Computational Complexity — tutorial 12
Fine-grained complexity 2, FPT 1

From Strong Exponential Time Hypothesis (SETH) it follows that CNF-SAT cannot be
solved in (2 — €)™ time for any € > 0.

Orthogonal Vectors Conjecture (OVC). The following decision problem cannot be solved
in O(n?¢ - poly(d)) time for any £ > 0:

ORTHOGONAL VECTORS

INPUT: two sets A = {v1,ve,...,v,}, B ={wi,ws,...,w,} of bit vectors, each of length d
OUTPUT: are there two vectors v; € A, w; € B such that (v;,w;) = 07 That is, on each position, at
least one of these two vectors should have a 0 bit.

1. Prove that the following statements are equivalent. Note that (a) is equivalent to the negation
of OVC.

(a) For some e > 0, there exists an O(n?~¢-poly(d)) algorithm solving ORTHOGONAL VECTORS.

(b) For some & > 0, there exists an O(n?~¢ - poly(d)) algorithm for ORTHOGONAL VECTORS
which additionally returns a pair of orthogonal vectors if it exists.

(c) For some ¢ > 0, there exists an O(n?~¢ - poly(d)) algorithm for ORTHOGONAL VECTORS
constrained to A = B.

(d) For some ¢ > 0, there exists an O(n!'>~¢ - poly(d)) algorithm solving the following problem:

SQUARE ROOT ORTHOGONAL VECTORS
INPUT: two sets A = {v1,...,vn}, B ={wi,...,w 5} of bit vectors, each of length d
OUTPUT: are there two vectors v; € A, w; € B such that (v;, w;) = 07

(e) For some & > 0, there exists an O(n?~¢ - poly(d)) algorithm for the following problem:

SUBSET VECTORS

INPUT: two sets A = {v1,va,...,0,}, B ={wi,ws,...,w,} of bit vectors, each of length d
OuTPUT: are there two vectors v; € A, w; € B such that for each bit set in v;, the corre-
sponding bit in w; is also set?

2. Assuming SETH, prove that the following problem cannot be solved in O(n*~¢ - poly(d)) time
for any € > 0:

k-ORTHOGONAL VECTORS

INPUT: k sets Ay, Ao, ..., A of n bit vectors, each of length d

OUTPUT: are there k vectors wy € Ay, wo € As, ..., wg € Ay such that, on each of d positions, at
least one of the chosen vectors has a 0 bit?

Note that 2-ORTHOGONAL VECTORS is exactly ORTHOGONAL VECTORS.



A problem L C ¥* x N is parameterized if the inputs (w, k) to this problem consist of the word
w € X* and a parameter k € N. E.g.

e Given a graph G and a parameter k, does G have a vertex cover of size k7
e Given a graph G and a parameter k, does G have a clique of size k7

e Given a graph G and a parameter k such that G has treewidth < k, does G have a Hamiltonian
cycle?

A problem L C ¥* x N is fixed-parameter tractable (FPT) if it works in f(k) - poly(n) time,
where f is a computable function and n = |w| + k is the size of the input (input encodes both w
and k).

3. Recall from the lecture the 2% - (n 4+ m) time algorithm solving VERTEX COVER.

An FPT reduction from problem L to problem M is an algorithm mapping the inputs (w, k) of
the problem L to the inputs (w’, k’) of the problem M such that:

o (wk)eL & (W, K)e M,
e the reduction works in f(k) - poly(n) time for some computable function f,
o k' < g(k) for some computable function g.
There are some problems predicted to not be in FPT, e.g. CLIQUE, DOMINATING SET.

4. Take any two problems L, M such that there is an FPT reduction from L to M. Prove that if
M € FPT, then also L € FPT.
(Conversely, if L ¢ FPT, then M ¢ FPT.)

5. Find an FPT reduction from CLIQUE (parameterized by the size k of the clique) to INDEPENDENT
SET (parameterized by the size k of the independent set). Note that it follows that we don’t expect
INDEPENDENT SET to be FPT.

6. Propose a reduction from INDEPENDENT SET to VERTEX COVER. Why doesn’t it work as an
FPT reduction?

7. Find an FPT reduction from from CLIQUE to CLIQUE ON REGULAR GRAPHS (given a graph G
such that each vertex has the same degree, and an integer k, decide if G has any k-clique).

8. Find an FPT reduction from CLIQUE ON REGULAR GRAPHS to INDEPENDENT SET ON REGU-
LAR GRAPHS.

9. Find an FPT reduction from INDEPENDENT SET ON REGULAR GRAPHS to PARTIAL VERTEX
COVER defined below:

PARTIAL VERTEX COVER

INPUT: graph G, two integers k, s

PARAMETER: k (the size of the solution)

OUTPUT: is there a subset of k vertices which is incident to at least s edges?

Note that it follows that we don’t expect PARTIAL VERTEX COVER to have an FPT algorithm
(even though VERTEX COVER has many such algorithms!)



10. Find an FPT reduction from DOMINATING SET to BIPARTITE DOMINATING SET defined below:

BIPARTITE DOMINATING SET

INPUT: a bipartite graph G (V(G) = AU B and there are only edges between A and B), integer k
PARAMETER: k (the size of the solution)

OUTPUT: is there a subset of k vertices of A such that every vertex of B is dominated by some selected
vertex of A7

11. Consider the following recursive algorithm solving the parameterized variant of VERTEX CoO-
VER:

# Returns True if [graph] has a vertex cover of size at most [k].
def HasVertexCover(graph, k):
if k < 0: return False
if graph.empty(): return True
if graph has no vertices of degree more than 2:
# Each component of [graph] is either a path or a cycle.
# The minimum vertex cover in each such component can be computed using
# simple formulas.
min_vertex_cover = ComputeVertexCoverForPathsAndCycles(graph)
return (k >= min_vertex_cover)

else:
v = vertex of maximum degree in [graph]
A = the set of neighbors of [v]
# Two cases:

# a) we take [v] to the vertex cover; or
# b) we don’t take [v] to the vertex cover; then, we must take
# all vertices in [A] to the cover.
return (
HasVertexCover(graph.remove(v), k - 1) or
HasVertexCover (graph.remove(v) .remove(A), k - len(A)))

This is the algorithm from the lecture, with an additional case where the graph has only vertices
of small degree.

Prove that this algorithm solves VERTEX COVER in time 1.466% - (n + m).

Hint: let f(k) be mazimum number of recursive calls to HasVertexzCover if the initial parameter
is equal to k. Prove that f(k) < f(k—1)+ f(k —3) for k > 3.



