
Sample solution
Authors: Mateusz Wykurz, Robert Źra lek

Definition 1. Travel graph is a graph representing travels which are consistent with given
tickets.

1. Vertices include information about which city we’re in, which ticket did we use to arrive
to this city, how many cities from this ticket did we respectively visit and how many cities
are still left to visit.

2. Edges have costs. There are two types of edges. Those with a zero cost, which lead from
one city to another but on the same ticket, assuming we already bought a ticket. Second
type are those edges with positive cost, which lead from first to second city for some ticket
having cost of this ticket.

3. Besides that this graph also contains one additional vertex start which doesn’t represent
any particular city. No ticket was used to get to it and we still have all cities from a trip
to visit. From this vertex lead edges with costs of all available tickets just as start would
represent first city on those tickets.

Theorem 1. In a travel graph all paths correspond to some trip. Correspondence means that
in this trip in all visited cities state, as described in vertices, corresponds to state in vertices on
this path and cost of this trip is sum of costs of all edges on this path. Also all possible travels
consistent with available tickets have a corresponding path.

Proof. In a travel graph edges from any vertex lead only to vertices that represent continuation
of a travel on a same ticket, which doesn’t cost us anything, or buying a new ticket. In both
cases edges are present only if possible. Trip can be started from any city and vertex start
corresponds to any city, because all ticket edges lead from it.

Corollary 1. Cheapest possible trip in which we respectively visited all given towns is the
cheapest path leading from start to some vertex with number of cities to visit equal zero.

Algorithm 1. Scheme of an algorithm used:

1. Create travel graph based on available tickets and list of cities to visit.

2. Find the cheapest path leading from start to some vertex with number of cities to visit
equal zero.

Correctness: Is straightforward from Theorem 1.

Complexity: Lets denote number of vertices in travel graph by n and number of edges by
m. Then creating this graph can be easily done in O(mlog(n)) time. Starting from start and
building rest of the graph recurrently whenever we want to add edge leading to some vertex
we have to check, if it hasn’t been already added. All edges are created once and checking if a
vertex exists can be done using Red−Blacktrees.

Finding the shortest path from start to some vertex with number of cities to visit equal zero
can be done using Dijkstra′salgorithm. Simple implementation works in O(mlog(n)) time
and we will find shortest paths from start to all vertices. What’s left to do is to find shortest
of them, which can be done in O(n) time.

Number of vertices in travel graph can easily be estimated by the information vertices
contain. Lets denote:



• a = number of cities

• b = number of tickets

• c = number of cities on tickets

• d = number of cities to visit

n = O(a ∗ b ∗ c ∗ d + 1)

But a can be deduced from b and c, so in general for some function f and any a, b, c contained
in some vertex equation can be written: f(b, c) = a. It means that a better valuation can be
done:

n = O(b ∗ c ∗ d + 1)

From all vertices but start lead at most 1 + number of tickets = 1 + b edges. This gives
us:

m = O(2 ∗ (n− 1) + 20)

Testing 1. One of our main goals was to create good tests that would be consistent with the
contents of the problem. One of constraints was that only one possible solution for all tests
would be possible.

Using Dijkstra’s algorithm on travel graph gives us costs of paths to all vertices. If two such
paths have the same length can be easily checked.

But there may be that two different paths, both with minimal cost, lead to same vertex.

Example:
3
10 3 1 2 4
10 3 1 3 4
10 2 4 5
1
3 1 4 5
0

Two different paths lead through tickets 1, 3 and 2, 3 to the same vertex. Both have same
minimal cost equal 20.

Algorithm 2. One that was used to verify if test case has unique solution.

1. Create travel graph based on tickets and list of cities to visit.

2. Find shortest paths to all vertices with number of cities left to visit equal zero. If there are
at least two paths with same minimal cost, or there is none, than test is bad and algorithm
ends. Else pick the shortest path and memorize it’s cost.

3. For each edge on the shortest path:

(a) Remove this edge.



(b) Find cost of the shortest path from start to some vertex with no cities left to visit.

(c) Compare its cost with memorized cost of shortest path. If they’re equal than test is
bad. Algorithm ends.

4. Test jest good. Algorithm ends.

Correctness: For two distinct paths in a graph there must exist at least one edge that one
of this paths contains and other does not.

After removing any edge from a graph in the new graph there exist only paths that existed
in the first one without paths containing the deleted edge.

Conclusion: If there exist two paths both with minimal cost Algorithm 2 will find them.


