A neuron

X0 X3

o,o Wo 1%/
By B

\ g :j An expression visualized as a tree

fo = Wooxo + -+ -+ Wonxn + bo

go@ 8o = o(fo)

1/11

A layer of neurons

g (0) & (o) & (@)

An expression with re-used values gives a DAG (directed acyclic graph).

2/11

A neural network

For computing gradients,
a neural network =
one big expression for the loss.

inputs

a function of: inputs X,
weights and biases W, b,
1st layer W(2)7 5(2), ey

and targets y.

2nd layer

} loss (cost, error)

3/11

A neural network

inputs

1st layer

2nd layer

} loss (cost, error)

For computing gradients,
a neural network =

one big expression for the loss.

a function of: inputs X,
weights and biases W, b,
w®@ b .

and targets y.

3/11

Gradients

Gradients = vectors to where a scalar function f(x) most increases.

Computationally, it's just a vector of partial derivatives,
of of

if=(=—,...,——
v (aXo 8XN_1

4/11

Gradients

Gradients = vectors to where a scalar function f(x) most increases.

Computationally, it's just a vector of partial derivatives,

of of
if=(=—,...,——
v (aXo 8XN_1

If x € RV, then Vif € RN
(even if f has more inputs than just X).

4/11

Derivates — chain rule

Let f be a function of x, y, z.

f
% =a (at some fixed x, y, z),

means increasing x by € increases f by &~ ae for small e € R

5/11

Derivates — chain rule

Let f be a function of x, y, z.

of :
= ° (at some fixed x, y, z),
means increasing x by € increases f by &~ ae for small e € R

0
Let g=g(f(x,y,2)), % =af, FF=ag.

Then increasing x by ¢ increases f by are,

L. 9
which increases g by agare. So 58 = agar.

5/11

Derivates — chain rule

Let f be a function of x,y, z

of

— =2 at some fixed ,
=a ixed x, . 2)

means increasing x by € increases f by &~ ae

0,
Let g=g(f(x,y,2)), % =af, FF=ag.
Then increasing x by ¢ increases f by are,

which increases g by agare. So % = agar. This proves

for small e € R

5/11

Derivates — chain rule

Let f be a function of x, y, z.

of :
= ° (at some fixed x, y, z),
means increasing x by € increases f by &~ ae for small e € R

0
Let g=g(f(x,y,2)), % =af, FF=ag.

Then increasing x by ¢ increases f by are,
. . og __ . dg _ 0g of
which increases g by agare. So 35 = agar. This proves 35 = 525

Note that % depends on the value of f, which depends on x, y, z.

5/11

Derivates — chain rule

Let f be a function of x, y, z.

of :
= ° (at some fixed x, y, z),
means increasing x by € increases f by &~ ae for small e € R

0
Let g=g(f(x,y,2)), % =af, FF=ag.

Then increasing x by ¢ increases f by are,

which increases g by agare. So % = agar. This proves g—i = aé’;a—i.
Note that % depends on the value of f, which depends on x, y, z.
The expression for % (;)ften involves subexparfessions equal ;;) g.

Ex. g=0(f) = a—f =o(f)(1- J(f))m =g(1- g)m.

5/11

Derivates — in a graph

XX

dt s
teout(s)

oL oL ot
= 2

Because increasing s by ¢

increases each t; by %5.

Each of these contribute to increasing £

oL (Ot

6/11

Derivates — in a graph

oL oL ot
= 2

ot Os

teout(s)

Because increasing s by ¢

increases each t; by at’e

Each of these contribute to increasing £

by 85 (?;5’5>

So we can compute 85 for all nodes s,

starting from 2 M = 1 and going back,
as long as we can compute how each
out-neighbor t; depends on s (= %).

6/11

Forward pass

Input X € RN

X0, - - -

» XN(O0) -1

7/11

Forward pass

_ ©
Input x € RV X0y« -5 XNO) 1

Weights W' € RNVOXN® 31d biases b7 € RN

Pre-activations o
= _ - 1
= Whx + B9 e RV) = Zj Wilix; + b

7/11

Forward pass

_ ©
Input x € RV X0y« -5 XNO) 1

Weights W € RV XN 3nd biases 57 € RN
Pre-activations o

= - 1

fr=W'gx+ b e RV =3 Wiix; + b

/—_ctivatio_ns
g = o(f) g = o (")

7/11

Forward pass

_ ©
Input x € RV X0y« -5 XNO) 1

Weights W' € RNVOXN® 31d biases b7 € RN

Pre-activations o
= _ - 1
= Wox + BV e RV = Zj V\/,ffjxj + b

Activations

ng — J(fm) g = a(f,-“>)

FO — W@z 1 5@ ¢ gV
g = o(F2)

7/11

Forward pass

_ ©
Input x € RV X0y« -5 XNO) 1

Weights W' € RNVOXN® 31d biases b7 € RN

Pre-activations o

— _ — 1 .
= Wox + BV e RV = Zj V\/,ffjxj + b
Activations

ng — J(fm) g = a(f,-“>)

FO — W@z 1 5@ ¢ gV
g = o(F2)

£ =mean [(6? ~7)"] =gty (e —)?

7/11

Forward pass

Input X € RN

Weights W' € RVYXN and biases b € RV

Pre-activations

F = Wik + B e RV

Activations

g =a(f)

FO — W@z 1 5@ ¢ g
g = o(F)

L = mean [(§® — y)?]

8/11

Forward pass — code

import numpy as np

g=x

for b, w in zip(biases, weights):
f=w@g+b
g = sigmoid(f)

9/11

Forward pass — code

import numpy as np

g =X

for b, w in zip(biases, weights):
f=w@g+b
g = sigmoid(f)

When batched:

x has shape (B, N(©)
g has shape before iteration i

9/11

Forward pass — code

import numpy as np

g =x

for b, w in zip(biases, weights):

f=w@g+b
g = sigmoid(f)

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape

9/11

Forward pass — code

import numpy as np

g =X

for b, w in zip(biases, weights):
f=w@g+b
g = sigmoid(f)

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape (N1 N()

w @ g.T has shape

9/11

Forward pass — code

import numpy as np

g =X

for b, w in zip(biases, weights):
f=w@g+b
g = sigmoid(f)

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape (N1 N()

w @ g.T has shape (N(U+1) B)

9/11

Forward pass — code

import numpy as np

g =X

for b, w in zip(biases, weights):
f=w@g+b
g = sigmoid(f)

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape (N1 N()

w @ g.T has shape (N(U+1) B)

(w @ g.T).T has shape (B, N(+1)

9/11

Forward pass — code

import numpy as np

g =X

for b, w in zip(biases, weights):
f=w@g+b
g = sigmoid(f)

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape (N1 N()

w @ g.T has shape (N(U+1) B)

(w @ g.T).T has shape (B, N(+1)

b has shape

9/11

Forward pass — code

import numpy as np

g =X

for b, w in zip(biases, weights):
f=w@g+b
g = sigmoid(f)

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape (N1 N()

w @ g.T has shape (N(U+1) B)

(w @ g.T).T has shape (B, N(+1)

b has shape (N(+1)

9/11

Forward pass — code

import numpy as np

for b, w in zip(biases, weights):

f=w@g+b
sigmoid(f)

0]
I

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape (N1 N()

w @ g.T has shape (N(U+1) B)

(w @ g.T).T has shape (B, N(+1)

b has shape (N(+1)
f=wWOaoegT).T+b

(with b broadcasted along the batch)

9/11

Forward pass — code

import numpy as np

for b, w in zip(biases, weights):

f=w@g+b
sigmoid(f)

0]
I

When batched:

x has shape (B, N(©)

g has shape (B, N()) before iteration i
w has shape (N1 N()

w @ g.T has shape (N(U+1) B)

(w @ g.T).T has shape (B, N(+1)

b has shape (N(+1)
f=wWOaoegT).T+b

(with b broadcasted along the batch)

@ is the same as np.matmul

9/11

Backward pass

£ = 5, W Ogf D+ b0

10/11

Backward pass

10/11

Backward pass

£ = 5, W Ogf D+ b0

3gi(L)

10/11

Backward pass

10/11

Backward pass

oL oL og'"

af) — 9glh afh —

oL 2 L
@ = ND <gi()—y,-)

10/11

Backward pass

oL oL aglh oL
& = ()Gl(fi([')):

af) — 9glh afh ~ agf

oL 2 L
@ = ND <gi()—y,-)

10/11

Backward pass

oL 9L . 0L
af0 ~ agn”) = ggrm &

oL 2 L
@ = ND <gi()—y,-)

10/11

Backward pass

£ = 5, W Ogf D+ b0

oL
agl D

oL 9L . 0L
af0 ~ agn”) = ggrm &

oL 2 L
@ = ND <gi()—y,-)

10/11

Backward pass

L oL O
agl D 2= afD) og D

oL 9L . 0L
af0 ~ agn”) = ggrm &

oL 2 L
@ = ND <gi()—y,-)

10/11

Backward pass

oL oL
_ ()
agl D~ £ 9fD Wi

oL 9L . 0L
af0 ~ agn”) = ggrm &

oL 2 L
@ = ND <gi()—y,-)

10/11

Backward pass

oL oL

ab) — 9f0)

oL oL ,
_ - (0)
agl v -~ 6;‘,-(")“/"1

oL 9L . 0L
aF0 ~ 9g0° () = 9g10 &

10/11

Backward pass

oL oL ofl")
Ab) — 9f) §bh)

oL oL .,
_ ()
agl v -~ ar0 Wi

oL 9L . 0L
af0 ~ agn”) = ggrm &

10/11

Backward pass

oL oL

ab) — 9f0)

oL oL ,
_ - (0)
agl v -~ 6;‘,-(")“/"1

oL 9L . 0L
aF0 ~ 9g0° () = 9g10 &

10/11

Backward pass

oL oL oft)

oW, of) oW, D
oL oL

ab) — 9f0)

oL oL .,
_ ()
agl v -~ ar0 Wi

oL 9L . 0L
af0 ~ agn”) = ggrm &

10/11

Backward pass

oL AL
aw;)~ af0 &

oL oL

ab) — 9f0)

oL o
_ ()
g D~ 2 g Via

oL 9L . 0L
aF0 ~ 9g0° (f7) = 9g10 &

10/11

Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
abll) — 9fl0)

Activations
Pre-activations
% = 86;(:‘) g (1-g")

Output activations

oL
aglh ~ o (g"(L)_y’)

11/11

Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
abll) — 9fl0)

Activations
Pre-activations
% = 86;(:‘) g (1-g")

Output activations

oL
aglh ~ o (g"(L)_y’)

V7B/)l: = ‘7ﬁl)l: € H@Al“

11/11

Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
abll) — 9fl0)

VW/)‘C -

V7B/)l: = ‘7ﬁl)l: € H@Al“

Activations
Pre-activations
% = 86;(:‘) g (1-g")

Output activations

oL :L(() _ .)M
0gi0 ~ NONE) gD

11/11

Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
abll) — 9fl0)

Activations
oL oL :
Ehdadi = w0
8gj(/,71) - - 37‘,-(") VV"J

Pre-activations

oL oL :
o0~ ogn & (1-8")

Output activations

oL
aglh ~ o (g"(L)_y’)

VW/)‘C -

ng;ﬁ = V,‘m[, € RNW

6 RM/)XM/ 1)

11/11

Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
abll) — 9fl0)

VoL = (Vﬁ/)ﬁ)T g(/'fl) c RI\//)XM/ 1)

V7B/)l: = ‘7ﬁl)l: € H@Al“

Activations
Pre-activations
% = 86;(:‘) g (1-g")

Output activations

oL
aglh ~ o (g"(L)_y’)

11/11

Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
ab) — afl0)

Vol =(VaL)T g e RV

Vol = Vs L € RV

Activations
oL oL ‘
gl D WW"JM Vel =WIT(V7.L)
7] i i
Pre-activations
oL oL) .

Output activations

oL
gl W (g"(L)_y’)

11/11

Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
abll) — 9fl0)

Activations
Pre-activations
% = 86;(:‘) g (1-g")

Output activations

oL
aglh ~ o (g"(L)_y’)

VoL = (Vﬁ/)ﬁ)T g(/'fl) c RI\//)XM/ 1)

V7B/)l: = ‘7ﬁl)l: € H@Al“

Vg oL =WIT(Vz.L)

11/11

Backward pass
Weight and biases
oL AL
oW, ~ a0 &
oL oL
abll) — 9fl0)

Activations
Pre-activations
% = 86;(:‘) g (1-g")

Output activations

oL
aglh ~ o (g"(L)_y’)

VoL = (Vﬁ/)ﬁ)T g(/'fl) c RI\//)XM/ 1)

V7B/)l: = ‘7ﬁl)l: € H@Al“

Vg oL =WIT(Vz.L)

Vil = (VgL) 08" o (1-g")

11/11

Backward pass
Weight and biases

oc ocC (6=1)
oW, ~ a0 &
oc oL
abll) — 9fl0)
Activations
oL oL :
_ . (€)
8&_(/,71)* : afi(zf)vv'd

Pre-activations

oL oL :
o0~ ogn & (1-8")

Output activations

oL
aglh ~ o (g"(L)_y’)

VoL = (Vﬁ/)ﬁ)T g(/'fl) c RI\//)XM/ 1)

Vil =Vl eRY
VgL = wioT (VanL)
Vil = (VgL) 08" o (1-g")

ngﬁ = ﬁ (g‘(L> —)7)

11/11

