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1. Introduction

The aim of this paper is to propose a simple Granger (1969) non
causality test in heterogeneous panel data models with fixed (as
opposed to time-varying) coefficients. In the framework of a linear
autoregressive data generating process, the extension of standard
causality tests to panel data implies testing cross sectional linear
restrictions on the coefficients of the model. As usual, the use of cross-
sectional information may extend the information set on causality from
a given variable to another. Indeed, in many economic matters it is
highly probable that if a causal relationship exists for a country or an in-
dividual, it also exists for some other countries or individuals. In this case,
the causality can bemore efficiently tested in a panel contextwithNT ob-
servations. However, the use of cross-sectional information involves tak-
ing into account the heterogeneity across individuals in the definition of
the causal relationship. As discussed in Granger (2003), the usual causal-
ity test in panel asks “if some variable, say Xt causes another variable, say
Yt, everywhere in the panel [..]. This is rather a strong null hypothesis.”
Consequently, we propose here a simple Granger non causality test for
heterogeneous panel datamodels. This test allows us to take into account
both dimensions of the heterogeneity present in this context: the hetero-
geneity of the causal relationships and the heterogeneity of the regres-
sion model used so as to test for Granger causality.
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Let us consider the standard implication of Granger causality.1 For
each individual, we say that variable x causes y if we are able to better
predict y using all available information than in the case where the in-
formation set used does not include x (Granger, 1969). If x and y are
observed on N individuals, gaging the presence of causality comes
down to determining the optimal information set used to forecast y.
Several solutions can be adopted. The most general one consists in
testing the causality from variable x observed for the ith individual to
the variable y observed for the jth individual, with j= i or j≠ i. The sec-
ond solution ismore restrictive and derives directly from the time series
analysis. It implies testing the causal relationship for a given individual.
The cross-sectional information is then used only to improve the spec-
ification of the model and the power of tests as in Holtz-Eakin et al.
(1988). The baseline idea is to assume that there exists aminimal statis-
tical representation which is common to x and y at least for a subgroup
of individuals. In this paper we use such a model. In this case, causality
tests can be implemented and considered as a natural extension of the
standard time series tests in the cross-sectional dimension.

However, one of the main issues specific to panel data models re-
fers to the specification of the heterogeneity between cross-section
units. In this Granger causality context, the heterogeneity has two
main dimensions. We hence distinguish between the heterogeneity
of the regression model and that of the causal relationship from x to y.
Indeed, the model considered may be different from an individual to
1 The definition of Granger causality is based on the “two precepts that the cause pre-
ceded the effect and the causal series had information about the effect that was not con-
tained in any other series according to the conditional distributions” (Granger, 2003).
The fact that the cause produces superior forecasts of the effect is just an implication
of these statements. However, it does provide suitable post sample tests, as discussed
in Granger (1980).
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another,whereas there is a causal relationship from x to y for all individ-
uals. The simplest form of regression model heterogeneity takes the
form of slope parameters' heterogeneity. More precisely, in a p order
linear vectorial autoregressive model, we define four kinds of causal re-
lationships. The first one, denoted Homogeneous Non Causality (HNC)
hypothesis, implies that no individual causality relationship from x to
y exists. The symmetric case is the Homogeneous Causality (HC)
hypothesis, which occurs when N causality relationships exist, and
when the individual predictors of y obtained conditionally on the past
values of y and x are identical. The dynamics of y is then absolutely iden-
tical for all the individuals in the sample. The last two cases correspond
to heterogeneous processes. Under the HEterogeneous Causality (HEC)
hypothesis, we assume that N causality relationships exist, as in the
HC case, but the dynamics of y is heterogeneous. Note, however, that
the heterogeneity does not affect the causality result. Finally, under
the HEterogeneous Non Causality (HENC) hypothesis, we assume that
there is a causal relationship from x to y for a subgroup of individuals.
Symmetrically, there is at least one and atmostN-1 non causal relation-
ships in the model. It is clear that in this case the heterogeneity deals
with causality from x to y.

To sum up, under the HNC hypothesis, no individual causality from
x to y occurs. On the contrary, in the HC and HEC cases, there is a
causality relationship for each individual of the sample. To be more
precise, in the HC case, the same regression model is valid (identical
parameters' estimators) for all individuals, whereas this is not the
case for the HEC hypothesis. Finally, under the HENC hypothesis, the
causality relationship is heterogeneous since the variable x causes y
only for a subgroup of N−N1 units.

In this context, we propose a simple test of the Homogeneous Non
Causality (HNC) hypothesis. Under the null hypothesis, there is no
causal relationship for any of the units of the panel. Our contribution
is three-fold. First, we specify the alternative as the HENC hypothesis.
To put it differently, we do not test the HNC hypothesis against the HC
hypothesis as Holtz-Eakin et al. (1988), which, as previously dis-
cussed, is a strong assumption. Indeed, we allow for two subgroups
of cross-section units: the first one is characterized by causal relation-
ships from x to y, but it does not necessarily rely on the same regression
model, whereas there is no causal relationship from x to y in the case of
the second subgroup. Second, we consider a heterogeneous panel data
model with fixed coefficients (in time). It follows that both under the
null and the alternative hypothesis the unconstrained parameters may
be different from one individual to another. The dynamics of the vari-
ablesmay be thus heterogeneous across the cross-section units, regard-
less of the existence (or not) of causal relationships. Our framework
hence relies on less strong assumptions than the ones in Holtz-Eakin
et al. (1988), who assume the homogeneity of cross-section units, i.e.
that the panel vector-autoregressive regression model is valid for all
the individuals in the panel. Third, we adapt the Granger causality
test-statistic to the case of unbalanced panels and/or different lag orders
in the autoregressive process. Most importantly, we propose a block
bootstrap procedure to correct the empirical critical values of panel
Granger causality tests so as to account for cross-sectional dependence.
To our knowledge, these issues have not been tackled before in this
context.

Following the literature devoted to panel unit root tests in hetero-
geneous panels, and particularly Im et al. (2003), we propose a test
statistic based on averaging standard individual Wald statistics of
Granger non causality tests.2 Under the assumption of cross-section
independence (as used in first generation panel unit root tests), we
provide different results. First, this statistic is shown to converge
sequentially in distribution to a standard normal variate when the
time dimension T tends to infinity, followed by the individual dimen-
sion N. Second, for a fixed T sample the semi-asymptotic distribution
2 The idea of this test was first exposed at the LIIIe annual congress of the French
Economic Association (Hurlin, 2005).
of the average statistic is characterized. In this case, individual Wald
statistics do not have a standard chi-squared distribution. However,
under very general setting, it is shown that individual Wald statistics
are independently distributed with finite second order moments. For
a fixed T, the Lyapunov central limit theorem is sufficient to establish the
distribution of the standardized average Wald statistic when N tends to
infinity. The first twomoments of this normal semi-asymptotic distribu-
tion correspond to the empirical mean of the corresponding theoretical
moments of the individual Wald statistics. The issue is then to propose
an evaluation of the first two moments of standard Wald statistics for
small T samples. A first solution relies on Monte-Carlo or Bootstrap
simulations. A second one consists in using an approximation of these
moments based on the exact moments of the ratio of quadratic forms
in normal variables derived from Magnus (1986) theorem for a fixed T
sample, with T>5+2K. Given these approximations, we propose a
second standardized average Wald statistic to test the HNC hypothesis
in short T sample. Then, contrary to Kónya (2006), our testing procedure
does not require bootstrap critical values generated by simulations.
However, a block bootstrap simulation approach similar to theirs is
adapted to our framework (group mean Wald-statistic) so as to take
into account cross-sectional dependencies.

The finite sample properties of our test statistics are examined
using Monte-Carlo methods. The simulation results clearly show
that our panel based tests have very good properties even in samples
with very small values of T and N. The size of our standardized statis-
tic based on the semi-asymptotic moments is reasonably close to the
nominal size for all the values of T and N considered. Besides, the
power of our panel test statistic substantially exceeds that of Granger
non Causality tests based on single time series in all experiments and
in particular for very small values of T, e.g. T=10, provided that there
are at least a few cross-section units in the panel (e.g. N=5). Further-
more, approximated critical values are proposed for finite T and N
samples, as well as a block-bootstrap procedure to compute empirical
critical values when taking into account cross-section dependence.

The rest of the paper is organized as follows. Section 2 is devoted
to the definition of the Granger causality test in heterogeneous panel
data models. Section 3 sets out the asymptotic distribution of the
average Wald statistic. Section 4 derives the semi-asymptotic distri-
bution for fixed T sample and Section 5 presents the main results
obtained fromMonte Carlo experiments. Section 6 extends the results
to a fixed N sample and discusses the case with cross-sectional de-
pendence as well as the unbalanced panel framework. The last section
provides some concluding remarks.

2. A non causality test in heterogeneous panel data models

Let us denote by x and y, two stationary variables observed for N
individuals on T periods. For each individual i=1,..,N, at time
t=1,..,T, we consider the following linear model:

yi;t ¼ αi þ
XK
k¼1

γ kð Þ
i yi;t−k þ

XK
k¼1

β kð Þ
i xi;t−k þ εi;t ð1Þ

with K ∈N� and βi=(βi
(1),…,βi

(K))′. For simplicity, the individual
effects αi are supposed to be fixed in the time dimension. Initial condi-
tions (yi,−K,…,yi, 0) and (xi,−K,…,xi, 0) of both individual processes yi, t
and xi, t are given and observable. We assume that lag orders K are
identical for all cross-section units of the panel and the panel is bal-
anced. Besides, we allow the autoregressive parameters γi

(k) and the
regression coefficients slopes βi

(k) to differ across groups. However,
contrary to Weinhold (1996) and Nair-Reichert and Weinhold (2001),
parameters γi

(k) and βi
(k) are constant in time. It is important to note

that our model is not a random coefficient model as in Swamy
(1970): it is a fixed coefficient model with fixed individual effects. In
the sequel, we make the following assumptions.



Table 1
Size and power of panel Granger non-causality tests.

T=10 T=25 T=50 T=100

N Test Size Power Size Power Size Power Size Power

1 Wald 0.09 0.43 0.06 0.62 0.05 0.71 0.05 0.81
5 ZHnc 0.16 0.88 0.07 0.98 0.06 0.99 0.05 0.99

~ZHnc 0.04 0.73 0.04 0.97 0.04 0.99 0.04 0.99
10 ZHnc 0.21 0.98 0.08 0.99 0.06 1.00 0.05 1.00

~ZHnc 0.04 0.91 0.04 0.99 0.04 1.00 0.04 1.00
25 ZHnc 0.31 1.00 0.09 1.00 0.06 1.00 0.05 1.00

~ZHnc 0.04 0.99 0.04 1.00 0.04 1.00 0.04 1.00
50 ZHnc 0.44 1.00 0.11 1.00 0.07 1.00 0.06 1.00

~ZHnc 0.04 1.00 0.04 1.00 0.05 1.00 0.05 1.00

Notes: This table reports the size and power of the Wald statistic based on time series
(N=1), the panel standardized statistic ZN, THnc based on asymptotic moments defined by
Eq. (9) and the panel standardized statistic ~ZHnc

N based on semi-asymptotic moments
defined by Eq. (26). The underlying data are generated by yi, t=αi+γiyi, t−k+βixi, t−k+
εi, t, for i=1,..,N and t=−100,−99,..,T. At each replication, the auto-regressive
parameters γi are drawn from a uniform distribution on ]−1,1[ and the fixed individual
effects αi are generated according to a N(0,1). Individual residuals are N. i.d.(0,σε, i

2 ). The
variance σε, i

2 are generated according to a uniform distribution on [0.5,1.5]. The size
(βi=0, i=1,.,N) and the power of the tests are computed at the 5% nominal level. Under
the alternative (power simulations), βi is different from 0 for all i, i.e. N1=0. The
parameters βi are generated according to a N(0,1). The number of replications is set to
10,000.

Table 3
Size and power of panel non-causality tests: influence of lag order K.

T=10 T=25 T=50 T=100

N Test Size Power Size Power Size Power Size Power

Case A: DGP with K=2, model with K=2
1 Wald 0.13 0.57 0.07 0.81 0.06 0.91 0.05 0.95
5 ZHnc 0.52 0.98 0.37 0.99 0.34 1.00 0.31 1.00

~ZHnc 0.02 0.67 0.04 0.99 0.04 1.00 0.04 1.00
10 ZHnc 0.61 0.99 0.37 1.00 0.36 1.00 0.33 1.00

~ZHnc 0.02 0.89 0.03 1.00 0.05 1.00 0.04 1.00
50 ZHnc 0.92 1.00 0.48 1.00 0.37 1.00 0.34 1.00

~ZHnc 0.03 1.00 0.05 1.00 0.05 1.00 0.05 1.00

Case B: DGP with K=1, model with K=2
1 Wald 0.15 0.40 0.07 0.56 0.06 0.69 0.05 0.77
5 ZHnc 0.52 0.91 0.35 0.98 0.33 0.99 0.32 0.99

~ZHnc 0.02 0.36 0.04 0.95 0.04 0.99 0.04 0.99
10 ZHnc 0.62 0.98 0.38 0.99 0.33 1.00 0.32 1.00

~ZHnc 0.02 0.57 0.04 0.99 0.04 1.00 0.05 1.00
50 ZHnc 0.91 1.00 0.48 1.00 0.37 1.00 0.34 1.00

~ZHnc 0.03 0.99 0.04 1.00 0.05 1.00 0.04 1.00

Notes: This table reports the size and power of the Wald statistic based on time series
(N=1), the panel standardized statistic ZN,T

Hnc based on asymptotic moments defined by
Eq. (9) and the panel standardized statistic ~ZHnc

N based on semi-asymptotic moments
defined by Eq. (26). The underlying data are generated by yi, t=αi+∑k=1

K γi
(k)yi, t−k+

∑k=1
K βi

(k)xi, t−k+εi, t, for i=1,..,N and t=−100,−99,..,T. At each replication, the auto-
regressive parameters γi

(k) are drawn according to a uniform distribution on ]−K,K[
under the constraint that the roots of Γi(z)=∑k=1

K γi
(k)zk lie outside the unit circle. The

fixed individual effects αi are generated according to a N(0,1). Individual residuals are
N. i.d. (0,σε, i

2 ). The variances σε, i
2 are generated according to a uniform distribution on

[0.5,1.5]. In case B, the data are generated by a model with one lag (K=1) whereas the
individual Wald statistics are computed from a model that includes (at wrong) two lags
(K=2). The size (βi=0, i=1,.,N) and the power of the tests are computed at the 5%
nominal level. Under the alternative (power simulations), βi is different from 0 for all i,
i.e. N1=0. The parameters βi are generated according to a N(0,1). The number of
replications is set to 5000.
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Assumption A1. For each cross section unit i=1,..,N, individual
residuals εi, t , ∀ t=1,..,T are independently and normally distributed
with E(εi, t)=0 and finite heterogeneous variances E(εi, t2 )=σε, i

2 .

Assumption A2. Individual residuals εi=(εi, 1,..,εi, T)′, are indepen-
dently distributed across groups. Consequently E(εi, tεj, s)=0, ∀ i≠ j
and ∀(t,s).
Table 2
Power of panel Granger non-causality tests: experiments with heterogeneity in the
causal relationship (n1>0).

N N1 Test T=10 T=25 T=50 T=100

Power of panel HNC tests with n1=0.5
6 3 ZHnc 0.72 0.89 0.96 0.98

~ZHnc 0.48 0.87 0.95 0.98
10 5 ZHnc 0.85 0.97 0.99 0.99

~ZHnc 0.63 0.96 0.99 0.99
20 10 ZHnc 0.97 0.99 0.99 1.00

~ZHnc 0.85 0.99 0.99 1.00
50 25 ZHnc 1.00 1.00 1.00 1.00

~ZHnc 0.99 1.00 1.00 1.00

Power of panel HNC tests with n1=0.9
6 – ZHnc – – – –

~ZHnc – – – –

10 9 ZHnc 0.40 0.48 0.60 0.71
~ZHnc 0.16 0.42 0.58 0.71

20 18 ZHnc 0.58 0.68 0.81 0.90
~ZHnc 0.22 0.60 0.79 0.89

50 45 ZHnc 0.85 0.92 0.97 0.99
~ZHnc 0.38 0.86 0.97 0.99

Notes: This table reports the power of the panel standardized statistic ZN, T
Hnc based on

asymptotic moments defined by Eq. (9) and the panel standardized statistic ~ZHnc
N

based on semi-asymptotic moments defined by Eq. (26). The underlying data are
generated by yi, t=αi+γiyi, t− k+βixi, t− k+εi, t, for i=1,..,N and t=−100,−99,..,T.
At each replication, the auto-regressive parameters γi are drawn according to a
uniform distribution on ]−1,1[ and the fixed individual effects αi are generated
according to a N(0,1). Individual residuals are N. i.d. (0,σε, i

2 ). The variances σε, i
2 are

generated according to a uniform distribution on [0.5,1.5]. The power is computed at
the 5% nominal level. We consider power simulations with heterogeneous causal
relationships. The parameters βi are equal to 0 (non-causality) for i=1,..,N1 and
different from 0 (causality) for i=N1+1,..,N. In this case, βi are generated according
to a N(0,1). The ratio n1=N1/N, with 0≤n1b1, denotes the fraction of cross-section
units for which there is no causality under the alternative.
Assumption A3. Both individual variables xi=(xi, 1,…,xi, T)′ and
yi=(yi, 1,…,yi, T)′, are covariance stationary with E(yi, t2 )b∞ and E(xi,
t
2)b∞. Besides, E(xi, txj, z), E(yi, tyj, z) and E(yi, txj, z) are only function of
the difference t−z, whereas E(xi, t) and E(yi, t) are independent of t.

This simple model with two variables constitutes the basic frame-
work for studying Granger causality in a panel data context. If in a
time series context, the standard causality tests consist in testing
linear restrictions on the vectors βi, in a panel data model one must
be very careful to the issue of heterogeneity between individuals.
The first source of heterogeneity is standard and comes from the
presence of individual effects αi. The second source, which is more
crucial, is related to the heterogeneity of the parameters βi. This
kind of heterogeneity directly affects the paradigmof the representative
agent and hence the conclusions with respect to causality relationships.
It is well known that the estimates of autoregressive parameters βi

obtained under the wrong hypothesis, i.e. βi=βj ∀(i, j), are biased
(see Pesaran and Smith, 1995 for an AR (1) process). Then, if we impose
the homogeneity of coefficients βi, the causality test-statistics can lead
to fallacious inference. Intuitively, the estimate β̂ obtained in an homo-
geneous model will converge to a value close to the average of the true
coefficients βi, and if this mean is itself close to zero, we risk to accept at
wrong the hypothesis of no causality.

Beyond these statistical stakes, it is evident that an homogeneous
specification of the relation between the variables x and y does not
allow to interpret causality relations if at least one individual from
the sample has an economic behavior different from that of the
others. For example, let us assume that there is a causality relation
for a set of N countries, for which the vectors βi are strictly identical.
What conclusions can be drawn if we introduce into the sample a set
of N1 countries for which, in contrast, there is no relation of causality?
Whatever the value of the ratio N/N1 is, the test of the causality
hypothesis is nonsensical.



3 It is also possible to use the standard formula of the Wald statistic by substituting
the term by T. However, several software (as Eviews) use this normalization.
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Given these observations, we propose to test the Homogeneous
Non Causality (HNC) hypothesis by taking into account both the het-
erogeneity of the regression model and that of the causal relation.
Under the alternative we hence allow for a subgroup of individuals
for which there is no causality relation and a subgroup of individuals
for which the variable x Granger causes y. The null hypothesis of
HNC is defined as:

H0 : βi ¼ 0 ∀i ¼ 1; ::N ð2Þ

withβi=(βi
(1),…,βi

(K))′. Additionally, βimay differ across groups under
the alternative (model heterogeneity). We also allow for some, but not
all, of the individual vectors βi to be equal to 0 (non causality assump-
tion). We assume that under H1, there are N1bN individual processes
with no causality from x to y. It follows that our test is not a test of
non-causality assumption against causality from x to y for all the indi-
viduals, as in Holtz-Eakin et al. (1988). It is more general, since we can
observe non causality for some units under the alternative:

H1 : βi ¼ 0 ∀i ¼ 1; ::;N1

βi ≠ 0 ∀i ¼ N1 þ 1;N1 þ 2; ::;N
ð3Þ

where N1 is unknown but satisfies the condition 0≤N1/Nb1. The ratio
N1/N is necessarily inferior to one, since if N1=N there is no causality
for any of the individuals in the panel, which is equivalent to the HNC
null hypothesis. Conversely, when N1=0 there is causality for all the
individuals in the sample. The structure of this test is similar to the
unit root test in heterogeneous panels proposed by Im et al. (2003). In
our context, if the null is accepted the variable x does not Granger
cause the variable y for all the units of the panel. By contrast, if we
assume that theHNC is rejected andN1=0,wehave seen that xGranger
causes y for all the individuals of the panel: in this casewe get an homo-
geneous result as far as causality is concerned. Indeed, the regression
model considered may be not homogeneous, i.e. the estimators of the
parameters differ across groups, but the causality relations are observed
for all individuals. On the contrary, ifN1>0, the causality relationship is
heterogeneous: the regression model and the causality relations are
different from one individual from the sample to another.

In this context, we propose to use the average of individual Wald
statistics associated with the test of the non causality hypothesis for
units i=1,..,N.

Definition. The average statistic WN, T
Hnc associated with the null Homoge-

neous Non Causality (HNC) hypothesis is defined as:

WHnc
N;T ¼ 1

N

XN
i¼1

Wi;T ; ð4Þ

where Wi, T denotes the individual Wald statistics for the ith cross-section
unit corresponding to the individual test H0 :βi=0.

To obtain the general formof this statistic, we stack the observations
for the T periods corresponding to the ith individual's characteristics
into a T elements vector as:

y i
T ;1ð Þ

kð Þ
¼

yi;1−k
:
:

yi;T−k

2
664

3
775 x i

T;1ð Þ

kð Þ
¼

xi;1−k
:
:

xi;T−k

2
664

3
775 ε i

T;1ð Þ

¼
εi;1
:
:

εi;T

2
664

3
775

and we define two (T,K) matrices:

Yi ¼ y 1ð Þ
i : y 2ð Þ

i : … : y Kð Þ
i

h i
and Xi ¼ x 1ð Þ

i : x 2ð Þ
i : … : x Kð Þ

i

h i
:

Let us also denote by Zi the (T,2K+1) matrix Zi=[e :Yi :Xi], where
e denotes a (T,1) unit vector, and by θi=(αi γ′i β′i)′ the vector of
parameters of the model. The test for the HNC hypothesis can now
be expressed as Rθi=0 where R is a (K,2K+1) matrix with R=[0:
IK]. The Wald statistic Wi, T corresponding to the individual test
H0 :βi=0 is defined for each i=1,..,N as:

Wi;T ¼ θ̂ ′i R′ σ̂ 2
i R Z ′iZið Þ−1R′

h i−1
Rθ̂i ¼

θ̂ ′iR′ R Z ′i Zið Þ−1R′
h i−1

Rθ̂i
ε̂ ′i ε̂ i= T−2K−1ð Þ ;

where θ̂i is the estimate of parameter θi obtained under the alterna-
tive hypothesis, and σ̂ 2

i is the estimate of the variance of the residuals.
For a small T sample, the corresponding unbiased estimator3 takes the
form of σ̂ 2

i ¼ ε̂ ′iε̂ i= T−2K−1ð Þ. It is well known that this Wald statis-
tic can also be expressed as a ratio of quadratic forms in normal vari-
ables corresponding to the true population of residuals with:

Wi;T ¼ T−2K−1ð Þ ~ε ′iΦi~ε i
~ε ′iMi~ε i

� �
; i ¼ 1; ::;N ð5Þ

where the (T,1) vector ~ε i ¼ εi=σε;i is normally distributed according
to N(0, IT) under Assumption A1. The (T,T) matrices Φi and Mi are
positive semi definite, symmetric and idempotent

Φi ¼ Zi Z ′i Zið Þ−1R′ R Z ′i Zið Þ−1R′
h i−1

R Z ′i Zið Þ−1Z ′i ð6Þ

Mi ¼ IT−Zi Z ′i Zið Þ−1Z ′i ð7Þ

where IT is the identity matrix of size T. Notice that the matrix Mi

corresponds to the standard projection matrix of the linear regression
analysis.

Our objective now is to determine the distribution of the average
statisticWN,T

Hnc under the null hypothesis of HomogeneousNon Causality.
For that, we first consider the asymptotic case where T and N tend to
infinity, and second we tackle the case where T is fixed.

3. Asymptotic distribution

We propose to derive the asymptotic distribution of the average
statistic WN, T

Hnc under the null hypothesis of non causality. For that,
we consider the case of a sequential convergence, i.e. when T tends
to infinity and then N tends to infinity. This sequential convergence
result can be deduced from the standard convergence result of the
individual Wald statistic Wi, T in a large T sample. In a non dynamic
model, the normality Assumption in A1 would be sufficient to estab-
lish the fact for all T, the Wald statistic has a chi-squared distribution
with K degrees of freedom. But in our dynamic model, this result can
only be achieved asymptotically. Let us consider the expression (5).
Given that under Assumption A1 the least squares estimate θ̂i is con-
vergent, we know that plim ε′iMiεi/(T−2K−1)=σε, i

2 . It implies that:

plim
T→∞

~ε ′iMi~ε i
T−2K−1

¼ plim
1
σ2

ε;i

ε ′iMiεi
T−2K−1

� �
¼ 1:

Then, if the statistic Wi, T has a limiting distribution, it is the same
distribution of the statistics as that resulting from replacing the de-
nominator by its limiting value, that is to say 1. Thus, Wi, T has the
same limiting distribution as ~ε ′iΦi~ε i. Under Assumption A1, the vector
~ε i is normally distributed, i.e. ~ε i∼N 0; ITð Þ. Since Φi is idempotent, the
quadratic form ~ε ′iΦi~ε i is chi-squared distributed with a number of de-
grees of freedom equal to the rank of Φi. The rank of the symmetric
idempotent matrix Φi is equal to its trace, i.e. K (cf. Appendix A).
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Therefore, under the null hypothesis of non causality, each individual
Wald statistic converges to a chi-squared distribution with K degrees
of freedom:

Wi;T →
d

T→∞
χ2 Kð Þ;∀i ¼ 1; ::;N: ð8Þ

In other words, when T tends to infinity, the individual statistics
Wi;T
� �N

i¼1 are identically distributed. They are also independent since
under Assumption A2 the residuals εi and εj are independent for j≠ i.
To sum up, if T tends to infinity individual Wald statistics Wi, T are
i. i.d. with E(Wi, T)=K and V(Wi, T)=2K. Then, the distribution of the
average Wald statistic WN, T

Hnc when T→∞ first and then N→∞, can be
deduced from a standard Lindberg–Levy central limit theorem.

Theorem 1. Under Assumption A2 the individual Wi, T statistics for
i=1,..,N are identically and independently distributed with finite second
order moments as T→∞, and therefore, by Lindberg–Levy central limit
theorem under the HNC null hypothesis, the average statistic WN, T

Hnc

sequentially converges in distribution.

ZHnc
N;T ¼

ffiffiffiffiffiffiffi
N
2K

r
WHnc

N;T−K
� �

→
d

T;N→∞
N 0;1ð Þ ð9Þ

with WHnc
N;T ¼ 1=Nð Þ∑N

i¼1Wi;T , where T,N→∞ denotes the fact that
T→∞ first and then N→∞.

For large N and T samples, if the realization of the standardized
statistic ZN, T

Hnc is superior to the corresponding normal critical value
for a given level of risk, the homogeneous non causality (HNC) hy-
pothesis is rejected. This asymptotic result may be useful in some
macro panels. However, it should be extended to the case where T
and N simultaneously tend to infinity.

4. Fixed T samples and semi-asymptotic distributions

Asymptotically, individual Wald statisticsWi, T converge toward an
identical chi-squared distribution for each i=1,..,N,. Nonetheless, this
convergence result cannot be generalized to any time dimension T,
even if we assume the normality of residuals. We then seek to show
that, for a fixed T dimension, individual Wald statistics have finite sec-
ond order moments even if they do not have the same distribution
and this distribution is not a standard one.

Let us consider the expression (5) of Wi,T under Assumption A1,
which is the ratio of two quadratic forms in a standard normal vector.
Magnus (1986) gives general conditionswhich ensure that the expecta-
tions of a quadratic form in normal variables exist. Let us denote by
E x′Ax=x′Bxð Þs	 


the moments of this ratio when x is a normally
distributed vectorN(0,σ2IT),A is a symmetric (T,T)matrix and B is a pos-
itive semi definite (T,T) matrix of rank r≥1. Besides, let Q be a (T,T−r)
matrix of full column rank T-r such that BQ=0. If r≤T−1, Magnus
(1986) proposed a theorem that identifies three conditions for the exis-
tence of the moments of a quadratic form in normal variables:

(i) If AQ=0, then E x′Ax=x′Bxð Þs	 

exists for all s≥0.

(ii) If AQ≠0 and Q′AQ=0, then E x′Ax=x′Bxð Þs	 

exists for 0≤sbr

and does not exist for s≥ r.
(iii) If Q′AQ≠0, then E x′Ax=x′Bxð Þs	 


exists for 0≤sbr/2 and does
not exist for s≥r/2.

These general conditions are established in the case where matri-
ces A and B are deterministic. In our case, the corresponding matrices
Mi and Φi are stochastic, even though we assume that variables Xi are
deterministic. However, given a fixed T sample, we propose here to
apply these conditions to the corresponding realizations of the two
matrices, denoted mi and ϕi. To be more precise, in our case the
rank of the symmetric idempotent matrix mi is equal to T−2K−1.
Besides, since the matrix mi is the projection matrix associated with
the realization zi of Zi, we have by construction mizi=0, where zi is
of full column rank 2K+1, as T-rank(mi)=2K+1. Then, for a given
realization phii, by construction, the product ϕizi is different from zero

ϕizi ¼ zi z′i zið Þ−1R′ R z′i zið Þ−1R′
h i−1

;where R≠ 0:

Moreover, the product z′iϕizi is also different from zero, since

z′iϕizi ¼ R′ R z′i zið Þ−1R′
h i−1

;where R≠ 0:

Then, Magnus' theorem allows us to establish that E ~ε ′iϕi~ε ið Þ=½
~ε ′imi~ε ið Þ�s exists if 0≤sb rank(mi)/2. We assume that this condition is
also satisfied forWi,T:

E Wi;T

� �sh i
¼ T−2K−1ð ÞsE ~ε ′iΦi~ε i

~ε ′iMi~ε i

� �s� �
exists if 0≤ s b

T−2K−1
2

In particular, given the realizations of Φi and Mi, we can identify
the condition on T which ensures that the second order moments
(s=2) of Wi,T exist.

Proposition 1. For a fixed time dimension T∈N, the second order
moments of the individual Wald statistic Wi, T associated with the test
H0, i :βi=0, exist if and only if:

T > 5þ 2K: ð10Þ

Consequently, individual Wald statistics Wi, T are not necessarily
identically distributed for small T since the matricesΦi andMi are dif-
ferent from an individual to another. Besides, these statistics do not
have a standard distribution as in the previous section. However,
the condition which ensures the existence of second order moments
is the same for all units. Indeed, the second order moments of Wi, T

exist when T>5+2K or equivalently T≥6+2K.
Under the condition of Proposition 1, for a fixed T sample, the non-

causality test-statisticWN,T
Hnc is the average of non identically distributed

variablesWi,T, but with finite second order moments. At the same time,
under Assumption A2, the vectors of residuals εi and εj are independent
for j≠ i. Therefore, individualWald statistics,Wi,T, are also independent
for i=1,..,N. The distribution of the non causality test statisticWN,T

Hnc can
hence be derived by relying on the Lyapunov central limit theorem.

Theorem 2. Under Assumption A2, if T>5+2K the individual statistics
Wi, T are independently but not identically distributed with finite second
order moments ∀ i=1,..,N, and therefore, by Lyapunov central limit the-
orem under the HNC null hypothesis, the average statistic WHNC

b con-
verges. Indeed, if

lim
XN
i¼1

Var Wi;T

� � !−1
2 XN

i¼1

E Wi;T−E Wi;T

� �


 


3� � !1
3

¼ 0

the standardized statistic ZN
Hnc converges in distribution:

ZHnc
N ¼

ffiffiffiffi
N

p
WHnc

N;T−N−1∑N
i¼1 E Wi;T

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−1∑N

i¼1 Var Wi;T

� �r →
d

N→∞
N 0;1ð Þ ð11Þ

with WHnc
N;T ¼ 1=Nð Þ∑N

i¼1Wi;T , where E(Wi, T) and Var(Wi, T) denote the
mean and the variance of the statistic Wi, T defined by Eq. (5).

The decision rule is the same as in the asymptotic case: if the realiza-
tion of the standardized statistic ZN

Hnc is superior to the corresponding
normal critical value for a given level of risk, the homogeneous non cau-
sality (HNC) hypothesis is rejected. For large T, the moments used in
Theorem 2 are expected to converge to E(Wi,T)=K and Var(Wi,T)=
2K since the individual statistics Wi,T converge in distribution to a chi-
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squared distribution with K degrees of freedom. Then, the statistic ZNHnc

converges to ZN,T
Hnc and we find the conditions of Theorem 1. However,

these values of the asymptotic moments can lead to poor test results
when T is small. We should then evaluate the mean and the variance
of the Wald statistic Wi,T, knowing that this statistic does not have a
standard distribution for a fixed T sample.

The issue is now to compute the standardized average statistic ZNHnc.
There are two main approaches to compute the first two moments of
the individual Wald statistics Wi,T. On the one hand, these moments
can be computed via stochastic simulation (Monte Carlo or bootstrap)
of the Wald under the null. In this case, for each cross section unit, it
is necessary to estimate the parameters of the model (γi, σi and αi)
and the parameters βi associated with the exogenous variables xit.
Then, the variable yi is simulated under the null with i. i.d.normal resid-
ual εi with zero means and variance σi

2 (Monte Carlo) or with re-
sampled historical residuals (bootstrap). At each simulation of the pro-
cesses yi and xi the individual Wald statistic Wi,T is computed. Finally,
using the replications of Wi,T, we estimate the first two moments of
the individual test-statistics for each cross-section unit. Denote by ~ZMC

N
the corresponding standardized average statistic. It is obvious that this
method can be time consuming, especially if we consider very large N
panel sets. On the other hand, we propose here an approximation of
E(Wi,T) and Var(Wi,T) based on the results of Magnus (1986). Let us
consider the expression of the Wald statistic Wi,T as a ratio of two
quadratic forms in a standard normal vector under Assumption A1:

Wi;T ¼ T−2K−1ð Þ ~ε ′iΦi~ε i
~ε ′iMi~ε i

� �
ð12Þ

where the (T,1) vector ~ε i ¼ εi=σε;i is distributed according to a N(0, IT)
and the matricesΦi andMi are idempotent and symmetric (and conse-
quently positive semi-definite). For a given T sample, we denote by ϕi

and mi the realizations of the matrices Φi and Mi, respectively. We
hence apply Magnus (1986) theorem to the quadratic forms in a stan-
dard normal vector defined as:

~Wi;T ¼ T−2K−1ð Þ ~ε ′iϕi~ε i
~ε ′imi~ε i

� �
; ð13Þ

where the matrices ϕi and mi are positive semi-definite.

Theorem 3 (Magnus, 1986). Let ~ε i be a normal distributed vector with
E ~ε ið Þ ¼ 0 and E ~ε i~ε ′ið Þ ¼ IT . Let Pi be an orthogonal (T,T) matrix and Λi a
diagonal (T,T) matrix such that

P ′imiPi ¼ Λ i and P ′iPi ¼ IT : ð14Þ

Then, provided that the expectation for s=1,2,3.. exists, we have:

E
~ε ′iϕi~ε i
~ε ′imi~ε i

� �s� �
¼ 1

s−1ð Þ!∑v γs vð Þ � ∫∞
0

ts−1 Δij j∏
s

j¼1
trace Rið Þ½ �nj

( )
dt;

ð15Þ

where the summation is over all (s,1) vectors v=(n1,..,ns) whose
elements nj are nonnegative integers satisfying ∑s

j¼1 jnj ¼ s,

γs vð Þ ¼ s!2s ∏
s

j¼1
nj! 2jð Þnj
h i−1

; ð16Þ

Δi is a diagonal positive definite (T,T) matrix and Ri is a symmetric (T,T)
matrix given by:

Δi ¼ IT þ 2 t Λ ið Þ−1=2 and Ri ¼ Δi Pi′ϕiPi Δi: ð17Þ

In our case, we are interested in the first two moments. For the
first order moment (s=1), there is only one scalar v=n1, which is
equal to one. Then, the quantity γ1(v) is also equal to one. For the sec-
ond order moment (s=2), there are two vectors v=(n1,n2) which
are defined by v1=(0,1) and v2=(2,0), respectively. Consequently,
γ2(v1)=2 and γ2(v2)=1. Given these results, we can compute
the exact two moments corresponding to the statistic ~Wi;T as:

E ~Wi;T

� �
¼ T−2K−1ð Þ � ∫∞

0
Δij j trace Rið Þ dt ð18Þ

E ~Wi;T

� �2� �
¼ T−2K−1ð Þ2

� 2∫∞
0
t Δij jtrace Rið Þ dt þ ∫∞

0
t Δij j trace Rið Þ2 dt;

hn
ð19Þ

where matrices Δi and Ri are defined in Theorem 3. Both quantities |Δi|
and trace (Ri) can be computed analytically in our model given the
properties of these matrices. Since Λi is issued from the orthogonal de-
composition of the idempotent matrix mi with rank(mi)=T−2K−1
(cf. Appendix A), it is a zero matrix except for the first block which is
equal to the T−2K−1 identity matrix (corresponding to the character-
istic roots ofmi which are not null). Then, for a scalar t∈Rþ, the matrix
Δi ¼ IT þ 2 t Λ ið Þ−1=2 can be partitioned as:

Δi
T;Tð Þ

¼
Di tð Þ

T−2K−1;T−2K−1ð Þ
0

T−2K−1;2Kþ1ð Þ
0

2Kþ1;T−2K−1ð Þ
I2Kþ1

2Kþ1;2Kþ1ð Þ

0
@

1
A

where Ip denotes the identitymatrix of size p. The diagonal blockDi(t) is
defined as Di tð Þ ¼ 1þ 2tð Þ−1

2IT−2K−1. Therefore, the determinant of Δi

can be expressed as:

Δij j ¼ 1þ 2tð Þ− T−2K−1
2ð Þ: ð20Þ

Besides, the trace of the matrix Ri can be computed as follows.
Since for any non singular matrices B and C the rank of BAC is equal
to the rank of A, we obtain:

rank Rið Þ ¼ rank Δi P ′iϕiPi Δið Þ ¼ rank P ′iϕiPið Þ

since the matrix Δi is non singular. Using the same transformation,
and given the non singularity of Pi,

rank Rið Þ ¼ rank P ′iϕiPið Þ ¼ rank ϕið Þ:

Finally, the rank of the realizationϕi is equal toK, the rank ofΦi so that

trace Rið Þ ¼ K:

Given these results, the first two moments (Eqs. (18) and (19)) of
the statistic ~Wi;T for a given T sample, based on the realizations ϕi and
mi, can be expressed as:

E ~Wi;T

� �
¼ T−2K−1ð Þ � K � ∫∞

0
1þ 2tð Þ

−
T−2K−1

2

� �
dt

E ~Wi;T

� �2� �
¼ T−2K−1ð Þ2 � 2K þ K2

� �
� ∫∞

0
t 1þ 2tð Þ

−
T−2K−1

2

� �
dt:

The following proposition summarizes these results:

Proposition 2. For a fixed T sample, where T satisfies the condition of
Proposition 1, given the realizations ϕi and mi of matrices Φi and Mi

(Eqs. (6) and (7)), the exact first two moments of the individual statistics
~Wi;T , defined by Eq. (13) for i=1,…,N, are respectively:

E ~Wi;T

� �
¼ K � T−2K−1ð Þ

T−2K−3ð Þ ð21Þ
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Var ~Wi;T

� �
¼ 2K � T−2K−1ð Þ2 � T−K−3ð Þ

T−2K−3ð Þ2 � T−2K−5ð Þ ; ð22Þ

as long as the time dimension T satisfies T≥6+2K.
For a proof of this proposition see Appendix A. Besides, it is essen-

tial to verify that for large T samples, the moments of the individual
statistic ~Wi;T converge to the corresponding moments of the asymp-
totic distribution of Wi, T, since ∀ i=1,…,N:

limE ~Wi;T

� �
¼ K limVar ~Wi;T

� �
¼ 2K:

Both moments correspond to the moments of a F(K,T−2K−1).
Indeed, in this dynamic model the F distribution can be used as an
approximation of the true distribution of the statistic Wi, T/K for a
small T sample. Then, the use of Magnus theorem to approximate
the true moments of the Wald statistic given the realizations ϕi and
mi is equivalent to asserting that the true distribution of Wi, T can be
approximated by the F distribution.

In this paper, we propose to approximate the first two moments of
the individual Wald statistic Wi, T by the first two moments of the
statistics ~Wi;T based on the realizations ϕi and mi of the stochastic
matrices Φi and Mi (Eqs. (21) and (22)). Indeed, for T≥6+2K, we
assume that:

N−1XN
i¼1

E Wi;T

� �
≃ E ~Wi;T

� �
¼ K � T−2K−1ð Þ

T−2K−3ð Þ ð23Þ

N−1XN
i¼1

Var Wi;T

� �
≃ Var ~Wi;T

� �
¼ 2K � T−2K−1ð Þ2 � T−K−3ð Þ

T−2K−3ð Þ2 � T−2K−5ð Þ
ð24Þ

Given these approximations, we compute an approximated stan-
dardized statistic ~ZHnc

N for the average Wald statistic WN, T
Hnc of the

HNC hypothesis

~ZHnc
N ¼

ffiffiffiffi
N

p
WHnc

N;T−E ~Wi;T

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ~Wi;T

� �r : ð25Þ

For a large N sample, under the Homogeneous Non Causality
(HNC) hypothesis, we assume that the statistic ~ZHnc

N follows the
same distribution as the standardized average Wald statistic ZN

Hnc.

Proposition 3. Under Assumptions A1 and A2 for a fixed T dimension with
T>5+2K, the standardized average statistic ~ZHnc

N converges in distribution:

~ZHnc
N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2� K
� T−2K−5ð Þ

T−K−3ð Þ

s
� T−2K−3ð Þ

T−2K−1ð ÞW
Hnc
N;T−K

� �
→
d

N→∞
N 0; 1ð Þ ð26Þ

with WHnc
N;T ¼ 1=Nð Þ∑N

i¼1Wi;T .
Consequently, the testing procedure of the HNC hypothesis is very

simple and works as follows. For each individual of the panel, we
compute the standard Wald statistics Wi, T associated with the indi-
vidual hypothesis H0, i :βi=0 with βi ∈RK . Given these N realiza-
tions, we obtain a realization of the average Wald statistic WN, T

Hnc. We
then compute the realization of the approximated standardized4 sta-
tistic ~ZHnc

N according to the formula (26) or we compute the statistic
~ZMC
N based on the Monte Carlo procedure previously described. For a
4 If one uses the standard definition of the Wald statistic with the T normaliza-
tion, it is necessary to adapt formula (26) by substituting the quantity T−2K−1

by T. More precisely, if the Wald individual statistic Wi, T is defined as: Wi;T ¼

θ̂ ′
iR

′ R Z′
iZi

� �−1
R′

� �−1

Rθ̂ i

( )
= ε̂ ′

i ε̂ i=T
	 


then the standardized average Wald statistic

~ZHnc
N is defined as: ~ZHnc

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2�K � T−4ð Þ
TþK−2ð Þ

q
� T−2

T

� �
WHnc

N;T −K
h i
large N sample, if the value of ~ZHnc
N (or ~ZMC

N ) is superior to the corre-
sponding normal critical value for a given level of risk, the homoge-
neous non causality (HNC) hypothesis is rejected.

5. Monte Carlo simulation results

In this section, we propose three sets of Monte Carlo experiments
to examine the finite sample properties of the alternative panel-based
non causality tests. The first set focuses on the benchmark model5:

yi;t ¼ α þ γiyi;k−k þ βi xi;t−k þ εi;t ð27Þ

The parameters of the model are calibrated as follows. The auto-
regressive parameters γi are drawn from a uniform distribution on
]−1,1[ in order to satisfy the stationarity AssumptionA3. Thefixed indi-
vidual effectsαi, i=1,..,N are generated according to aN(0,1). Individual
residuals are drawn from a normal distribution with zero means and
heterogeneous variances σε, i

2 . The variances σε, i
2 are generated according

to a uniformdistribution on [0.5,1.5]. Under the null ofHNC,βi=0 for all
i. Under the alternative, βi is different from 0 for all i, i.e. N1=0. In this
case, parameters βi are generated according to a N(0,1) at each simula-
tion (heterogeneity of the regression model).

The second set of experiments allows for heterogeneity of the cau-
sality relationships under the alternative H1 :βi=0 for i=1,..,N1 and
βi≠0 for i=N1+1,..,N. In these experiments, we evaluate the empir-
ical power of our panel tests for various values of the ratio n1=N1/N.
We consider a case in which there is no causality for one cross-section
unit out of two (n1=0.5) and a case with no causality for nine cross-
section units out of ten (n1=0.9).

The third set of experiments focuses on a model with K lags:

yi;t ¼ αi þ
XK
k¼1

γ kð Þ
i yi;t−k þ

XK
k¼1

β kð Þ
i xi;t−k þ εi;t ; ð28Þ

where the auto-regressive parameters γi
(k) are drawn according to a

uniform distribution on ]−K,K[ under the constraint that the roots
of Γ i zð Þ ¼ ∑K

k¼1γ
kð Þ
i zk lie outside the unit circle. The other parameters

are calibrated as in the first set of experiments. We consider two cases
denoted A and B. In the Monte Carlo experiments of case A, we com-
pute the size and the power (n1=0) of our panel tests for a lag order
K equal to 2. In case B, we assume that the lag order is misspecified. To
bemore precise, the underlying data are generated by amodel with one
lag (K=1), but the individual Wald statistics (and the corresponding
standardized average panel statistics) are computed from the simulated
series by relying on a regression model with two lags (K=2).

The second set of experiments were carried out for N=6 (only for
the case n1=0.5), 10, 20, 50 and T=10, 25, 50, 100. The other exper-
iments were carried out for N=1, 5, 10, 25, 50 and T=10, 25, 50, 100.
We used 10,000 replications to compute the empirical size and power
of the tests at the 5% nominal size. All the parameters' values such as
αi, γi, σε, i or βi are generated independently at each simulation.

All the experiments are carried out using the following two statis-
tics: ZN, THnc, based on the asymptotic moments (Eq. (9)), and ~ZHnc

N , based
on the approximation of moments for a fixed T sample (Eq. (26)). The
results for the first set of experiments are summarized in Table 1. As a
benchmark, in the first row of this table we report the results of the
Granger non-causality test based on a Wald statistic for single time
series (N=1). For large T samples, the standardized statistic ZN,T

Hnc

based on the asymptotic moments K and 2K (which are valid if T
tends to infinity) has a correct size. Our panel test is more powerful
than tests based on single time series even in a panel with very few
cross-section units. For instance, for a typical panel of macroeconomic
annual data (T=50), the power of the non causality test rises from
5 We also carried out several experiments with other data generating processes. The
results are similar to the ones reported in this section and are available from the au-
thors on request.



Table 4
Comparison of simulated and approximated critical values for fixed N and T samples.

N\T 10 15 20 25 30 40 50 100

Simulated 5% critical values cN, T(0.05)
5 3.54 2.87 2.66 2.53 2.47 2.39 2.36 2.28
10 2.97 2.38 2.19 2.10 2.04 1.98 1.95 1.88
15 2.68 2.15 1.99 1.91 1.85 1.80 1.77 1.71
20 2.49 2.01 1.86 1.79 1.75 1.69 1.67 1.62
25 2.40 1.92 1.78 1.71 1.66 1.62 1.60 1.55

Approximated 5% critical values ~cN;T 0:05ð Þ
5 3.46 2.66 2.44 2.34 2.27 2.21 2.17 2.10
10 2.86 2.24 2.06 1.97 1.92 1.87 1.84 1.78
15 2.59 2.05 1.89 1.81 1.77 1.72 1.69 1.64
20 2.43 1.93 1.79 1.72 1.68 1.63 1.61 1.56
25 2.32 1.85 1.72 1.65 1.61 1.57 1.55 1.50

Notes: The approximated critical values for the average statistic WN,T
Hnc are computed

from Eq. (30) for the case K=1. The simulated critical values are computed via
stochastic simulations with 50,000 replications. The individual Wald statistics Wi,T

are built under the HNC hypothesis, where the auto-regressive parameters γi
(k) are

drawn according to a uniform distribution on ]−1,1[. The fixed individual effects αi,
i=1,..,N are drawn from a N(0,1).
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0.71 in the case of a single time series test (N=1) to 0.99 for a panel
test even though only five cross-section units are included (N=5).
However, for small values of T, the standardized statistic ZN,T

Hnc is over-
sized and the extent of this over-rejection worsens as N increases.
This over-rejection can be intuitively understood as follows. The Wald
statistic based on single time series is slightly over-sized for small values
of T. So, under the null, we can observe large values (superior to the chi-
squared critical value) of the individual Wald statistics for some cross-
section units. For a given value of N, these large values (that range
from the chi-squared critical value to infinity) are not compensated by
the realizations obtained for other cross-section units since the latter
only range from 0 to the chi-squared critical value. Consequently, the
cross-section average (WN,T

Hnc statistic) tends to be larger than the corre-
sponding normal critical value. The more N increases, the more the
probability to obtain large values for some cross-section units increases.
So, for small values of T, the ZN,THnc test tends to over-reject the null of non
causality and this propensity becomes stronger as N increases.

On the contrary, the size of the standardized ~ZHnc
N statistic based on

the semi-asymptotic moments (defined for fixed values of T) is rea-
sonably close to the nominal size for all values of T and N. The semi
asymptotic standardized ~ZHnc

N statistic substantially augments the
power of non-causality tests even for very small values of N. For ex-
ample, when T=10, the power of our panel test is equal to 0.73
even though only five cross-section units (N=5) are considered. In
this case, the test based on time series (N=1) has only a power of
0.43. All in all, the ~ZHnc

N statistic has a correct size, and its power
rises monotonically and quickly with N and T. For T=10, when N is
larger than 10, the power of the ~ZHnc

N test is near to one. This improve-
ment in power can be intuitively understood as follows. Individual
statistics are bounded from below (by zero) but may take arbitrarily
large value. Hence, when averaging among individual Wald statistics,
the ‘abnormal’ realizations (realizations below the chi-squared criti-
cal value) are annihilated by the realizations on the true side (large).

In the power simulations summarized in Table 1, we assume that
there is causality for all the cross-section units of the panel. By con-
trast, in the second set of experiments we gage the influence of het-
erogeneity of causality relationships, i.e. the relative importance of
N1 with respect to N, on the power of our panel tests. Our findings
are summarized in Table 2. For n1=0.5 and n1=0.9, we can verify
that the power of the standardized statistics ZN, tHnc and ~ZHnc

N is slightly
reduced compared to the case n1=0 (Table 1). Nevertheless, even
in the worse case studied (in which there is causality for only one
cross-section unit out of ten, i.e. n1=0.9), the power of our panel
tests remains reasonable even for very small values of T and N. For in-
stance, with T=25 and N=10 (N1=9), the power of the ~ZHnc

N statistic
is equal to 0.42. With twenty cross-section units (causality for two
cross-sections units if n1=0.9), its power increases to 0.60.

The results for the third set of experiments are summarized in
Table 3. In case A, we consider a model with two lags. The results are
quite similar to the ones obtained for the benchmark case with one lag
(Table 1): the power of the panel average statistics substantially exceeds
that of single times series non-causality test, the ZN, t

Hnc statistic is over-
sized and ~ZHnc

N has a correct size for all T andN considered. Similar results
(not reported) are obtainedwhenwe consider heterogeneous lag orders
Ki. In case B, we study the influence of ami-specification of the lag-order.
When the lag order is overestimated for all cross-section units, the
power of our panel test statistics is reduced but remains reasonable.
With T=10, the power of the panel ~ZHnc

N statistic rises from 0.36 with
five cross-section units to 0.87 with twenty cross-section units.

6. Further issues

6.1. Fixed T and fixed N distributions

If N and T are fixed, the standardized statistic ZNHnc and the average
statistic WN, T

Hnc do not converge to standard distributions under the
HNC hypothesis. Two solutions are then envisageable: the first con-
sists in using the mean Wald statistic WN, T

Hnc and to compute the
exact empirical critical values, denoted cN, T(α), for the corresponding
sizes N and T via stochastic simulations. The upper panel in Table 4
reports the results of an example of such a simulation. As in Im et al.
(2003), the second solution consists in using the approximated stan-
dardized statistic ~ZHnc

N and to compute an approximation of the corre-
sponding critical value for a fixed N. Indeed, we can show that:

Pr ~ZHnc
N b ~zN αð Þ

h i
¼ Pr WHnc

N;T b cN;T αð Þ
h i

;

where ~zN αð Þ is the α-percent critical value of the distribution of the
standardized statistic under the HNC hypothesis. The critical value cN,
T(α) ofWN,T

Hnc is defined as:

cN;T αð Þ ¼ ~zN αð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−1var ~Wi;T

� �r
þ E ~Wi;T

� �
;

whereE ~Wi;T

� �
andVar ~Wi;T

� �
denote themean and the variance of the

individualWald statistic defined by Eqs. (21) and (22). Given the result
of Proposition 3, we know that the critical value ~zN αhtð Þ corresponds to
the α-percent critical value of the standard normal distribution,
denoted zα if N tends to infinity whatever the size T. For a fixed N, the
use of the normal critical value zα to build the corresponding critical
value cN,T(α) is not founded. Despite this, we can propose an approxi-
mation ~cN;T αð Þ based on this value

~cN;T αð Þ ¼ zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−1var ~Wi;T

� �r
þ E ~Wi;T

� �
ð29Þ

or equivalently:

~cN;T αð Þ ¼ zα � T−2K−1ð Þ
T−2K−3ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K
N

� T−K−3ð Þ
T−2K−5ð Þ

s

þ K � T−2K−1ð Þ
T−2K−3ð Þ : ð30Þ

In Table 4, the simulated 5% critical values cN, T(0.05) obtained
from 50,000 replications of the benchmark model under H0 are repro-
duced. The approximated 5% critical values ~cN;T 0:05ð Þ are also
reported. Notice that both critical values are very similar and the
same result can be obtained for larger lag-order K.



Table 5
Size and power of panel Granger non-causality tests in the presence of cross-sectional
dependence.

T=10 T=25 T=50 T=100

N Test Size Power Size Power Size Power Size Power

5 ZHnc 0.05 0.79 0.05 0.98 0.05 1.00 0.05 1.00
~ZHnc 0.05 0.79 0.05 0.98 0.05 1.00 0.05 1.00

10 ZHnc 0.05 0.96 0.06 1.00 0.05 1.00 0.05 1.00
~ZHnc 0.05 0.96 0.06 1.00 0.05 1.00 0.05 1.00

25 ZHnc 0.04 0.98 0.05 1.00 0.06 1.00 0.05 1.00
~ZHnc 0.05 0.98 0.05 1.00 0.06 1.00 0.05 1.00

50 ZHnc 0.05 0.95 0.06 1.00 0.05 1.00 0.05 1.00
~ZHnc 0.05 0.95 0.06 1.00 0.05 1.00 0.05 1.00

Notes: This table reports the size and power of the standardized panel Wald statistic ZN,
T
Hnc based on asymptotic moments defined by Eq. (9) and the standardized panel
statistic ~ZHnc

N based on semi-asymptotic moments defined by Eq. (26). The underlying
data are generated by yi, t=αi+γiyi, t− k+βixi, t− k+εi, t, for i=1,..,N and t=−100,
−99,..,T. At each replication, the auto-regressive parameters γi are drawn according
to a uniform distribution on ]−1,1[ and the fixed individual effects αi are generated
according to a N(0,1). Individual residuals are N. i.d. (0,Σ), where Σ is drawn from
the Wishart distribution with covariance-matrix V and 1000 degrees of freedom. V is
obtained by assuming that the dependence takes the form of a correlation coefficient
equal to 0.5 and that the variances σε, i

2 are generated according to a uniform
distribution on [0.5,1.5]. The size (βi=0, i=1,.,N) and the power of the tests are
computed at the five percent nominal level. Under the alternative (power
simulations), βi is different from 0 for all i, i.e. N1=0. The parameters βi are
generated according to a N(0,1). The number of replications is set to 5000 and 1000
simulations are considered at each replication so as to compute the empirical critical
values.
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6.2. Cross-sectional dependence

Nowadays, an important issue in panel analysis is related to the
existence of cross-sectional dependence. Following the literature on
second-generation panel unit-root tests (e.g. Bai and Ng, 2004;
Moon and Perron, 2004; Pesaran, 2007), new panel non-causality
tests should be developed so as to explicitly take into account general
forms of dependencies among the individuals of the panel.

Since specifying a particular form of correlation for the individual
residuals has a negative impact on the small-sample properties of a
test for alternative forms of dependence, we consider here a very
general and simple, although computationally intensive, solution to
this issue. To be more precise, we take into account cross-sectional
dependence by using bootstrapped critical values instead of asymptotic
critical values when performing Granger non-causality tests. The block
bootstrap procedure we hence propose implies several steps:

1. Define the panel model for which we test the Granger non-causality
hypothesis (e.g. yi;t ¼ αi þ∑K

k¼1γi;kyi;t−1 þ∑K
k¼1βi;kxi;t−1).

2. Estimate the model for each cross-sectional unit and compute the
standardized test statistics ZN, THnc and ~ZHnc

N .
3. Estimate the model under the null hypothesis of no Granger cau-

sality (βi, k are null) for each cross-section unit and compute the
N vectors of size (T,1) of residuals.

4. Resample the residuals with replacement by considering a block of
size 1 in time-series and size N in the panel dimension. The size of
the time-series block can take another shape if we suspect that the
residuals are also autocorrelated in time.

5. Next, we construct a resampled series yi, t under the null hypothesis
~yi;t ¼ α̂ i þ∑K

k¼1 γ̂ i;kyi;t−1 þ ~ε i;t , where α̂ is the vector of estimated
fixed effects, γ̂ is the matrix of estimated autoregressive parameters
for all the individuals and lags, and ~ε is the matrix of resampled
residuals.

6. Estimate the model defined at step 1 by using the resampled data
~yi;t and compute the test statistics for this resampled data.

7. Repeat steps 5 and 6 a large number of times. At each repetition
keep the test statistics obtained for the resampled data, so as to
compute the empirical critical values as the 95% percentile of the
distribution of test-statistics (taken in absolute value) under the
null hypothesis of no causality.

8. Compare the test statistics corresponding to the initial dataset
(step 2) with the empirical critical values calculated in step 7.

To illustrate this procedure, we assume that the cross-sectional
dependence can be mirrored by a correlation coefficient equal to
0.5. Therefore, it is possible to construct the true variance–covariance
matrix V by drawing the vector of variances of the residuals from a
uniform distribution on [0.5,1.5].

We first scrutinize the empirical size of the panel Granger non-
causality tests in presence of cross-sectional dependence. For this,
we choose as benchmark model the one considered for the first set
of Monte-Carlo experiments and follow several steps:

Step A1 Generate the series of interest yi, t under the null hypothesis
of Homogeneous Non Causality.

yi;t ¼ αi þ γiyi;t−1 þ εi;t ; ð31Þ

where the vectors of disturbances are jointly normally distrib-
uted εi∼Nn(0,Σ), with the sample covariance matrix drawn
from the Wishart distribution with covariance-matrix V and
df degrees of freedom, i.e. Σ∼Wn(V,df), with i∈ [1,N] and
t∈ [1,T]. Besides, the autoregressive parameters γi are drawn
from a uniform distribution on ]−1,1[ and the fixed individual
effects αi are generated according to a N(0,1) distribution.

Step A2 Define the regression model for each individual i in the
panel.

yi;t ¼ αi þ γiyi;t−1 þ βixi;t−1; ð32Þ

where x is normally distributedwithmean 0 and unit variance.
Note that the specified regression model allows for heteroge-
neity of the estimated parameters among individuals. The indi-
vidual Wald statistic for the ith individual Wi,T corresponding
to the individual test H0:βi=0, can now be computed. The
regression model is hence applied for each i∈[1,N], so that in
the end we obtain a vector of N statistics. In this context, we
can construct the standardized statistics ZN,T

Hnc and ~ZHnc
N (see

Eq. (9) and Eq. (26)).
Step A3 Repeat Steps A1 and A2 a large number of times and count

the number of rejections for each test-statistic by relying
on the bootstrapped critical values. These nested simulations
are very time-consuming. Therefore, we use 5000 simula-
tions in steps A1–A2, whereas we consider 1000 repetitions
for the empirical critical values.

Second, to account for cross-sectional dependence, the empirical
power has to be computed from the rejection rates obtained with
the bootstrapped critical values. Indeed, we implement a two-step
procedure specially designed to size-adjust the power results, as
follows. First, we generate the series {yi, t}t=−100

T under the alternative
hypothesis, i.e. yi, t=αi+γiyi, t−1+βxi, t−1+εi, t, where βi are drawn
from a standard normal distribution. Next, we estimate Eq. (32) and
implement the panel Granger causality tests so as to obtain the test-
statistics under the alternative. 5000 repetitions are considered, and
for each of them we compute bootstrapped critical values based on
1000 simulations under the null hypothesis, performed by following
the same procedure as for the size simulations. Note that for the critical
values the regression model corresponds to Eq. (31), since these simu-
lations are performed under the null hypothesis.

Table 5 depicts the size and power results obtained for different N
and T at the 5% nominal level. Our main finding is that both test-
statistics, i.e. ZN, THnc and ~ZHnc

N , are roughly well sized when empirical
critical values are used so as to tackle cross-sectional dependence.
This result holds regardless of the sample sizes N and T. At the same
time, the power of the tests is higher than 0.79 and it increases
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monotonically with the number of cross-section units in the sample,
N, and that of the time-dimension T.

6.3. Unbalanced panel data and/or unit-specific lag order

Two other cases are frequently encountered in economic applica-
tions, namely an unbalanced panel dataset and a lag order Ki that is
specific to each cross-section unit. In such circumstances, the stan-
dardized statistic ~ZHnc

N must be adapted as follows:

~ZHnc
N ¼

ffiffiffiffi
N

p
WHnc

N;T −N−1∑N
i¼1 E ~Wi;T

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−1∑N

i¼1 Var
~Wi;T

� �r

¼
ffiffiffiffi
N

p
WHnc

N;T−N−1XN
i¼1

Ki �
Ti−2Ki−1ð Þ
Ti−2Ki−3ð Þ

" #

� N−1XN
i¼1

2Ki �
Ti−2Ki−1ð Þ2 � Ti−Ki−3ð Þ
Ti−2Ki−3ð Þ2 � Ti−2Ki−5ð Þ

" #−1=2

;

ð33Þ

where Ti>5+2Ki denotes the time dimension for the ith cross-
section unit. Indeed, in the case of unbalanced datasets, the distribu-
tions of the test-statistics depends upon the time-series dimension of
each cross-sectional unit Ti, apart from the variance of the residuals.
This distribution is hence different across individuals and it is not a
chi-squared one. Similarly, if the lag-order differs from one individual
to another, the distribution of the test-statistics, which depends on
the number of restrictions imposed under the null, will vary across
groups. However, in both cases the distributions of the test-statistics
are independent from one unit to another, and hence the mean of
the test-statistics will asymptotically converge in distribution to a
normal distribution as long as Ti>5+2Ki. For this, it is nevertheless
necessary that N→∞.

A simple experiment, based on Monte-Carlo simulations, looks at
the size of the Granger-causality test-statistic ~ZHnc

N in unbalanced
panels. The time dimension for each individual, Ti, is drawn from a
uniform distribution on the interval [8,100]. Besides, N=2000
cross-sectional units are considered. We find that the test is slightly
oversized, the rejection rate obtained after 5000 simulations being
equal to 0.056. This result depends, however, on the frequency of in-
dividuals with small (large) time-dimension Ti, which is chosen to be
uniform in this exercise. All in all, the asymptotic properties of the
test do not change significantly when the dataset is unbalanced or
when the lag-order is different across individuals.

7. Conclusion

In this paper, we propose a simple Granger (1969) non-causality
test for heterogeneous panel data models. Under the null hypothesis
of Homogeneous Non Causality (HNC), there is no causal relationship
for any of the cross-section units of the panel. Under the alternative,
there are two subgroups of cross-section units: one characterized by
causal relationships from x to y (even though the regression model
is not necessarily the same) and another subgroup for which there
is no causal relationship from x to y. As in panel unit root test litera-
ture, our test statistic is simply defined as the cross-section average
of individual Wald statistics associated with the standard Granger
causality tests based on single time series. Under the cross-section in-
dependence assumption, we show that this average statistic converge
to a standard normal distribution when T and N tend sequentially to
infinity. The semi-asymptotic distribution is also characterized for
fixed T samples. In this case, individual Wald statistics do not have a
standard chi-squared distribution. However, under very general
setting, Wald statistics are independently distributed with finite sec-
ond order moments. For a fixed T, the Lyapunov central limit theorem
is then sufficient to get the distribution of the standardized average
Wald statistic when N tends to infinity. The first two moments of
this normal semi-asymptotic distribution correspond to the cross-
section averages of the corresponding theoretical moments of the in-
dividual Wald statistics. The issue is then to evaluate these moments
of the standard Wald statistics for small T samples. In this paper we
hence propose a general approximation of these moments and the
corresponding standardized average Wald statistic. Moreover, we
tackle the case with cross-sectional dependence by proposing a
block-bootstrap procedure so as to obtain empirical critical values
for the Granger non-causality tests.

One of the main advantages of our testing procedure is that it is
very simple to implement: the standardized average Wald statistics
are simple to compute and have a standard normal asymptotic distri-
bution. Besides, Monte Carlo simulations show that our panel statistics
lead to substantial increase in the power of the Granger non-causality
tests even for samples with very small T and N dimensions. Further-
more, our test statistics (based on cross section average of individual
Wald statistics) do not require any particular panel estimation. Finally,
the test can be easily implemented in unbalanced panels and/or
panels with different lag order K for each individual.

Our testing procedure has the same advantages but also the same
drawbacks as the approach used by Im et al. (2003) in the context of
panel unit root tests. First, the rejection of the null of Homogeneous
Non Causality does not provide any guidance with respect to the
number or the identity of the particular panel units for which the
null of non causality is rejected. Second, the asymptotic distribution
of our statistics is established under the assumption of cross-section
independence, although a block-bootstrap procedure is proposed to
tackle the dependence issue in empirical applications. As for panel
unit root tests, it is now necessary to develop second generation panel
non causality tests that allow for general or specific cross-section de-
pendences. This is precisely our objective for further researches.

Appendix A. Moments of individual Wald ~Wi;T

The two noncenteredmoments of ~Wi;T are respectively defined as:

E ~Wi;T

� �
¼ T−2K−1ð Þ � K � ∫∞

0
1þ 2tð Þ

−
T−2K−1

2

� �
dt

E ~Wi;T

� �2� �
¼ T−2K−1ð Þ2 � 2K þ K2

� �
� ∫∞

0
t 1þ 2tð Þ

−
T−2K−1

2

� �
dt:

For simplicity, let us denote ~T ¼ T−2K−1ð Þ=2. For the first order
moment, we get:

E ~Wi;T

� �
¼ 2~T � K � ∫∞

0
1þ 2tð Þ−~T dt

¼ 2~T � K � 1þ 2tð Þ−~Tþ1

2 −~T þ 1
� �

2
4

3
5∞

0

¼ 2~T � K

2 ~T−1
� �

Since the quantity 2 ~T−1
� �

¼ T−2K−3 is strictly different from
zero under the condition of Proposition 1, we obtain

E ~Wi;T

� �
¼ K � T−2K−1ð Þ

T−2K−3ð Þ : ð34Þ

At the same time, the definition of the second order moment is:

E ~Wi;T

� �2� �
¼ 4 ~T 2 � 2K þ K2

� �
� ∫∞

0
t 1þ 2tð Þ−~T dt:
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By integrating by parts, this expression can be transformed into:

E ~Wi;T

� �2� �
¼ 4 ~T 2 � 2K þ K2

� �

� t � 1þ 2tð Þ−~Tþ1

2 −~T þ 1
� �

2
4

3
5∞

0

− 1

2 −~T þ 1
� �� ∫∞

0
1þ 2tð Þ−~T dt

8<
:

9=
;:

Under the condition of Proposition 1 we have ~T > 1, and then:

E ~Wi;T

� �2� �
¼

4 ~T 2 � 2K þ K2
� �

2 ~T−1
� � � ∫∞

0
1þ 2tð Þ−~T dt

¼
4 ~T 2 � 2K þ K2

� �
2 ~T−1
� � � 1þ 2tð Þ−~Tþ2

2 −~T þ 2
� �

2
4

3
5∞

0

¼
4 ~T 2 � 2K þ K2

� �
2 ~T−1
� � � 1

2 ~T−2
� � :

After simplifications:

E ~Wi;T

� �2� �
¼

~T 2 � 2K þ K2
� �

~T−1
� �

~T−2
� � ¼

T−2K−1ð Þ2 � 2K þ K2
� �

T−2K−3ð Þ T−2K−5ð Þ : ð35Þ

Under the condition T>5+2K, this second order moment exists
as it was previously established in Proposition 1.

Finally, we can compute the second order centered moment,
Var ~Wi;T

� �
as:

Var ~Wi;T

� �
¼ E ~Wi;T

� �2� �
−E ~Wi;T

� �2

¼
T−2K−1ð Þ2 � 2K þ K2

� �
T−2K−3ð Þ T−2K−5ð Þ − K � T−2K−1ð Þ

T−2K−3ð Þ
� �2

:

After simplifications, we have:

Var ~Wi;T

� �
¼ 2 K � T−2K−1ð Þ2 � T−K−3ð Þ

T−2K−3ð Þ2 T−2K−5ð Þ : ð36Þ
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