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Teraz przeprowadzimy dowód twierdzenia Shannona: 
 
Wybieramy 0>η  (w zależności od 0, >εδ , „bardzo małe”). 

),( ηρ += Qn  
gdzie )( iEQ χ=  dla },...,0{ ni∈  (wartość oczekiwana zmiennych wspomnianych 
wcześniej – jest taka sama dla wszystkich, gdyż mają one ten sam rozkład). 
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Sumując stronami powyższą nierówność osiągamy (po wszystkich e ): 
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Następnie będziemy szacować obie części prawej strony powyższej nierówności. 
 
Słabe prawo wielkich liczb 
Mamy ciąg zmiennych losowych: ,..., 21 χχ  o identycznym rozkładzie. Elementy 
każdego skończonego podciągu (którego elementami są początkowe elementy tego 
ciągu) = nχχχ ..., 21 , są niezależne, czyli: 
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Ostatnia linijka wynika z faktu, że powyższe operacje (wzięcie wartości modułu nie 
zmniejsza wartości wyrażenia) nie zmniejsza prawdopodobieństwa (zatem nierówność 
nadal zachodzi). 

  
Uwaga: Jeśli A ma rozkład jednostajny, to: 
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gdzie C przyjmuje wartości C
m

C
i uu ,..., . EPr  nie zależy od A , będziemy więc pisać 

).,(Pr C∆E  
Do tej pory szacowanie przebiegło po wszystkich kodach C . Kolejne szacowanie będzie 
inaczej przeprowadzane, mianowicie oszacujemy uśrednione ),(Pr C∆E , gdzie C  
przebiega wszystkie n-elementowe kody o rozkładzie jednostajnym.  

Wszystkich m-elementowych kodów nA }1,0{: →C  jest 
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Teraz zajmiemy się oszacowaniem * dla ustalonej pary indeksów ji ≠  (Χ  jest 
funkcją boolowską; ( ) 1=Χ true  i ( ) 0=Χ false ): 
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 Ponieważ ∑ == 1)( ep E ,  więc: 
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Kontynuując dowód: 
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Nierówność dla dowolnego 
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Aby dokończyć dowód pozostaje dobrać η  i m . Musimy pokazać, że mając dane 
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Bez straty ogólności, ponieważ 0>C  możemy założyć, że 0≥−Γ εC . Ponieważ 
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I teraz wynik końcowy: 
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