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Granger causality is increasingly being applied to
multi-electrode neurophysiological and functional
imaging data to characterize directional interactions
between neurons and brain regions. For a multivariate
dataset, one might be interested in different subsets
of the recorded neurons or brain regions. According
to the current estimation framework, for each subset,
one conducts a separate autoregressive model fitting
process, introducing the potential for unwanted
variability and uncertainty. In this paper, we propose
a multivariate framework for estimating Granger
causality. It is based on spectral density matrix
factorization and offers the advantage that the
estimation of such a matrix needs to be done only
once for the entire multivariate dataset. For any subset
of recorded data, Granger causality can be calculated
through factorizing the appropriate submatrix of the
overall spectral density matrix.

1. Introduction
Cognitive functions are achieved through cooperative
neural processing. Multi-electrode recording and functio-
nal imaging are key technologies to enable us to study
network mechanisms of cognition and their breakdown
in disease. Analytically, cross correlation functions and
ordinary coherence spectra remain the main statistics for
assessing interactions among the monitored nodes of a
neuronal network. As the hypotheses concerning the role
of neural interactions in cognitive paradigms become
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more elaborate, it is felt that being able to evaluate the direction of neural interactions in neural
networks holds the key to teasing out the functional significance of different nodes in these
networks. Recently, there has been considerable interest in a class of techniques called Granger
causality to provide a statistically principled way to measure directional influences [1–20].

Typically, Granger causality is inferred parametrically through autoregressive models of time-
series data. For a multivariate dataset recorded from a set of brain areas or neuronal ensembles,
depending on the problem, one might be interested in different subsets of the recorded areas.
According to the current estimation framework, for each subset, one conducts a separate model
fitting process. Such an approach may introduce unwanted variability and uncertainty as the
model parameters (e.g. model order) are often different for different subsets of data channels. In
addition, our past work [16] has shown that Geweke’s method for conditional Granger causality
estimation, while theoretically sound, can give erroneous results in practice, because quantities
assumed to be the same in different autoregressive models are not always the same when finite
datasets and inevitable estimation errors are taken into account.

The goal of this paper is to provide a multivariate framework for estimating Granger
causality that overcomes these shortcomings. We begin by reviewing the essential ideas of
Granger causality with special emphasis on its spectral representation. The current estimation
framework is then extended to a multivariate formalism based on the technique of spectral
density matrix factorization. Numerical examples and experimental data are included to illustrate
the theoretical ideas.

2. Material and methods

(a) Pairwise analysis
Consider two simultaneously recorded stationary time series. According to Wiener [21], if the
prediction of one time series is improved by incorporating the knowledge of a second one,
then the second series is said to have a causal influence on the first. Wiener’s proposal lacks
the machinery for practical implementation. Granger later formalized the prediction idea in
the context of linear regression models [22]. Specifically, if the variance of the autoregressive
prediction error of the first time series at the present time is reduced by inclusion of past
measurements from the second time series, then the second time series is said to have a
causal influence on the first one. Reversing the role of the two time series, one can consider
the causal influence in the opposite direction. The interaction discovered this way could be
either reciprocal or unidirectional. Below we first give a brief introduction to the mathematical
formulation of Granger causality based on the more detailed exposition in [2], and then proceed
to define the multivariate estimation framework.

Let the two stationary time series be denoted by Xt and Yt. Individually, Xt and Yt can each be
represented by the following autoregressive models:

Xt =
∞∑

j=1

a1jXt−j + ε1t, var(ε1t) = Σ1 (2.1)

and

Yt =
∞∑

j=1

d1jYt−j + η1t, var(η1t) = Γ1. (2.2)

Jointly, they are represented as the following bivariate autoregressive model:

Xt =
∞∑

j=1

a2jXt−j +
∞∑

j=1

b2jYt−j + ε2t

and Yt =
∞∑

j=1

c2jXt−j +
∞∑

j=1

d2jYt−j + η2t,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)



3

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110610

......................................................

where ε2t and η2t are uncorrelated over time, and their contemporaneous covariance matrix is

Σ =
(

Σ2 γ2
γ2 Γ2

)
. (2.4)

The total interdependence between Xt and Yt can be computed as

FX,Y = ln
Σ1Γ1

|Σ | , (2.5)

where | · | denotes the determinant of the enclosed matrix. When Xt and Yt are independent,
FX,Y = 0. When this total interdependence is non-zero, Geweke [23] showed that FX,Y can be
decomposed into three components,

FX,Y = FX→Y + FY→X + FX·Y, (2.6)

where

FY→X = ln
Σ1

Σ2
(2.7)

and

FX→Y = ln
Γ1

Γ2
(2.8)

are the linear causality from Yt to Xt and from Xt to Yt due to their interactions, and

FX·Y = ln
Σ2Γ2

|Σ | (2.9)

is the instantaneous causality due to possibly common input exogenous to the bivariate
time-series system Xt and Yt.

After Fourier transforming the bivariate autoregressive representation (2.3) and applying
proper ensemble average, we get the spectral density matrix

S(ω) = H(ω)ΣH∗(ω), (2.10)

where the asterisk (∗) denotes the complex conjugate and matrix transpose, and H(ω) is the
transfer function matrix.

The spectral density matrix S(ω) contains cross-spectra (off-diagonal elements) and auto-
spectra (diagonal elements). If Xt and Yt are independent, then the cross-spectra are zero and
the determinant |S(ω)| equals the product of two auto-spectra. This observation motivates the
spectral domain representation of total interdependence between Xt and Yt as

fX,Y(ω) = ln
Sxx(ω)Syy(ω)

|S(ω)| . (2.11)

It is easy to see that this representation of interdependence is related to coherence by the following
relation:

fX,Y(ω) = − ln(1 − C(ω)), (2.12)

where the coherence function is defined as C(ω) = |Sxy(ω)|2/Sxx(ω)Syy(ω).
Geweke [23] proved that the two directional measures can be computed explicitly according to

fY→X(ω) = ln
Sxx(ω)

H̃xx(ω)Σ2H̃∗
xx(ω)

(2.13)

and

fX→Y(ω) = ln
Syy(ω)

H̃yy(ω)Γ2H̃∗
yy(ω)

, (2.14)

where H̃xx(ω) = Hxx(ω) + (γ2/Σ2)Hxy(ω) and H̃yy(ω) = Hyy(ω) + (γ2/Γ2)Hyx(ω).
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By defining the instantaneous causality spectra as

fX·Y(ω) = ln
(H̃xx(ω)Σ2H̃∗

xx(ω))(H̃yy(ω)Γ2H̃∗
yy(ω))

|S(ω)| , (2.15)

we achieve a decomposition of the total interdependence in the spectral domain that is analogous
to equation (2.6) in the time domain, namely,

fX,Y(ω) = fX→Y(ω) + fY→X(ω) + fX·Y(ω). (2.16)

It is worth noting that the spectral instantaneous causality could become negative for some
frequencies in certain situations and may not have a readily interpretable physical meaning on
a frequency-by-frequency basis.

Under general conditions, the spectral measures integrated over the frequency yield their time-
domain counterparts [23],

FX,Y = 1
2π

∫π

−π

fX,Y(ω) dω,

FY→X = 1
2π

∫π

−π

fY→X(ω) dω,

FX→Y = 1
2π

∫π

−π

fX→Y(ω) dω

and FX·Y = 1
2π

∫π

−π

fX·Y(ω) dω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.17)

It is expected that the conditions necessary for these equalities to hold are met in practical
applications.

(b) Conditional Granger causality
When there are three or more time series, a pairwise analysis can be performed using the
above bivariate approach. Such a pairwise approach may lead to ambiguous results in terms of
differentiating direct from mediated causal influences [2,16,24]. A conditional Granger causality
analysis can help resolve the ambiguity. Consider three time series Xt, Yt and Zt. Suppose that a
pairwise analysis reveals a causal influence from Yt to Xt. The following procedure determines
whether this influence has a direct component or is mediated entirely by Zt.

Let the joint autoregressive representation of series Xt and Zt be

Xt =
∞∑

j=1

a3jXt−j +
∞∑

j=1

b3jZt−j + ε3t

and Zt =
∞∑

j=1

c3jXt−j +
∞∑

j=1

d3jZt−j + ζ3t,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.18)

where the covariance matrix of the noise vector is Σ3 =
(

Σ3 γ3
γ3 Γ3

)
. Next, consider the joint

autoregressive representation of all three time series Xt, Yt and Zt,

Xt =
∞∑

j=1

a4jXt−j +
∞∑

j=1

b4jYt−j +
∞∑

j=1

c4jZt−j + ε4t,

Yt =
∞∑

j=1

d4jXt−j +
∞∑

j=1

e4jYt−j +
∞∑

j=1

g4jZt−j + η4t

and Zt =
∞∑

j=1

u4jXt−j +
∞∑

j=1

v4jYt−j +
∞∑

j=1

w4jZt−j + ζ4t,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.19)
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where the covariance matrix of the noise vector is Σ4 =

⎛
⎜⎝Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz

⎞
⎟⎠. From these two sets

of equations (2.18) and (2.19), the Granger causality from Yt to Xt conditional on Zt is defined as

FY→X|Z = ln
Σ3

Σxx
. (2.20)

If FY→X|Z > 0 in some suitable statistical sense, then the inclusion of Yt results in improved
prediction of Xt, indicating that Yt → Xt has a direct component. In contrast, if FY→X|Z = 0, the
influence Yt → Xt is said to be entirely mediated by Zt. Conditional measures such as FY→Z|X and
FX→Z|Y can be similarly defined.

The time-domain conditional Granger causality can be decomposed into its frequency
component

fY→X|Z(ω) = ln
Σ3∣∣Qxx(ω)ΣxxQ∗

xx(ω)
∣∣ , (2.21)

where

Q(ω) =

⎛
⎜⎝Qxx(ω) Qxy(ω) Qxz(ω)

Qyx(ω) Qyy(ω) Qyz(ω)
Qzx(ω) Qzy(ω) Qzz(ω)

⎞
⎟⎠=

⎛
⎜⎝Gxx(ω) 0 Gxz(ω)

0 1 0
Gzx(ω) 0 Gzz(ω)

⎞
⎟⎠

−1 ⎛⎜⎝Hxx(ω) Hxy(ω) Hxz(ω)
Hyx(ω) Hyy(ω) Hyz(ω)
Hzx(ω) Hzy(ω) Hzz(ω)

⎞
⎟⎠ .

The quantities involved in the above expression come from G(ω) and H(ω), which are the transfer
function matrices for the normalized bivariate autoregressive model involving Xt and Zt, and the
normalized trivariate model involving Xt, Yt and Zt, respectively. The details are omitted here.
See below or refer to [24] for the derivation of the normalization processes that make all the noise
terms uncorrelated.

(c) Multivariate estimation of Granger causality: basic idea
The central quantity of interest in traditional multivariate spectral analysis is the spectral density
matrix S(ω), from which one can derive statistics, such as auto-power, coherence, multiple
coherence and partial coherence [25]. Here, we show that, with the help of spectral density
matrix factorization, one can develop a multivariate Granger causality approach centred on the
spectral density matrix. Specifically, for a multi-channel set of time-series recordings, a single
autoregressive model is fit to all the available data to yield the overall spectral density matrix. For
any subsystem, Granger causality analysis, pairwise or conditional, can be performed by using
elements from the overall spectral density matrix without having to resort to additional model
fitting. This approach offers benefits both theoretically and in practical terms.

(d) Spectral density matrix factorization
For a given spectral density matrix S(ω) satisfying

∫π
−π log |S(ω)|dω > −∞, the spectral

density matrix factorization theorem ensures that it can be decomposed into a set of unique
minimum-phase functions [25,26]

S(ω) = Ψ (ω)Ψ ∗(ω), (2.22)

where Ψ is the minimum-phase, spectral density matrix (left) factor that has a Fourier series
expansion in non-negative powers of eiω : Ψ (ω) =∑∞

k=0 Rkeikω, and Ψ ∗ is its complex conjugate
transpose. From the minimum-phase spectral factor Ψ , the noise covariance matrix Σ and
minimum-phase transfer function H(ω) can be obtained as

Σ = R0RT
0 (2.23)
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and

H(ω) = Ψ (ω)R−1
0 , (2.24)

such that Ψ Ψ ∗ = HΣH∗. Here, T stands for matrix transposition.

(e) Multivariate estimation of Granger causality: formulation
Consider a p-dimensional multivariate stochastic process, X(t) = [X1(t), X2(t), · · · , Xp(t)]T, where
p is the number of recording channels. Parametrically, the spectral density matrix of the process
can be computed by estimating its multivariate autoregressive (MVAR) representation⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X1(t)
X2(t)

...
Xp(t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
∞∑

k=1

⎡
⎢⎢⎢⎢⎣

A11(k) A12(k) · · · A1p(k)
A21(k) A22(k) · · · A2p(k)

...
... · · ·

...
Ap1(k) Ap2(k) · · · App(k)

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1(t − k)
X2(t − k)

...
Xp(t − k)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε1(t)
ε2(t)

...
εp(t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (2.25)

where Aij(k) is the coefficient at kth lag, and εi(t) is a white noise residual with zero mean. After
Fourier transforming, the above equations and suitable ensemble averaging, one gets the overall
spectral density matrix as

S(ω) = H(ω)ΣH∗(ω), (2.26)

where H(ω) = (I −∑∞
k=1 A(k)e−ikω)−1 and Σ is the covariance matrix of the noise vector. Note that

for real data, the above infinite series needs to be truncated to a finite order. For discussion on the
determination of model order and additional references, see [2].

A well-recorded multivariate dataset from a well-designed experiment can be used to address
a myriad of problems. If a specific problem calls for the analysis of a subset of recording channels,
suitable elements of the overall spectral matrix can be selected to form the spectral matrix for
that problem. Factorizing this spectral density matrix according to equations (2.22)–(2.24), and
combining the outcome with Geweke’s Granger formulation outlined earlier, one can examine
the causal relationship among this subset of channels. The key here is that this process can be
repeated for different subsets of channels without having to fit autoregressive models for each
subset. This is one benefit of the multivariate approach for the estimation of the Granger causality.

We illustrate the approach by considering the problem where the direct causal influence from
the jth channel to the ith channel needs to be evaluated within a subset of channels that includes
the ith and the jth channels and another w channels (0≤ w ≤ p − 2). First, select the suitable
elements from the overall spectral density matrix to form the specific spectral density matrix for
the problem,




S(ω) =

⎡
⎢⎣ Sii(ω) Sij(ω) Siw(ω)

Sji(ω) Sjj(ω) Sjw(ω)
Swi(ω) Swj(ω) Sww(ω)

⎤
⎥⎦. (2.27)

Factorization of this spectral density matrix gives the unique decomposition




S(ω) = 


H(ω)



Σ



H∗(ω), (2.28)

where



H(ω) is the transfer function matrix and



Σ the noise covariance matrix for the subsystem
of interest. Second, consider another spectral density matrix

S̄(ω) =
[

Sii(ω) Siw(ω)
Swi(ω) Sww(ω)

]
. (2.29)

Applying the factorization technique again, we get the decomposition

S̄(ω) = G(ω)ΩG∗(ω), (2.30)
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where the transfer function is G(ω) =
[

Gii(ω) Giw(ω)
Gwi(ω) Gww(ω)

]
and the noise covariance matrix Ω .

These factorized quantities can be viewed as coming from equivalent autoregressive
representations of the respective stochastic processes and thus form the foundation for Granger
causality estimation in the spectral domain.

In order to compute conditional Granger causality for the above problem, a key step is
Geweke’s normalization method by which the noise terms are made independent [24]. For the
model represented in equation (2.28), the following transformation matrix can be used for the
purpose:

P1 =

⎛
⎜⎝ 1 0 0

− 


Σ ji/



Σ ii 1 0
− 


Σwi/



Σ ii 0 I

⎞
⎟⎠
⎛
⎜⎝1 0 0

0 1 0
0 C I

⎞
⎟⎠, (2.31)

where C = −(



Σwj − 


Σwi



Σ ij/



Σ ii)/(



Σ ij − 


Σ ji



Σ ij/



Σ ii). For equation (2.30), the transformation
matrix is

P2 =
(

1 0
−Ωwi/Ωii I

)
. (2.32)

After the transformation, the new transfer function matrices and covariance matrices will be

H̃(ω) = 


H(ω) · P
−1

1 , Σ̃ = P1



ΣPT
1 (2.33)

and

G̃(ω) = G(ω) · P
−1

2 , Ω̃ = P2ΩPT
2 . (2.34)

The direct causal influence from the jth channel to the ith channel can be calculated with the
conditional Granger causality

fj→i|w(ω) = ln
Ωii

Qii(ω)ΣiiQ∗
ii(ω)

, (2.35)

where

Q(ω)=

⎛
⎜⎝Qii(ω) Qij(ω) Qiw(ω)

Qji(ω) Qjj(ω) Qjw(ω)
Qwi(ω) Qwj(ω) Qww(ω)

⎞
⎟⎠=

⎛
⎜⎝ G̃ii(ω) 0 G̃iw(ω)

0 1 0
G̃wi(ω) 0 G̃ww(ω)

⎞
⎟⎠

−1⎛
⎜⎝ H̃ii(ω) H̃ij(ω) H̃iw(ω)

H̃ji(ω) H̃jj(ω) H̃jw(ω)
H̃wi(ω) H̃wj(ω) H̃ww(ω)

⎞
⎟⎠.

It is worth noting that the pairwise Granger causality from the jth channel to the ith channel can
be obtained by letting w = 0 in the above expressions. In addition, when w = p − 2, the above
conditional Granger causality takes into account all the information in the recorded dataset.

(f) Non-parametric Granger causality analysis
Thus far, our theoretical development assumes that autoregressive models have been obtained
from the time-series data. It is straightforward to see that the spectral density matrix factorization
approach also enables the inclusion of Granger causality as part of the non-parametric spectral
analysis framework where the spectral density matrix can be estimated via Fourier or wavelet
transforms [27,28]. Below we demonstrate this approach.

Let X(t) = [X1(t), X2(t), · · · , Xp(t)]T denote a p-dimensional multivariate stochastic process
where p is the number of recording channels. Now suppose that we observe M realizations
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or trials of the above process with each realization being of length n: {xr(t)}(r = 1, . . . , p; t =
1, . . . , n). For a single trial, the multi-taper cross-spectrum estimator between channels l and m at
frequency ω is

Slm(ω) = Δ

K

K∑
k=1

{ n∑
s=1

ws(k)xlse
−iωsΔ

}{ n∑
t=1

wt(k)xmteiωtΔ

}
, (2.36)

where w(k) (k = 1, 2, . . . , K) are K orthogonal tapers of length n [29,30] and Δ is the sampling
interval. For l = m, we obtain the auto-spectrum. Averaging the cross-spectrum estimators for
all pairs of channels over individual realizations or trials leads to the spectral density matrix

S(ω) =

⎛
⎜⎝S11(ω) . . . S1p(ω)

. . . . . . . . .

Sp1(ω) . . . Spp(ω)

⎞
⎟⎠ .

The diagonal terms represent auto-spectra, whereas the off-diagonal terms cross-spectra. Once
the spectral density matrix is available, the subsequent multivariate analysis of Granger causality
follows the same procedure given in equations (2.27)–(2.35).

(g) Experimental data
Detailed descriptions of the experimental procedure and related data analysis can be found
in [10]. Briefly, functional magnetic resonance imaging (fMRI) data were recorded from
12 healthy subjects performing a visual spatial attention experiment, using a 3T Siemens
Magnetom Trio MRI system. There were 12 attention blocks and 12 passive view blocks
in each experiment. Data preprocessing, including slice timing, realignment, coregistration,
normalization and spatial smoothing, and global scaling, were performed using SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). Regions of interest (ROIs) were obtained by contrasting
attention blocks against passive view blocks. Three ROIs were selected for this work: dorsal
anterior cingulated cortex (dACC), dorsal lateral prefrontal cortex (dLPFC) and right temporo-
parietal junction (rTPJ). These regions are known to be important in attention and in cognitive
control [31,32]. From the three ROIs, fMRI time series were extracted and subjected to conditional
Granger causality analysis. Specifically, FdACC→rTPJ|dLPFC and FdLPFC→rTPJ|dACC were estimated
and correlated with performance accuracy to assess their functional significance.

3. Results

(a) Simulations
We first use numerical examples to illustrate the application of Granger causality. Simulation
data were generated by coupled autoregressive models of varying network complexity. The focus
is on the multivariate approach and on the ability of conditional Granger causality to determine
unequivocally the built-in network connectivity from time-series data.

(i) Example 1

Consider a five-node oscillatory network. The network configuration is shown in figure 1a. The
mathematical equations are

x1(t) = 0.55x1(t − 1) − 0.7x1(t − 2) + ε1(t),

x2(t) = 0.56x2(t − 1) − 0.75x2(t − 2) + 0.6x1(t − 1) + ε2(t),

x3(t) = 0.57x3(t − 1) − 0.8x3(t − 2) + 0.4x1(t − 2) + ε3(t),

x4(t) = 0.58x4(t − 1) − 0.85x4(t − 2) + 0.5x1(t − 3) + ε4(t)

and x5(t) = 0.59x5(t − 1) − 0.9x5(t − 2) + 0.8x1(t − 4) + ε5(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

http://www.fil.ion.ucl.ac.uk/spm/
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Figure 1. Simulation example 1. (a) Schematic of the network topology and (b) power and conditional Granger causality results
from a multivariate parametric analysis.

where ε1(t), ε2(t), ε3(t), ε4(t) and ε5(t) are independent Gaussian white noise processes with zero
means and variances σ 2

1 = 1.0, σ 2
2 = 2.0, σ 2

3 = 0.8, σ 2
4 = 1.0, σ 2

5 = 1.5, respectively. The intrinsic
dynamics of each node is chosen in such a way that they all exhibit a prominent spectral peak at
the same frequency. From construction, the signal from the first node (the source) is propagated
to the other four nodes (the targets) with differential time delays. A pairwise analysis will reveal
non-zero Granger causality from the nodes that receive an early input from the source node to
the nodes that receive a late input (e.g. node 3 →node 4). Clearly, this does not depict the true
connectivity of this dynamical network. Below it will be shown that conditional Granger causality
helps to resolve this problem.

A dataset of 500 realizations each with 50 time points was generated. The sampling rate is
taken to be 200 Hz. Assuming no knowledge of the model equations (3.1), we fitted a fifth-order
MVAR model to the simulated dataset and calculated power, coherence and conditional Granger
causality spectra from it. In figure 1b, power spectra for all five nodes are shown in panels with
the same row and column index, where a spectra peak at around 40 Hz is seen. For the (I, J)
panel, where I is the row index that is not equal to the column index J, the conditional Granger
causality is from the column index to the row index, namely, J → I. For example, the bottom-
left panel is the conditional Granger causality from node 1 to node 5. Only the first column has
non-zero conditional Granger causality values, reflecting the driving influence emanating from
node 1. The conditional Granger causality among other pairs of nodes is uniformly zero. This
corresponds precisely to the structural connectivity pattern in figure 1a. One noteworthy feature
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about figure 1b is the consistency of spectral features (i.e. peak frequency) across both power and
Granger causality spectra. This is important since it allows us to link local dynamics with that of
the global network.

(ii) Example 2

A more complex network involving the same five nodes is considered here,

x1(t) = 0.55x1(t − 1) − 0.7x1(t − 2) + ε1(t),

x2(t) = 0.56x2(t − 1) − 0.75x2(t − 2) + 0.6x1(t − 1) + ε2(t),

x3(t) = 0.57x3(t − 1) − 0.8x3(t − 2) + 0.4x1(t − 2) − 0.5x4(t − 1) + ε3(t),

x4(t) = 0.58x4(t − 1) − 0.85x4(t − 2) + 0.5x1(t − 3) + ε4(t)

and x5(t) = 0.59x5(t − 1) − 0.9x5(t − 2) + 0.3x1(t − 4) − 0.5x4(t − 1) + ε5(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where the noise covariance matrix is

Σ =

⎛
⎜⎜⎜⎜⎜⎝

1.0 0.5 0.5 0.5 0.5
0.5 2.0 0.5 0.5 0.5
0.5 0.5 0.8 0.5 0.5
0.5 0.5 0.5 1.0 0.5
0.5 0.5 0.5 0.5 1.5

⎞
⎟⎟⎟⎟⎟⎠ . (3.3)

As can be seen, one of the four nodes (node 4) receiving inputs from the source node also transmits
information to its nearest neighbours (figure 2a). In addition, the noise terms at different nodes
are correlated, giving rise to non-zero instantaneous causality [24].

The simulated dataset consists of 200 trials of 500 points each. First, the parametric approach
was used. A fifth-order MVAR was fitted to the dataset. The power spectra and conditional
Granger causality spectra are shown in figure 2b. Clearly, the structural pattern of this network is
correctly recovered by the multivariate Granger causality analysis.

Next, we applied the non-parametric approach described earlier to this example. The power
spectra and conditional Granger causality spectra computed with this non-parametric approach
are shown in figure 2c. It is seen that this non-parametric approach also correctly recovers the
same network connectivity pattern.

(b) Experiment
The 12 attention blocks were rank ordered according to performance accuracy and segmented
into 10 groups [10]. Both FdACC→rTPJ|dLPFC and FdLPFC→rTPJ|dACC were calculated for each
group, averaged across subjects and plotted as a function of mean group accuracy. The
results are shown in figure 3a,b. It can be seen that while FdACC→rTPJ|dLPFC is positively
correlated with performance accuracy (Spearman correlation, R = 0.82, p < 0.01), suggesting that
FdACC→rTPJ|dLPFC may represent top-down cognitive control, FdLPFC→rIPS|dACC is not correlated
with performance accuracy (R = 0.14, p = 0.71).

4. Discussions
Multi-electrode neural recordings and functional imaging are becoming commonplace. Such
multivariate data promise unparalleled insights into how different areas of the brain work
together to achieve thought and behaviour and how such coordinated brain activity breaks
down in disease. While the accumulation of data continues at an astonishing rate, how to
effectively analyse these data to extract information about the workings of the brain remains
a key challenge. Recent years have witnessed the rapid growth in the applications of various
directional measures to multi-channel neural data. The fundamental concept underlying these
measures is that of Granger causality. In §2, we presented a brief introduction to this concept
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Figure 2. Simulation example 2. (a) Schematic of the network topology, (b) power and conditional Granger causality results
from a multivariate parametric analysis and (c) results from a non-parametric analysis.



12

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110610

......................................................

1.5
(a) (b)

R = 0.82
p = 0.0068

F
dA

C
C

Æ
rT

PJ
|d

L
PF

C

F
dL

PF
C

Æ
rT

PJ
|d

A
C

C

R = 0.14
p = 0.711.0

–1 0
accuracy accuracy

1 –1 0 1

0.5

0

–0.5

1.0

0.5

0

–0.5

–1.0

Figure 3. Experimental data: (a,b) conditional Granger causality as a function of performance accuracy.

with emphasis on Geweke’s spectral causality decomposition. For many applications, the
spectral representation is necessary as the experimental recordings are replete with oscillatory
phenomena. The mathematical development leading to pairwise as well as conditional causality
estimations was given in the same section.

Traditionally, Granger causality is estimated via autoregressive models. For multivariate
datasets, one has to fit autoregressive models multiple times if one is interested in analysing
different combinations of network nodes, increasing the likelihood for estimation errors and
model parameter inconsistency. In the proposed formalism, this problem is overcome: a single
autoregressive model is fit to all the data and from the overall spectral density matrix, one can
select elements corresponding to the subset of channels of interest to form a new spectral density
matrix. Since any spectral density matrix can be uniquely factorized into the transfer function and
the covariance matrix of the corresponding autoregressive model, Granger causality analysis can
be carried out on the subsystem without having to go through a new model fitting process. This
spectral density matrix factorization based approach also opens the possibility to extend non-
parametric spectral analysis to include Granger causality where the spectral density matrix can
be obtained from Fourier or wavelet transforms of data [27,28]. The mathematical expressions for
estimating multivariate Granger causality between two channels conditioned on another set of
channels were developed in detail.

In practical applications, there is often a need to assess the statistical significance of pairwise
and conditional Granger causality values. Past work has employed the random permutation
approach for this purpose [2,3,14]. Other methods based on the idea of surrogate data [33,34] or
based on the F-test [35] have also been proposed. The functional significance of Granger causality
values can be assessed by correlating them with experimental conditions [10].

The effectiveness of Granger causality and the proposed estimation framework was first
illustrated on numerical simulations using coupled autoregressive models of varying network
complexity. The network configuration identified using our approach is found to agree with the
built-in connectivity.

For experimental demonstration, we chose fMRI data recorded from subjects performing a
visual spatial attention task [10]. Three ROIs were considered: dACC, right dLPFC and rTPJ. rTPJ
is a posterior component of the ventral attention network [31]. Both dACC and dLPFC are thought
to be important in maintaining task set and in exerting top-down control over downstream
sensorimotor processing [31,32,36]. The exact manner with which the control is achieved is,
however, not clear. Our analysis showed that causal influences from dACC to rTPJ conditioned
on dLPFC are behaviour enhancing, while causal influences from dLPFC to rTPJ conditioned on
dACC have no effects on behaviour. These results appear to suggest that for the current visual
spatial attention task, dACC is more important in regulating rTPJ to facilitate task performance.
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