
Problem B
Remember the A La Mode!

Let us define the problem in the graph language. Let V be the set of all cake slices, andW a set of
all ice cream scoops. We will build a bipartite graph with nodes V ∪W . Nodes v ∈ V and w ∈W
are connected, if given cake-ice cream combination is possible. Weight of each edge is equal to the
price of the combination.

A matching in a graph is a subset of edges, in which no pair of edges has a common node. A
perfect matching is a matching, which covers all the nodes. A perfect matching in our bipartite
graph is related to a solution, in which all cake slices and ice cream scoops are assigned. We know
that at least one such solution exists.

Weight of matching M (denoted as σ(M)) is a sum of weights of edges belonging to the
matching. In our problem, we have to find both smallest and greatest weight of perfect matching
in a bipartite graph. This is well know problem, called the assignment problem. There are many
algorithms to solve it. The fastest known algorithms work in O(n3) time, for example hungarian
algorithm or succesive shortest path algorithm (SSP). Our solution is based on the latter one. For
simplicity, we will implement it in O(n4) time.

Definition 1 Let G=(V,W,E,M) be a bipartite graph with node sets V and W , edges E and a
matching M . An augmenting path in graph G is a path starting in unmatched node v ∈ V ,
ending in unmatched node w ∈ W , whose first edge does not belong to M, the second belongs, the
third does not and so on. The weight of augmenting path, σ(P) is a sum of weights of its
edges belonging to M minus a sum of weights of edges not belonging to M .

An augmenting path can be used to augment the matching M in a following way:
- each edge belonging to M is removed from M
- each edge not belonging to M is added to M
Using the path in this way we obtain new matching M ′, which has one more edge than M . The
weight of M ′, σ(M ′) is equal to σ(M) + σ(P)

The SSP algorithm is based on following theorem.

Theorem 1 Let M be a matching in a bipartite graph G=(V,W,E,M), which has the smallest
weight among all matchings with k edges. Let P be the shortest augmenting path among all possible
augmenting paths. New matching M ′, created by augmenting M by path P has the smallest weight
among all matchings with k + 1 edges.

The SSP algorithm:

Start with empty matching M

Repeat:

Find the shortest augmenting path

If a path is found, use it to augment M

If no path found: STOP

In order to find shortest augmenting paths, we will slightly modify the graph:
• non matched edges are directed from V to W
• matched edges are directed from W to V and they have opposite weight
We add a start node s and edges from s to each unmatched node v ∈ V .

In this graph we will search for the shortest path from s to any unmatched node w ∈ W . The
graph has no negative cycles. If they were, we would use them like an augmenting path and we
would have a matching with the same number of edges but with lower weight. This is not possible.
So we can use Bellmann-Ford algorithm to find the shortest path.

The SSP algorithm has the following feature, which will be used in construction of the algori-
thm.



Proposition 1 Succesive paths in SSP algorithm have non decreasing weight.

In our problem, the set of nodes can have up to 10000 elements. It is too many to use Θ(n3)
algorithm or even Θ(n4). To create fastest algorithm we will use the fact that there are no more
than 50 pie types and no more than 50 ice cream types.

Let group be a set of all nodes of the same type. Is it possible, that the shortest augmenting
path goes more than once through a group?

On the picture below we can see how a path goes twice through a group. The path enters
the group in node A for the first time and then comes back in node D. Edges belonging to the
matching are thicker. Let |XY | denote the weight of path from X to Y . Nodes A and D belongs
to the same group, so |AB|= |DB| and |AE|= |DE|. If the path A → B → . . . → C → D → E
was shorter than A → E, the path A → B → . . . → C → D would have negative weight. The
weight of this path is equal to the weight of cycle D → B → . . . → C → D. We know that this
graph has no negative cycles, so the path A → B → . . . → C → D has non-negative weight. So
the shortest path can go from A directly E.

Thus we can consider only paths, which goes no more than once through each group. So we can
search for the shortest path in a compressed graph, in which nodes from each group are collapsed
into one.

We will use following data structures:
• matched – two dimensional array, matched[i, j] means how many pie slices from group i are
matched with ice cream scoops from group j.
• mV , mW – vectors, mV [i] means how many pie slices from group i are matched, similarly mW .

When a shortest path is found in compressed graph, we can use it to augment the matching by
one edge in non-compressed graph. However, we know that the next shortest path will not have
lower weight, so we can use the path more than once if it is possible. In the algorithm, when the
path is found, we first go through it to figure out how many times it can be used. Then we go
through it for the second time and we augment the matching.

The algorithm counts the minimum profit. It can be easily used to count the maximum profit
in a following way:
• change all prices to opposite and add 2000 to remove negative values
• use the SSP algorithm to count minimum profit P
• subtract N ∗ 2000 from P , where N is number of all desserts
• return -P

Tests

b0 – test from problem statement, two problem instances
b1 – 3 instances, total number of desserts equal to 10 in each instance
b2 – 5 instances, total number of desserts equal to 100 in each instance
b3 – 50 instances, total number of desserts equal to 100 in each instance



b4 – 30 instances, total number of desserts equal to 1000 in each instance
b5 – 100 instances, total number of desserts equal to 3000, about 50% possible edges does not
exist
b6 – 10 instances 50x50 types, numbers in each type 10..100, prices 0.01..10.00, 10% possible edges
does not exist
b7 – 10 instances 50x50 types, 100 elements in each type, prices 0.01..100.0, full bipartite graph
b8 – 10 instances 50x50 types, numbers in each type 90..100, prices 0.01..100.0, 50% possible edges
does not exist
b9 – 10 instances 50x50 types, numbers in each type 50..100, prices 0.01 or 0.02, 10% possible
edges does not exist
b10 - 10 instances 50x50 types, numbers in each type 1..50, prices 50.00..60.00, full bipartite graph


