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Abstract. We give complete sequent-like tableau systems for the modal
logics KB, KDB, K5, and KD5. Analytic cut rules are used to obtain
the completeness. Our systems have the analytic superformula property
and can thus give a decision procedure. Using the systems, we prove the
Craig interpolation lemma for the mentioned logics.

1 Introduction

Tableau methods have been widely applied for modal logics, some of the best
accounts of this are the works by Fitting [3] and Goré [5]. There are two kinds of
tableau systems for modal logics: sequent-like, and labeled systems. In [11], Mas-
sacci successfully gives labeled tableau systems for all the basic normal modal
logics obtainable from the logic K by the addition of any combination of the
axioms T, D, 4, 5, and B in a modular way. There is a difficulty in developing
sequent-like systems for symmetric modal logics (i.e. the ones containing the
axiom B or/and 5) as in such logics “the future can affect the past”, whereas
in sequent-like systems “the past” cannot be changed. In [3], Fitting gives semi-
analytic sequent-like tableau systems for the logics KB, KDB, B, and S5, but
they do not have the analytic superformula property and thus cannot give a
decision procedure. There are known sequent-like tableau systems with the ana-
lytic superformula property for the logics B, KB4, K45, KD45, and S5 (see [5]
for the history), but such systems for the logics KB, KDB, K5, and KD5 are,
as raised by Goré [5], open problems.

In this work, we present complete sequent-like tableau systems for the latter
logics. These systems use analytic cuts and have the analytic superformula prop-
erty. Our systems for the logics KB and KDB are based on the system CB of
Rautenberg [14]. For the logics K5 and KD5, we use a special symbol to distin-
guish the “actual” world from the others. To obtain the analytic superformula
property we use an extra connective as a “blocked” version of the modality 0.

Our tableau formulation is based on the work by Goré [5]. We use a similar
technique to prove completeness of the systems. To show completeness of CL we
give an algorithm that, given a finite CL-consistent formula set X, constructs
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a L-model graph that satisfies every one of its formulae at the corresponding
world.

Using our tableau systems, we prove the Craig interpolation lemma for the
logics KB, KDB, K5, and KD5. Craig [2] proved the lemma for the classical
predicate logic in 1957. The lemma turned very influential in mathematical logic.
Analogs for different modal logics have been studied (among others) in Gabbay
[4], Fitting [3], Rautenberg [14], and Maksimova [10]. The proof of the Craig
interpolation lemma for the propositional modal logics K, KD, T, K4, KDA4,
and 54 can be found in [3, 4], and for the logics KB, KDB, B, and S5 in [3]. Our
proof for the logics KB and KDB has an advantage that it gives a constructive
way to compute interpolation formulae, as it is based on analytic systems. We do
not know whether the lemma has been previously proved for the logics K5 and
KD5. The Craig interpolation lemma can be used to prove the Beth definability
theorem for the logics considered in this paper, as done by Craig in [2].

2 Preliminaries

2.1 Syntax and Semantics Definition for Modal Logics

A modal formula, hereafter simply called a formula, is defined by the following
rules: any primitive proposition p is a formula, L is a formula, and if ¢ and v are
formulae then so are —¢, ¢ A ¥, and O¢. The symbol L stands for “false”. We
write T, ¢ V¢, ¢ — ¥, and O¢ to denote shortened forms of L, (=g A =),
=(¢ A ), and —=O—¢, respectively.

We use small letters p, g to denote primitive propositions, Greek letters like
¢, ¥ to denote formulae, and block letters like X, Y, Z to denote formula sets.

A Kripke frame is a triple (W, 7, R), where W is a nonempty set of possible
worlds, 7 € W is the actual world, and R is a binary relation on W called the
accessibility relation. If R(w,u) holds, then we say that the world u is accessible
from the world w, or that u is reachable from w.

A Kripke model is a tuple (W, 7, R, h), where (W, 7, R) is a Kripke frame and
h is a function mapping worlds to sets of primitive propositions. For w € W,
h(w) is the set of primitive propositions which are “true” at w.

Given some Kripke model M = (W, 7, R, h), and some w € W, the satisfac-
tion relation M, w F ¢ is defined recursively as follows.

M,wkF L;

M,wEp iff p € h(w);

M,wE-¢p iff M,wE ¢;

MwE AN it M,wE ¢ and M, w F ;

M,wkEO¢ iff for all v € W such that R(w,v), M,v F ¢.

We say that ¢ is satisfied at w in M iff M, w E ¢, and that ¢ is satisfied in
M, and call M a model of ¢, iff M, T E ¢.



2.2 Modal Logic Correspondences

The smallest normal modal logic, called K, is axiomatized by the standard ax-
ioms for the classical propositional logic, the modus ponens inference rule, the
K-aziom O(¢ — ) — (O¢ — Ov), plus the necessitation rule

FDOg¢

It can be shown that a modal formula is provable in this axiomatization iff it is
satisfied in every Kripke model (i.e. without any special R-properties) [9]. It is
known that certain axiom schemata added to this axiomatization are mirrored
by certain properties of the accessibility relation (see also [1, 8]).

Different modal logics are distinguished by their respective additional axiom
schemata. The modal logics KB, KDB, K5, KD5 together with their axiom
schemata are listed in Table 2. We refer to properties of the accessibility relation
of a modal logic L as L-frame restrictions.

We call a model M a L-model if the accessibility relation of M satisfies all
L-frame restrictions. We say that ¢ is L-satisfiable if there exists a L-model of
¢. A formula ¢ is said to be L-valid if it is satisfied in every L-model.

leiom[SChemata [First—Order Formula ‘
D |00 — <O (Vz Jy R(z,y)

B | >009 |Va,y R(z,y) — R(y,x)

5 [©® — 0OOP |Vr,y,z R(x,y) A R(z,z) — R(y, 2)

Table 1. Axioms and corresponding first-order conditions on R

lLogic ‘Axiom ‘Frame Restriction
KB KB |symmetric

KDB | KDB |serial and symmetric
K5 K5 |euclidean

KD5 | KD5 |serial and euclidean

Table 2. Modal logics and frame restriction



2.3 Syntax, Soundness, and Completeness of Modal Tableau
Systems

Our tableau formulation is adopted from the work by Goré [5], which in turn is
related to the ones by Hintikka [6] and Rautenberg [14]. A number of terms and
notations used in this work are borrowed from Goré [5].

A tableau rule ¢ consists of a numerator N above the line and a (finite) list
of denominators D1, Da, ..., Dj (below the line) separated by vertical bars.

N
Dy | Ds| ... | Ds

The numerator is a finite formula set, and so is each denominator. As we shall
see later, each rule is read downwards as “if the numerator is L-satisfiable, then
so is one of the denominators”. The numerator of each tableau rule contains one
or more distinguished formulae called the principal formulae.

A tableau system (or calculus) CL for a logic L is a finite set of tableau rules.

A CL-tableau for X is a tree with root X whose nodes carry finite formula
sets. A tableau rule with numerator IV is applicable to a node carrying a set Y
if Y is an instance of N. The steps for extending a tableau are:

— choose a leaf node n carrying Y where n is not an end node (defined below),
and choose a rule § which is applicable to n;

— if § has k denominators then create k successors for n, with successor i
carrying an appropriate instance of denominator D;;

— all with the proviso that if a successor s carries a set Z and Z has already
appeared on the branch from the root to s then s is an end node.

Let A be a set of tableau rules. We say that Y is obtainable from X by
applications of rules from A if there exists a tableau for X which uses only rules
from A and has a node that carries Y.

A branch in a tableau is closed if its end node carries only L. A tableau is
closed if every its branch is closed. A tableau is open if it is not closed. A finite
formula set X is said to be CL-consistent if every CL-tableau for X is open. If
there is a closed C L-tableau for X then we say that X is CL-inconsistent.

A tableau system CL is said to be sound if for any finite formula set X, if X is
L-satisfiable then X is C L-consistent. A tableau system CL is said to be complete
if for any finite formula set X, if X is CL-consistent then X is L-satisfiable.

Let 6 be one of the rules of CL. We say that § is sound wrt. L if for any
instance &’ of §, if the numerator of ¢ is L-satisfiable then so is one of the
denominators of ¢§’. It is clear that if CL contains only rules sound wrt. L then
CL is sound.

3 Tableau Systems for the Modal Logics KB, KDB, K5,
and KD5

Tables 3 and 4 represent tableau rules and calculi for the modal logics KB, KDB,
K5, and KD5. We write X;Y for X Y, and X; ¢ for X (J{¢}. We sometimes



consider a formula set also as the conjunction of its formulae. The connective X
has the same semantics as O, i.e. M, w F K¢ iff M,w E O¢, but plays a different
syntactical role. The symbol * is a special formula with the following semantics:
M, w E * iff there exists a world u such that R(u,w) holds. By OX we denote
the set {O¢ | » € X}. The sets KX and —X are defined similarly.

Thinning is built into the rules of our systems, whereas in [5] Goré uses an
explicit thinning rule. An explicit thinning rule is not desirable for our systems
since the rule (5.) is applicable only when the numerator contains #, and an
explicit thinning rule would allow us to remove the *, leading to blocked proofs
and wasted search.

Following Goré [5], we categorize each rule either as a static rule or as a
transitional rule. The intuition behind this sorting is that in the static rules,
the numerator and denominator represent the same world (in the same model),
whereas in the transitional rules, the numerator and denominator represent dif-
ferent worlds (in the same model).

(L) 2=+ (L) Ligind () gt (n 2322
(K) X;D%;E%;(;ng (KD) X;g};;zxz

o) xmgTx oh T (P X=omaT X s R 05
) $igriEgoyoce ep.) Xy

(5+) % (50 X; D¢,&D§>{| §(¢D¢,& —gg Where x ¢X

X;0
(57¢0) X706 | X059

X; -0
(3/20) X7=07: ¢ T 057

(sFe0) X Lt gy (6F6) = {(sfeo).(seo), (sfev)}

Table 3. Tableau rules for KB, KDB, K5, and KD5

We write Sf(¢) to denote the set of all subformulae of ¢. By Sf(X) we
denote the set U¢€X Sf(¢). We say that X is subformula-complete if for every
¢ € Sf(X), either ¢ € X or -¢ € X.

The rules (Ba), (Bo), (sfca), (sfco), (sfey) are usually called analytic
cut rules. They make CL-saturations (defined in the next section) subformula-
complete, which will be exploited to prove completeness of the given calculi.

A tableau system CL has the analytic superformula property iff to every finite
set X we can assign a finite set X3, such that X3, contains all formulae that



CL Static Rules Transitional Rules

CKB (1), (L), (=), (A), (sfev), (Bo), (Bo) (K)
CKDB (1), (L), (=), (A), (sfev), (Ba), (Bo) (K), (KD)
CK5 (L), (L), (=), (A), (sfe), (5),(50)  (5)
CKD5 (J-)’ (J-/)v (_‘)7 (/\)7 (SfC)7 (5*)7 (5‘3) (5)7 (KD*)

Table 4. Tableau systems for KB, KDB, K5, and KD5

may appear in any tableau for X. In any rule § of our systems, except (L’),
any formula in the denominators of ¢ either belongs to =S f(N), where N is
the numerator of J, or is of one of the forms K¢, K—¢, where ¢ is a principal
formula of §. In our systems, there are no rules with a principal formula starting
with K. Therefore the systems have the analytic superformula property, with
Xep = Sf(E-5f(X)).

The connective K is a blocked version of O. It behaves like O in the tran-
sitional rules, but formulae starting with X play no roles in the static rules. It
is X that guarantees the analytic superformula property of our systems. The
technique of using an extra connective as a blocked version of O has previously
been used in the work by Hudelmaier [7].

Lemma 1. The calculi CKB, CKDB, CK5, and CKD5 are sound.

Proof. We show that CL contains only rules sound wrt. L, where L is KB, KDB,
K5, or KD5. If the considered rule is static, then we show that if the numerator is
satisfied at a world w, then so is one of the denominators. If the rule is transitional
and its numerator is satisfied at w, then we show that the denominator is satisfied
at some world reachable from w. Nontrivial cases are when the considered rule
is one of (Bn), (Bs), (5), (5«), (5a).

For (Bn) and (Bo), just note that ~¢ — O-0¢ is KB-valid.

For (5), suppose that M, w F X;0Y;XZ; -0U; -O¢, where M = (W, 7, R, h)
is a K5-model and w € W. There exists u such that R(w,u) holds and M, u E
=¢. Since -0y — O-01) is K5-valid, we have M,u F Y; Z;-0U; -~0¢; —¢; *.
Therefore (5) is sound wrt. K5.

For (5.), suppose that M,w E X;0¢;*, where M = (W, 7,R,h) is a K5-
model and w € W. We show that M,w F KXO¢. It suffices to show that for
any u,v € W such that R(w,u) and R(u,v) hold, R(w,v) also holds. Since
M, w E x, there exists wg such that R(wp,w) holds. From the frame restriction
Vz,y,z R(x,y) AR(z, z) — R(y, z), we derive that R(w,w), R(u,w), and R(w,v)
hold.

To show that (5g) is sound wrt. K5 and KD5, it suffices to show that
—(0-0¢) — DO0¢ is K5-valid. This assertion holds because -O0-0¢ = <O,
and ¢(0¢) — OG(O¢), ©O¢ — O, and O(CO¢) — O(Og) are K5-valid.



4 Completeness of the Calculi

From now on we use L to denote one of the logics KB, KDB, K5, KD5, and
CL to denote the corresponding calculus. In order to prove completeness of the
given calculi we first need some technical machinery.

4.1 Saturation

In the rules (—), (A), (sfcy), the principal formula does not occur in the de-
nominators. For § being one of these rules, let 4’ denote the rule obtained from
¢ by adding the principal formula to each of the denominators. Let SCL denote
the set of static rules of CL with (=), (A), (sfey) replaced by (=), (A), (sfcl).
Note that for any rule of SCL, except (L) and (L’), the numerator is included
in each of the denominators.

For X being a finite C L-consistent formula set, a formula set Y is called a
CL-saturation of X if Y is a maximal CL-consistent set obtainable from X by
applications of the rules of SCL.

A set X is closed wrt. a tableau Tule if, whenever the rule is applicable to X,
one of the corresponding instances of the denominators is equal to X.

As stated by the following lemma, C L-saturations have the same nature as
“downward saturated sets” defined in the works by Hintikka [6] and Goré [5].

Lemma 2. Let X be a finite CL-consistent formula set, and Y a CL-saturation
of X. Then X C Y C X3, Y is closed wrt. the rules of SCL, and Y is
subformula-complete.

Proof. 1t is easily seen that the first assertion holds.

If a rule of SCL is applicable to Y, then one of the corresponding instances
of the denominators is CL-consistent. Since Y is a CL-saturation (of X), Y is
closed wrt. the rules of SCL.

It is straightforward to prove by induction on the construction of ¢ that if
¢ belongs to Y, then for any subformula % of ¢, either ¢ or - belongs to Y.
Therefore Y is subformula-complete.

Lemma 3. There is an effective procedure that, given a finite CL-consistent
formula set X, constructs some CL-saturation of X.

Proof. We construct a CL-saturation of X as follows: Let Y = X. While there
is some rule § of SCL applicable to Y with the property that one of the cor-
responding instances of the denominators, denoted by Z, is C L-consistent and
strictly contains Y, set Y = Z.

At each iteration, Y C Z C X3, . Hence the above process always terminates.
It is clear that the resulting set Y is a CL-saturation of X.



4.2 Proving Completeness Via Model Graphs

We prove completeness of our calculi via model graphs in a similar way as Raut-
enberg [14] and Goré [5] do for their systems.

A model graph is a tuple (W, 7, R, H), where (W, 7, R) is a Kripke frame and
H is a function mapping worlds to sets of formulae. For w € W, H(w) is the set
of formulae which should be “true” at the world w. We sometimes treat model
graphs as models with h being H restricted to the set of primitive propositions.
A model graph that satisfies all L-frame restrictions is called L-model graph.

Our definition of model graphs is not adequate with respect to Rautenberg’s.
A model graph M = (W, 7, R, H) by his definition is accompanied by certain
properties which guarantee that for any ¢ € H(w), where w € W, M,w E ¢.
Denote this condition by (*). We use the term “model graph” merely to denote
a data structure, and leave the condition (*) as a criterion of good model graphs.

Given a finite CL-consistent set X, as a L-model for X we construct a L-
model graph M = (W, 7, R, H) that satisfies the condition (*) and X C H(7).
We prove (*) for M by induction on the number of connectives occurring in ¢. If
for every w € W, H(w) is a C L-saturation of some set, then (*) obviously holds
(under inductive assumption) for the cases when ¢ is of the form p, —p, ==,
W A C, or =(1) A (). For the case when ¢ is of the form =0, we show that there
exists a world u reachable from w such that -t € H(u). For the case when ¢ is
of the form O or X, in most of cases we show that for any world u reachable
from w, ¥ € H(u).

4.3 Completeness of CKB and CKDB

In this subsection, let L denote one of the logics KB, KDB.

Algorithm 1

Input: A finite CL-consistent set X of formulae not containing X, x.

Output: A L-model graph M = (W, 7, R, H) such that X is satisfied in the
model corresponding to M.

1. Let W = {7}, Ry = (), and H(7) be a CL-saturation of X. Mark 7 as unre-
solved. (In this algorithm, we will mark the worlds of M either as unresolved
or as resolved.)

2. While there are unresolved worlds, take one, denoted by w, and do the
following:

(a) For every formula -0¢ in H(w):
i. Let Y be the result of the application of the rule (K) to H(w), i.e.
YV ={=¢}U{y | Oy € H(w) or K4 € H(w)},
and let Z be a CL-saturation of Y.

ii. If there exists a world v € W such that H(v) = Z, then add the edge
(w,v) to Ry. Otherwise, add a new world w, with content Z to W,
mark it as unresolved, and add the edge (w,wy) to Ro.

(b) If L = KDB and there is no x such that R(w,x) holds, then



i. Let Y be the result of the application of the rule (K D) to H(w), i.e.
Y={¢|0¢eHw)or Ky € H(w)},
and let Z be a CL-saturation of Y.
ii. Do the same thing as the step 2(a)ii.
(¢c) Mark w as resolved.
3. Let R be the symmetric closure of Ry.

This algorithm always terminates because H is one-to-one, and for any w € W,
H(w) C X},

Lemma 4. Let X be a finite CL-consistent set of formulae not containing X, .
Let M = (W, t, R, H) be the model graph constructed by the above algorithm for
X. Then for any w € W and any ¢ € H(w), M,w F ¢.

Proof. We prove this lemma by induction on the number of connectives occurring
in ¢. The only nontrivial case is when ¢ is of the form Ot or Xi). For this case
it suffices to show that if Ry(u,w) holds, and Oy € H(w) or Ky € H(w), then
M, u E 1. Assume that Ro(u,w) holds.

Suppose that Xy € H(w). The formula X can be introduced only by the
rule (Bg) or (Bs), hence 9 is of the form -0, and we have = € H(w). By
inductive assumption, M, w F —(. Hence M, = -0O¢, and M, u F ¢. (Note that
it is not necessary that ¢ € H(u).)

Now assume that O¢ € H(w). We show that ¢ € H(u). Suppose oppo-
sitely that ¢ ¢ H(u). Note that w is created from w, and for any formula
¢, if O¢ € Sf(H(w)) then O¢ € Sf(H(u)). Since Oy € H(w), it follows
that Oy € Sf(H(u)). Hence Oy € H(u) or -0Ov¢ € H(u), since H(u) is
subformula-complete. By the rules (Bg) and (Bo), from ¢ ¢ H(u) we derive
that X—-0vy € H(u). It follows that -0t € H(w), which contradicts the as-
sumption that Ot € H(w). Therefore ¢ € H(u), and by inductive assumption,
we have M, u F 1. This completes our proof.

Corollary 1. Let X be a finite C L-consistent set of formulae not containing X,
x. Then X is L-satisfiable.

Proof. Let M = (W, 7, R, H) be a model graph constructed by the above algo-
rithm for X. It is clear that R satisfies all L-frame restrictions. By the above
lemma, we have M, 7 £ H (7). Since H(7) is a C L-saturation of X, we also have
M, 7 E X. Therefore X is L-satisfiable.

The following theorem immediately follows from the above corollary and
Lemma 1.

Theorem 2. The calculi CKB and CKDB are sound and complete.

4.4 Completeness of CK5 and CKD5

In this subsection, let L denote one of the logics K5, KD5.



Algorithm 3

Input: A finite C L-consistent set X of formulae not containing X, x.

Output: A L-model graph M = (W, 7, R, H) such that X is satisfied in the
model corresponding to M.

1. Let W7 = Wy =0, and H(7) be a CL-saturation of X.
2. For every formula =0O¢ € H(7):
— Let Y be the result of the application of the rule (5) to H(r), i.e.

Y = {64} U | O € H(r) or By € H(r))
U {—\D’L/) | —|\:|’(/J S H(T)}

— Add a new world w with H(w) being a CL-saturation of Y to Wj.
3. If L = KD5 and there is no -0O¢ € H(7), then:
— Let Y be the result of the application of the rule (K D,) to H(r), i.e.
Y = {s}U {v | Oy € H(r) or R € H(r)}.
— Add a new world w with H(w) being a CL-saturation of Y to Wj.
4. Let Ry = {7} x W1.
5. For every w € Wy, and for every formula —0O¢ € H(w):
— Let Y be the result of the application of the rule (5) to H(w), i.e.

Y ={=¢,x} U{¢ | Oy € H(w) or K1) € H(w)}
U {-0¢ | -0y € H(w)}.

— Add a new world wy with H(wg) being a C L-saturation of Y to Wa, and
add the edge (w,wy) to Ry.
6. Let W = {7} W1 JWs, and R be the euclidean closure of Ry.

It is clear that this algorithm always terminates. The following lemma has the
same content as Lemma 4, but L now refers to K5, KD5.

Lemma 5. Let X be a finite CL-consistent set of formulae not containing X, .
Let M = (W, T, R, H) be the model graph constructed by the above algorithm for
X. Then for any w € W and any ¢ € H(w), M,w F ¢.

Proof. We prove this lemma by induction on the number of connectives occurring
in ¢. It suffices to show that

1. For any € Wy and any —0¢ € H(x), there exists y € Wy such that
—¢ € H(y).

2. For any z,y € Wi |JW; and any formula ¢, if O¢ or K¢ belongs to H(x),
then ¢ € H(y).

Proof of I:

Suppose that x € Wy and -0¢ € H(x). There exists u € W; such that
Ry (u,x) holds. We have * € H(u). Since x is created from v and —-0O¢ € H(z),
it follows that O¢ € Sf(H (u)). Hence either O¢ € H(u) or ~0¢ € H(u), since
H (u) is subformula-complete. If O¢ € H(u), then, by the rule (5,), XO¢ € H(u),
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and hence O¢ € H(x), which contradicts the fact that -0O¢ € H(x). Therefore
—0¢ € H(u), and there exists y € Wy such that —¢ € H(y).
Proof of 2:

Suppose that € W7 and O¢ € H(z). Since z is created from 7 and O¢ €
H(x), we have O¢ € Sf(H(7)). Hence either O¢ € H(7) or -0¢ € H(T). Since
O¢ € H(x), ~O¢ and X—-O¢ cannot belong to H(7), otherwise, by the rule (5),
we would have =0¢ € H(x) (a contradiction). Hence O¢ € H (1), and by the
rule (5n), XO¢ € H(7). It follows that for every y € W1 |J W2 we have ¢ € H(y).

Now suppose that & € W and O¢ € H(x). Let u € W; be the world such
that Ro(u,z) holds. Since x is created from u and O¢ € H(x), it follows that
O¢ € Sf(H(u)). Hence either O¢ € H(u) or -O¢ € H(u). If -0¢ € H(u), then,
by the rule (5), =0¢ € H(z), which contradicts the assumption that O¢ € H (z).
Hence O¢ € H(u). Reasoning similarly as for the above case, we derive that for
every y € Wi |JWs it holds that ¢ € H(y).

For the last case, assume that z € Wy |J W, and K¢ € H(x). Since * € H(z),
the formula K¢ in H(z) must be introduced by the rule (5.). Hence ¢ is of the
form Oty and Oy € H(x). Reasoning similarly as for the above cases, we derive
that XOy € H(7). It is clear that for every y € Wy, Oy € H(y). Suppose that
y € Wa. There exists z € Wi such that Ro(z,y) holds. Since {0, *} C H(z),
by the rule (5.), it follows that KOy € H(z), and hence O € H(y). Therefore,
for every y € Wy |UWa, ¢ € H(y).

Corollary 2. Let X be a finite CL-consistent set of formulae not containing X,
x. Then X is L-satisfiable.

The proof of this corollary is similar to the proof of Corollary 1. The following
theorem immediately follows from this corollary and Lemma 1.

Theorem 4. The calculi CK5 and CKDS5 are sound and complete.

Our proofs give refined L-models for these logics, as done in Goré’s article
[5]. That is, for any L-satisfiable formula ¢, there exists a finite L-model of ¢
with a frame (W, 7, R) such that:

— if L = KD5, then, for U = W — {7}, there exists V' C U such that R =
{r} xV U U xU;
— if L= K5, then W = {7} and R = (), or the frame is a KD5-frame.

5 Interpolation for the Modal Logics KB, KDB, K5,
KD5

We still use L to denote one of the logics KB, KDB, K5, KD5, and CL to denote
the corresponding calculus. We say that ( is an interpolation formula in L for
the formula ¢ — 1 if all primitive propositions of ¢ are common to ¢ and 1,
and ¢ — ¢ and ¢ — 1 are both L-valid. The Craig interpolation lemma for L
states that if ¢ — 1 is L-valid, then there exists an interpolation formula in L
for ¢ — 1. In this section, using given tableau systems we show that this lemma
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holds for the logics KB, KDB, K5, and KD5. The lemma has been previously
proved for the logics KB and KDB by Fitting [3].

Our tableau systems are refutation systems, so we use an indirect formulation
of interpolation. We say that ¢ is an interpolation formula wrt. CL for the pair
(X,Y), and also that X 2 Y is CL-valid, if all primitive propositions of ¢ are
common to X and Y, ¢ does not contain X or *, and X; ¢ and ¢;Y are both
CL-inconsistent. Since CL is sound and complete, it follows that if ¢ <~ - is
CL-valid, then ( is an interpolation formula in L for ¢ — .

In this section, we show that for any finite formula sets X and Y not con-
taining *, if X;Y is CL-inconsistent, then there exists an interpolation formula
wrt. CL for the pair (X,Y). It follows that the Craig interpolation lemma holds
for L.

Since CL contains the rule (=), Y =2 X is CL-valid iff X 2 Y is CL-valid.
We call Y =2 X the reverse form of X < Y.

We call the following an interpolation rule

N 2 N
Dy 2~ D | ... | Dy % D

(9)

where § is the name of a tableau rule, and
N; N’
Dy; Dy | ... | Dy; Dy,

is an instance of the tableau rule d. This interpolation rule is said to be C L-sound
if whenever D; 2= D, ..., D}, 2. D! are CL-valid, N 2 N’ is also C L-valid,
provided that § is a C L-tableau rule.

In Table 5 we present interpolation rules for the considered logics. For the
interpolation rules (L) and ('), we discard the parts of denominators because
they are not necessary. For each tableau rule given in Table 3, except ('), there
is one corresponding interpolation rule. There are two interpolation rules for
(L") because the tableau rule (') has more than one principal formulae.

Lemma 6. Let 6 be a CL-tableau rule. Then the interpolation rules correspond-
ing to & given in Table 5 are CL-sound.

Proof. The proof of this lemma is straightforward. We show here, for example,
the proof for the rule (K).

Suppose that Y;Z 4 Y’; Z'; =¢ is CL-valid, where L is KB or KDB. It fol-
lows that Y'; Z; =) and ¢; Y'; Z’; =¢ are C L-inconsistent, and there are closed C L-
tableaux for these sets. By applying the tableau rule (K) to X; OY; XZ; =0« and
Oy; X';0Y";XZ’; =0¢ we obtain Y; Z; —p and ¢; Y'; Z’; =¢, respectively. Hence
there are closed CL-tableaux for X;0Y;XZ; -0 and Owy; X'; OY';KZ'; -0¢.
Thus X;0Y;XZ 2% X/:0Y";KZ'; -0¢ is CL-valid.

Lemma 7. Let T be a closed CL-tableau and n be a node but not a leaf node
of T. Let N be the set carried by n, and let N = N'|JN", where x € N’ iff
x € N". Then there ezists a formula ¢ such that N' 2 N" is CL-valid.
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Table 5. Interpolation rules

WXL XiL (W)X L= Xiei-o (L) X6 2 x50
( )XlX';ﬁﬁgﬁ (/\)XLX/;Qﬁ/\w (5.) Xox 2 X' 0; %
X L X6 X £ X550 VX L X700 R06;
) X;0Y;Xz 2% X', 0Y;KZ';-0¢
Y;Z - Y25
X;0y;Rz 2L X', 07 K27 X;0Y;Xz 2% X', 0v;KZ
(KD) (KD.)
Y;Z 2 Y, Z Y;Zix LY Z0%
) X;0Y;X¥Z;-0U 2% X';0Y';RZ';-0U"; ~0¢
Y; Z;-0U; « - Y'; 2/ -0U"; ~O¢; ~¢;
X ¥AC X’;0O
(50) ¢ Where*géXUX’

X L X 0p:;RNO¢ | X < X/;0¢;K-0¢

X 285 X' 0¢
X X5306i¢ | X £ X7 0¢;-¢;K8-0¢

(Bo)

X $AC X7 -0¢
(Bo) o <
X = X5-0¢;¢ [ X = X5 20¢; ~¢; K-0¢

X A X';0¢

(sfeo) X L X0¢;¢| X &~ X';06 ¢

X AL X' -0¢
(Sfco) b ¢
X & X';-0¢;¢ | X = X/;-0¢ —¢

X S1AC2ACs X' (¢ A w)
(Sfc\/) ¢ ¢ C:
X 2 XGo¢ ) [ X 52 XY= | X 25 XY~
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Proof. We prove this lemma by induction on the depth of n.

Consider the case when n is a predecessor of a leaf node. N must be of the
form X; 1 or X;¢;—¢. By the interpolation rules (L), (L), and their reverse
forms, the assertion of the lemma holds.

Now suppose that n is not a predecessor of any leaf node and n has k child

nodes dy, ..., dj that carry Dy, ..., Dy, respectively. Assume that the assertion
of this lemma holds for all dy, ..., di. We show that the assertion also holds for
n.

Suppose that Dy, ..., Dy are created from N by applying a C L-tableau rule

4. Consider the case when the principal formula belongs to N”. There exist D1,
DY, ..., D, D} such that D, = D}|JD/, for 1 <i <k, and that

NILN//
Dy = DY|...|D, -~ D

is an instance of the interpolation rule ¢, where the symbol ? can match any
formula. By inductive assumption, there exist formulae ¢1, ..., ¢ such that
D} 2. D" is CL-valid, for 1 < i < k. Choose ¢ to be the formula built from ¢,
.., ¢n, as specified by the interpolation rule 8, such that N’ 2 N’ is C L-valid.
If the principal formula (of the application of the tableau rule § to N) does
not belongs to N, then it must belong to N’. Suppose that it is the case. Let 1
be a formula such that N” & N’ is CL-valid, and let ¢ = —¢p. Thus N’ 2 N”
is C L-valid.

We now turn to the main lemma of this section.

Lemma 8 (Craig Interpolation Lemma for KB, KDB, K5, KD5). Let
L be one of the modal logics KB, KDB, K5, and KD5, and ¢ — ¢ be L-valid.
Then there exists an interpolation formula in L for ¢ — 1.

Proof. Since ¢ — 1 is L-valid, the set ¢;—1 is CL-inconsistent. Hence there
exists a closed CL-tableau for ¢; —=¢. By Lemma 7, there exists a formula ¢ such
that ¢ < — is CL-valid. Thus  is an interpolation formula in L for ¢ — 1.

6 Conclusions

We have given complete sequent-like tableau systems for the modal logics KB,
KDB, K5, and KD5. Our systems have the analytic superformula property
and can thus give a decision procedure. Our presentation fulfills the picture
of sequent-like tableau systems for the basic normal modal logics (i.e. the ones
obtainable from the logic K by the addition of any combination of the axioms
T, D, 4, 5, and B).

Using the given systems, we have presented a proof of the Craig interpolation
lemma for the considered logics. (The lemma has been previously proved for the
logics KB and KDB by Fitting [3].) Our proof has an advantage that it gives a
constructive way to compute interpolation formulae (in the considered logics),
as it is based on analytic systems.
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Our tableau systems are not efficient since they use cuts. In our recent work
[12], efficient clausal tableau systems for the modal logic KB, KDB, B, among
others, are presented. The systems are sequent-like, cut-free, and give a decision
procedure that runs in O(n?)-space. They require, however, inputs in clausal
form.
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