A neuron

X0 X3

o,o Wo 1%/
By B

\ g :j An expression visualized as a tree

fo = Wooxo + -+ -+ Wonxn + bo

go@ 8o = o(fo)
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A layer of neurons

g (0) & (o) & (@)

An expression with re-used values gives a DAG (directed acyclic graph).
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A neural network

For computing gradients,
a neural network =
one big expression for the loss.

inputs

a function of: inputs X,
weights and biases W, b,
1st layer W(2)7 5(2), ey

and targets y.

2nd layer

} loss (cost, error)
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a neural network =

one big expression for the loss.

a function of: inputs X,
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Gradients

Gradients = vectors to where a scalar function f(x) most increases.

Computationally, it's just a vector of partial derivatives,
of of

if=(=—,...,——
v (aXo 8XN_1
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Gradients

Gradients = vectors to where a scalar function f(x) most increases.

Computationally, it's just a vector of partial derivatives,

of of
if=(=—,...,——
v (aXo 8XN_1

If x € RV, then Vif € RN
(even if f has more inputs than just X).
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Derivates — chain rule

Let f be a function of x, y, z.

f
% =a (at some fixed x, y, z),

means increasing x by € increases f by &~ ae for small e € R
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Derivates — chain rule

Let f be a function of x, y, z.

of :
= ° (at some fixed x, y, z),
means increasing x by € increases f by &~ ae for small e € R

0
Let g=g(f(x,y,2)), % =af, FF=ag.

Then increasing x by ¢ increases f by are,

which increases g by agare. So % = agar. This proves g—i = aé’;a—i.
Note that % depends on the value of f, which depends on x, y, z.
The expression for % (;)ften involves subexparfessions equal ;;) g.

Ex. g=0(f) = a—f =o(f)(1- J(f))m =g(1- g)m.
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Derivates — in a graph

XX

dt s
teout(s)

oL oL ot
= 2

Because increasing s by ¢

increases each t; by %5.

Each of these contribute to increasing £

oL ( Ot
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Derivates — in a graph

oL oL ot
= 2

ot Os

teout(s)

Because increasing s by ¢

increases each t; by at’e

Each of these contribute to increasing £

by 85 (?;5’5>

So we can compute 85 for all nodes s,

starting from 2 M = 1 and going back,
as long as we can compute how each
out-neighbor t; depends on s (= %).
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Forward pass

Input X € RN

X0, - - -

» XN(O0) -1
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Forward pass

_ ©
Input x € RV X0y« -5 XNO) 1

Weights W' € RNVOXN® 31d biases b7 € RN

Pre-activations o
= _ - 1
= Whx + B9 e RV ) = Zj Wilix; + b
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Forward pass

_ ©
Input x € RV X0y« -5 XNO) 1

Weights W € RV XN 3nd biases 57 € RN
Pre-activations o

= - 1

fr=W'gx+ b e RV =3 Wiix; + b

/—\_ctivatio_ns
g = o(f) g = o (")
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Forward pass

_ ©
Input x € RV X0y« -5 XNO) 1

Weights W' € RNVOXN® 31d biases b7 € RN

Pre-activations o
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Activations
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Forward pass

Input X € RN

Weights W' € RVYXN and biases b € RV

Pre-activations

F = Wik + B e RV

Activations

g =a(f)

FO — W@z 1 5@ ¢ g
g = o(F)

L = mean [(§® — y)?]
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Forward pass — code

import numpy as np

g=x

for b, w in zip(biases, weights):
f=w@g+b
g = sigmoid(f)
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Forward pass — code

import numpy as np

for b, w in zip(biases, weights):

f=w@g+b
sigmoid(f)

0]
I

When batched:

x has shape (B, N(©)
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Forward pass — code

import numpy as np

for b, w in zip(biases, weights):

f=w@g+b
sigmoid(f)

0]
I

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape (N1 N()

w @ g.T has shape (N(U+1) B)

(w @ g.T).T has shape (B, N(+1)

b has shape (N(+1)
f=wWOaoegT).T+b

(with b broadcasted along the batch)

@ is the same as np.matmul
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Backward pass

£ = 5, W Ogf D+ b0
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Backward pass

L oL O
agl D 2= afD) og D

oL 9L . 0L
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Backward pass

oL oL
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Backward pass

oL oL
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Backward pass

oL oL oft)

oW, of) oW, D
oL oL
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Backward pass

oL AL
aw; )~ af0 &

oL oL

ab) — 9f0)

oL o
_ ()
g D~ 2 g Via

oL 9L . 0L
aF0 ~ 9g0° (f7) = 9g10 &
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Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
abll) — 9fl0)

Activations
Pre-activations
% = 86;(:‘) g (1-g")

Output activations

oL
aglh ~ o (g"(L)_y’)
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Backward pass
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Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
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Vol =(VaL)T g e RV

Vol = Vs L € RV

Activations
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Backward pass
Weight and biases
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