Analysis: 2006B
Remember the A La Mode!

HISTORY:

e Vv.1.2: 2007.02.09, Al - drobne poprawki w wygladzie

ev.1.1: 2007.02.07, JP - dostosowanie opracowania do wymsyggtemu SINOL
o V. 1.0: XXXX.XX.XX, TB,MD - powstanie opracowania

dokument systemu SINOL 1.6

1 Introduction

Let us define the problem in the graph language.\L&ke the set of all cake slices, akd a set of all ice
cream scoops. We will build a bipartite graph with nofasW. Nodesv € V andw € W are connected, if
given cake-ice cream combination is possible. Weight oheslge is equal to the price of the combination.

A matchingin a graph is a subset of edges, in which no pair of edges hasmeoa node. Aperfect
matchingis a matching, which covers all the nodes. A perfect matchiraur bipartite graph is related to a
solution, in which all cake slices and ice cream scoops asig@esd. We know that at least one such solution
exists.

Weight of matchingvl (denoted agf(M)) is a sum of weights of edges belonging to the matching.

2 Optimal solution

In our problem, we have to find both smallest and greatestiw@ifjperfect matching in a bipartite graph.
This is well know problem, callethe assignment problerithere are many algorithms to solve it. The fastest
known algorithms work irD(n®) time, for example théiungarian algorithmor thesuccessive shortest path
algorithm (SSP)Our solution is based on the latter one. For simplicity, vileimplement it in O(n*) time.
Definition 1 Let G=(V,W,E,M) be a bipartite graph with node sets V and W, edges E and a nmatdhi

e an augmenting pathin graph G is a path starting in unmatched node ¥, ending in unmatched
node we W, whose first edge does not belong to M, the second beloreghittt does not and so on,

¢ the weight of augmenting path o(2) is a sum of weights of its edges belonging to M minus a sum of
weights of edges not belonging to M.

An augmenting path can be used to augment the matdfimga following way:
e each edge belonging i is removed fromM,
e each edge not belonging kb is added taV1.

Using the path in this way we obtain new matchMg which has one more edge thih The weight of\’,
o(M’) is equal tog(M) + o(2).
The SSP algorithm is based on following theorem:

Theorem 1 Let M be a matching in a bipartite graph-5(V,W, E, M), which has the smallest weight among
all matchings with k edges. Let be the shortest augmenting path among all possible augneeptths.
New matching M created by augmenting M by pathhas the smallest weight among all matchings with
k+ 1 edges.

The SSP algorithm:

Start with enpty matching M

Repeat :
Find the shortest augnenting path
If a path is found, use it to augment M
[f no path found: STOP

In order to find shortest augmenting paths, we will slightlydify the graph:
e non matched edges are directed frdgno W,
e matched edges are directed frgvhto V and they have opposite weight,
e we add a start nodgand edges frorsto each unmatched nodes V.

In this graph we will search for the shortest path free any unmatched node € W. The graph has
no negative cycles. If they were, we would use them like amarging path and we would have a matching
with the same number of edges but with lower weight. This ispossible. So we can use Bellmann-Ford
algorithm to find the shortest path.

The SSP algorithm has the following feature, which will bedig construction of the algorithm.

Proposition 1 Successive paths in SSP algorithm have non decreasingtweigh

In our problem, the set of nodes can have up to 10000 elemieigt$oo many to us®(n®) algorithm or
evenO(n*). To create fastest algorithm we will use the fact that theeen@ more than 50 pie types and no
more than 50 ice cream types.

Let groupbe a set of all nodes of the same type. Is it possible, thathtbeest augmenting path goes
more than once through a group?

On the picture below we can see how a path goes twice througbugpg The path enters the group in
nodeA for the first time and then comes back in nddeEdges belonging to the matching are thicker. Let
|XY| denote the weight of path froli to Y. NodesA andD belongs to the same group, gB| = |DB| and
|AE|=|DE]. If the pathA— B — ... - C — D — E was shorterthaA — E, the pattA—B— ... = C—D
would have negative weight. The weight of this path is equhé weight of cycld - B — ... - C — D.
We know that this graph has no negative cycles, so thefdattB — ... — C — D has non-negative weight.
So the shortest path can go fréxdirectly E.

Thus we can consider only paths, which goes no more than bnoegh each group. So we can search
for the shortest path ineompressedraph, in which nodes from each group are collapsed into one.
We will use following data structures:

e matched- two dimensional arraynatchedi, j| means how many pie slices from grougre matched
with ice cream scoops from groyp

e mV, mW - vectorsmV[i] means how many pie slices from grougre matched, similarlgnW.

When a shortest path is found in compressed graph, we cantoesaligment the matching by one edge
in non-compressed graph. However, we know that the nextestqrath will not have lower weight, so we
can use the path more than once if it is possible. In the dlgariwhen the path is found, we first go through
it to figure out how many times it can be used. Then we go thrdufgh the second time and we augment
the matching.

The algorithm counts the minimum profit. It can be easily usambunt the maximum profitin a following
way:

change all prices to opposite and add 2000 to remove negatives,
e use the SSP algorithm to count minimum préXit

subtractN x 2000 fromP, whereN is number of all desserts,

e return P.

3 Tests

To verify solutions, 11 test cases have been prepared:
e 2006b0. i n test from problem statement, 2 problem instances,
e 2006b1.i n 3 instances, total number of desserts equal to 10 in eadmnicest
e 2006b2. i n 5 instances, total number of desserts equal to 100 in eatanies
e 2006b3. i n 50 instances, total number of desserts equal to 100 in eatdmice,
e 2006b4. i n 30 instances, total number of desserts equal to 1000 in eatdnice,

e 2006b5. i n 100 instances, total number of desserts equal to 3000, &86tipossible edges does not
exist,

e 2006b6. i n 10 instances 58 50 types, numbers in each type IMO, prices 01..10.00, 10% possible
edges does not exist,

e 2006b7.in 10 instances 58 50 types, 100 elements in each type, price®l010.0, full bipartite
graph,

e 2006b8. i n 10 instances 58 50 types, numbers in each type 9@0O, prices 01..10.00, 50% possible
edges does not exist,

e 2006b9. i n 10 instances 58 50 types, numbers in each type 3@0, prices M1 or 002, 10% possible
edges does not exist,

e 2006b10. i n 10 instances 58 50 types, numbers in each typeSD, prices 30..6.00, full bipartite
graph.

