Chapter 15

Granger Causality and the Spectral
Density

Consider a linear p-variate stationary time series Z, mean 0. Let S(\) denote the spectral density
matriz. If Z( denotes the ith component of Z, then the ACVF is defined as:

Ty(h) = Cov(2, Z9),).
The spectral density matrix is the matrix with entries:

o0

1 .
SZJ()‘) = % Z thI‘ij(h).
h=—o00

15.1 Representations for Stationary Processes

The stationary process has a moving average representation if it can be written as:

Zi=Y 065 ©9=1 {g}~WN(0,X%)
s=0

Invertibility is equivalent to: |©(z)| # 0 for all z € C : |z| < 1 where, for a matrix C, ||C|| denotes
the square root of the largest eigenvalue of C'C and |C| = \/(m. Furthermore, to ensure the
process has a well defined covariance structure, it is necessary that > 50, [|©(s)||* < +oo.

Doob (Stochastic Processes, John Wiley, New York 1953 pp499 - 500) proves that the existence of
such a moving average representation for a stationary time series is equivalent to the existence of the

spectral matrix Sz () of Z for almost all frequencies A € [—m, 7].

Under these assumptions, the mean-squared-error of the one-step-ahead forecast (forecast of Z; based
on {Zgs<t—1}is:

1 ™
3| —exp{/ 1n|S()\)|d)\} > 0.
2T

-7
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This spectral representation for the mean-squared prediction error was stated (without proof) for

univariate time series earlier. It is due to Rozanov.

We restrict attention to series with an M A(+00) representation which can be inverted:

Zt == Z (D]Zt_] + €t (151)
j=1

where {¢} ~ WN(0,X). As usual, let

D(z)=1-) 2P,
7j=1

A sufficient condition for existence of an AR(+00) representation is the existence of a constant ¢ < 400
such that

TS\ <l

where, for two matrices A and B, the symbol A < B means that B — A is non-negative definite. This

is a result of Rozanov.

Note: not all stationary time series have an AR(400) representation; recall the MA(1) example of:

Zy = €1 +¢€;—1. This does not have such a representation; we showed that infy S(\) = 0 in this example.

Now suppose that Z is partitioned into ()15) where X is k-variate and Y is m variate, k +m = p. Let
Sz denote S (the subscript indicates the multivariate time series for which this is the spectral density

matrix). Use the following partition of Sz(\):

S0\ = Sx(A)  Sxy(N)
7 Syx(N) Sy(\) )

Both X and Y possess autoregressive representations:

Xi =Y B X s+ {nu} ~WN(0,Cx)
Y, =32, GiYis+ & {&u} ~ WN(O,Cy).

These arise from predicting X only using its own past, respectively Y, only using its own past. The
disturbance 1 is the one-step-ahead error when X; is forecast from its own past alone, similarly &1,
is the one-step-ahead error when Y; is forecast from its own past alone. These disturbances are each
serially uncorrelated, but may be correlated with each other contemporaneously and at various leads
and lags.

These equations denote the linear projections of Xy respectively Y; on their own pasts.
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The equation for Z may be partitioned:

{ Xt = Zi:il @XX;th—S + Zi:il (I)XY§3Y; + €X;t (15 2)

Y: = Z?il (I)YY;s}/;f—s + Z;x;l q)YX;th—s + €y

Since € = (Eif:) and {e¢} ~ WN(0,Y), it is clear that the disturbance vectors for this model can only

€
be correlated with each other contemporaneously.

P PN
Now consider > = ( XX XY )

Yyx 2Zyy

15.2 Useful Representations

Let us pre-multiply the system for ()}f) by the matrix:
I —YxyEyy
—Syx Sy I

Xt = ZSZl E33ths + Ziio F3s}/tfs + E€Xx¢
Y = 250:1 G33}/tfs + ZEO:O H3s Xy s + eyy

This gives a system of equations

(15.3)

Note that the transformation, for X; introduces contemporaneous Y; and vice versa. Here

(eXt> _ I, ~Sxyyy <€Xt)
eyt —EYXE;X I, evi)

While ex; and ey are correlated with each other, the important point is that (a) ex; is uncorrelated
with ey and (b) ey is uncorrelated with ex;. This is a straightforward computation. It follows that
eyt is uncorrelated with Y; as well as with {Xs:s <t—1} and {Y;:s <t —1}.

Now let

~

D()) = Sxy(M)Sy (3™

The terms are well defined, by the invertibility condition for the time series. Let D denote the inverse

Fourier transform

1 (™~ ,
D(s)=— [ DNe ™d\ seZ
2 J_,
Let
oo
Wii=X;— Y D(s)Yis

Theorem 15.1. The process W, thus defined, is uncorrelated with all {Ys : s € Z}. From this, it
follows that
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9]
Xe= ) DY+ W

S§=—00

is the linear projection of Xy onto {Ys;s < t}.

Proof Consider the spectral representation of Z: Z; = [" e "dL(v) where L is the p-variate
orthogonal increment process. Let L = (ﬁ); ), the k-variate and m-variate processes corresponding to

X respectively Y. Then

W, = / e™dLx(v) =Y D(s) / ALy (v)

so that:

E[W.Y "] = /Sxy(u)e_(t_r)”dl/— Z D(s)/SY(y)e—i(t—H-S)VdV

S§=—00

Using the fact that a convolution of Fourier transforms is the Fourier transform of the product gives
that E[W, Y] = 0 for all 7.

The final formula for the projection is a direct consequence of this. 1

Similarly, it follows that the spectral density matrix for W is given by:

Sw(X) = Sx(\) = Sxy(A\)Sy (M) LSy x(\)

The process W has an autoregressive representation

Wy = Z Py Wi_s + ewy

s=1

and consequently

X; = 2‘; Dy Xis— Z;) e Y DYisr+ew
S= S=!

r=—00

where @9 = —1. Grouping the terms gives:

oo oo oo
Xe=) PweXis+ ) (Z Py D(s — r)) Yies + ewe.
s=1 r=0

s=—00
Since ey is a linear function of Y and {Ws : s < ¢—1}, it is uncorrelated with Y. Since {X,:s <t—1}
is a linear function of Y and {Ws : s <t — 1}, ey is uncorrelated with {X; : s < ¢ — 1}. Hence this
equation provides the linear projection of X; on {Xs:s <t—1} and all Y.

Similarly, we can obtain the projection of ¥; on {Y; : s <t} and all X.

310



15.3 Linear Dependence and Feedback

The measure of linear feedback from Y to X is defined as:

Cx|
Fy_x=1In .
- Xxx|
Similarly, the linear feedback from X to Y is:
Cy|
F =1 .
The measure of instantaeous linear feedback is:
by by
Fxy =log 7| X)TQ| vyl

It is non-zero if and only if the partial correlation between X; and Y; conditioned on the entire past

history of both processes is zero. Finally, the measure of linear dependence is:

= [Cx[|Cy|
Fyy =In =X 210
b

Note:

ﬁx,y =Fy_ x+Fx,vy+Fxy.

We now want to describe the linear feedback in Fourier space and we seek non-negative functions

fx—y(A) and fy—x(\) which represent the transfer in Fourier space.

We use (15.2) and (15.3) as the basis for the transfer function. This may be expressed as:

Oxx(B) Pxy(B) Xy _ [ ext
G3(B)  H3(B) Y; eve |

The existence of joint autoregressive representation ensures that this can be inverted to express:
Xe |\ _ [ Au(B) An(B) €xt
Yy A1 (B) Axn(B) eyt

Xt = An(B)ext + Ai2(B)eyy

We use:

Let Ty denote the correlation matrix of ey, then the spectral density of X may be written:

Sx()\) = A\H()\)Exzzl\til + A\lg()\)TYgiQ()\)

where the hat denotes a Fourier transform.

The measure of linear feedback from Y to X in Fourier space is therefore defined as:
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Sx
[A12(\) Ex AT (V)
This is the fraction of the spectral density of X which is due to the disturbance {ey, : t € Z}.

Jy—x(A) =1In

312



