Opracowanie: j/
Problem J: Routing

HISTORIA:
e wersja 1.0: 2007, Tomasz Idziaszek

dokument systemu SINOL 1.3.1

1 Problem analysis

Let us rephase the problem in graph theory language. We are given a directed graph G = (V| E),
which has n nodes. We have two special nodes in G: the start node s and the destination node ¢.
We want to find two directed paths in this graph: one from s to ¢t and one in another direction.

In other words we want paths vg — v1 — -+ = vp_1 — v and v9 — v — --- — ;1 — 7; and
vg = U = 8§, v = Ug = t. We are interested in such paths that visit minimal number of nodes, that
is we want to minimize the size of the set {vo, ..., vk, o, ..., T}

2 Solution

Firstly, we introduce a distance function 0:V x V' — N. For every u,v € V we have d(u,v) = o0
if there is no directed path in G from u to v. Otherwise d(u,v) = k if such paths exist and the
shortest one has length & (it means that it has k edges).

For a proposition P the Iverson bracket [P] is defined as follows: [P] = 1 if P is true, [P] =0
otherwise.

We define another directed graph G, = (V' x V| E3) and weight function w: Es — N. They are
constructed as follows:

e for every edge (u,v) € F and every node vy € V we add to Ey an edge of the first kind
e = ((u, v0), (v, v0)) and put w(e) = [v # vol;

e for every edge (v,u) € F (notice that v and v are swithed) and every node vy € V' we add to
E5 an edge of the second kind e = ((vg, u), (vg,v)) and put w(e) = [v # vo];

e for every pair of different nodes u,v € V if §(u,v) # oo we add edge of the third kind
e = ((u,v), (v,u)) to E3 and put w(e) = §(u,v) — 1.

Our solution is the length of the shortest path in G from (s, s) to (¢,t) with respect to weight
function w.

3 Proof of correctness

Let’s say that we have the two paths (one from s to ¢ and other from ¢ to s) that are the solution
for our problem. Let ai,as,... be the set of vertices that these two paths has in common, and in
the order of apperance in the first path.

If a is empty (paths don’t have any common vertice except the beginning and the end) then it’s
trivial to prove that our solution is equal to the shortest path from (s, s) to (¢,t) in graf G3. We
simply use egdes of the first kind to travel from (s, s) to (¢, s) with the cost equal do the length of
the first path (from s to ¢) and then we travel from (¢, s) to (¢,t) using edges of the second type.



Now we have two possibilities: either a; is the last vertice from the set in the second path, or
there exists such k that ay is placed after a; in the second path, and a1 is not.

In the first case, we can divide our problem into two separate problems where values of s,t will
be accordingly (s,a;) and ay,t. There is a solution for the first part that has no common points, so
our thesis is correct there. And for the second part we use our proof again (checking if there is any
common point etc.)

In the second case we’ll have to use the edges of the third kind. First it’s easy to see that
edges (a1, a2), (az,as3),...(ax—1,ar) belong to both paths. Moreover on the second path there are
no vertices from a set between the vertice ap41 (it may be equal to ¢) and a;. So again we can divide
our problem into two subproblems where s,t are equal s, a1 and agy1,t.

Now we have to prove that the shortest path in G between (s, s) and (agy1,ar+1) is a correct
solution for the first subproblem. The shortest path in G5 will be equal to shortest path from (s, s)
to (a1, s) using edges of the first kind, then to (a1, ax) using edges of the second kind. Then we
will use the edge of the third kind to go from (a1, ay) to (ag,a1) and then edges of the first kind to
(ak+1,a1) and edges of the second kind to finally reach (ag41,ar+1)-

The edges of the first and second kind correspond to moving along the first and second path.
Edge of the third kind is moving along both paths at the same time along the same edges. So if
there exist a path from (a,b) to (¢,d) of cost x it means that there are two paths, one from a to ¢
and second from d to b such that the total number of vertices they use is equal to x.

So we have proven that for each path in G5 there are corresponding paths in G and that the
length shortest path in G5 is not greater than the correct solution for G. Having all these proofs,
we have just proven that the length of the shortest path in G5 is equal to the solution in G.

4 Algorithm

After reading graph G from the input we construct it in memory together with its transposition G*.
Then we calculate function § for every pair of nodes from G. We can do it using Floyd-Warshall
algorithm in time O(n?).

Then we run Dijkstra algorithm on graph G, and weight function w. Note, than we will
construct graph G on the fly. Every time we have popped node (u1,us2) from priority queue we
iterate over adjacency list of u; to update edges of the first kind, then we iterate over adjacency
list of uy in transpose graph GT' to update edges of the second kind and finally we check whether
u1 # ug and then we update an edge of the third kind.

Graph G3 has O(n?) nodes. Every node is an origin for O(n) edges of the first and second kind
and for at most one edge of the third kind. Therefore we have O(n?) edges in Go. If we implement
priority queue in Dijkstra algorithm using a heap, total time complexity will be O(n®logn).

This algorithm was implemented in C+-+ and in Java (programs j.cpp and j.java).

5 Wrong solutions

Implementing priority queue in Dijkstra algorithm using an array gives an O(n*) algorithm, which
is too slow.

A common mistake is to implement the algorithm without edges of the third kind.

Also algorithms which fix a shortest path in graph G and then find the second path, are incorrect.



6 Tests

First few tests are the correctness tests.

Test no 2 is a simple loop.

Test 3 checks if program uses the edges of the third kind

Test 4 also checks the edges of the third type and eliminates the algorithms that try to find two
shortest paths.

Test 5 is a big test with almost full graph of size 50.



