Exam in information theory 31.01.2023. Theoretical part

1. For a fixed triangle

we choose one of its edges with the uniform probability; this makes a random variable A. Next, again with the uniform probability, we choose one of the ends of the previously chosen edge, this makes a random variable B.

(a)
$$
H(A|B) < H(B|A)
$$
 (b) $H(A|B) = H(B|A)$ (c) $H(A|B) > H(B|A)$

Value: $I(A;B) = \log 3 - 1$.

It follows from a straightforward calculation that $H(A | B) = H(B | A) = 1$.

2. Consider the set of binary representations of all prime numbers smaller than 2^{100} written with exactly 100 (one hundred) binary digits, with leading zeros added as needed. This code

(a) detects 4 errors, and corrects 2

$$
\fbox{(b) detects 0 errors}
$$

✝ ✆ **(c)** it is not a code at all.

The binary representations of **2** and **3** differ only by one bit.

3. Suppose that, for a channel Γ with matrix $\begin{pmatrix} P & Q \\ Q & P \end{pmatrix}$, for all $\forall \varepsilon, \delta > 0$, there are infinitely many numbers $n \in \mathbb{N}$ and codes $\exists C \subseteq \{0,1\}^n$, such that $C_{\Gamma} - \varepsilon \leq R(C) \leq C_{\Gamma}$ and, for a random variable A uniformly distributed over C, it holds $Pr_E(\Delta_o, A) \leq \delta$, where Δ_o is (attention!) the ideal observer rule. What can we claim **for sure** about the value P in the channel matrix (perhaps nothing of these)?

(a)
$$
P = 0
$$
 or $P = 1$
 (b) $P \neq \frac{1}{2}$
 (c) $P > \frac{1}{2}$.

The Shannon channel theorem has been stated at the lecture for $P > \frac{1}{2}$ and the maximal likelihood rule ∆, with an even stronger claim: for any ∀ε, δ > 0, the respective inequalities hold for **almost all** n's. If $P < \frac{1}{2}$, it is easy to see that $Pr_E(\Delta_o, A)$ coincides with $Pr_E(\Delta, A)$ for the dual channel $\begin{pmatrix} Q & P \\ P & Q \end{pmatrix}$ and the code $\overline{C} = {\overline{w} : w \in C}$. Hence we can use the Shannon theorem in this case as well. (In particular, we cannot claim **for sure** that $P > \frac{1}{2}$.) On the other hand, if $P = \frac{1}{2}$ then $Pr_E(\Delta_o, A)$ is always $1 - \frac{1}{|C|}$. This contradicts the assumption as soon as the code C has at least 2 elements. This proviso has been usually implicitly present in our considerations, but not explicitly stated here. Indeed, for a trivial case of a **one element** code and $P = \frac{1}{2}$, we would have $Pr_E(\Delta_o, A) = R(C) = C_\Gamma = 0$, satisfying (somewhat strangely) the assumption.

For this reason, **both answers:** (b) or nothing were granted by 2 points¹.

4. Two channels act over the alphabet $\{0, 1, \ldots, 8, 9\}$. The first one swaps 6 and 9 with probability $\frac{1}{2}$ (i.e., sends 6 to 9 or *vice-versa*), and sends the remaining digits correctly. The second channel sends 0 to some even digit $(0,2,4,6 \text{ lub } 8)$ with probability $\frac{1}{5}$, and sends the remaining digits correctly.

 $\sqrt{(a)}$ the capacity of both channels is at least $\log 9$ ☎

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$ **(b)** the capacity of exactly one of these channels is exactly log 10

(c) the capacity of at least one of these channels is strictly smaller than log 9.

Both channels can transmit 9 symbols without error and therefore can achieve $I(A;B) = \log 9$; on the other hand, no channel can transmit all bits without error and achieve log 10. (Indeed, with

¹The exceptional case of $|C| = 1$ has been commented by Mr. Wojda.

the formula for the sum of channels, it can be seen that the capacity of the first channel is exactly log 9.)

- 5. Recall that the Chaitin constant Ω_U depends in general on a prefix-free universal Turing machine U . Does there exist a universal machine U , such that
	- $\left(\textbf{a}\right) \, \Omega_{U} = \frac{1}{4}$
	- (**b**) $\Omega_U = \frac{1}{\pi}$
	- **(c)** every second digit in the binary representation of the fraction Ω_U is 1.

None of these possibilities may hold true because of the two properties of the Chaitin constant shown at the lecture. Indeed, Ω_U cannot be a number whose bits can be effectively generated (as it is clearly the case for $\frac{1}{4}$ and $\frac{1}{\pi}$), as this would contradict the undecidability of the halting problem. Whereas the property **(c)** would contradict the **incompressibility** of the prefixes of Ω_U . Indeed, we can construct a (prefix-free) machine T, which, given k (in binary) and a word $\{0,1\}^k \ni v = v_1 \dots v_k$, produces the word $w = v_1 1 v_2 1 \dots v_{k-1} 1 v_k 1$. Thus (with $n = |w|$)

$$
K_U(w) \leq \frac{n}{2} + 2\log n + c.
$$

Hence, if Ω_U had the form of (c), this would contradict the fact shown at the lecture that

$$
K_U(\omega_1 \ldots \omega_n) \geq n-c,
$$

for some constant c .