
Exam in information theory 31.01.2023. Problems

Problem 1

We consider random variables A and B, taking their values in the set {0, 1}n, for some n ≥ 1, where

Pr(A 6= B) ≤ 1

n
.

Prove that

H(A | B) ≤ 2,

and indicate, for which n (if any) the equality holds.

Hint. For words v, w ∈ {0, 1}∗, let

diff (v, w) =

{
0 if v = w
1 if v 6= w

It may be helpful to introduce a random variable D, defined by

D = diff (A,B),

and consider H(A,D | B).

Solution.

We have

H(A,D | B) = H(A | B) +

0︷ ︸︸ ︷
H(D | A,B)

= H(D | B)︸ ︷︷ ︸
≤1

+H(A | B,D)

because D is a function of A and B, and takes only 2 values. Now examine possible values of H(A | b, d).
If d = 0 then A equals B, hence H(A | b, d) = 0. If d = 1 then A can take only values different from b,
hence

H(A | b, 1) ≤ log(2n − 1) < n.

Thus

H(A | B,D) =
∑
b

H(A | b, 1) · Pr(B = b ∧D = 1) < n ·
∑
b

Pr(B = b ∧D = 1) < n · Pr(D = 1)︸ ︷︷ ︸
≤ 1

n

≤ 1

where inequality Pr(D = 1) ≤ 1
n follows from the assumption. From the above, we obtain

H(A | B) = H(D | B)︸ ︷︷ ︸
≤1

+H(A | B,D)︸ ︷︷ ︸
<1

< 2;

in particular, the equality never holds.
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Problem 2

Let (wn)n∈N be a sequence of different words that are random in the sense of Kolmogorov, that is
CU (wn) ≥ n, for some universal Turing machine U . Prove that infinitely many words in this sequence
contains a subword 111.

Hint. It may be helpful to first consider the case when the length of wn is divisible by 3.

Bonus. Propose and prove a generalization of the task of this problem.

Solution.

Any word w ∈ {0, 1}∗ can be presented as a concatenation w = α1α2 . . . αkβ, where |αi| = 3, for
i = 1, . . . , k, and 0 ≤ |β| ≤ 2. Let I(n) be the set of all words w of length n, such that in the presentation
as above none of the blocks αi is 111. We will show that the set

⋃
n I(n) contains only finitely many

random words. Note that this implies that our sequence satisfies an even stronger property: almost all
words wn contain 111 as a block starting from a position 3i+ 1, for some i.

Let us assume that n = 3 · k + d, where 1 ≤ k, 0 ≤ d ≤ 2. Note that the number of possible words
of length d (including the empty word) is 7, as is the number of 3-bit blocks different from 111. Then

mn
def
= |I(n)| ≤ 7k+1, and we can list all words in I(n) in the lexicographical order, say vn1 , . . . , v

n
mn

. Now
we can construct a Turing machine T , which, given a binary representation of n and i (where i ≤ mn),
generates the word vni on the list defined above. Note that n can be represented by blog nc+1 bits, and i
by at most b(k+1) log 7c+1 ≤ log 7

3 ·n+3 bits. We need to apply some encoding of pairs 1 (as explained
at the tutorials), but altogether T can generate vni from an input whose length is bounded by

2 log n+
log 7

3
· n+ c.

Since log 7
3 < 1 this clearly implies that there is a constant ε > 0, such that, for sufficiently large n, for

any word v ∈ I(n) ⊆ {0, 1}n,

CU (v) ≤ n− ε,

hence v is not random. This completes the proof.

We can generalize the thesis by taking any word u of length t ≥ 1, instead of 111. The claim will follow
by a similar computation, which is based on the fact that log(2t − 1) is strictly smaller than t.

1To avoid pairs, we could cleverely encode just vni using an appropriately chosen number of bits < n.
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