Pockets
Proposed Solution

Marek Zylak

1 Introduction

The solution h.cpp consists of two phases:
1. paper folding simulation

2. pockets counting

2 Paper folding simulation

First, we can notice that the operation of folding the left part of the figure to
it’s right side can be substituted by folding the right part of the figure to the
left. We should just remember that position of the surface, on which the figure
was lying, has changed to opposite.

We will use rectangular array to represent unit square fields on the surface.
Each field contains a stack of unit square pieces of paper. The stack is repre-
sented as a double linked list. We also keep vertical an horizontal orientation
of each piece of paper. Paper folding is equivalent to taking all pieces from a
group of stacks and putting them on the other group of stacks.

The number of folds is O(N) and during every fold we have to move O(N?)
pieces, so the overall simulation cost is O(N?).

It’s easy to find a fold which moves some of the pieces to previously unused
fields on the surface. Moreover, it’s possible to move some of the pieces ©(N?)
units from it’s original position. That makes allocating sufficiently big array of
fields impractical, because it would need ©(N*) elements. There are at least
two solutions to this inconvenience:

e Thanks to the observation described in the beginning of this document we
can avoid operations that require allocation of previously unused fields.
In this method we must always keep track of the surface position and ori-
entation. Moreover, when the surface is on the visible side of the figure,
we need to fold paper to the back side of the figure, when normally we
always fold to the front side. Despite all the difficulties it’s possible to
implement the algorithm elegantly, using conditional code in symmetrical



cases. We only have to use parametrization and arrays heavily (for ex-
ample: instead of using two variables next and prev to store pointers to
neighbour of the element on the list, it’s better to use two element array
1link[2]. Described method was used in the proposed solution.

e The folding result can be put in a temporary array of surface fields. Au-
thor of the proposed solution considers this method easier to implement
correctly. He didn’t choose it only because he found and implemented the
other method first.

3 Pockets counting

To count the number of pockets related to a particular edge of the final unit
square we have to find have to find how paper covers itself on the edge. We can
have two situations on the edge:

e two unit squares, connected on the edge cover everything between them

e the edge of the unit square is also the edge of the paper

The edge which connects two unit squares covers every pocket lying between
the unit squares. We can represent such covering by the sequence of brackets.
We build it by processing the unit square on the last stack from bottom to top.
When we encounter the first unit square involved in connection on the edge,
we put an opening bracket into the sequence. After encountering the second
unit square relater to the connection we put a closing bracket. A unit square
edge that is also the edge of the paper can be represented as two consecutive
brackets — opening and closing bracket. In the end we must analyze created
string of brackets to find the number of places where two expressions, that are
not part of any other expressions, meet. Such place represents space between
two consecutive unit squares that is not blocked from outside, by some paper.

4 Summary

Overall complexity of the proposed algorithm is O(N?).



