
L2 regularization and momentum
(Super-short and extremely simplified, see lectures for more.)

L2-regularization is adding λ
∑

w2 to loss (for some tiny λ ∈ R).
For basic SGD: same as decreasing weights by λwi at every SGD step.
This encourages weights to be small, which can prevent overfitting.
This is skipped for biases.

Momentum means replacing the update step

θ̄ ← θ̄ − ε(∇θ̄L+ λθ̄)

with:
v̄θ̄ ← µv̄θ̄ +∇θ̄L+ λθ̄

θ̄ ← θ̄ − εv̄θ̄

where e.g.: learning rate ε = 10−3, momentum µ = 0.99, weight decay
λ = 10−4 (λ = 0 for biases).

1 / 12



softmax

In the last layer, instead of

gi = σ(fi ) =
exp(fi )

1 + exp(fi )

we can use

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

It gives probability distribution (
∑

gi = 1, gi ≥ 0).

When outputs are probabilities (sigmoid or softmax), instead of MSE,
better to use cross-entropy (CE) or negative log-likelihood (NLL) loss.

NLL loss is − ln gℓ (maximize probability for the target label ℓ).
CE loss is −

∑
i yi ln gi (same as NLL if ȳ is the one-hot encoded label).

(Named because it is the cross-entropy H(p, q) = −
∑

pi ln qi .)

2 / 12



softmax
In the last layer, instead of

gi = σ(fi ) =
exp(fi )

1 + exp(fi )

we can use

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

It gives probability distribution (
∑

gi = 1, gi ≥ 0).

For N = 2 classes, softmax(f̄ ) =
(
σ(d), 1− σ(d)

)
where d = f0 − f1.

When outputs are probabilities (sigmoid or softmax), instead of MSE,
better to use cross-entropy (CE) or negative log-likelihood (NLL) loss.

NLL loss is − ln gℓ (maximize probability for the target label ℓ).
CE loss is −

∑
i yi ln gi (same as NLL if ȳ is the one-hot encoded label).

(Named because it is the cross-entropy H(p, q) = −
∑

pi ln qi .)

2 / 12



softmax

In the last layer, instead of

gi = σ(fi ) =
exp(fi )

1 + exp(fi )

we can use

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

It gives probability distribution (
∑

gi = 1, gi ≥ 0).

When outputs are probabilities (sigmoid or softmax), instead of MSE,
better to use cross-entropy (CE) or negative log-likelihood (NLL) loss.

NLL loss is − ln gℓ (maximize probability for the target label ℓ).
CE loss is −

∑
i yi ln gi (same as NLL if ȳ is the one-hot encoded label).

(Named because it is the cross-entropy H(p, q) = −
∑

pi ln qi .)

2 / 12



Why negative log loss?

NLL can be derived from the “maximum likelihood estimation”
principle, an idea in statistical modeling.

Let’s start with a different task: modeling a distribution X (e.g.
coming from a hypothetical random process that outputs an image
of a cat). We want a model that outputs the estimated probability
pmodel(x) of any data point x (any image). So the model should
tell us how likely it is to get x by sampling an image from X , or
“is that a typical cat image, how typical?”

The model has parameters θ: weights and biases in a neural net.
We want to optimize θ knowing a observed/training set of images
{x (1), x (2), . . . } sampled from X independenty.

3 / 12



Maximum likelihood estimation
Model with parameters θ outputs pmodel(x), an estimation of p(x).
We only have observs = {x (1), x (2), . . . } sampled from X ∼ p(x).
How do we choose θ, what do we want to maximize?
The “maximum likelihood estimation” principle says:

maximize the likelihood.

Likelihood (in this context and in a lot of statistics) means the
joint probability that the model assigns to the train set, as a
function of θ. Since we sampled independently, this is

likelihood(θ) =
∏

x∈observs
pmodel(x) = pmodel(x

(1)) · pmodel(x
(2)) · . . .

This is the same as choosing θ to minimize

NLL = − log likelihood =
∑

x∈observs
− log pmodel(x)

4 / 12



Why max likelihood?

You can just say you want to do “maximum likelihood estimation”,
take it as an axiom.
You could also say “I want to minimize DKL(pobs∥pmodel)”.

= Ex∼pobs [log pobs − log pmodel]

Since pobs is constant w.r.t. θ, it’s the same as minimizing NLL

= Ex∼pobs [− log pmodel] =
1
N

∑
x∈observed

− log pmodel(x)

You could instead say “I want to minimize MSE (pmodel, pobs)”,
if for you the difference between p(x) = 0 and 0.001 matters less
than between 0.01 and 0.1. Sometimes that’s what you want.
But often a model saying p(x) = 0 (I’m infinitely sure this is not a
cat) is catastrophically bad (e.g. if you bet on that information).

5 / 12



Cross-entropy

When minimizing

NLL =
∑

x∈observs
− log pmodel(x)

the frequency with which any x appears in observs matters.
Denoting the (empirical, sampled) frequency of x by pobs(x):

=
∑
x∈Rn

pobs(x) · (− log pmodel(x))

This is the cross-entropy, usually denoted H(pobs, pmodel).
Note it’s not symmetric. It’s equal to DKL(pobs∥pmodel) + H(pobs).
So minimizing NLL, CE, or DKL(pobs∥pmodel) is equivalent here.

6 / 12



Max likelihood for a function

When modeling a function like image 7→ class, we observe a joint
distribution of input-output pairs (x , y). The model should output
conditional probabilities pmodel(y | x). The model usually takes
input x and returns a softmax vector of probabilities for all y ,
(model(x) = ḡ and gy = pmodel(y | x)).
Other than that, it’s all similar to the previous case.

Likelihood is
∏

(x ,y)∈observs P(x , y) =
∏

(x ,y) pmodel(y |x)P(x) =

exp
(∑

(x ,y) log pmodel(y |x) + logP(x)
)

If we’re not trying to model the distribution of inputs, then P(x) is
constant, so maximizing likelihood is the same as minimizing

NLL =
∑

(x ,y)∈observs

− log pmodel(y | x) =
∑

(x ,y)∈observs

− log gy

where g is the vector returned by softmax.

7 / 12



NLL and CE in torch

Names “negative log likelihood” and “cross-entropy” are usually
used interchangeably.
In PyTorch, the difference between them is unrelated to names:

▶ NLLLoss takes input logarithms of probabilities (so logarithms
of what softmax outputs, usually) and a target label,

▶ CrossEntropyLoss is the same as a LogSoftmax layer followed
by NLLLoss: it takes logits (the last pre-activations, or what
would be given to softmax) and a target: as a label or as a
one-hot-encoded vector or as an arbitrary probability vector.

Usually models return logits (no softmax in forward(), you need to
call it yourself if you want probabilities!) and training uses
CrossEntropyLoss.

Sometimes (e.g. in sci-kit) log likelihood is maximized, instead of
minimizing NLL. But also often “negative“ is skipped from the
name just for convenience, even when negation is used.

8 / 12



Why NLL – final word

When you actually use the probabilities, you usually want their
logarithms to be accurate, think: information, ratios of
probabilities in Bayesian inference, amounts of certainty, etc.

Often though you really only care about e.g. accuracy (percentage
of correct outputs). NLL is usually still a good choice for training
(because it’s differentiable, also maybe because you want the
model to learn what’s certain and what’s uncertain). But you
might want to monitor several test metrics.

9 / 12



log softmax

Usually you don’t need probabilities but their logarithms:
as in NLL loss and statistical modeling.
You also want numerical precision for small probabilities.

Log of softmax is just a kind of normalization of log-probabilities:
you apply exp to f̄ , normalize it to sum to 1, then apply log.

Note

log softmax(ḡ)i = fi − const, where const = log(
∑

j exp(fj))

So logits fi tell you a lot: they have the same argmax and their
differences are logarithms of probability ratios:
if softmax(f̄ ) = p̄, then fi − fj = log pi

pj
= (log pi )− (log pj).

If fi − fj = +1 then i is e times more likely than j .

10 / 12



softmax gradients

Let L = − ln gℓ, ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

∂L
∂gi

= −[i = ℓ]
1

gℓ
,

∂gi
∂fi

= gi (1− gi ),
∂gi
∂fj

= −gigj (when i ̸= j)

∂L
∂fj

=

∑
i

∂L
∂gi

∂gi
∂fj

= − 1

gℓ

∂gℓ
∂fj

=

{
− 1

gℓ
(−gℓgj) if j ̸= ℓ

− 1
gℓ
gℓ(1− gℓ) else

= gj − yj

∇f̄(L)L = ḡ − ȳ simple and no saturation, skip computing∇ḡ(L)

Last pre-activations f̄ (L) are called logits (∼log of outputed probabilities).

11 / 12



softmax gradients

Let L = − ln gℓ, ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

∂L
∂gi

= −[i = ℓ]
1

gℓ
,

∂gi
∂fi

= gi (1− gi ),
∂gi
∂fj

= −gigj (when i ̸= j)

∂L
∂fj

=

∑
i

∂L
∂gi

∂gi
∂fj

= − 1

gℓ

∂gℓ
∂fj

=

{
− 1

gℓ
(−gℓgj) if j ̸= ℓ

− 1
gℓ
gℓ(1− gℓ) else

= gj − yj

∇f̄(L)L = ḡ − ȳ simple and no saturation, skip computing∇ḡ(L)

Last pre-activations f̄ (L) are called logits (∼log of outputed probabilities).

11 / 12



softmax gradients

Let L = − ln gℓ, ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

∂L
∂gi

= −[i = ℓ]
1

gℓ
,

∂gi
∂fi

= gi (1− gi ),
∂gi
∂fj

= −gigj (when i ̸= j)

∂L
∂fj

=

∑
i

∂L
∂gi

∂gi
∂fj

= − 1

gℓ

∂gℓ
∂fj

=

{
− 1

gℓ
(−gℓgj) if j ̸= ℓ

− 1
gℓ
gℓ(1− gℓ) else

= gj − yj

∇f̄(L)L = ḡ − ȳ simple and no saturation, skip computing∇ḡ(L)

Last pre-activations f̄ (L) are called logits (∼log of outputed probabilities).

11 / 12



softmax gradients

Let L = − ln gℓ, ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

∂L
∂gi

= −[i = ℓ]
1

gℓ
,

∂gi
∂fi

= gi (1− gi ),
∂gi
∂fj

= −gigj (when i ̸= j)

∂L
∂fj

=
∑
i

∂L
∂gi

∂gi
∂fj

=

− 1

gℓ

∂gℓ
∂fj

=

{
− 1

gℓ
(−gℓgj) if j ̸= ℓ

− 1
gℓ
gℓ(1− gℓ) else

= gj − yj

∇f̄(L)L = ḡ − ȳ simple and no saturation, skip computing∇ḡ(L)

Last pre-activations f̄ (L) are called logits (∼log of outputed probabilities).

11 / 12



softmax gradients

Let L = − ln gℓ, ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

∂L
∂gi

= −[i = ℓ]
1

gℓ
,

∂gi
∂fi

= gi (1− gi ),
∂gi
∂fj

= −gigj (when i ̸= j)

∂L
∂fj

=
∑
i

∂L
∂gi

∂gi
∂fj

= − 1

gℓ

∂gℓ
∂fj

=

{
− 1

gℓ
(−gℓgj) if j ̸= ℓ

− 1
gℓ
gℓ(1− gℓ) else

= gj − yj

∇f̄(L)L = ḡ − ȳ simple and no saturation, skip computing∇ḡ(L)

Last pre-activations f̄ (L) are called logits (∼log of outputed probabilities).

11 / 12



softmax gradients

Let L = − ln gℓ, ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

∂L
∂gi

= −[i = ℓ]
1

gℓ
,

∂gi
∂fi

= gi (1− gi ),
∂gi
∂fj

= −gigj (when i ̸= j)

∂L
∂fj

=
∑
i

∂L
∂gi

∂gi
∂fj

= − 1

gℓ

∂gℓ
∂fj

=

{
− 1

gℓ
(−gℓgj) if j ̸= ℓ

− 1
gℓ
gℓ(1− gℓ) else

= gj − yj

∇f̄(L)L = ḡ − ȳ simple and no saturation, skip computing∇ḡ(L)

Last pre-activations f̄ (L) are called logits (∼log of outputed probabilities).

11 / 12



softmax gradients

Let L = − ln gℓ, ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

∂L
∂gi

= −[i = ℓ]
1

gℓ
,

∂gi
∂fi

= gi (1− gi ),
∂gi
∂fj

= −gigj (when i ̸= j)

∂L
∂fj

=
∑
i

∂L
∂gi

∂gi
∂fj

= − 1

gℓ

∂gℓ
∂fj

=

{
− 1

gℓ
(−gℓgj) if j ̸= ℓ

− 1
gℓ
gℓ(1− gℓ) else

= gj − yj

∇f̄(L)L = ḡ − ȳ simple and no saturation, skip computing∇ḡ(L)

Last pre-activations f̄ (L) are called logits (∼log of outputed probabilities).
11 / 12



softmax numerically

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

Computing np.exp(1000) won’t work.

Replacing f̄ with f̄ − c for any c gives the same result.

Use c = max f̄ .

Instead of dividing by sums of exponentials:

gi =
exp(fi )∑
j exp(fj)

= exp
(

fi − ln
(∑

j exp(fj)
)

)
Altogether:

gi =
exp(fi )∑
j exp(fj)

= exp
(
fi − c − ln

(∑
j exp(fj − c)

))

12 / 12



softmax numerically

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

Computing np.exp(1000) won’t work.

Replacing f̄ with f̄ − c for any c gives the same result.

Use c = max f̄ .

Instead of dividing by sums of exponentials:

gi =
exp(fi )∑
j exp(fj)

= exp
(

fi − ln
(∑

j exp(fj)
)

)
Altogether:

gi =
exp(fi )∑
j exp(fj)

= exp
(
fi − c − ln

(∑
j exp(fj − c)

))

12 / 12



softmax numerically

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

Computing np.exp(1000) won’t work.

Replacing f̄ with f̄ − c for any c gives the same result.

Use c = max f̄ .

Instead of dividing by sums of exponentials:

gi =
exp(fi )∑
j exp(fj)

=

exp
(

fi − ln
(∑

j exp(fj)
)

)
Altogether:

gi =
exp(fi )∑
j exp(fj)

= exp
(
fi − c − ln

(∑
j exp(fj − c)

))

12 / 12



softmax numerically

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

Computing np.exp(1000) won’t work.

Replacing f̄ with f̄ − c for any c gives the same result.

Use c = max f̄ .

Instead of dividing by sums of exponentials:

gi =
exp(fi )∑
j exp(fj)

= exp
(

fi − ln
(∑

j exp(fj)
)

)

Altogether:

gi =
exp(fi )∑
j exp(fj)

= exp
(
fi − c − ln

(∑
j exp(fj − c)

))

12 / 12



softmax numerically

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

Computing np.exp(1000) won’t work.

Replacing f̄ with f̄ − c for any c gives the same result.

Use c = max f̄ .

Instead of dividing by sums of exponentials:

gi =
exp(fi )∑
j exp(fj)

= exp
(
fi − ln

(∑
j exp(fj)

))

Altogether:

gi =
exp(fi )∑
j exp(fj)

= exp
(
fi − c − ln

(∑
j exp(fj − c)

))

12 / 12



softmax numerically

ḡ = softmax(f̄ ), gi =
exp(fi )∑
j exp(fj)

Computing np.exp(1000) won’t work.

Replacing f̄ with f̄ − c for any c gives the same result.

Use c = max f̄ .

Instead of dividing by sums of exponentials:

gi =
exp(fi )∑
j exp(fj)

= exp
(
fi − ln

(∑
j exp(fj)

))
Altogether:

gi =
exp(fi )∑
j exp(fj)

= exp
(
fi − c − ln

(∑
j exp(fj − c)

))
12 / 12


