## Exam in information theory 8.02.2024. Problems

## Problem 1

Let  $X_1, X_2, X_3$  be **independent** random variables taking values in the set  $\{0, 1\}$  with the same probability distribution  $Pr(X_i = 0) = p$ , where  $0 . The symbol <math>\oplus$  means addition modulo 2 (XOR). Please compare the following values

 $H(X_1, X_2, X_3)$   $H(X_2 \oplus X_3, X_1 \oplus X_3, X_1 \oplus X_2)$ 

 $I(X_1; X_2 | X_3)$   $I(X_2 \oplus X_3, X_1 \oplus X_3, | X_1 \oplus X_2).$ 

Remark. To help intuitions, the operation considered above can be illustrated on a triangle



that is, the value in each node is replaced by the  $\oplus$  of its neighbours.

**Note.** In case of difficulties, please solve the problem for  $p = \frac{1}{2}$ . For the general case, use the Venn diagram and explore symmetry of the problem while avoiding long calculations.

## Problem 2

We consider two channels whose input and output alphabet is  $\{0,1\}^n$ . Channel  $\Gamma_1$  inputs a word w and with probability  $\frac{1}{2}$  outputs it correctly, or outputs its mirror <sup>1</sup> image  $w^R$ .

Whereas channel  $\Gamma_2$  inputs a word w and with probability  $\frac{1}{2}$  outputs it correctly, or swaps its **first** bit. For example, with n = 7,



Compare the capacities of the two channels.

## Notation.

Notation  $\{0,1\}^n$  denotes the set of all words over alphabet  $\{0,1\}$  of length n. For example,

 $\{0,1\} = \{000,001,010,011,100,101,110,111\}.$ 

Symbols I, H mean the same as  $I_2, H_2$ , respectively.

<sup>&</sup>lt;sup>1</sup>For  $w = w_1 w_2 \dots w_n$ ,  $w^R = w_n w_{n-1} \dots w_1$ .