1 The algorithm

1.1 Introduction to the solution — general thoughts

First let us consider, how can we describe the phenomenon of casting shadow.
We assume that the sun is infinitely far away, and that it is a point. With
such an assumption the time of the day simply determines a direction, and
from this direction parallel sun rays are falling from the whole sky. A given
point is in the shadow if and only if the half-line from this point “in the
direction of the sun” intersects some building or the earth. Notice that if a
given point is sunlit, all points above it also are sunlit — this follows from
the fact that if a given point belongs to a building, then all point below it
belong either to the earth or to the building. In particular this means that if
we want to check whether any particular apartment is sunlit, we can consider
only the lowest points on the east and west walls and not the whole walls.

The sun in Shanghai is in zenith on 11:57 AM. Before that hour the
sunrays fall from “up and east” and after that hour — from “up and west”.
Notice, that if a given point is sunlit on some hour g before 11:57 AM, then
it is also sunlit on any hour between ¢g and 11:57 AM, because the later
the hour is, the more steeply the sunrays fall, and so the half-line “in the
direction of the sun” lies above the half-line from the hour ¢, and if any
building was to intersect the higher half-line, it would also have to intersect
the lower half-line, a contradiction with the assumption our point was sunlit
on ¢g. The situation after 11:57 is obviously symmetric. Thus any point not
lying inside some building is sunlit in some interval of time containing the
hour 11:57 AM.

The lower end of the eastern wall of a given apartment is in the shadow
of its building after 11:57 AM, and the lower end of the western wall is in
the shadow before 11:57 AM. Thus, to learn when an apartment is sunlit
it is enough to check from what time is the lower end of the eastern wall
sunlit, and till what time is the western lower end sunlit. These problems
are symmetric, so to simplify the reasoning we will concentrate on one, say
the first, and solve the second in the same way. Let us consider a given
apartment in the building A, and let p denote the lower end of its eastern
wall.

On the crucial moment the half-line going from p “in the direction of the
sun” intersect the upper-west corner of some building lying to the east of
our building, as it is easy to check that from all the points of any building

the upper-west corner is the last to cast a shadow on p. Let (a,) denote the
sequence of the upper-west corners of buildings lying to the west of A. From
all points a,, the last to cast a shadow on p is the one for which the angle
between the line connecting a,, and p and the horizontal line is the greatest.
Hence the following straightforward algorithm:

1.2 The brute-force algorithm — a non-exemplary so-
lution

Author: Jakub Wojtaszczyk

For each complex of apartment building we read from the input and store
in arrays the heights of the buildings and the positions of their eastern walls
(we put the eastern end of the easternmost building at, say, zero). The
positions are not given in the input, but we can compute them online for
each building by adding w + d(i) to the position of the previous building.
Next, for each apartment we are asked about we check the angle between
its lower-east corner p and a,, for all buildings to the east of the apartment,
remembering the maximum angle (in practice it is easier to calculate and
remember the tangent of the angle instead of the angle itself). Next on the
basis of this angle we compute the hour (the angles from 0 to 90 degrees
translate linearly to the interval 5 : 37 — —11 : 57), and output that hour.
We perform the same operations to the west of the apartment to find the
hour at which it stops being sunlit.

1.2.1 Complexity analysis

For each query we loop over all the buildings, so the time complexity of our
algorithm is O(In), where [is the number of queries, and n is the number of
buildings. The memory complexity is O(n) for the arrays in which we store
the heights and positions of the buildings.

1.2.2 Comments

The author of the problem obviously did not overly ponder the possible
ranges of n. We shall later give an exemplary solution, which works in the
time O(n? + llogn). It is also possible to construct algorithms working in
O(n+1log®n) and O(n+I1(logl+logn)). Unfortunately, with n < 100 a well-
written brute-force algorithm is not slower enough for the test to capture the

difference, especially as with each query we have to perform an output of over
twenty characters, which is a very time-consuming operation. If the problem
statement bounded n by a thousand and [by 100000, then the exemplary
solution working in time O(n? + llogn) would be noticeably quicker than
the brute-force. If we had n < 10000 and [< 10000, then one would have
to use one the two last algorithms. Unfortunately the data is such as it is,
thus during the competition the best solution was to quickly type the brute-
force algorithm. This algorithm, without any non-standard optimalizations,
is implemented as brute.cpp

1.3 A slightly more advanced solution

To get to the exemplary algorithm we have to do a bit more work. Let us
notice that if some corner q; lies between (in the east-west sense) ay and a,,
and below the line connecting a; and ,,, then it cannot be the last point to
cast a shadow on p, for the line connecting p to a; has to go either below a,,
or below ai. Thus we can throw out all these points from (a,) which line
below some line connecting to other points from the sequence.

Now let aj and ag,; be two subsequent points in our new sequence (a,,),
and suupose that the line connecting p and a;, lies above ay 1. This is enough
to know that for [> k the line connecting a; and p lies above a; (so none
of the points q; is the last to cast a shadow on p), for otherwise the line
connecting a; to a; would be higher than the line connecting a, to p over
a1, SO a1 could not be in the new sequence. Similarly if ag,; lies above
the line connecting p and ay, then for [< k none of the points a; can be the
last to cast a shadow on p.

We can see a binary search beginning to take shape here. The last ob-
servation to make is that the “clean” sequence (a,) does not depend on a
particular apartment, but only on the building in which the apartment is.
Thus we can compute this sequence for any of the buildings, and then for a
given query do a binary search on it.

1.4 Exemplary algorithm 1

Author: Jakub Wojtaszczyk

For any apartment complex we read, as in the brute-force, all the buildings
from the input. Next, before we start reading the queries in, we create the
“clean sequences”. For each building A we consider all the buildings to the

east of A, beginning from the east. For each considered building we add its
upper-west corner to the end of the sequence as a,. Next while ag_; lies
below the line connecting ax_o and a; we throw a;_; out of the sequence,
and put a; on its place (decrementing k by 1). We stop when we reach A,
and for each building copy the created clean sequence onto a separate array.
Similarly we create the “western clean sequences”.

For each query we look at the “eastern clean sequence” for the building
containing the queried apartment. In this sequence we perform a binary
search to find the largest such k, that the line connecting ay_ with a; lies
above p. We compute the angle between the line connecting p and a; and the
horizontal line and transform it (as in the brute-force algorithm) into hours,
minutes and seconds. We do the same thing on the western side.

1.4.1 Correctness

First let us think why our algorithm does in fact find the “clean sequence”.
For this, we have to understand what the “clean sequence” really represents.
Let S be a point infinitely low and below the western corner of the eastern-
most building, and T" be a point infinitely low and below the western corner of
the building just east of A. We claim that the clean sequence contains these
and only these upper-west corners of buildings which are on the boundary of
the convex hull of the set containing all upper-west corners, S and 7. Recall
the convex hull is the smallest convex set, in which a given set is contained.

On one hand, if a point a; lies below a certain line connecting a; and ay,
then it lies in the interior of the quadrangle S, a, a,,, T and thus cannot lie
on the boundary of the convex hull. On the other hand, the boundary of
the convex hull will consist of two vertical lines going down to S and 7', the
interval ST and the upper edges a;,a;. Thus if some point does not belong
to the boundary of the quadrangle, it has in particular to lie below one of
the edges, and thus does not belong to the clean sequence.

Now we can prove the correctness of the algorithm of finding the clean
sequence. If some element belongs to the clean sequence, it will obviously
not get thrown out during the construction. On the other hand we can see
by induction that in the kth step we have created the sequence of boundary
points of the set {S,ay,...,ax, Tk}, where T}, is the point infinitely far below
ar. When we add a1 to this sequence, we will find the first point a; such that
a;—1 will lie below the line connecting a; and a1 (this is what the algorithm
does), and then the polygon with vertices S, aq,as, ..., a;, axr1, Trpy1 will be

convex, so the induction step can be completed.

On the clean sequence, that is on the boundary of the convex hull, the
binary search works because the inclinations of the edges are sorted non-
increasingly. We have already proved that the vertices of the convex hull are
the only candidates for the point which casts the last shadow on p, so the
binary search on the clean sequence will find this point.

1.4.2 Complexity analysis

The memory complexity is of the order of O(n?) as that is the space needed
for the clean sequence arrays for all the buildings. The time complexity of
building the clean sequences is O(n?) — for a given building A when we
compute its eastern clean sequence, a given building B is considered at most
twice — once when it is added to the sequence, and once when it is removed.
Thus a single convex hull is computed in O(n) time, and we build 2n such
convex hulls. A clean sequence obviously has at most n elements, so a single
binary search works in time O(logn). Thus the whole algorithm has time
complexity O(n? + llogn).

1.4.3 Comments

This algorithm was implemented as subtle.cpp. As already noted in the
comments to the brute-force algorithm, the bound n < 100 means in practice
there is no meaningful difference in the running time of this algorithm when
compared to the running time of the brute-force algorithm. Also, when such
a bound is given, it is not necessary to try to reduce the O(n?) building time
for the convex hulls. To satisfy the readers curiosity we comment on two
other solutions.

First note that the convex hull for the building k is constructed induc-
tively by modifying the convex hull for the building k& — 1. If we sort queries
by the number of building at the moment when we have constructed the con-
vex hull for building £ — 1 the could answer all queries about ”eastern sides”
for this building and next forget about this convex hull and constructing
the convex hull for next buildings inductively. We proceed similarly on the
werstern side, and then sort the answers by the question number and output
the results. The time complexity of such a solution is O(n + llog! + [logn)
(the first part corresponds to the building of the convex hull, the second to
sorting the queries and answers and the third for the binary search for each

query), which is equal to O(n + [logl). The downside of this solution is its
memory complexity, which is of the order of O(l 4 n).

The second solution is a little bit more tricky. It’s the second exemplary
solution.

1.5 Exemplary solution 2
Authors: Wojciech Czerwiski, Jakub Wojtaszczyk

1.5.1 Algorythm

For each and every building we remember the range of the levels, for which
the shadow is cast by the same building. For the building & we can get those
ranges by analyzing the convex hull of this building. We check where the line,
which connects the right top corners of the adjacent buildings at the hull of
the building £ crosses this building. Over the crossed point the shadow is
cast by the left building from this pair, or some building more to the left. In
this way when we have the ranges of the levels and the concrete query we
will be able to search binary for the given building. Lets see, that if having
the convex hull of the building £ we consider pairs of buildings creating lines
from the right side (these closer to the building k), this lines connecting the
corners of buildings in pair will cross the building £ higher and higher. Hence
at the moment, when the line goes over the building k£ we may stop checking
the pairs to the left because for those pairs the lines will be even higher and
it’s not relevant for the question about the building k.

1.5.2 Complexity analyzis

Lets see, that following that strategy we will build the structure of ranges
on the buildings at the time 0(n). Those buildings, that will generate lines
crossing the building will be deleted from the next hull (for building k +
1) because they will be hidden behind the building k. So the number of
operations of putting into the convex hull will be equal to the number of
operations of checking the line plus/minus the constant number of operations
for each building, which means plus/minus O(n) operations. We should
remember however that we can build the convex hull in O(n) time, so the
entire process of building the structure will take us O(n). Answering queries

will take O(llog(n)), so the entire algorythm will be working in time O(n +
llog(n)), which is the best result until now.

1.5.3 Implementation

Given algorythm was implemented in C++ in the file sunlight.cpp and in
Java in the file LotsOfSunlight.java.

2 Tests

Test 0 is the sample input.

Tests 1 and 2 are the small random tests, which check elementary correctness
of program without special cases.

Test 3 includes cases of buildings increasly higher or increasly lower and the
case of identical buildings. In this test there is also a case, which checks
correctness of the answer to the question about non existing building.

Test 4 checks some special cases, buildings getting smaller with the same
difference of height, buildings getting smaller with increasing differences and
decreasing differences of height. Besides in this set of tests there is also an-
other test for the non existing level (in the building whose number is one
bigger than the biggest number of building).

Test 5 is the single set checking only, whether the big numbers where con-
sidered, whether the height of building counted in levels multiplied by the
height of the leves does not exceed the range.

Tests 6 and 7 are the medium size tests.

Tests 8 and 9 are the big performance tests.

