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Przypuśćmy, że mamy do dyspozycji binarny kanał symetryczny Γ o macierzy:

(
P Q

Q P

)

i grafie:

którym chcemy przesyłać wiadomości, stanowiące wartości pewnej zmiennej losowej A. Przyjmijmy, że
zbiorem wartości zmiennej A jest A = {a1, . . . , am}. Najogólniej biorąc, metoda polega na tym, by dobrać
kod C : A→ {0, 1}∗, a następnie przesyłać słowa kodowe bit po bicie. Jednak, z wyjątkiem przypadku, gdy
kanał jest wierny (P = 1), proste odczytanie otrzymanego słowa będzie na ogół prowadzić do przekłamań
— prawdopodobieństwo bezbłędnego przesłania słowa w jest (zaledwie) P |w|. Podobnie, zamiana przy
odczytywaniu 0 i 1 nie będzie dobrą metodą, chyba że Q = 1. Dlatego też w tym zadaniu nie będzie nas
interesował kod o minimalnej długości, przeciwnie — przyda się pewna redundancja.

Metoda będzie polegała na znalezieniu kodu

C : A→ C ⊆ {0, 1}n

gdzie n jest sporo większe niż log2m i zastosowaniu przy odczytywaniu reguły dobrosąsiedzkiej. Zakładamy
oczywiście, że kod C jest znany zarówno nadawcy jak odbiorcy. A zatem, jeśli odbiorca otrzyma z kanału
słowo w ∈ {0, 1}n, to „domyśla się”, że wysłane było takie słowo kodowe ∆(w) ∈ C, które różni się od w
na możliwie najmniejszej liczbie pozycji (a więc nadaną wiadomością było C−1(∆(w))).
Najważniejszą dla nas wielkością jest średnie prawdopodobieństwo błędu przy zastosowaniu kodu

C i reguły dobrosąsiedzkiej ∆. Wyrażamy je wzorem:

PrE(∆, CA) = 1− PrC(∆, CA)

gdzie

PrC(∆, CA) =
∑

u∈{0,1}n

p(B = u) · p(CA = ∆(u)|B = u)

W powyższym wzorze CA jest zmienną losową powstałą przez złożenie zmiennej A i funkcji C (a więc
p(CA = w) = p(A = C−1(w))). Natomiast zmienna losowa B opisuje słowa (długości n) wychodzące z
kanału, tzn.

p(B = v) =
∑

w∈C

p(CA = w) · P n−d(v,w) ·Qd(v,w)
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Rysunek 1: Zbiór znajomych.
Sytuacja: rozmowa i przedstawianie się. Ponieważ kod nie wypełnia przestrzeni słów to duża jest szansa

na domyślenie się poprawnego imienia w przypadku błędnego przedstawienia się.

gdzie d(v, w) oznacza odległość Hamminga słów v i w (czyli liczbę pozycji gdzie się różnią).

Możemy ponownie sformułować:

Twierdzenie Shannona. Niech Γ będzie binarnym symetrycznym kanałem o macierzy
(
P Q
Q P

)

; zakładamy

że P > 12 > Q.

Niech δ, ε > 0.
Wtedy istnieje n0 takie, że dla każdego n ­ n0 istnieje zbiór słów C ⊆ {0, 1}

n o mocy |C| = m spełniającej

CΓ − ε ¬
log2m

n
¬ CΓ

taki, że dla dowolnej zmiennej losowej A, której zbiór wartości A ma tę samą moc m, istnieje kod C :
A→ C spełniający

PrE(∆, CA) < δ.

Objaśnienia:

• CΓ = 1−H(P ) - pojemność kanału;

• ∆ - reguła dobrosąsiedzka;

Uwaga 1. Oczywiście powyższy kod C jest bijekcją A na C.

Uwaga 2. W tej sytuacji stopa kodu C, R(C) =
log
2
m

n
.

Wniosek 1. Niech Γ, δ, ε będą tak jak w Twierdzeniu Shannona. Wtedy istnieje m0 takie, że dla każdej
zmiennej losowej A o zbiorze wartości A mocy |A| = m ­ m0, istnieje kod C : A→ {0, 1}

n (dla pewnego

n) taki, że PrE(∆, CA) < δ oraz CΓ − ε ¬
log
2
m

n
¬ CΓ.

W szczególności, jeśli tylko ε < CΓ, to n spełnia nierówność n ¬
log
2
m

CΓ−ε
(a więc wydłużenie nie jest

zbyt duże).

Dowód. Zastosujemy Twierdzenie Shannona dla Γ, δ i pewnego ε1, od którego wymagamy ε1 < ε i ε1 < CΓ.
Wiemy, że dla n większych od pewnego n0 możemy wskazać m = m(n) spełniające

CΓ − ε1 ¬
log2m(n)

n
¬ CΓ

i takie, że o ile zbiór wartości zmiennej losowej A ma moc |A| = m(n), to istnieje kod C : A → {0, 1}n

spełniający PrE(∆, CA) < δ.
Przypuśćmy teraz, że mamy dowolną zmienną A i |A| = m. Jeżeli m jest postaci m(n) dla pewnego

n, to mamy szczęście: Twierdzenie Shannona (dla Γ, δ, ε1) daje nam to, czego chcieliśmy dla Γ, δ, ε; w

szczególności mamy log2m
n
­ CΓ − ε1 ­ CΓ − ε.
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Jeśli nie, to wybierzmy najmniejsze n ­ n0 takie, że n(CΓ − ε1) ­ log2m. Mamy więc

n(CΓ − ε1) ­ log2m ­ (n− 1)(CΓ − ε1)

przy czym ostatnia nierówność zachodzi o ile m będzie na tyle duże, by zagwarantować, że n− 1 ­ n0.
W tym celu wystarczy założyć, że log2m0 ­ (n0 + 1)CΓ.
Przekształcając ostatnią nierówność otrzymujemy

log2m

n
·

(
n

n− 1

)

> CΓ − ε1

skąd
log2m

n
> (CΓ − ε1)

(
n− 1

n

)

.

Jednak, o ile tylko ε1 < ε, to dla dostatecznie dużych n mamy

(CΓ − ε1)

(
n− 1

n

)

­ CΓ − ε.

Zatem, ewentualnie jeszcze zwiększając próg m0, otrzymamy upragnioną nierówność

log2m

n
­ (CΓ − ε1)

(
n− 1

n

)

­ CΓ − ε.

Ta uwaga kończy dowód Wniosku.

Teraz wyjaśnimy dlaczego można ograniczyć się do rozważania zmiennychA o rozkładzie jednostajnym,
tzn. p(A = w) = 1

m
, dla każdego w ∈ C.

W tym celu znajdziemy najpierw bardziej dogodne przedstawienie PrE(∆, CA). Użyteczna transformacja,
oparta na wzorze Bayesa, pozwala nam przejść od uśredniania po B do uśredniania po A.

PrE(∆, CA) = 1−
∑

u∈{0,1}n

p(B = u) · p(CA = ∆(u)|B = u)

= 1−
∑

u∈{0,1}n

p(B = u ∧ CA = ∆(u))

=
∑

u∈{0,1}n

∑

w 6=∆(u)

p(B = u ∧ CA = w)

=
∑

w∈C

∑

w 6=∆(u)

p(B = u ∧ CA = w)

=
∑

w∈C

p(CA = w ∧ ∆ ◦ B 6= w)

=
∑

w∈C

p(CA = w) · p(∆ ◦ B 6= w|CA = w)

Dwukrotnie pojawiające się w powyższym ciągu równości sumę wewnętrzną
∑

w 6=∆(u) trzeba właściwie
zrozumieć: w pierwszym przypadku, dla u ustalonego w sumie zewnętrznej, sumujemy po wszystkich
w ∈ C spełniających w 6= ∆(u); w drugim przypadku, dla w ustalonego w sumie zewnętrznej, sumujemy
po wszystkich u ∈ {0, 1}n spełniających tę nierówność.

Niech teraz E będzie zmienną losową o wartościach w {0, 1}n powstałą jako konkatenacja (produkt)
n niezależnych zmiennych losowych Xi o rozkładzie p(Xi = 1) = Q i p(Xi = 0) = P . Mamy więc

p(E = w) =

n∏

i=1

P 1−wiQwi
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W naszej intencji E reprezentuje ciąg „zachowań” kanału przy przesyłaniu słowa n bitowego: 1 jeśli błąd,
0 jeśli transmisja poprawna. Wtedy B = CA⊕E (gdzie ⊕ rozumiemy jak XOR, tzn. dodawanie bitów po
współrzędnych modulo 2) i, jak łatwo sprawdzić, p(B = w|CA = u) = p(E = e), gdzie u⊕ e = w.
W konsekwencji otrzymujemy

p(∆ ◦ B 6= w|CA = w) =
∑

v:∆(v)6=w

p(B = v|CA = w) =
∑

e:∆(w⊕e)6=w

p(E = e) = p(∆(w ⊕ E) 6= w)

i wreszcie
PrE(∆, CA) =

∑

w∈C

p(CA = w) · p(∆(w ⊕ E) 6= w).

Jeżeli A ma rozkład jednostajny, to

PrE(∆, CA) =
1

m

∑

w∈C

p(∆(w ⊕ E) 6= w).

Lemacik („lemat o skarbonce”). Niech będzie dany układ liczb rzeczywistych α1, . . . αm oraz liczby
p1, . . . , pm ∈ [0, 1], takie, że p1 + . . . + pm = 1. Wtedy istnieje permutacja σ : {1, . . . ,m} → {1, . . . ,m},
taka że

m∑

i=1

pσ(i)αi ¬
1

m

m∑

i=1

αi.

Dowód. Wykażemy przez indukcję po m, że o ile α1 ¬ . . . ¬ αm i p1 ­ . . . ­ pm, to

m∑

i=1

piαi ¬
1

m

m∑

i=1

αi.

Jeśli nasz układ nie spełnia powyższego wstępnego założenia, możemy je oczywiście uzyskać przez odpowiednią
permutację; stad teza Lemaciku.
Dla m = 1 nie ma czego dowodzić. W kroku indukcyjnym rozważmy układy α1 ¬ . . . ¬ αm i

p1 ­ . . . ­ pm. Z ustawienia ciągu pi mamy, że pm ¬
1
m
, powiedzmy pm =

1
m
− h, dla pewnego h ­ 0.

Natomiast z ustawienia ciągu αi mamy, że αm ­
1
m−1

∑m−1
i=1 αi.

Z założenia indukcyjnego mamy

p1

p1 + . . .+ pm−1
α1 + . . .+

pm

p1 + . . .+ pm−1
αm ¬

1

m− 1

m−1∑

i=1

αi

skąd wnioskujemy dalej

p1α1 + . . .+ pm−1αm−1 + pmαm ¬

1−pm
︷ ︸︸ ︷

(p1 + . . .+ pm−1) ·
1

m− 1
·

m−1∑

i=1

αi + pmαm

=

(
m− 1

m
+ h

)

·
1

m− 1
·

m−1∑

i=1

αi +

(
1

m
− h

)

· αm

=
1

m

m∑

i=1

αi + h ·

(

1

m− 1

m−1∑

i=1

αi − αm

)

︸ ︷︷ ︸

¬0

¬
1

m

m∑

i=1

αi

jak chcieliśmy.
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Przyjmując, że C = {w1, . . . , wm} i stosując Lemacik do układu liczb αi = p(∆(wi ⊕ E) 6= wi) oraz
pi = p(CA = wi), stwierdzamy, że dla pewnej permutacji σ zbioru C

∑

w∈C

p(CA = σ(w)) · p(∆(w ⊕ E) 6= w) ¬
1

m

∑

w∈C

p(∆(w ⊕ E) 6= w).

Jeśli teraz określimy nowy kod C ′ = σ−1 ◦ C, to lewa strona powyższej nierówności przedstawia właśnie
PrE(∆, C

′A) (bo CA = σ(w) ⇔ C ′A = w). A zatem jeśli zbiór słów kodowych C jest dobry dla zmiennej
losowejA z rozkładem jednostajnym, to jest dobry dla zmiennych o dowolnych rozkładach (z dokładnością
do wyboru kodu C).

Możemy rozumieć to tak: przypuśćmy, że chcemy przesyłać informację z błędem mniejszym niż δ, ale
również nie za bardzo redundantnie, mianowicie ze stopą większą niż CΓ − ε. Twierdzenie mówi, że to
jest możliwe dla wszystkich dostatecznie dużych n, i w konsekwencji dla wszystkich dostatecznie dużych
m (wystarczy, że log2m ­ n0(CΓ − ε); zauważmy, że kod „dobry” dla m

′ ­ m jest tak samo dobry dla
m).

p(∆ ◦ B 6= w|CA = w) =
∑

v:∆(v)6=w

p(B = v|CA = w)

=
∑

e:∆(w⊕e)6=w

p(E = e)

= p(∆(w ⊕ E) 6= w)

Uwaga 3. W powyższych rozważaniach mieliśmy zawsze na myśli Twierdzenie Shannona dla binarnych
symetrycznych kanałów. W istocie zachodzi ono w ogólniejszej postaci dla dowolnych kanałów.
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