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Przypuéémy, ze mamy do dyspozycji binarny kanat symetryczny I' o macierzy:

(o 7)

i grafie:

ktérym chcemy przesytaé¢ wiadomosci, stanowiace wartoéci pewnej zmiennej losowej A. Przyjmijmy, ze
zbiorem wartosci zmiennej A jest A = {a1, ..., an}. Najogélniej biorac, metoda polega na tym, by dobraé
kod C : A — {0,1}*, a nastepnie przesylaé¢ stowa kodowe bit po bicie. Jednak, z wyjatkiem przypadku, gdy
kanal jest wierny (P = 1), proste odczytanie otrzymanego slowa bedzie na og6! prowadzié do przektaman
— prawdopodobienistwo bezblednego przestania slowa w jest (zaledwie) P vl Podobnie, zamiana przy
odczytywaniu 0 i 1 nie bedzie dobra metoda, chyba ze () = 1. Dlatego tez w tym zadaniu nie bedzie nas
interesowal kod o minimalnej dtugosci, przeciwnie — przyda sie¢ pewna redundancja.

Metoda bedzie polegala na znalezieniu kodu
C:A—-CcC{o,1}"

gdzie n jest sporo wieksze niz log, m i zastosowaniu przy odczytywaniu reguty dobrosasiedzkiej. Zakltadamy
oczywiscie, ze kod C jest znany zaréwno nadawcy jak odbiorcy. A zatem, jesli odbiorca otrzyma z kanatu
stowo w € {0,1}", to ,domyéla si¢”, ze wystane bylo takie stlowo kodowe A(w) € C, ktére rézni si¢ od w
na mozliwie najmniejszej liczbie pozycji (a wiec nadana wiadomoscia byto C~1(A(w))).

Najwazniejsza dla nas wielko$cia jest Srednie prawdopodobienstwo btedu przy zastosowaniu kodu
C i reguly dobrosasiedzkiej A. Wyrazamy je wzorem:

PT’E(A,CA) =1- Prc(A,C.A)
gdzie
Pro(A,CA) = Y p(B=u) pCA=Au)|B=u)
ue{0,1}n
W powyzszym wzorze C.A jest zmienna losowa powstala przez zlozenie zmiennej A i funkeji C (a wiec

p(CA = w) = p(A = C!(w))). Natomiast zmienna losowa B opisuje stowa (dtugoéci n) wychodzace z
kanatu, tzn.

p(B=v)= Z p(CA=w)- pr—d(v,w) | Qd(v,w)

wel



Rysunek 1: Zbiér znajomych.
Sytuacja: rozmowa i przedstawianie sie. Poniewaz kod nie wypelnia przestrzeni stéw to duza jest szansa
na domyslenie si¢ poprawnego imienia w przypadku blednego przedstawienia sie.

gdzie d(v, w) oznacza odlegloéé Hamminga stéw v i w (czyli liczbe pozycji gdzie sie r6znia).

Mozemy ponownie sformulowag:

Twierdzenie Shannona. NiechT" bedzie binarnym symetrycznym kanalem o macierzy (g %); zaktadamy

e P>4>Q.
Niech 6,¢ > 0.
Wiedy istnieje ng takie, zZe dla kazdego n > ng istnieje zbior stéw C C {0,1}™ o mocy |C| = m spelniajgcej
lo
Cr —e< B2 < Cr
n

taki, Ze dla dowolnej zmiennej losowej A, ktorej zbior wartosci A ma te samg moc m, istnieje kod C :
A — C spelniajgcy
Pre(A,CA) < 6.

Objasnienia:

e Cr =1— H(P) - pojemno$¢ kanalu;

e A - regula dobrosasiedzka;
Uwaga 1. Oczywiscie powyzszy kod C jest bijekcja A na C.
Uwaga 2. W tej sytuacji stopa kodu C, R(C) = logT2m.

Wniosek 1. Niech T, §, e beda tak jak w Twierdzeniu Shannona. Wtedy istnieje mq takie, ze dla kazdej
zmiennej losowej A o zbiorze wartoéci A mocy |A| = m > my, istnieje kod C : A — {0,1}"™ (dla pewnego
n) taki, ze Prp(A,CA) < 6 oraz Cp — e < 282 L O,

n

W szczegdlnosci, jesli tylko € < Cr, to n spelnia nieréwnoséé n < ggrzjz

zbyt duze).

(a wiec wydluzenie nie jest

Dowdéd. Zastosujemy Twierdzenie Shannona dla I, § i pewnego €1, od ktérego wymagamy €1 < eie; < Cr.
Wiemy, ze dla n wiekszych od pewnego ng mozemy wskazaé¢ m = m(n) spelniajace

i takie, ze o ile zbiér wartosci zmiennej losowej A ma moc |A| = m(n), to istnieje kod C : A — {0,1}"
spetniajacy Prg(A,CA) < 4.

Przypu$émy teraz, ze mamy dowolng zmienna A i |A| = m. Jezeli m jest postaci m(n) dla pewnego
n, to mamy szczescie: Twierdzenie Shannona (dla T',d,¢€1) daje nam to, czego chcieliSmy dla T', 4, ¢; w

o 1
szczegllnosci mamy 222 > Cp —e; > Cp — e



Jedli nie, to wybierzmy najmniejsze n > ng takie, ze n(Cr — €1) > log, m. Mamy wiec

n(Cr —€1) > logom > (n — 1)(Cr — ;)

przy czym ostatnia nieréwnos$é¢ zachodzi o ile m bedzie na tyle duze, by zagwarantowaé, ze n — 1 >

W tym celu wystarczy zalozy¢, ze logy mo = (ng + 1)Cr.
Przeksztatcajac ostatnia nieréwnosé otrzymujemy

I
M( n >>CF_61

n n—1

skad

1 -1
0g2m>(cr_€1) (nn >

n

Jednak, o ile tylko €; < ¢, to dla dostatecznie duzych n mamy

n—1

(CF—€1)< )>Cr—€-

Zatem, ewentualnie jeszcze zwiekszajac prog mg, otrzymamy upragniona nieréwnosé

logy m n—1

>(cp—e1>( >>CF—€-

n

Ta uwaga konczy dowéd Wniosku.

no.

O

Teraz wyjasnimy dlaczego mozna ograniczy¢ sie do rozwazania zmiennych A o rozkladzie jednostajnym,

tzn. p(A = w) = L, dla kazdego w € C.

W tym celu znajdziemy najpierw bardziej dogodne przedstawienie Pr (A, CA). Uzyteczna transformacja,

oparta na wzorze Bayesa, pozwala nam przejé¢ od usredniania po B do usredniania po A.

Pre(A,CA) = 1— > p(B=u) -p(CA=A®)B=u)
ue{0,1}n
= 1- > pB=unCA=A(u)
ue{0,1}m™

= Z Z p(B=u AN CA=w)

u€{0,1}" w#A(u)

= > Y pB=uArCA=w)

weC w#A(u)

= Zp(CA:w A Ao B#w)
welC

= Zp(CA:w)~p(AOB7éw|CA=w)
welC

Dwukrotnie pojawiajace si¢ w powyzszym ciagu réwnosci sume wewnetrzng y £A(w) trzeba wladciwie
zrozumieé: w pierwszym przypadku, dla uw ustalonego w sumie zewnetrznej, sumujemy po wszystkich
w € C spelniajacych w # A(u); w drugim przypadku, dla w ustalonego w sumie zewnetrznej, sumujemy

po wszystkich u € {0,1}" spelniajacych te nier6wnosé.

Niech teraz £ bedzie zmienna losowa o wartoéciach w {0,1}" powstala jako konkatenacja (produkt)

n niezaleznych zmiennych losowych X; o rozkladzie p(X; = 1) = Q i p(X; = 0) = P. Mamy wiec

p(& =w) =[] P Q™
=1



W naszej intencji £ reprezentuje ciag ,zachowan” kanalu przy przesytaniu stowa n bitowego: 1 jesli btad,
0 jesli transmisja poprawna. Wtedy B = CA @ € (gdzie @ rozumiemy jak XOR, tzn. dodawanie bitéw po
wspOlrzednych modulo 2) i, jak tatwo sprawdzié¢, p(B = w|CA = u) = p(€ = ¢), gdzie u P e = w.

W konsekwencji otrzymujemy

pAoBAwlCA=w)= Y pB=vCA=w)= Y pE=e) =pAwaé)+w)

v:A(v)FAw e:A(wde)F#w

i wreszcie
Pru(A,CA) =Y p(CA=w) p(Aw & &) # w).

wel

Jezeli A ma rozktad jednostajny, to

Pro(A,cA) = — 3 p(Awe £) £ ).

weC

Lemacik (,lemat o skarbonce”). Niech bedzie dany uklad liczb rzeczywistych o, . . . oy, oraz liczby
D1y, Pm € [0,1], takie, ze p1 + ... + pm = 1. Wtedy istnieje permutacja o : {1,...,m} — {1,...,m},

taka ze
E i
pa(z)az B m

Dowod. Wykazemy przez indukcje pom, ze oile oy < ... < app ip1 2 ... 2 pm, to

m
szaz S %Z (78

=1

Ms

=1

Jesli nasz uktad nie spelnia powyzszego wstepnego zalozenia, mozemy je oczywiscie uzyskaé przez odpowiednia
permutacje; stad teza Lemaciku.

Dla m = 1 nie ma czego dowodzi¢. W kroku indukcyjnym rozwazmy uklady a1 < ... < aup 1
P12 ... 2= pm. L ustawienia ciagu p; mamy, ze pm <L - powiedzmy Pm = ﬁ — h, dla pewnego h > 0.
Natomiast z ustawienia ciggu «; mamy, ze amy 2 =5 ZZ 1 ozZ

7 zatozenia indukcyjnego mamy

P1 Pm 1
_— o t... .t —« < — o
pPL+ ...+ DPm-1 ! p1+ ...+ Pm—1 mos m—l; ¢
skad wnioskujemy dalej
1=pm 1 m—1
P1O1+ . H P10 1+ P < (Pt Pmo1) = Y @ + PO
m—1 ¢4
=1
m—1 1= 1
(o) s e (o)
i=1
m 1 m—1
= —Zaﬁh'(mz%—am)
i=1 =1
<0
1 m
< — Q;

jak chcieli$my.



Przyjmujac, ze C' = {w1,...,wy} 1 stosujac Lemacik do uktadu liczb «; = p(A(w; ® &) # w;) oraz
p; = p(CA = w;), stwierdzamy, ze dla pewnej permutacji o zbioru C

> pCA=o(w)) p(Aw S E) £w) < — 3 pdw HE) £ w).

wel weC

Jedli teraz okredlimy nowy kod C’ = 0~ ! o C, to lewa strona powyzszej nieréwnoéci przedstawia wlaénie
Prg(A,C'A) (bo CA =o(w) & C'A=w). A zatem jesli zbiér stéw kodowych C jest dobry dla zmiennej
losowej A z rozkladem jednostajnym, to jest dobry dla zmiennych o dowolnych rozkladach (z doktadnoscia
do wyboru kodu C).

Mozemy rozumie¢ to tak: przypusémy, ze chcemy przesylaé¢ informacje z bledem mniejszym niz 9§, ale
réwniez nie za bardzo redundantnie, mianowicie ze stopa wieksza niz Cr — €. Twierdzenie mowi, ze to
jest mozliwe dla wszystkich dostatecznie duzych n, i w konsekwencji dla wszystkich dostatecznie duzych
m (wystarczy, ze logo m > ng(Cr — €); zauwazmy, ze kod ,dobry” dla m’ > m jest tak samo dobry dla
m).

pAoB#uwlCA=w) = Y pB=v|CA=uw)
v:A(v)Fw
= Y. pE=e
e:A(wde)#w

= p(A(wa &) # w)

Uwaga 3. W powyzszych rozwazaniach mieliSmy zawsze na mysli Twierdzenie Shannona dla binarnych
symetrycznych kanatéw. W istocie zachodzi ono w ogélniejszej postaci dla dowolnych kanaldw.



