1 Introduction

Before we may proceed to the solution of the problem we shall make some observations about
the properties of the problem. Firstly, any conclusion we can make on the number of pilgrims in
certain moment must be based on the fact that Jack never had to deal with fractional numbers of
euros. This lead us to a claim:
Claim 1
Suppose that part of our input looks like that: IN/OUT a; PAY k; PAY k, ... PAY £k,
IN/OUT a, and after a; pilgrims joined (or left) the trip there could have been exactly x pe-
ople in the group. Then we have that x is a divisor of k; + ko + ... + k,. Moreover, any x
of such property can be number of people in the group after line PAY k,,.
Indeed, if it was not so when a, people join or leave the group Jack would have to deal with
fractional numbers of euros, which is guaranteed to have never occured.
Observation 2
Information given in COLLECT is irrelevant. Thus any input have the same solutions as the
same input with all occurences of COLLECT £ lines removed.
Indeed, since we are given only one page of booklet, Jack could have collected enough money
just before the beginning of page.
Observation 3
No information can be gained from the initial sequence of PAY lines.
Assume input is a sequence i1, 9, ..., i, such that i, ..., i are PAY lines, i5; is IN or OUT line
and 7; is not COLLECT line for any 1 < j < n. Furthermore, assume x is the solution for
input 441, %2, .. .,%,. Then x is also a solution for input i1, 7o, ..., 7,, for the reason being that
the previous page of booklet could have ended with a sequence j, jo, . . . , j, Of PAY lines such
that x is a divisor of the sum of money that Jack possessed.
Observation 4
If input ends with a sequence of PAY lines we may ignore them.
Indeed, whatever amount of money was paid at the end Jack did not have to deal with fractional
number of euros since no one came in nor came out after.
Observation 5
If input consists of no PAY lines (thus only IN and OUT lines) and Apq, Aps, ..., Ap, is a
sequence of changes of number of people in the group (Ap; corresponds to i-th line: IN Ap; or
OUT — Ap;) then any number greater or equal to miny — (Ap; + Aps + . .. + Apy) can be the
number of pilgrims at the beginning of the page.

Having considered all the observations and the claim we may propose a scheme of the pro-
blem solution:

1. Remove all COLLECT lines.
2. Remove the initial and ending sequence of PAY lines (if they occur).

3. If (after 2 preprocessing) there are no PAY lines compute the minimal number of pilgrims
basing on observation 5.



4. In the other case we have input consisting of interlacing sequences of IN/OUT and PAY
lines.

5. Take the first sequence of PAY lines, compute its sum S of values paid.

6. For every divisor of S check whether it can be a number of people in the remaining input
sequence.

We need to remember to compute all the divisors of .S in no longer than O(+/S) time.

The last dragon left to slay is checking whether given number m can be number of people
in the remaining input sequence. This can be done by single loop over the sequence. We will
remember the number of people if at the beginning there were m pilgrims. This value will need
to be updated after each IN/OUT line. For each block of PAY lines we shall compute its sum
and if it is divisible by the number of people m is a solution and it is not in the other case.

2 Model solution

Model solution (file pil.{cpp/java})is an implementation of the above algorithm. Firstly input is
filtered respectively to points 1) and 2). Later on, the call of no_pays() fuction handles the case
when input consists no PAY lines. Then the main program fuction is called. It sums the values
of the first remaining block of PAY lines (call this value sum), and for each pair of its divisors
j and sum/j it adds them to result if they are possible numbers of people in the group. This is
done by calling the function possible(), having ensured that the considered value is greater or
equal to 14 adjustment respective to number of people joined/left in preceeding IN/OUT lines.
The function possible() implements the idea described at the end of the previous section.

Let N be the size of input. Time complexity of the model solution is O(N+/2000N) and
memory complexity is O(N).

3 Slow solution 1

Slow solution 1 (pilsl.{cpp/java}) is very similar to the model solution. The only difference is
that it computes all the divisors of S by simple looping over all numbers lesser than S, which
takes significantly longer time. Let NV be the size of input. Time complexity of the model solution
is O(2000N?) and memory complexity is O(NN)

4 Tests

Test cases consists of files:
e pil0.in — example test,

e pill.in — simple correctness tests,



e pil2.in — more sophisticated correctness tests.

e pil3.in — effectiveness tests consisting of short (1-3 element) IN/OUT initial and en-
ding blocks and a large (40-48 element) block of PAYs with respectively large amounts
of money (1850-2000). Thus sum of money is sufficiently large to make slow solution run
significantly longer.

e pil4.in — random effectiveness tests. A test case consists of interlacing blocks of IN/OUT
(that are usually short) lines and PAY lines. First significant block of PAYs is quite long
so that the number whose all divisors need to be computed grows on average to 50, 000-
70, 000.

The first two files were written manually, others are created automatically by program pilin-
gen.cpp for the reason being that effectiveness tests should consist of around 10, 000 cases, wich
makes s total of 400, 000-500, 000 lines. Since COLLECT lines are irrelevant for the problem
solution only a few of them are put randomly in last two test files.



