
1 Introduction

The presented algorithm strongly relies on the assumption,that we are not allowed
to accommodate two workshops in one room (otherwise the problem would be in
NPC). Firstly, we sort our rooms by the length of time, at which they are at our
disposal. Secondly, we iterate through all of our rooms starting from the one, that
is the shortest available room and ending at the longest available one, trying to ac-
commodate in each of them a suitable (that has not yet been allocated and is fitting
both with time and the number of participants) workshop withthe largest number
of participants possible. Meanwhile, whenever we accommodate a workshop in
a room, we decrease the count of open-air workshops by one andthe number of
people, who will take part in them by the number of participants of this particular
workshop.
Lemma

The algorithm described above finds an optimal (according toour problem)
allocation of the workshops.
The proof of our Lemma

We look through our rooms in a way desribed above, keeping in mind, that
they are sorted appropriately: If we encounter a room R, for which the cardinality
of the set S of suitable workshops is greater than zero, we notice, that:

1. Having no workshop from S accommodated in room R we will notobtain a
better solution to our problem, than having it done. Performing no accommodation
simply decreases the number of available rooms, while the number of workshops
remains the same. Hence we should allocate one of the workshops from S in the
room R.

2. Accommodating such a workshop from S in room R, that has thegreatest
number of participants is optimal - all workshops from S fit with their duration
time into next (in our iteration order) rooms after R, so the best thing to do is to
locate the workshop of the greatest number of participants in the room R.

If the cardinality of S for considered room R is equal zero, wemove to the
next room and look for workshops suitable for it - no workshopfrom the ones,
that haven’t been allocated yet fits into room R. On the other hand, none of the
workshops allocated before should change its room and be located in R, because
at the moment it was accommodated, we did the best choice possible (according
to points 1). and 2).).

Since each time we allocate a workshop in a room, we decrease appropriately
the number of unallocated workshops (initially equal the number of all work-
shops) and the number of people, that will take part in open-air workshops (ini-
tially the number of all people participating in all workshops) - at the end of the
algorithm we receive both values, that are asked for in our task.

1



2 Tests

The tests are stored in the following files:

• test0 - example test

• test1 - correctness test, one workshop fitting in one room

• test2 - correctness test, one workshop too long to fit in one room

• test3 - correctness test, four workshops, three of them fitting in three rooms

• test4 - correctness test, nine workshops fitting in nine rooms

• test5 - correctness test, two workshops, one of them fitting in one of two
rooms

• test6 - performance test, 10 trials, each containing 300 workshops and 300
rooms

• test7 - performance test, 10 trials, each containing 1000 workshops and 300
rooms

• test8 - performance test, 10 trials, each containing 300 workshops and 1000
rooms

• test9 - performance test, 10 trials, each containing 1000 workshops and
1000 rooms

• test10 - performance test, 10 trials, each containing 1000 workshops and
1000 rooms

Every correctness test has been hand-written, every performance test has been
randomly generated by the (included) gentest.cpp program.

2


