 1.7-3.7 2.5-8.2 23.7-30.0 — —
-1 1|0|-1 2.0-7.0 13.0-26.2 — — —
-2 1|0|-1 11.2-21.8 — — — —

Table 11.2: Comparison between top nodes based on games with the parametrized
characteristic function from formula (11.1) and the game with value of −1 for
every connected component.

permutations resulted in a change within the top 6 terrorists in the rank-
ing. Furthermore, all these changes concerned only one terrorist (who was
replaced by another).

In the next section, we argue that the Myerson value is a better centrality
measure for terrorist networks.

11.2 MYERSON VALUE FOR TERRORIST NETWORKS

We observe that the characteristic function νMG used to compute MVi(νG)
does not favour pivotal agents as much as νfG. In particular, given an arbitrary
(non-negative and monotonic) function, f(S,G), the marginal contribution
of a pivotal agent v to a coalition S ∪ {v} in the case of the connectivity
game will be:

f(S ∪ {v}, G)− 0 = f(S ∪ {v}, G).
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However, in the case of νMG , it will be:

f(S ∪ {v}, G)−
∑

Ki∈K(S)

ν(Ki) ≤ f(S ∪ {v}, G).

This means that the connectivity factor becomes relatively less dominant in
the evaluation of the nodes.

In Table 11.2, we present results of a similar sensitivity check as before,
but now for the Myerson value. As visible, this measure is more sensitive
to changes of f(S,G) than the Shapley value. This is also confirmed by
the sensitivity check with respect to random permutations of nodes’ weights.
Specifically, in more than 80% of the cases, the top 6 terrorists changed, and,
in most of those cases, the change was substantial. In particular, on average
about 2.2 terrorists were repeated among the top 6.



CHAPTER 12

APPROXIMATION ALGORITHMS

Shapley value-based network metrics are designed mainly for social net-
works, but also, as described in the previous chapter, can be used for

terrorist network. Unfortunately – from the computational point of view –
this networks can be arbitrary large. For example, the group of terrorists
that was behind the Madrid train bombing in 2004 exceeded 80 people. Ex-
act algorithms, even those presented in our work, fail to calculate the answer
in a reasonable amount of time. To this end, in this chapter we present two
ideas how approximation algorithms can be constructed for metrics in which
the idea of connectivity plays a crucial role. In Section 12.1, we present our
algorithm for the Shapley value in graph-restricted games. In Section 12.2,
we introduce a more complicated definition of a game and present a dedicated
algorithm to calculate the corresponding metric.

Note: This chapter is based on [34] (Section 12.1) and [44] (Section 12.2).

12.1 APPROXIMATION OF THE SHAPLEY VALUE

FOR GRAPH-RESTRICTED GAMES

In this section we propose a dedicated application of Monte Carlo sampling
to graph-restricted games. Unlike the existing algorithm to approximate the
Shapley value for characteristic function games [9], in our algorithm we do
not sample permutations, but coalitions. Since any marginal contribution of
an agent, vi, links two coalitions – one with this agent, i.e., C ∪ {vi}, and
one without him, i.e., C – sampling of coalition C can be viewed as sampling

97
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of vi’s marginal contribution. Generally speaking, in our algorithm, we will
randomly select a number of marginal contributions of vi and approximate
the Shapley value using the resulting average. Due to the fact that in the
Shapley value marginal contributions are calculated with different weights,
to obtain an unbiased estimator we have to sample marginal contributions
with appropriate probabilities. To this end, we propose the following general
process.

• Step 1: uniformly select k ∈ {0, . . . , |V |}.

• Step 2: choose a random coalition C of size k.

• Step 3: for every agent, compute the marginal contribution of this
agent obtained by leaving/entering C.

To see this process works, let us transform the formula for the Shapley value
as follows:

SVi(v) =
1

|V |
∑

0≤k<|V |

1(|V |−1
k

) ∑
C⊆V \{i},|C|=k

v(C ∪ {i})− v(C)

From this formula we get two conditions required to get an unbiased estimator
are:

(i) the probability that a randomly chosen marginal contribution is ob-
tained from entering a coalition of size k is equal (to 1/|V |) for every
k,

(ii) marginal contributions to all coalitions of size k are chosen with the
same probability (1/|V | ·

(|V |−1
k

)
).

It is easy to see that both conditions imply the probability for selecting a
given marginal contribution, thus they are also sufficient to obtain an un-
biased estimator. Our process satisfies both of them. The second one is
obviously met as we do not favor any coalition of a given size in the first
or second step. The first condition needs more precise analysis. Note that
a given marginal contribution v(C ∪ {i})− v(C) may appear in our process
in two ways – when we select coalition C or when we select C ∪ {i}. More
specifically, marginal contribution of agent vi to coalition of size k will be
selected with the probability

1

n+ 1
· n− k

n
+

1

n+ 1
· k + 1

n
,
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Algorithm 8: Approximation algorithm for calculating Shapley value for
graph-restricted games

Input: Graph G = (V,E), function ν : C → R
Output: Shapley value for game νAG

1 ApproximateSV CG(G, ν) begin
2 foreach vi ∈ V do SVi(νAG )← 0;
3 for it = 1 to maxIter do
4 k ← random number from {0, . . . , |V |};
5 C ← random coalition of size k;
6 if !CheckConnectedness(C) then continue;
7 P ← FindPivotals(C);
8 foreach vi ∈ C \ P do
9 SVi(ν

A
G )← SVi(ν

A
G ) + |V |+1

|C| · (f(C)− f(C \ {vi}))

10 foreach vi ∈ P do
11 SVi(ν

A
G )← SVi(ν

A
G ) + |V |+1

|C| · f(C)

12 foreach vi ∈ (V \ C) \ N (C) do
13 SVi(ν

A
G )← SVi(ν

A
G )− |V |+1

|V |−|C| · f(C)

14 foreach vi ∈ V do SVi(νAG )← SVi(ν
A
G )/maxIter;

where n = |V |. Here, the first term represents the probability that we select
a coalition of size k without agent vi, while the second one – that we select
the coalition of size k + 1, with agent vi. The above expression simplifies to
1
n
which proves that first condition is also satisfied.
This technique allows us to compute the marginal contributions of all

agents for a randomly selected coalition, which in the graph-restricted games
(and, potentially, in many more classes of games) can be performed much
faster than estimating the Shapley value for each agent separately [30] or
by sampling of a random permutation [9], where we have to calculate the
marginal contributions for a sequence of coalitions growing in size.

To this end, in the algorithm we merge our Monte Carlo technique with
the analysis of marginal contribution. The pseudocode is presented in Al-
gorithm 8. Line 4 corresponds to Step 1, where we sample the size of a
coalition. Now, we modify Step 2 in order to select only connected coali-
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Figure 12.1: Error performance of ApproximateSVCG.

tions (lines 5 and 6).1 We also modify Step 3 where we consider cases (a),
(b), and (c) from our analysis in Section 10.1 (lines 8-13). The modification
of Step 3 has to be done due to the following reason: since we no longer
consider disconnected coalitions, any non-zero marginal contribution made
to a disconnected coalition have to be transfered to a corresponding con-
nected coalition (lines 9, 11, and 13). Furthermore, this should be done in
a way that preserves appropriate probabilities (thus, in lines 9, 11, and 13
we multiply marginal contributions by adequate weights). The probabilities
comes from the following analysis. Consider a pivotal agent i in coalition C
of size k+1. Expected value from entering the disconnected coalition C \{i}
equals 1

n+1
·
(

1

(n−1
k−1)
)
·f(C). On the other hand, the same marginal contribution

is obtained from leaving connected coalition S – here expected value equals
1

n+1
·
(

1

(n−1
k )
)
· f(C). As we won’t consider transfers from the disconnected

coalitions, we have to ensure that expected value from this marginal contri-
bution does not change, so if we obtain C with the probability 1

n+1
·
(

1

(n−1
k )
)

we add marginal contribution which equals f(C) · (1 + n−k+1
k

).
Finally, we divide the sum of the contributions by the number of iterations

(line 14). For every sample, algorithm runs in time O(|V |+ |E|).
We end this section with performance evaluation of our approximate al-

gorithm. Figure 12.1 presents the error convergence of our algorithm and
compares the results to the random permutation sampling studied by Cas-

1It should be noted, that generating a random connected coalition uniformly will create a biased
algorithm.
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tro et al. [9]. Here, we focus on the maximum absolute error of the Shapley
value, computed as a percentage of the value of the grand coalition. The
results are calculated for Krebs’ 9/11 WTC terrorist network with 36 nodes
(as an average from over 30 iterations). Since connected coalitions consti-
tute only a small subset of all coalitions (here, only 0.59%), our algorithm
is likely to outperform Castro’s method. Indeed, after 4 second, the error
equals 0.029%, while for Castro et al. exceeds 0.2%. The fact that the abso-
lute error ultimately converges to zero indicated that our sampling method
is not biased.

12.2 GATE-KEEPERS METRIC

Game theoretic approaches have been used to work with central (or influ-
ential) nodes in the network in order to solve certain important problems
associated with social network analytics. For instance, Hendrickx et al. [22]
proposed a Shapley value based approach to identify key nodes to optimally
allocate resources over the network. Alon et al. [4] proposed a game theo-
retic approach to determine k most popular or trusted users in the context
of directed social networks. Ramasuri and Narahari [43] proposed a Shap-
ley value based approach to measure the influential capabilities of individual
nodes in the context of viral marketing. For the scenarios where teams of
individuals come together to accomplish atomic tasks, Papapetrou et al. [41]
presented a Shapley value based algorithm to attribute the team-wise scores
to the individuals with application to the citation networks.

In this section we concentrate on a new centrality measure, called gate-
keeper centrality introduced by Ramasuri et al. [44]. The goal of this metric
is to determine a group of nodes that can disconnect the network into com-
ponents with similar cardinality. This question arises in social network ap-
plications such as community detection or limiting spread of misinformation
or a virus over the network.

In a attempt to address the above problem, gatekeeper centrality uses
game theoretical approach: for every group of agents it assigns a value that
represent its quality (in terms of disconnecting into similar components) and
calculate agents’ worth in this game with the Shapley value. Two variants of
the characteristic function was proposed in the paper:

vR1 (S)
def
=

1∑
Ki∈K(N\S) |Ki|2

, vR2 (S)
def
=

|K(N \ S)|∑
Ki∈K(N\S) |Ki|

.
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Here, compared to both metrics based on the graph-restricted games, the
structure of a game is much more complicated – knowing the values of two
connected components we cannot argue anything about the value of the sum
of them.

In this section we present a Monte Carlo algorithm that is dedicated to
dealing efficiently with games used in gatekeeper metric. Our algorithm, un-
like the one in the previous section, is based on the sampling of permutations.
With a growing number of agents in the game, computing any reasonable
approximation of the Shapley value may require sampling millions of permu-
tations. Consequently, the time efficiency of Monte Carlo approach hinges
upon the way in which |N | marginal contributions are calculated in every
permutation. To this end, we speed up our calculation using a dedicated
data structure. We discuss it in a detail further.

Let us start our analysis with the following fundamental observation: in
gatekeeper games, the value of the coalition S depends only on the structure
formed by the outside agents N \ S. Thus, we can traverse the permutation
backward and, as we sequentially add agents, assign the changes in the value
of N \ S (i.e., agents’ marginal contributions) to adequate agents.

For this purpose, we propose a dedicated structure to store subgraph com-
ponents (SGC ) based on the idea of FindUnion, a disjoint-set data structure
[16]. The main concept here is to store separate components of the graph as
trees. Whenever we add a new edge between different components, we attach
the root of one tree as a child of the second one. It is important that we do
not store all graph edges, but maintain multiple statistics that allow us to
calculate the value of the subgraph without traversing the whole structure.

SGC -structure allows for the following operations:

• createEmpty() - initializes the structure;

• addNode(i) - adds a new component (parent[i] = i) and updates statis-
tics;

• addEdge(i, j) - finds the roots of the components of i and j (with path
compression2); if roots differ, attach a root of the smaller tree to the
bigger one (if rank[i] < rank[j] then parent[i] = j; this technique
is called union rank) and updates statistics; otherwise, only updates
statistics if needed;

2As we traverse up the tree to the root we attach all passed nodes directly to the root to flatten
the structure: find(i) {if (parent[i] 6= i) return parent[i] = find(parent[i]);}.
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Algorithm 9: Approximation algorithm for the Gate-keepers Metric
Input: Graph G = (N,E) and a function v : 2N → R
Output: Shapley value, SVi, of each node i ∈ N

1 for all i ∈ N do SVi ← 0;
2 for k = 1 to numberOfSamples do
3 π ← random permutation of N ;
4 SGC .createEmpty();
5 valueOfSGC ← v(SGC);
6 foreach i ∈ π do
7 SVi = SVi + valueOfSGC;
8 SGC.addNode(i);
9 foreach j ∈ neighbours(i) do

10 if SGC.exist(j) then
11 SGC.addEdge(i, j);

12 valueOfSGC ← v(SGC);
13 SVi = SVi − valueOfSGC;

14 for all i ∈ N do SVi ← SVi/numberOfSamples;

• exist(i) - return true if parent[i] is set. Return false otherwise

This representation, based on the two improving techniques union by rank
and the path compression, allows us to perform |E| addEdge() and |N |
addNode() operations in time O(|E| · log∗(|N |)) where log∗(x) denotes the
iterated logarithm and log∗(x) ≤ 5 for x ≤ 265536 [24].

Finally, let us address the statistics that we have to collect in order to
calculate the value of the structure. To compute v2(S) we need to store the
number of nodes (variable increased in addNode()) and number of compo-
nents (variable increased in addNode() and decreased in addEdge() if edge
links different components). The formula for v1(S) is based on the sum of
squares of components’ sizes (to this end, we store the size with every com-
ponent, initialize it in addNode() and update it in addEdge(); in addition, we
store the global sum of squares in O(1) and update it whenever the size of a
component changes).

The pseudocode is presented in Algorithm 9. In our procedure we ag-
gregate agents’ marginal contributions in variables SVi, initialized to zero
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(line 1) and divided at the end by the number of samples considered (line
14). In the main loop (lines 2-13) after the initialization we traverse the ran-
dom permutation π (lines 6-13) and sequentially add nodes and edges to the
SGC-structure (lines 8-11). Based on the value of the structure before and
after the addition of a given agent, we calculate its marginal contribution
(line 7 and 13).

The time complexity of the algorithm depends on the number of samples
chosen to calculate the Shapley value (and that depends on our target pre-
cision). Let us then comment on the complexity of single sample, i.e. the
calculations needed to update Shapley value based on a randomly chosen
permutation. Firstly, the selection of a permutation (line 3) is performed in
a linear time using Knuth shuffle. Next, calculating value of a SGC-structure
(lines 5 and 12) is done in a constant time. Finally, the loop over the per-
mutation π (lines 6-13) performs |N | operations addNode(), |E| operations
addEdge() and 2|E| operations exist(). To summarize, the calculation of
a single sample takes O(|E| · log∗(|N |)). In other words, this is the time
complexity of single iteration of the main loop.
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