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Abstract Land-use change models grounded in complexity theory such as agent-

based models (ABMs) are increasingly being used to examine evolving urban

systems. The objective of this study is to develop a spatial model that simulates

land-use change under the influence of human land-use choice behavior. This is

achieved by integrating the key physical and social drivers of land-use change using

Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model,

integrated Bayesian network–based agent system, presented in this study uses

geographic information systems, ABMs, BNs, and influence diagram principles to

model population change on an irregular spatial structure. The model is parame-

terized with historical data and then used to simulate 20 years of future population

and land-use change for the City of Surrey, British Columbia, Canada. The simu-

lation results identify feasible new urban areas for development around the main

transportation corridors. The obtained new development areas and the projected

population trajectories with the‘‘what-if’’ scenario capabilities can provide insights

into urban planners for better and more informed land-use policy or decision-

making processes.
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1 Introduction

Agent-based models (ABMs) are well suited for land-use change modeling because

they can capture human interactions and dynamic behavior in the land-use change

processes (Rodrigues et al. 1998). AMBs are complex, dynamic, and disaggregate

representations of individual decision-making processes (Miller et al. 2004). They

model complex system relationships as dynamically interacting heterogeneous

agents that may result in nonlinear dynamics in land-use change (Brown and Xie

2006; Brown et al. 2004). Consequently, ABMs have been widely used to study

land-use change processes (Ligtenberg et al. 2001; Parker et al. 2003; Brown et al.

2005b; Evans et al. 2006; Ligmann-Zielinska and Jankowski 2007; Bennett et al.

2011; Smajgl et al. 2011; Robinson and Brown 2009). Despite their widespread use

in land-use change modeling, ABM designs are challenged by three main issues.

The first issue of ABM design deals with the rule definition of the agents. The

ABM structure has autonomous decision-making entities called agents, an

environment in which the agents interact, and behavior rules that define the

relationship between the agents and their environment (Ferber 1998). Usually, the

behavior rules take the form of \if–then[ functions such that: \if[ a specific

situation is observed \then[ a specific action is implemented. In the present

literature, most ABMs are rule-based (Torrens 2006). However, the large number of

alternatives from which an agent has to choose together with the complexity of

internal relationships between variables makes rule definition a challenge for ABM

design. ABM rules can also be defined using random utility theory and multinomial

logit models (MNL) (Torrens and Nara 2007; Waddell 2002; Miller et al. 2004). In

these models, the variables directly affect the modeling phenomenon and may not

account for secondary interactions (i.e., a given variable affects the other one, and

the other affects the model output). Another method for rule definition is fuzzy logic

(Graniero and Robinson 2006). The limitation of fuzzy logic is that it does not

provide inference from observed data. Neural networks (NN) have also been used

for ABM rule definition (Gilbert and Terna 2000; Collins and Jefferson 1992), but a

limitation is that they do not provide information about the relationships between

variables and their effects on the output (Mas et al. 2004). Genetic/evolutionary

algorithms are another method that has been used in ABMs. In one study, Manson

(2006) proposed and tested genetic programming for rule definition to represent

human decision-making in land-use change. However, in genetic algorithms, the

fitness function must be chosen carefully as the algorithm may not find a single

solution to the problem.

The second issue of ABM design deals with acquiring data, describing the

behavior of actors. In land-use change ABMs, the agents represent actors such as

households, firms, and land owners requiring detailed actor behavior patterns for

effective rule definitions. Sample surveys, participant observation, field and

laboratory experiments, and companion modeling are some ways to obtain the

data (Robinson et al. 2007). However, these data are not usually available or easy to

collect. As a direct consequence of this calibration issue, validation of ABMs is

difficult to achieve (Brown et al. 2005a; Kocabas and Dragicevic 2009).
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The third issue of ABM design deals with the spatial implementation structure.

Many ABMs are based on raster grids (An et al. 2005; Loibl and Toetzer 2003;

Batty 2005). However, the irregular shapes that characterize urban landscapes are

not well represented by regular raster grid cells. The idea to use irregular cells to

model some geographic features was first proposed by Tobler (1984). Alternatively,

some ABMs have used vector-based representations to accommodate irregular

spatial structures when simulating residential dynamics (Benenson 2004), modeling

urban segregation (Torrens and Benenson 2005) and gentrification (Torrens and

Nara 2007). Nevertheless, these approaches do not include census-based social

dynamics of human agents based on census spatial units. Benenson et al. (2002)

have developed an ABM to simulate residential dynamics using spatial units that

represent buildings and not census units although they have used the census

statistics data.

In this research study, we use Bayesian networks (BNs) and influence diagrams

(IDs) as an alternative methodology to overcome the three issues of ABMs

discussed. BNs reduce the theoretical and computational challenges of rule-based

agent models by using graphical probabilistic models to represent agent rules

(Jensen 2001). This enhances ABM rule definitions by keeping track of decision-

making interactions during model simulations. BNs provide a clear semantic

interpretation of model variables with the conditional probabilities being intuitively

understandable. Further, this improves understanding of variable relationships and

identifies the indirectly interacting variables. BNs also have causal reasoning

capabilities that provide knowledge about the decision-making of the agents. Causal

reasoning deals with reasoning about actions, explanations, and preferences.

Utilizing IDs together with BNs allows uncertainty to be accommodated in the agent

rules as well as explicitly representing the causal reasoning behind decision-making.

In the research literature, it can be found that some studies relate BN with spatial

modeling. Janssens et al. (2006) coupled BNs with decision trees in a transportation

model to describe travel mode choices of individuals. de Almeida et al. (2005) have

used Bayesian conditional probabilities in cellular automata (CA)-based land-use

change model to calculate transition probabilities. However, the existing modeling

approaches did not represent the causal relationships between model variables.

Several past studies have also integrated BNs into agent-based modeling. Ma et al.

(2004) applied IDs to a multiagent model of land-use decisions for land suitability

analysis. Their model is designed for the behavior of retail agents making location

decisions for new shopping centers. Also, their model is cell-based and does not use

the learning algorithms to define the model structure and parameters. Moreover,

their model has a simple network in which no inference algorithms were used to

calculate the probabilities. BNs and IDs were also used in ABMs to model urban

land market sales (Lei et al. 2005), which is conceptually different from a land-use

and population change model.

The objectives of this research study are (a) to develop the hybrid land-use

change model, called BNAS—Bayesian network–based agent system—model, that

incorporates human behavior, (b) to use BNs to define agent behavior rules and IDs

for decision alternative evaluation, and (c) to implement the model on the real data

set composed of irregular spatial tessellations. Thus, this study develops a simplified

Bayesian networks and agent-based modeling approach 405

123



model of urban land-use, and population density change with clear semantic

interpretation of the parameters and their relationships with the aim to overcome the

common ‘‘black-box’’ type models.

The BNAS model was implemented for the City of Surrey (British Columbia,

Canada) which is undergoing extensive land and population change. Policy

scenarios for interpreting the Metro Vancouver Livable Region Strategic Plan

(LRSP) (MetroVancouver 2012a) were applied in the BNAS modeling procedures.

2 Methodology

The use of BNs in a cellular automata (CA) model of urban land-use change was

previously developed by Kocabas and Dragicevic (2006). In addition, Kocabas and

Dragicevic (2007) improved their BN-CA model by integrating IDs to better model

future land-use changes in Vancouver, Canada. The research presented here extends

the authors’ previous BN-CA model (Kocabas and Dragicevic 2007) by integrating

ABM concepts as well as BN and IDs to explicitly deal with human decision-

making. The BNs and ABMs were coupled to design the agents’ location decision-

making capabilities. During the model simulations, agents observe their environ-

ment and implement an appropriate action using this new information. By using

BNs, agents also change their behavior according to the changing conditions, which

mimics the actual behavior of humans. It is difficult to identify and encode all the

necessary rules for ABMs as they adapt themselves to the changing conditions.

Consequently, BNs provide simplicity in rule definition through the learning

algorithms. Moreover, BNs facilitate modeling even with missing data in the inputs,

which is not possible with rule-based models.

In ABMs, action selection and learning from experience are also important

challenges (Maes 1994). Action selection is a challenge for agents as there are many

alternatives and opportunities in the selection set. IDs combine both BNs and utility

theory to provide a solution for more effective action selection (Howard and

Matheson 1984). In this research study, BNs together with IDs were used to develop

the locational preference decision-making processes of an agent. As a result, agents

are able to reason about the benefits of possible decisions using decision variables

and utility functions.

Agent learning from experience is also an important stage in ABM design as it

provides dynamic development of new behaviors and a long-term improvement in

agent performance. Agents’ learning approaches are not yet fully elaborated in the

present literature although there is some work done by Manson (2006) using genetic

algorithms and Janssens et al. (2006) using learning networks. In this study, BN

learning algorithms are used to facilitate agents to learn from their previous actions.

In this study, the BNAS model was developed as a computational model for

simulating actions and interactions of autonomous individuals such as households in

an urban area. Agents are new arrivals to the study area, and they choose locations

to live. Hence, the BNAS model simulates future population and land-use for the

City of Surrey, British Columbia, Canada. The individual agents are assumed to be

acting in self-interest. An agent will choose a location maximizing its utility which
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is called their ‘‘preference.’’ Terms such as ‘‘agent’s preference’’ and ‘‘behavior’’

are used in a computational context as software routines are coded to ‘‘behave’’ and

‘‘prefer’’ during simulations. While specific agent characteristics were selected to

balance model complexity with real-world processes, more variables can be readily

included in the analysis. The BNAS model has the following characteristics: (a) an

agent learning process using BN learning algorithms, (b) fine spatial modeling units

such as census units in which agents choose to live, (c) using real data in an urban

environment for model implementation, (d) using census data for model validation,

and (e) simulating future population density and urban land-use.

2.1 Study area

The Metro Vancouver region has experienced rapid land-use change in the last

decade, and is the third largest urban region in Canada. Recent studies have

predicted that rapid population growth will lead to around three million inhabitants

in 2031 (MetroVancouver 2012b). Within the Metro Vancouver, the City of Surrey

was chosen as a study area for the BNAS model application in order to reduce the

model complexity and computational processing time. The BNAS model simula-

tions for the City of Surrey generated six iterations with five-year temporal

intervals. The land-use pattern at 2021 was predicted at the end of the model

simulation. A total of six simulation maps which depict the land-use change at

interval years were generated.

2.2 Drivers of land-use change

There are many land-use drivers that influence land-use decisions, so it is crucial to

isolate the core land-use drivers for use in modeling land-use change. The potential

land-use drivers were defined, and then the BN structure learning algorithms were

executed with different configurations of drivers (i.e., BN structure learning

algorithm was run with different variables to be able to compare different network

structures and choose the best one to be used in the BNAS model). A single BN

structure was obtained for each run. Next, by comparing the different BN structures,

the important drivers affecting one or more variables in these structures were chosen

for use in the model (i.e., these drivers were used as inputs to the BNAS model for

designing the agent behavior). Structure learning algorithm was run for the last time

to obtain the final network structure to be used in the BNAS model. There were 10

land-use drivers used in this study:

• Distances to major roads and SkyTrain stations affect accessibility of locations.

• Distances to town and employment centers were calculated using a cost–

distance function. Cost–distance is the calculation of distance in terms of some

measure of cost. Major road and SkyTrain station data were obtained from the

Greater Vancouver Transportation Authority (Translink). Town and employ-

ment center data were obtained from Metro Vancouver.

• Population density in the neighborhood affects the use of available land.
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• Accessibility to natural areas provides a measure of the quality of the natural

environment in the neighborhood of a location. These quality factors included

green spaces and scenic landscape views such as the ocean and rivers.

• Land and dwelling rental values capture the economic status of the location.

• The type of dwelling, the number of rooms, and whether they were rented or

owned gives an indication of available resource capacity.

The data layers for the BNAS model were prepared using GIS operations such as

reclassification and distance calculations from strategic point locations.

2.3 Data integration

Spatially, disaggregated census data are an important input for empirical agent-

based modeling because of the emphasis on micro-level behavior (Parker et al.

2001). The BNAS model uses Canadian census data (Statistics-Canada 2012). The

Canadian census data are the primary source of socioeconomic data in Canada that

can be linked with land-use changes at the micro-level. These census units represent

homogenous information on demographics, economics, and living conditions for

urban populations.

There were two challenges related to using the Canadian census data source in

BNAS. The first was a change in the size and shape of the census units between

1996 and 2001 (Fig. 1a). Enumeration areas (EA) are the smallest census spatial

units for the 1996 census while the dissemination area (DA) units replaced the EA

for the 2001 census. For example, the EA 59026014 has been split into the

following two DAs: 59151980 and 59151977. The second challenge was the

representation of population by the census units. Census data do not provide

information on the population concentration or distribution over the census units

(Dorling 1993; Wu et al. 2008). The census data give a single population value for

each unit even though that unit may contain a mixture of residential and non-

residential areas (Fig. 1a and b).

These two challenges were addressed by using a data enhancement procedure to

create a common spatial unit termed proposed census spatial units (PCSUs). They

were created by spatially intersecting the EAs, DAs, and land-use polygons for 1996

and 2001 to produce a common spatial unit. During the intersection process, all

attribute values in the EAs, DAs, and land-use polygons were retained in the

intersected polygons. In addition, the area of each PCSU was calculated. Next,

population values were assigned to the PCSUs for 1996 and 2001 by using the

dasymetric method first developed by Wright (1936) to redistribute the population

values to the new PCSUs. The modified formula used to calculate the new

population was:

NP ¼ PEAðorDAÞ
AWPCSU

AWEAðorDAÞ
ð1Þ

where NP is the new land-use-based population; PEA(orDA) is the population in EA or

DA unit; AWPCSU is the multiplication of the area and weight of PCSU; AWEA(orDA)

is the sum of all AWPCSU which fall in EA or DA unit. The result was then divided
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by the aggregated weight and EA (or DA) population multiplication for the cor-

responding EA (or DA). The weights are important in this calculation since the

land-use data set has different residential classes based on density. High-rise resi-

dential areas have more population than rural residential areas. Assigning weights to

the land-use residential classes captures the different population distribution in the

Fig. 1 Different spatial units covering the same area in Metro Vancouver a EA and DA b land-use
polygons
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census spatial units (EAs or DAs). The weights are 0.4 for high-density residential,

0.3 for medium-to-high-density residential, 0.2 for medium-density residential, and

0.1 for low-density residential. Figure 2 compares the population density maps

based on the 1996 and 2001 census units with the ones that are based on PCSUs.

This study used the same PCSUs (a total of 14,793 polygons) spatial units for

1996 and 2001. All the land-use change drivers were calculated using GIS tools for

Fig. 2 Population for 1996 and 2001 a before and b after the creation of PCSUs

410 V. Kocabas, S. Dragicevic

123



each PCSU and recorded as attributes of each unit. These form inputs to the agents’

BNs.

2.4 Bayesian network–based agent system (BNAS) model

The BNAS model uses an object-oriented model design allowing location to be an

attribute of features and facilitating the representation of methods as objects in the

programming architecture. Further, the attribute of the objects can be updated

asynchronously. The urban environment (ENV) is represented by the objects that

consist of PSCUs (fixed objects that do not move across ENV) and agents (mobile

objects that do move across ENV) (Torrens and Benenson 2005). PCSUs define the

environment and each has attributes on the state of the environment.

The BN-based agent-based model has three sub-models (Fig. 3). The first is the

BN sub-model (A) that implements the BN structure and parameter learning and

inference algorithms. The BN structure and parameter learning algorithms find

relationships between current socioeconomic characteristics of households/firms

and current location characteristics of where they reside using GIS layers. The BN

inference algorithm calculates the probability of choosing a particular location of an

agent. The second is the agent sub-model (B) which structures the agents for the

simulation. The third is the ID sub-model (C) that makes the decision whether to

stay at a specific location or not. This information becomes the input for new agents

Fig. 3 BNAS structure

Bayesian networks and agent-based modeling approach 411

123



that represent households/firms and subsequently make decisions accordingly.

These decisions lead to future population distribution patterns in an urban area and

thus provide insights into future land-use change.

There are two types of agents: households and firms that are similar in the way

they make location decisions. Household agents have socioeconomic characteristics

affecting how they evaluate locations. As such, there are three different types of

household agents: low-, middle-, and high-income agents. For example, high-

income households may prefer areas with high levels of social services and high

levels of environmental quality. In contrast, low-income households might prefer

areas that are close to the public transport. Firms represent commercial areas. For

instance, they might prefer to be close to the employment centers and high

residential density areas.

2.4.1 Bayesian network sub-model (A)

A Bayesian network (N) is a pair (G, P) where G is a directed acyclic graph with a

node for each variable vi 2 V, and P is a multivariate probability distribution defined

for each variable vi in V (Eq. (1) and Eq. (2)). A graph is called directed if the links

in the graphs have directions. A directed graph is acyclic (DAG) if the graph

contains no directed cycles. In this study, node and variable are used interchange-

ably since each variable in V corresponds to a node in a BN.

G ¼ V; Eð Þ ð2Þ

where V = (vi|1 B i B n, n [ 0) denotes the set of nodes vi and E = [(vi, vj)|vi, vj 2
V, i = j] denotes edges for directed graph

P ¼ fPðvijpðviÞÞjvi 2 Vg ð3Þ

where p(vi) denotes the parents of vi [ V in G. A parent is a node which has a

directed link to the node in question. More detailed discussions about BN concepts

can be found in Pearl (1988), Jensen (2001) and Neapolitan (2003).

The advantages of using BNs in ABMs are as follows:

(a) Capability to handle incomplete data sets: Usually, when one of the inputs to

ABMs has missing values, inaccurate prediction will result. BNs handle

missing data by applying prior probabilities to estimate the missing values

(Heckerman and Wellman 1995).

(b) Employing causal relationships: BNs can explicitly represent the causal

reasoning about the preferences of agents which is beneficial in understanding

the behavior of agents during simulations (Ma et al. 2007).

(c) Facilitating the combination of prior knowledge and data: BNs can use prior

knowledge in terms of probabilities about the event being modeled. This

allows for inference and optimal decision-making (Uusitalo 2007; Heckerman

and Wellman 1995).

(d) Linking multiple variables: BNs can be used to link economic, social, or

physical variables (Bromley et al. 2005), and therefore are suited to land-use

change modeling.

412 V. Kocabas, S. Dragicevic

123



(e) Avoiding overfitting of training data: BNs avoid data overfitting as they rarely

generate unnecessary dependencies. In addition, they allow the use of all

available data in the model training process (Heckerman and Wellman 1995).

The construction of a BN requires four items to be established. First, a set of

nodes corresponding to the variables in the BN represents the most important factors

of a particular event being modeled. In this study, these variables are called land-use

drivers and constitute the set V. Figure 4 represents the BN-ID structure of BNAS.

Second, each node has a set of mutually exclusive states, which are the states of the

land-use drivers. Third, a set of directed links represent causal relationships between

the nodes. Fourth, each node has a set of probabilities, specifying the chance that a

node will be in a particular state given the state of its parents. For example, there is a

conditional probability associated with choosing a specific location of an agent

given the values of the land-use drivers of the location and the socioeconomic

properties of the agent. These probabilities are stored in conditional probability

tables (CPT) and quantify the strength of dependencies between connected variables

in the BN structure (Bromley et al. 2005). This study uses different BNs (NA) and in

turn different CPTs for each agent type because of their different preferences.

Individual agents are members of different agent groups (i.e., high-income

household group).

Once land-use drivers are represented as variables (nodes) and their correspond-

ing values (states), the BN structure is constructed. Although the network structure

and the CPTs can be obtained using expert knowledge, it is still a challenging

modeling task because there are many parameters to be learned especially in large

size networks. Hence, some learning algorithms must be used to find the best

Fig. 4 BNAS model BN-ID structure
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network structure that fits the observed data. Learning is a process of finding the

links between a given set of variables (i.e., structure learning) and then estimating

parameters for the CPT (i.e., parameter learning) using the observed data. In this

study, the K2 algorithm (Cooper and Herskovits 1992) based on a Bayesian scoring

method was used to learn the BN structure from the observed data. The K2

algorithm was found to be an efficient algorithm for structure learning from

complete observable data since it gives better results in structure learning (Cheng

et al. 2002). The algorithm exhaustively searches the DAGs space (all possible

DAGs given the nodes) and finds the best network structure by recursively selecting

the best set of parents for each node independently (Cooper and Herskovits 1992).

The learned BN structures for each agent type are shown in Fig. 5. Although they

appear similar, there are minor differences that are important for the agent’s

decision-making. The variable ‘‘proximity to town centers’’ does not affect the

decision of low-income agents, but it has a direct effect on the choices of medium-

and high-income agents. The reason might be the fact that some shopping areas are

expensive for low-income households. Medium- and high-income agent decisions

are not influenced by the proximity to recreation, in contrast to low-income agents.

Easy access to recreational areas is not required by medium- and high-income

families in Metro Vancouver. Whether the houses are mostly rental or owned is

Fig. 5 Learned BN structure for a low-, b medium-, c high-income households
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important for high- and medium-income agents, but it does not have a direct

influence on the decisions of low-income agents. Also, high-income agents’

decisions are affected by the dwelling types. Hence, different BN structures

obtained from the learning stage of the BNAS model showed that households with

different socioeconomic characteristics have different location preferences.

Each agent object stores its own socioeconomic characteristics as well as its

location in the environment. All the selected land-use drivers were incorporated into

the BN model as nodes. In addition to those, as a last node, the agent’s decision was

defined in the BN structure to obtain the probabilities of each decision: ‘‘choose’’ or

‘‘don’t choose’’. Using the BN learning procedure, the structure of the networks for

each type of agent (such as high-, middle- and low-income agents) was constructed,

and values of CPT were estimated from the 1996 census and associated data.

Once the network structure is chosen, the CPT parameters are estimated. As in

the structure learning of BN, there are several possible ways of generating estimates

for the conditional probabilities in the CPT. In this study, the probabilities were

derived from historical data using maximum likelihood estimation since learning

these parameters from observed data can make the process easier and provide some

level of objective probabilities rather than completely subjective probabilities

(Neapolitan 2003). After this step, the BNs for different agent types are ready to be

used in the agent sub-model (B).

The probability values in CPTs are different for each agent type. Each BN node

has an associated CPT describing the conditional distribution of that node given

different assignments of values for its parents. CPTs for each node have many

parameters directly related to the number of parents. Hence, it is not possible to

display all CPTs for all nodes for each agent because if the node has n parents which

have m number of states, then there are mn probabilities for each node which makes

it difficult to show them here. As an example, Table 1 shows the CPT of the node

‘‘choice’’ given its parents, proximity to town centers, proximity to SkyTrain

stations, dwelling type, no. of rooms in the dwelling, own or rent, and value (rental

amount/land value) for low-income agents.

CPTs such as Table 1 only depict the prior probabilities for each variable. An

advantage of Bayesian networks is the ability to compute the posterior probability

distributions of the variable (or node) under consideration given that values of some

other variables are known. In this case, the known states of variables can be entered

as evidence in the network. In this study, the evidence are the states of variables at

each iteration that is running, thus agents’ observations. When evidence is entered to

the BN, the states of other variables change as they are conditionally dependent

(Kocabas and Dragicevic 2007), and also the probability of choosing a particular

location changes.

2.5 Agent and Influence diagram sub-models (B and C)

The agent sub-model (B) structures the agents for the simulation. The number of

agents and their types were used as inputs to the model. In the agent sub-model (B),

agents perform observations at time t, then select and execute actions between time

t and t ? Dt. The outcome of these actions is reflected at time t ? Dt.
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Different numbers of agents enter the simulation at each iteration (or time step).

Population projection data were obtained from Metro Vancouver (2012a) for each

time step in the simulation. Then, the total new population according to these

forecasts was divided into different income levels. Subsequently, the calculated

number of agents enters into the environment at each iteration.

Agents enter the environment one-by-one and select a random place (L) in the

environment, for each iteration. Once in the environment, each agent randomly

searches for a location and stores the information about that location. With this

information, the agent runs the BN sub-model (A) and the ID sub-model (C) to

create real-time decision-making in the simulation. The BN (NA) and its nodes

represent the agent’s beliefs about the environment. The nodes in NA represent the

variables in BNAS model (please refer to Fig. 4). The last node in the BN structure

is ‘‘choosing a particular location (vc)’’. That particular location could be any

location that is available to the agents to decide. An agent implements the inference

for L. The probability of choosing L given the evidence is calculated during the

inference process. The variable values of L at time t (agent’s observations) are

entered into the BN as evidence, Et = [{v1, v2, …, vi-1}], and the probability of

choosing L, P(vc|Et), at t ? Dt is obtained. Multiple algorithms exist to perform

inference in BN (Lauritzen and Spiegelhalter 1988; Pearl 1988). This study used the

junction tree algorithm (Jensen 2001). The algorithm first groups the nodes which

are fully connected, then connects them to form a junction graph (tree). Using a

message passing method, it collects probabilities from CPT children nodes and

Table 1 CPT for the ‘‘choice’’ node in the BN for low-income agents

Proximity to

town centers

Proximity to

SkyTrain

stations

Dwelling type No of

rooms in

the

dwelling

Own

or

rent

Value Choice

Don’t

choose

Choose

Low

accessibility

Low

accessibility

Single-detached

house

Low Rent Low 0.6 0.4

Low

accessibility

Low

accessibility

Semi-detached

house

Low Rent Low 0.8 0.2

Low

accessibility

Low

accessibility

Row house Low Rent Low 1 0

Low

accessibility

Low

accessibility

Apartment, detached

duplex

Low Rent Low 1 0

Low

accessibility

Low

accessibility

Apartment, building

that has five or

more storeys

Low Rent Low 0 1

Low

accessibility

Low

accessibility

Apartment, building

that has fewer than

five storeys

Low Rent Low 0 1

Low

accessibility

Low

accessibility

Other single-

attached house

Low Rent Low 1 0

Low

accessibility

Low

accessibility

Movable dwelling Low Rent Low 1 0
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updates the probabilities at parents. Afterward, it distributes updated information to

the children nodes so that new probabilities are calculated.

The ID sub-model (C) runs the IDs for the agents and makes the decision whether

to stay at a specific location or not. An ID is a BN extended with utility nodes and

decision nodes. However, d ecision and utility nodes do not have CPTs but like

other nodes they have states. Decision node states represent the various decision

alternatives, and utility node states represent the utility of each possible outcome of

the decisions.

The utility node (UA) in the agent BNs represents the desirability of choosing L,

while the decision node (Dc) expresses the final decision of the agent. The decision

is to stay (d1) or search for another location (d2). UA is associated with a set of

utilities u(vc), which specifies utility outcomes for the probability of choosing L For

each decision (d1 or d2), the utilities of its outcome are multiplied by the

probabilities (P(vc)) that these outcomes will occur. This is termed the expected

utility (EU) of decision dj and given by the equation:

EUðdjÞ ¼
Xj¼n

j¼1

uðvcjdjÞPðvcÞ: ð4Þ

Figure 6 presents the utility function used in this study, where the utilities

(u) depend on the cost of changing land-use state (CPCSU) and the population density

of the PCSU unit (DPCSU). In the figure, a and b are the extreme values of the sloped

portion of the utility curve. The values are set by tuning using the historical data,

and each type of agent (household and firm) has different a and b values. Therefore,

they have different utility outcomes for different decisions as they have different

preferences in location choices.

Interpreting the Metro Vancouver Livable Region Strategic Plan (LRSP)

(MetroVancouver 2012a) is a key part of constructing a policy scenario in the

BNAS model. LRSP is MetroVancouver’s regional growth strategy which was

adopted in 1996. The primary goal of the plan is to protect the environment in the

face of anticipated growth. Each land-use plan designation (e.g., green zones) may

be described as a set of restrictions on development options in the BNAS model.

One of the important policies that LRSP utilizes is protecting the agricultural land

reserve (ALR) areas defined by the provincial government of BC. The ALR are BC

lands that have the potential for agricultural production. Therefore, LRSP includes

ALR areas in the green zone. In addition, it adopts a compact growth strategy to

reduce the development pressure on the green zone. The green zone establishes a

long-term boundary for the urban growth. Green zones are not allowed to convert to

any urban category. The green zone policy has been included in the influence

diagram sub-model (C). Cost in the utility formula increases if a location is in the

green zone boundary.

After executing its ID, the agent is required to take an action according to the

principle of maximum expected utility, and hence, it chooses the decision

alternative that produces the highest utility.

As a result of a decision based on maximum expected utility, an agent is either

‘‘unsettled’’ (i.e., searching for a location) or ‘‘settled’’ (i.e., has found a location). If
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the decision is to leave the location, the agent looks within a specified radius

(neighborhood of that particular location) for other locations: this is called agent’s

vision. The neighborhood of a spatial unit consists of other spatial units that reside

within a radius of one km. Although different neighborhoods could have been

defined and a sensitivity analysis (Ligmann-Zielinska and Sun 2010) could have

been employed on them, this will constitute future work of this study.

There is bounded rationality (Gigerenzer and Selten 2001) in agent’s decision-

making. Although humans in real life do not make sequential binary choices

concerning their homes all the time, rational decision-making approach is not taken

in agent-based modeling due to the finite computational resources. Thus, agents do

not search environment and do not evaluate all possible location alternatives, but

use a sequential choice of local optimizations that mimics human choice behavior. If

Fig. 6 Utility functions for each agent type
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the agent is not settled in one of those neighbors, it decides to leave the

environment.

When an agent becomes settled, its location attribute is updated and the

population density of that location increases. Hence, each new agent that enters the

simulation moves until it finds a location to be settled. The vector-based CA model

updates the current state of the environment (ENVt ? ENVt?Dt), such as the

population density information, so that one agent affects the others present. As such,

agents are influenced by nearby agents that exist in the neighborhood. The final

Fig. 7 a Actual and b predicted population density for the City of Surrey in 2001
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result of the simulation is population values and densities per census polygon. After

obtaining a population density map, the model generates a land-use map by

classifying densities ranging from high- to low-residential (urban) areas. Next, the

CA model uses the classified map as input to the next iteration. New agents entering

the environment in the next iteration have to adapt to these changing conditions.

This adaptation is implemented by the BN learning algorithms, which runs after

each iteration and learns new behaviors and beliefs of the agents. This means that

the agents’ BNs change after each model iteration based on the behaviors of agents

at the previous iteration.

According to the agent’s decision, the environment changes with the agent’s

action. More than one agent can occupy a spatial unit. Once agents have made their

decisions, the population density values for PCSUs were updated. Therefore, the

final result of the simulation is population values and densities per census spatial

unit. After obtaining the resultant population density map, the model generates a

Fig. 8 Predicted population density for the City of Surrey from 2006 to 2021
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land-use map by classifying densities ranging from high to low-residential (urban)

areas.

3 Simulation results and discussion

The BNAS model and algorithms were developed in MATLAB (Mathworks 2012)

using the functions of the Bayes Net Toolbox (Murphy 2001) and Arc_Mat Toolbox

(LeSage and Pace 2004; Liu and LeSage 2009) and were loosely coupled with

ArcGIS (ESRI 2012). Inputs were generated with ArcGIS, and then input into the

BNAS model. The model outputs the simulation results in the ArcGIS vector data

format.

The BNAS model output was validated by using 1996 PCSU data as input to

forecast population density in 2001. This predicted population density was

compared with the actual 2001 population density for PCSUs. The actual and

Fig. 9 Simulated land-use change maps from 2006 and 2021
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predicted population density maps are shown in Fig. 7. The circled areas in Fig. 7

highlight particular areas where BNAS forecast population density correctly.

Comparison of the actual versus predicted population per PCSU for 2001 yielded an

R2 of 0.95, indicating that BNAS predicted 2001 population density across the

entire study area very well.

Population density predictions in five-year intervals from 2006 to 2021 (Fig. 8)

indicate that within 20 years, high-density areas in the City of Surrey may emerge

around the city center (northwest of the city) and east of the city. The results also

reveal that there will be small population density increase in the southeast of the

city. In addition, the predicted population density map for 2021 indicates that most

change occurs around the SkyTrain stations, main transportation corridors (Fig. 9),

and within the growth concentration area of the Metro Vancouver Liveable Strategic

Plan. The reason that most of the change occurs within the growth concentration

area can be explained by the cost variable in the utility formula as it increases if a

location is in the green zone boundary.

Figure 10 depicts the amount of change in residential and non-residential land-

use throughout the model iterations. In the first iteration for land-use in 2006, non-

residential areas decreased by 22 % and new low-density neighborhoods appeared.

After 2016, the proportion of low-density area declines sharply by 12 %, while

medium-to-high-density area increases by 19 %. By 2021, there is an increase in

high-density area by 67 %.

After 2016, the BNAS model simulates a significant change in low-density areas

as they decrease and medium-to-high-density neighborhoods increase. There is an

Fig. 10 Percentage change in the predicted area of population density classes for the City of Surrey from
2001 to 2021
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increase in high-density areas in the study area at the end of simulation year 2021. In

addition, Fig. 10 shows that the BNAS model generates compact growth patterns as

it generates high-density areas.

4 Conclusion

The BNAS model incorporates actor behavior in locational decision-making for the

model transition rules using a novel approach combining BNs, IDs, GIS, and an

ABM for predicting future population density and land-use change. The results

showed that BNs can handle reasoning under uncertainty and therefore can mimic

human reasoning. With the BNs and IDs, the agent easily converts its beliefs into

actions.

The BNAS model couples BNs with agent-based approach to represent complex

spatial relationships between multitudes of land-use drivers that affect land-use and

population density changes. The relationships between household socioeconomic

drivers and locational drivers were determined by the BNAS model through specific

BN structures for different household (agent) types. These networks were extracted

from real-world data by using special learning algorithms of BNs in which variables

are linked together to represent dependencies between associated conditional

probabilities. The results illustrate that BN learning algorithms provide simplicity in

rule definition of the ABMs.

The agent decision-making was defined using causal relationships between land-

use drivers. Using BNs in ABMs provides detailed knowledge about the behavior

patterns of individuals, the important aspects of behavior, and the relative ease in

finding correct values of the variables in the model. In addition, the BNAS model is

capable of identifying the important variables and hence allows model designers to

rapidly examine multiple drivers. Furthermore, the BNAS model is flexible in terms

of choices of heterogeneous agents as different income groups can be easily

integrated.

This study also combined an irregular spatial structure with BN-based ABMs

since this offers a more realistic way of representing complex behaviors of urban

land-use change. Consequently, this represents an object-oriented model design

consisting of two objects: agents and irregular spatial units. Agents have attributes,

which store their socioeconomic characteristics and their current location. Spatial

units have location characteristics, such as distance to the town center, which are

stored their attributes. As such, the BNAS design is an approach to employ census

spatial units in ABMs.

Areal interpolation was used to integrate unmatched census data of the Metro

Vancouver study area between different time steps. Using new derived spatial units

allowed for the use of historical data to validate the model. Partial validation of the

proposed modeling approach for the study area in terms of checking if the model

captured the basic features of land-use change was accomplished successfully as a

real urban data set were available. Please refer to Kocabas and Dragicevic (2009)

for the details of the validation approach with respect to model simulation outcome

comparisons.
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The forecasting ability of the BNAS model is robust, and the outputs for the City

of Surrey are consistent and realistic. Further the BNAS model has been tested as

policy evaluator and generator as the part of the planning support system framework

(Kocabas and Dragicevic 2012). However, systematic sensitivity analysis and in

depth model testing would add further confidence in the model outputs once newer

land-use and census data are released from official sources. Incorporating discrete

choice modeling approaches or survey data as inputs to the BN would increase the

demographic characteristics of the agent profile and is possible venue for model

improvements.

In order to make model forecasts accurate, there is a need to integrate urban

policy, population growth dynamics, and land-use change. The BNAS model

addresses this need by facilitating the understanding and predicting of complex

urban land-use change processes and can be used as a complementary decision

support tool to guide policy makers, urban planners, and urban developers.
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