Tiling the Plane

Task G, 2004/2005

Tadeusz Sznuk

1 Overview

The solution is based on properties of points A,B,C,D,E,F mentioned in task
specification. These properties are proved in section 3. They lead to simple
O(n?) algorithm described in the same section. Section 2 contains various de-
finitions used in section 3. The last section presents an algorithm for checking
cyclic equivalence of words, which is used as a part of the the main algorithm
(described in section 3).

2 Definitions

Distance Distance between points on the polygon boundary, measured by co-
unterclockwise traversal of the boundary (starting at the first point). Di-
stance between X and Y is denoted by | XY.

Opposite point Opposite point of X is a point X such that | X X| = | X X]|.

Solution Set S = {A, B,C, D, E, F}is called a solution if points A,B,C,D,E,F
have the properties mentioned in the task specification.

Solution point Point in a solution. When we say that some points are solution
points we mean that they belong to the same solution - eg. “if X is a
solution point then X is also a solution point” means that if X € S
for solution S, then X € S. newxt(X) means next solution point on the
polygon boundary (next(A) = B), prev(X) means previous point.

String representation We can represent part of the polygon boundary as a
string containing letters N,E,W,S describing its counterclockwise traversal
(using unit steps). We denote such representation of polygon boundary
from X to Y by str(X,Y). compressedStr(X,Y) is a sequence of pairs
(direction, length) equivalent to str(X,Y).

String operations rev(S) is a reverse of string S. S is string S after a
circular shift by 4 positions to the left. neg(S) means string S with every
direction changed to the opposite (N — S, E — W, ...). If S is a seqeunce
of direction-length pairs, directions inside pairs are changed.

Cyclic equivalence V; =2 V; iff Ji : Vl(i) = VWs.

Evil points Solution point X is called evil iff neither X nor X is a vertex.

3 Solution

Lemma 1 (#). If solution point X is not a vertex then points prev(X) and

next(X) are vertices.

“Proof”. Look at the tiling. O

prev(50

Y/

X ek

Lemma 2 (). If X is evil then all other solution points except X are vertices.

Proof. Apply & to X and X (which is not a vertex because X is evil). O

Lemma 3 (&). Points X andY are consecutive points of a solution iff str(X,Y) =
neg(rev(str(X,Y))) and str(Y, X) = neg(rev(str(Y, X)))

Proof. If the solution {X,Y, Z, X, Y, Z} exists, then str(Y, Z) = neg(rev(str(Y, Z)))
and str(Z, X) = neg(rev(str(Z, X))). Therefore str(Y, X) = str(Y, Z)str(ZX) =

neg(rev(str(Y, Z)))neg(rev(str(Z, X))) = neg(rev(str(Z, X)str(Y, Z))) = neg(rev(str(Y

Corollary. We can find 4 solution points by checking all pairs of vertices X,Y
together with their opposite points X and Y (). To verify that chosen points
are part of a solution we can use &.

Direct application of & requires str(Y, X) to be computed. This string may
be very long. Because of this we would like to run the cyclic equivalence check
on words in their compressed form (eg. 6 N 3 E instead of NNNNNNEEE). It is
easy to see that such a transformation does not change the outcome of our
check as long as first letter of the string is different from the last one. We can
ensure this property by shifting the string to the left until it is satisfied. This
modification can be performed on the compressed string.

Corollary. Conditions of & can be checked without computing uncompressed
representations of boundary parts.

There are n? pairs of vertices (Note: we allow the same vertex to be selected
twice to be able to find square tilings). Compressed representations of boundary
parts can be computed in O(n). Cyclic equivalence can be checked in O(n),
either by using any linear pattern matching algorithm (s = ¢ iff s is a substring
of tt) or procedure from section 4. Therefore running time of algorithm presented
below is O(n?).

Solution

procedure fix (s)
if s contains more than one pair
let (d,l) be the last direction-length pair in s.
if first direction in s is d
remove last pair from s.
add ! to the length of first pair in s
end

for each (z,y) € {ulueV or ue V}
if compressed_str(x, y) = neg(rev (compressed_str(Z, 7)))
s;1 = fix (compressed_str (y,7));
s = fix (neg (rev (compressed_str (y,z))));
if length(s;) = length(ss)
if s;1 & sy return true;

return false;

4 Cyclic Equivalence of Words

This section describes an algorithm which solves cyclic equivalence problem
in linear time and constant memory, without using pattern matching. The
algorithm is very simple and easy to implement. Java source for this algorithm
is presented below.

Cyclic Equivalence of Words

static boolean cyclicEquiv (int]] v1, int[] v2) {
int i, j, k, n;

n = vl.length;
if (n # v2.length) return false;
i=0; j=0;k=0;
while ((i < n) && (j < n)) {
while (vi[(i + k) % n] == v2[(j + k) % n]) {
k++;

if (k == n) return true;

if (vi[i + k] > v2[j + k]){
i=di+k+ 1

} else {
j=i+tk+ 1y

}

return false;

Lemma 4. Function cyclicEquiv(vy, ve) returns true iff vi = vs.
Proof. Let Dy be a set of all integers 4 such that vgl) (v1 shifted by ¢ positions)
is greater (in lexicographical order) than v shifted by j positions for some j
(1 € Dy iff 35 : vgi) > véj)). Let D5 be a set of all integers j such that véj) is
greater than v shifted by i positions for some 1.

If v1 = vy then D; # n and Dy # n, because there are integers p, ¢ such
that v§”) = Uéq)) -p¢ Dy and ¢q ¢ D2.

Before and after each iteration of the outer loop of cyclicEquiv the following
invariant holds: ¢ C D; and j C D,. After the last iteration we have either
Dy =n or Dy =n (so the result is false. The return statement in the inner

loop is executed only when vgi) = véj), O
Lemma 5. Function cyclicEquiv(vl, v2) works in time O(length(vy))

Proof. Every iteration of the outer loop increases ¢ + j by 14 k where k is equal
to number of iterations of the inner loop. Since i + j < 2n, the algorithm does
at most 2n steps. O

