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 Econometrica, Vol. 37, No. 3 (July, 1969)

 INVESTIGATING CAUSAL RELATIONS BY ECONOMETRIC MODELS

 AND CROSS-SPECTRAL METHODS

 BY C. W. J. GRANGER

 There occurs on some occasions a difficulty in deciding the direction of causality between
 two related variables and also whether or not feedback is occurring. Testable definitions
 of causality and feedback are proposed and illustrated by use of simple two-variable models.
 The important problem of apparent instantaneous causality is discussed and it is suggested
 that the problem often arises due to slowness in recording information or because a
 sufficiently wide class of possible causal variables has not been used. It can be shown that
 the cross spectrum between two variables can be decomposed into two parts, each relating
 to a single causal arm of a feedback situation. Measures of causal lag and causal strength
 can then be constructed. A generalisation of this result with the partial cross spectrum
 is suggested.

 1. INTRODUCTION

 TiE OBJECT of this paper is to throw light on the relationships between certain

 classes of econometric models involving feedback and the functions arising in
 spectral analysis, particularly the cross spectrum and the partial cross spectrum.
 Causality and feedback are here defined in an explicit and testable fashion. It is
 shown that in the two-variable case the feedback mechanism can be broken down
 into two causal relations and that the cross spectrum can be considered as the

 sum of two cross spectra, each closely connected with one of the causations.
 The next three sections of the paper briefly introduce those aspects of spectral
 methods, model building, and causality which are required later. Section 5 presents

 the results for the two-variable case and Section 6 generalises these results for
 three variables.

 2. SPECTRAL METHODS

 If X, is a stationary time series with mean zero, there are two basic spectral
 representations associated with the series:

 (i) the Cramer representation,

 7r

 (2.1) Xt = J eito dz4(0),

 where zj(w) is a complex random process with uncorrelated increments so that

 (2.2) E[dz.(wj) dzx(2)] ? 0, o i'

 =dF,(a), CO= ;

 (ii) the spectral representation of the covariance sequence

 ir

 (2.3) JjXX = E[XtXt_-j = {eit dx(w).

 424
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 CAUSAL RELATIONS 425

 If X, has no strictly periodic components, dF,(wo) = fj(o)) do where fx(wo) is
 the power spectrum of X,. The estimation and interpretation of power spectra
 have been discussed in [4] and [5]. The basic idea underlying the two spectral

 representations is that the series can be decomposed as a sum (i.e. integral) of

 uncorrelated components, each associated with a particular frequency. It follows
 that the variance of the series is equal to the sum of the variances of the components.

 The power spectrum records the variances of the components as a function of

 their frequencies and indicates the relative importance of the components in

 terms of their contribution to the overall variance.

 If X, and Y, are a pair of stationary time series, so that Y, has the spectrum f'(0w)
 and Cramer representation

 ir

 Y = eit(o dz (sts))

 then the cross spectrum (strictly power cross spectrum) Cr(wo) between X, and Y,
 is a complex function of cl) and arises both from

 E[dzx(o) dz,(w))] = 0, 0) ,
 = Cr(o) do, co =,

 and

 txl = E[XtYj] = eITCr(w) dow.

 It follows that the relationship between two series can be expressed only in terms

 of the relationships between corresponding frequency components.
 Two further functions are defined from the cross spectrum as being more useful

 for interpreting relationships between variables:
 (i) the coherence,

 C( I Cr(o)l 2

 which is essentially the square of the correlation coefficient between corresponding

 frequency components of Xt and Yt, and
 (ii) the phase,

 0) -= tan' imaginary part of Cr(o)
 real part of Cr(wo)

 which measures the phase difference between corresponding frequency components.
 When one variable is leading the other, 0(wo)/co measure the extent of the time lag.

 Thus, the coherence is used to measure the degree to which two series are
 related and the phase may be interpreted in terms of time lags.

 Estimation and interpretation of the coherence and phase function are discussed
 in [4, Chapters 5 and 6]. It is worth noting that q(wo) has been found to be robust
 under changes in the stationarity assumption [4, Chapter 9].

This content downloaded from 193.0.96.15 on Sat, 05 Sep 2020 06:11:42 UTC
All use subject to https://about.jstor.org/terms



 426 C. W. J. GRANGER

 If Xt, Yt, and Zt are three time series, the problem of possibly misleading cor-
 relation and coherence values between two of them due to the influence on both

 of the third variable can be overcome by the use of partial cross-spectral
 methods.

 The spectral, cross-spectral matrix {jfj(wo)} = S(wo) between the three variables
 is given by

 dzx( ]_))

 E dz,(wo)j [dz.(ow') dz,(ow)) dzz(ow))] = {fj(o))} da)

 Ldzz(wo)

 where

 fiLj(w-) = f,(wO) when i =j= x,

 = CrXY(wo) when i = x, j = y,

 etc.

 The partial spectral, cross-spectral matrix between Xt and Yt given Zt is found
 by partitioning S(wo) into components:

 s= S1l S121
 S2[ s2 S22j

 The partitioning lines are between the second and third rows, and second and third
 columns. The partial spectral matrix is then

 S = Sll - S12S22S21-

 Interpretation of the components of this matrix is similar to that involving
 partial correlation coefficients. Thus, the partial cross spectrum can be used to
 find the relationship between two series once the effect of a third series has been
 taken into account. The partial coherence and phase are defined directly from the
 partial cross spectrum as before. Interpretation of all of these functions and
 generalisations to the n-variable case can be found in [4, Chapter 5].

 3. FEEDBACK MODELS

 Consider initially a stationary random vector Xt = {X1t, X2t,..., Xkt}, each
 component of which has zero mean. A linear model for such a vector consists of a

 set of linear equations by which all or a subset of the components of Xt are "ex-
 plained" in terms of present and past values of components of Xt. The part not
 explained by the model may be taken to consist of a white-noise-random vector Et,
 such that

 (3.1) E[8t8S = 0, t # s,

 =I, t = s,

 where I is a unit matrix and 0 is a zero matrix.
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 CAUSAL RELATIONS 427

 Thus the model may be written as

 m

 (3.2) AoXt = E AjXtj +Et
 j=1

 where m may be infinite and the A's are matrices.

 The completely general model as defined does not have unique matrices Aj as an
 orthogonal transformation. Y, = AX, can be performed which leaves the form of
 the model the same, where A is the orthogonal matrix, i.e., a square matrix having

 the property AA' = I. This is seen to be the case as it = Ae, is still a white-noise
 vector. For the model to be determined, sufficient a priori knowledge is required
 about the values of the coefficients of at least one of the A's, in order for constraints
 to be set up so that such transformations are not possible. This is the so-called
 "identification problem" of classical econometrics. In the absence of such a priori
 constraints, A can always be chosen so that the Ao is a triangular matrix, although
 not uniquely, thus giving a spurious causal-chain appearance to the model.

 Models for which AO has nonvanishing terms off the main diagonal will be called
 "models with instantaneous causality." Models for which Ao has no nonzero term
 off the main diagonal will be called "simple causal models." These names will be
 explained later. Simple causal models are uniquely determined if orthogonal
 transforms such as A are not possible without changing the basic form of the model.
 It is possible for a model apparently having instantaneous causality to be trans-
 formed using an orthogonal A to a simple causal model.

 These definitions can be illustrated simply in the two variable case. Suppose the

 variables are X,, Yt. Then the model considered is of the form

 m m

 Xt + boYt = E ajXt-j + E bjYt-j + Et
 (3.3) j=1 j=1

 m m

 Yt + cOXt = c cjXt-j + E djYt-j + t'.
 j=1 j=1

 If bo = co = 0, then this will be a simple causal model. Otherwise it will be a
 model with instantaneous causality.

 Whether or not a model involving some group of economic variables can be a
 simple causal model depends on what one considers to be the speed with which
 information flows through the economy and also on the sampling period of the
 data used. It might be true that when quarterly data are used, for example, a simple
 causal model is not sufficient to explain the relationships between the variables,
 while for monthly data a simple causal model would be all that is required. Thus,
 some nonsimple causal models may be constructed not because of the basic pro-
 perties of the economy being studied but because of the data being used. It has
 been shown elsewhere [4, Chapter 7; 3] that a simple causal mechanism can appear
 to be a feedback mechanism if the sampling period for the data is so long that
 details of causality cannot be picked out.
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 428 C. W. J. GRANGER

 4. CAUSALITY

 Cross-spectral methods provide a useful way of describing the relationship
 between two (or more) variables when one is causing the other(s). In many realistic
 economic situations, however, one suspects that feedback is occurring. In these
 situations the coherence and phase diagrams become difficult or impossible to
 interpret, particularly the phase diagram. The problem is how to devise definitions

 of causality and feedback which permit tests for their existence. Such a definition
 was proposed in earlier papers [4, Chapter 7; 3]. In this section, some of these
 definitions will be discussed and extended. Although later sections of this paper will
 use this definition of causality they will not completely depend upon it. Previous
 papers concerned with causality in economic systems [1, 6,7,8] have been particu-
 larly concerned with the problem of determining a causal interpretation of simul-
 taneous equation systems, usually with instantaneous causality. Feedback is not
 explicitly discussed. This earlier work has concentrated on the form that the param-
 eters of the equations should take in order to discern definite causal relationships.
 The stochastic elements and the natural time ordering of the variables play relative-
 ly minor roles in the theory. In the alternative theory to be discussed here, the stoch-
 astic nature of the variables and the direction of the flow of time will be central

 features. The theory is, in fact, not relevant for nonstochastic variables and will rely
 entirely on the assumption that the future cannot cause the past. This theory will not,
 of course, be contradictory to previous work but there appears to be little common
 ground. Its origins may be found in a suggestion by Wiener [9]. The relationship be-
 tween the definition discussed here and the work of Good [2] has yet to be determined.

 If At is a stationary stochastic process, let At represent the set of past values
 {At_j, = 1, 2,..., oo} and At represent the set of past and present values {At_j,
 j = O, 1, ...., oo}. Further let A(k) represent the set {At_j,j = k, k + 1, ..., oo}.

 Denote the optimum, unbiased, least-squares predictor of At using the set of
 values Bt by Pt(AIB). Thus, for instance, Pt(XIX) will be the optimum predictor of Xt
 using only past Xt. The predictive error series will be denoted by ;t(AIB) = At-
 Pt(AIB). Let c2(AIB) be the variance of Jt(AIB).

 The initial definitions of causality, feedback, and so forth, will be very general in

 nature. Testable forms will be introduced later. Let Ut be all the information in the
 universe accumulated since time t - 1 and let Ut - Yt denote all this information
 apart from the specified series Yt. We then have the following definitions.

 DEFINITION 1: Causality. If u2(XI U) < 52(XI U - Y), we say that Y is causing X,
 denoted by Yt => Xt. We say that Yt is causing Xt if we are better able to predict Xt
 using all available information than if the information apart from Yt had been used.

 DEFINITION 2: Feedback. If

 a2(XIU) < o2(XIU - Y),

 u72(ylU) < U2(yU -X),

 we say that feedback is occurring, which is denoted Yt '- Xt, i.e., feedback is said
 to occur when Xt is causing Yt and also Yt is causing Xt.
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 CAUSAL RELATIONS 429

 DEFINITION 3: Instantaneous Causality. If a2(XIU, Y) < c2(X U), we say that

 instantaneous causality Y, => X, is occurring. In other words, the current value of X,
 is better "predicted" if the present value of Y, is included in the "prediction" than if
 it is not.

 DEFINITION 4: Causality Lag. If Y, => X, we define the (integer) causality lag m to
 be the least value of k such that u2(XI U - Y(k)) < a2(XI U - Y(k + 1)). Thus,

 knowing the values Yt j = 0,1,... , m - 1, will be of no help in improving the
 prediction of Xt.

 The definitions have assumed that only stationary series are involved. In the

 nonstationary case, r(XI U) etc. will depend on time t and, in general, the existence
 of causality may alter over time. The definitions can clearly be generalised to be

 operative for a specified time t. One could then talk of causality existing at this
 moment of time. Considering nonstationary series, however, takes us further away
 from testable definitions and this tack will not be discussed further.

 The one completely unreal aspect of the above definitions is the use of the series

 Ut, representing all available information. The large majority of the information in
 the universe will be quite irrelevant, i.e., will have no causal consequence. Suppose
 that all relevant information is numerical in nature and belongs to the vector set of
 time series yD = { Y', i E D} for some integer set D. Denote the set {i E D, i # j} by
 D(j) and { Y', i E D(j)} by yDI), i.e., the full set of relevant information except one
 particular series. Similarly, we could leave out more than one series with the obvious

 notation. The previous definitions can now be used but with Ut replaced by Yt and
 Ut- Yt by yD(j). Thus, for example, suppose that the vector set consists only of
 two series, Xt and Yt and that all other information is irrelevant. Then a 2(XIX)
 represents the minimum predictive error variance of Xt using only past Xt and
 a2(XIX, Y) represents this minimum variance if both past Xt and past Yt are used to
 predict Xt. Then Yt is said to cause Xt if 62(XIX) > U2(XIX, Y). The definition of
 causality is now relative to the set D. If relevant data has not been included in this
 set, then spurious causality could arise. For instance, if the set D was taken to

 consist only of the two series Xt and Yt, but in fact there was a third series Zt which
 was causing both within the enlarged set D' = (Xt, Yt, Zt), then for the original set D,
 spurious causality between Xt and Yt may be found. This is similar to spurious
 correlation and partial correlation between sets of data that arise when some other
 statistical variable of importance has not been included.

 In practice it will not usually be possible to use completely optimum predictors,
 unless all sets of series are assumed to be normally distributed, since such optimum
 predictors may be nonlinear in complicated ways. It seems natural to use only
 linear predictors and the above definitions may again be used under this assumption

 of linearity. Thus, for instance, the best linear predictor of Xt using only past Xt and
 past Yt will be of the form

 x 00

 Pt(XIX, Y) = 2 ajXt_i + L bj%t-j
 j=1 j=1

 where the aj's and bj's are chosen to minimise o2(Xly, Y).
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 430 C. W. J. GRANGER

 It can be argued that the variance is not the proper criterion to use to measure

 the closeness of a predictor P, to the true value X,. Certainly if some other criteria
 were used it may be possible to reach different conclusions about whether one
 series is causing another. The variance does seem to be a natural criterion to use in
 connection with linear predictors as it is mathematically easy to handle and simple
 to interpret. If one uses this criterion, a better name might be "causality in mean."

 The original definition of causality has now been restricted in order to reach a

 form which can be tested. Whenever the word causality is used in later sections it
 will be taken to mean "linear causality in mean with respect to a specified set D."

 It is possible to extend the definitions to the case where a subset of series D* of D

 is considered to cause Xt . This would be the case if o2(XI yD) < U2(Xj yD-D*) and
 then yD* > X,. Thus, for instance, one could ask if past Xt is causing present X,.
 Because new concepts are necessary in the consideration of such problems, they
 will not be discussed here in any detail.

 It has been pointed out already [3] that instantaneous causality, in which know-
 ledge of the current value of a series helps in predicting the current value of a
 second series, can occasionally arise spuriously in certain cases. Suppose Yt => Xt
 with lag one unit but that the series are sampled every two time units. Then al-
 though there is no real instantaneous causality, the definitions will appear to
 suggest that such causality is occurring. This is because certain relevant informa-
 tion, the missing readings in the data, have not been used. Due to this effect, one
 might suggest that in many economic situations an apparent instantaneous
 causality would disappear if the economic variables were recorded at more fre-
 quent time intervals.

 The definition of causality used above is based entirely on the predictability of

 some series, say X,. If some other series Y, contains information in past terms that
 helps in the prediction of X, and if this information is contained in no other series
 used in the predictor, then Y1 is said to cause X,. The flow of time clearly plays a cen-
 tral role in these definitions. In the author's opinion there is lfttle use in the practice

 of attempting to discuss causality without introducing time, although philosophers
 have tried to do so. It also follows from the definitions that a purely deterministic
 series, that is, a series which can be predicted exactly from its past terms such as a
 nonstochastic series, cannot be said to have any causal influences other than its
 own past. This may seem to be contrary to common sense in certain special cases
 but it is difficult to find a testable alternative definition which could include the

 deterministic situation. Thus, for instance, if Xt = bt and Yt = c(t + 1), then Xt
 can be predicted exactly by b + Xt- 1 or by (b/c) Y1 1 . There seems to be no way
 of deciding if Y1 is a causal factor of Xt or not. In some cases the notation of the
 "simplest rule" might be applied. For example, if X, is some complicated poly-
 nomial in t and Yt = Xt +1, then it will be easier to predict Xt from Y -1 than
 from past Xt. In some cases this rule cannot be used, as the previous example
 showed. In any case, experience does not indicate that one should expect economic
 laws to be simple in nature.

 Even for stochastic series, the definitions introduced above may give apparently

 silly answers. Suppose X, = At_ 1 + 't, Yt = At + it, and Zt = At + yt, where E,
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 CAUSAL RELATIONS 431

 Ct, and Yt are all uncorrelated white-noise series with equal variances and A, is
 some stationary series. Within the set D = (X,, Y,) the definition gives Y, => X,.
 Within the set D' = (X,, Ye), it gives Zt =: X,. But within the set D" = (Xt, Yt, Zt),
 neither Y, nor Zt causes Xt, although the sum of Y, and Zt would do so. How is one
 to decide if either YX or Zt is a causal series for X,? The answer, of course, is that
 neither is. The causal series is A, and both Y, and Zt contain equal amounts of
 information about At. If the set of series within which causality was discussed was
 expanded to include At, then the above apparent paradox vanishes. It will often be

 found that constructed examples which seem to produce results contrary to

 common sense can be resolved by widening the set of data within which causality is
 defined.

 5. TWO-VARIABLE MODELS

 In this section, the definitions introduced above will be illustrated using two-
 variable models and results will be proved concerning the form of the cross spect-
 rum for such models.

 Let Xt, Y, be two stationary time series with zero means. The simple causal model
 is

 m m

 xt = E ajXt-j + E bjYt-j + gt,

 (5.1) j=1 j=1
 m m

 t = E CjXt_j + E djYt-j + tt,
 j=1 j=1

 where Et, tt are taken to be two uncorrelated white-noise series, i.e., E[8t8j = 0 =
 E[Ntjtj s # t, and E[etej = 0 all t, s. In (5.1) m can equal infinity but in practice, of
 course, due to the finite length of the available data, m will be assumed finite and
 shorter than the given time series.

 The definition of causality given above implies that Yt is causing Xt provided
 some bj is not zero. Similarly Xt is causing Yt if some ci is not zero. If both of these
 events occur, there is said to be a feedback relationship between Xt and Yt. It will
 be shown later that this new definition of causality is in fact identical to that intro-
 duced previously.

 The more general model with instantaneous causality is

 m m

 Xt + boYt = E ajXtj + bjYt-j + t,

 (5.2) j=1 j=1
 m m

 Yt + cOXt = Z cjxt_j + E djYt-j + tt.
 j=l j=l

 If the variables are such that this kind of representation is needed, then instant-

 aneous causality is occurring and a knowledge of Yt will improve the "prediction"
 or goodness of fit of the first equation for Xt.
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 432 C. W. J. GRANGER

 Consider initially the simple causal model (5.1). In terms of the time shift operator

 U-UXt = Xt- 1-these equations may be written

 Xt = a(U)Xt + b(U)Yt + et,
 (5.3)

 Yt = c(U)Xt + d(U)Yt + nt,

 where a( U), b( U), c( U), and d( U) are power series in U with the coefficient of U0 zero,

 i.e., a(U) = Z= 1 ajUi, etc.
 Using the Cramer representations of the series, i.e.,

 X= eito dZ (v), Yt = eito dZ (w),

 and similarly for t and q, expressions such as a(U)Xt can be written as
 Ir

 a( U)Xt- eitcoa(e i@) dZ,,(ro).

 Thus, equations (5.3) may be written

 eit'[(I - a(e-i')) dZ(wo) - b(e'i) dZ(w) - dZ,(wo)] = 0,

 ir

 - eito[-c(e -i)dZx(o) + (1- d(e -i))dZ(c) - dZ,,(o)] = 0,

 from which it follows that

 (5.4) A [dZ] = dZe]

 where

 -= -bj

 and where a is written for a(e-t), etc., and dZx for dZx(o), etc.
 Thus, provided the inverse of A exists,

 (5.5) [dXj = A-' [Z.

 As the spectral, cross-spectral matrix for Xt, Y, is directly obtainable from

 FdZ
 E dZ [dZx dZY]

 these functions can quickly be found from (5.5) using the known properties of dZ,

 and dZ,,. One finds that the power spectra are given by

 1
 fx(w) = 2irJ~1 - dlI2'a + IbI2'a),

 (5.6)

 fy(w) f 1 (lIjI2E + It - al2oa), 27M 8 ?
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 CAUSAL RELATIONS 433

 where = 1(1 - a)(I - d) - bcl2. Of more interest is the cross spectrum which has
 the form

 Cr(w) = 2) A [(- d)C 2 + (1 -)bU2].

 Thus, the cross spectrum may be written as the sum of two components

 (5.7) Cr(w)) = C 1(c)) + C2(wo),

 where

 2

 C1(w) = E (I -d)c

 and

 C2()) -2 (1 -a)b.

 If Y, is not causing Xt, then b 0 O and so C2(w)) vanishes. Similarly if X, is not
 causing Y, then c- 0 and so Cl(wo) vanishes. It is thus clear that the cross spectrum
 can be decomposed into the sum of two components-one which depends upon

 the causality of X by Y and the other on the causality of Y by X.

 If, for example, Y is not causing X so that C2(co) vanishes, then Cr(o) = Cl(wo)
 and the resulting coherence and phase diagrams will be interpreted in the usual

 manner. This suggests that in general C 1 (co) and C2(0w)) can each be treated separately

 as cross spectra connected with the two arms of the feedback mechanism. Thus,
 coherence and phase diagrams can be defined for X => Y and Y = X. For example,

 C ( I 1C1(w)12
 X fx (o4)fy (w)

 may be considered to be a measure of the strength of the causality X = Y plotted
 against frequency and is a direct generalisation of coherence. We call C-(wt)) the
 causality coherence.

 Further,

 - 1 imaginary part of C1(o)

 xy(w) = tan real part of Cl(c))

 will measure the phase lag against frequency of X => Y and will be called the
 causality phase diagram.

 Similarly such functions can be defined for Y => X using C2(0).
 These functions are usually complicated expressions in a, b, c, and d; for example,

 all (1 - d)C1 2

 xykWi = (U211 1 d12 + U2 b12)(Uf21 C2 + 11 - a2oU2)

 Such formulae merely illustrate how difficult it is to interpret econometric models

 in terms of frequency decompositions. It should be note;d that 0 < IC -(w0)I < 1 and
 similarly for C-(o)).
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 434 C. W. J. GRANGER

 As an illustration of these definitions, we consider the simple feedback system

 (5.8) Xt=bYt-,+et,
 yt = CXt-2 + l1t,

 where a ' 72 = 1.
 In this case

 a(w) = 0,

 b(Ko)= be-

 c(O)=ce -2ico

 d(w) = 0.

 The spectra of the series {Xt}, { YtJ are

 1 + b2

 fx(w) 27rl - bce-3iwj2

 and

 1 + c2

 fY (00 27r1 - bce-3iwj2'

 and thus are of similar shape.
 The usual coherence and phase diagrams derived from the cross spectrum be-

 tween these two series are

 c2 + b2 + 2bc cos co
 C(O-)) (1 + b2)(1 + c2)

 and

 csin2w - bsinco
 O(w) =tan - 1c c cos 2wo + b cos o

 These diagrams are clearly of little use in characterising the feedback relationship
 between the two series.

 When the causality-coherence and phase diagrams are considered, however, we
 get

 C -(w) =C j (w-) = xy( (I (1 ? b2)(1 + C2)' (1 + b2)(1 + C2)=

 Both are constant for all co, and, if b 0 0, c 0 0, -($)) = 2wo (time lag of two units),
 0b(o)) = c (time-lag of one unit).

 The causality lags are thus seen to be correct and the causality coherences to be
 reasonable. In particular, if b = 0 then C-(w) = 0, i.e., no causality is found when
 none is present. (Further, in this new case, 4/-(w) = 0.)

 ' A discussion of the interpretation of phase diagrams in terms of time lags may be found in Granger
 and Hatanaka [4, Chapter 5].
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 Other particular cases are also found to give correct results. If, for example, we

 again consider the same simple model (4.8) but with a' = 1, r2 = 0, i.e., il _ 0 for
 all t, then one finds

 Cy(w)= 1,

 Cyx(wO) =0,

 i.e., X is "perfectly" causing Y and Y is not causing X, as is in fact the case.
 If one now considers the model (5.2) in which instantaneous causality is allowed,

 it is found that the cross spectrum is given by

 (5.9) Cr(wo) = [(1 - d)(ci-)CO)t + (1 -)(b -bo)a
 27rzA

 where

 A' =(1-a)(1-d)-(b-bo)(c-cO)12.
 Thus, once more, the cross spectrum can be considered as the sum of two compon-
 ents, each of which can be associated with a "causality," provided that this includes
 instantaneous causality. It is, however, probably more sensible to decompose

 Cr(w)) into three parts, Cr(w)) = C(a)) + C2(0w)) + C3(0w)), where C1(wO) and C2(0w)
 are as in (5.7) but with J replaced by A' and

 (5.10) C3(C0) = 2 [co(1 - d)o + bo(1 - a)]
 representing the influence of the instantaneous causality.

 Such a decomposition may be useful but it is clear that when instantaneous
 causality occurs, the measures of causal strength and phase lag will lose their
 meaning.

 It was noted in Section 3 that instantaneous causality models such as (5.2) in
 general lack uniqueness of their parameters as an orthogonal transformation A
 applied to the variables leaves the general form of the model unaltered. It is
 interesting to note that such transformations do not have any effect on the cross
 spectrum given by (5.9) or the decomposition. This can be seen by noting that
 equations (5.2) lead to

 Adzx] [dzij
 -dzyJ -Ldzj,

 with appropriate A. Applying the transformation A gives

 AA[dzy] -A []

 so that

 [dzX1 = (AA)-l [dz ]
 L dzyi Ldz4,-

 Fdz,]

 _Ldz,, i
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 436 C. W. J. GRANGER

 which is the same as if no such transformation had been applied. From its defini-

 tion, A will possess an inverse. This result suggests that spectral methods are more
 robust in their interpretation than are simultaneous equation models.

 Returning to the simple causal model (5.3),

 Xt = a(U)Xt + b(U)Yt + et,

 Yt = c(U)Xt + d(U)Yt + 1tt

 throughout this section it has been stated that Yt - Xt if b = 0. On intuitive grounds
 this seems to fit the definition of no causality introduced in Section 4, within the set

 D of series consisting only of Xt and Yt. If b -0 then Xt is determined from the first
 equation and the minimum variance of the predictive error of Xt using past Xt
 will be a'. This variance cannot be reduced using past Yt. It is perhaps worthwhile
 proving this result formally. In the general case, it is clear that N(XIX, Y) = a.2, i.e.,
 the variance of the predictive error of Xt, if both past Xt and past Yt are used, will be
 a from the top equation. If only past Xt is used to predict Xt, it is a well known
 result that the minimum variance of the predictive error is given by

 7E

 (5.11) (02(XIX) = exp { n log f(w) df .

 It was shown above in equation (5.6) that

 fX(w9) = 2 9 (I 1- dI2%y2 + jbj2U2)

 where a = (1 - a)(I - d) - bcI2. To simplify this equation, we note that

 { logl 1-oc eiwI 2 do) = 0

 by symmetry. Thus if,

 = O7hl - c eicol2
 f.O OI0 E1 - flj eiwI 21

 then a2(XIX) = oco. For there to be no causality, we must have x0 = U2. It is clear
 from the form of A(w) that in general this could only occur if Ibl 0, in which case
 27rr(wo) = U2/1 1 - al2 and the required result follows.

 6. THREE-VARIABLE MODELS

 The above results can be generalised to the many variables situation, but the

 only case which will be considered is that involving three variables.
 Consider a simple causal model generalising (5.1):

 Xt = al(U)Xt + bl(U)Yt + cl(U)Zt + ?1,t,

 Yt = a2(U)Xt + b2(U)yt + C2(U)Zt + 82,t,

 Zt = a3(U)Xt + b3(U)yt + C3(U)Zt + 63,t,
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 CAUSAL RELATIONS 437

 where al(U), etc., are polynomials in U, the shift operator, with the coefficient of U0
 zero. As before, g i = 1, 2, 3, are uncorrelated, white-noise series and denote the

 variance gi,, = ui.
 Leta ==a1-1,= b2 - 1, Y = C3-1,and

 ax b, c1

 A= a2 / C2

 La3 b3 yj
 where b1 = bi(eiw), etc., as before. Using the same method as before, the spectral,

 cross-spectral matrix S(w)) is found to be given by S(w)) = A - 'k(A') 'where

 u2 0 0

 k= 0 U2 0

 O0 U32

 One finds, for instance, that the power spectrum of X, is

 fx((0) = lj-2[U2jly 1Cb32 + U21 13-bl2 + U32 lC2 C1#12] A(w) = I I[cIl - C2b31 ? c1Icb3 - ybl1 ? 1 c~b, 2 ,52

 where A is the determinant of A.

 The cross spectrum between X, and Y, is

 r = IzIK2[cly-c2b3)(c2a3 - ya2) 2 jr(c,b3 - bly)(xy - c,a3)

 3 cr2(b,c2 - c1,f)(c,a2 -C2a)

 Thus, this cross spectrum is the sum of three components, but it is not clear that

 these can be directly linked with causalities. More useful results arise, however,

 when partial cross spectra are considered. After some algebraic manipulation it is

 found that, for instance, the partial cross spectrum between X, and Y, given Zt is

 xY,Z(w) = - [5l2f2b3a3 + 42f32,Ba2 + U2U2 b1x]

 where

 fZ(0) = c~l 21 - c2b312 + U21Cb3 - b1y2 + Ib2 -C,f12

 Thus, the partial cross spectrum is the sum of three components

 Q,Y,Z(-) - C'' ? + CXY, /'Z rx 2(o X X + C3y

 where

 u2l?2b3a
 CIjYz , etc.

 These can be linked with causalities. The component CxY Z(w)) represents the inter-

 relationships of X, and Y, through Z, and the other two components are direct
 generalisations of the two causal cross spectra which arose in the two variable
 case and can be interpreted accordingly.
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 438 C. W. J. GRANGER

 In a similar manner one finds that the power spectrum of Xt, given Zt is

 -2 21b3I2 + 22If2lI22 2 12r2Ib1I2

 The causal and feedback relationships between X, and X can be investigated
 in terms of the coherence and phase diagrams derived from the second and third
 components of the partial cross spectrum, i.e.,

 coherence (xy, z)= f- I , L

 7. CONCLUSION

 The fact that a feedback mechanism may be considered as the sum of two causal
 mechanisms and that these causalities can be studied by decomposing cross or
 partial cross spectra suggests methods whereby such mechanisms can be in-
 vestigated. Hopefully, the problem of estimating the causal cross spectra will be
 discussed in a later publication. There are a number of possible approaches and
 accumulated experience is needed to indicate which is best. Most of these
 approaches are via the model-building method by which the above results were
 obtained. It is worth investigating, however, whether a direct method of estimating
 the components of the cross spectrum can be found.

 The University of Nottingham
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