
Computational Complexity — tutorial 12
Fine-grained complexity 2, FPT 1

From Strong Exponential Time Hypothesis (SETH) it follows that CNF-SAT cannot be
solved in (2− ε)n time for any ε > 0.

Orthogonal Vectors Conjecture (OVC). The following decision problem cannot be solved
in O(n2−ε · poly(d)) time for any ε > 0:

Orthogonal Vectors
Input: two sets A = {v1, v2, . . . , vn}, B = {w1, w2, . . . , wn} of bit vectors, each of length d
Output: are there two vectors vi ∈ A, wj ∈ B such that 〈vi, wj〉 = 0? That is, on each position, at
least one of these two vectors should have a 0 bit.

1. Prove that the following statements are equivalent. Note that (a) is equivalent to the negation
of OVC.

(a) For some ε > 0, there exists an O(n2−ε·poly(d)) algorithm solvingOrthogonal Vectors.

(b) For some ε > 0, there exists an O(n2−ε · poly(d)) algorithm for Orthogonal Vectors
which additionally returns a pair of orthogonal vectors if it exists.

(c) For some ε > 0, there exists an O(n2−ε · poly(d)) algorithm for Orthogonal Vectors
constrained to A = B.

(d) For some ε > 0, there exists an O(n1.5−ε ·poly(d)) algorithm solving the following problem:

Square Root Orthogonal Vectors
Input: two sets A = {v1, . . . , vn}, B = {w1, . . . , w√n} of bit vectors, each of length d
Output: are there two vectors vi ∈ A, wj ∈ B such that 〈vi, wj〉 = 0?

(e) For some ε > 0, there exists an O(n2−ε · poly(d)) algorithm for the following problem:

Subset Vectors
Input: two sets A = {v1, v2, . . . , vn}, B = {w1, w2, . . . , wn} of bit vectors, each of length d
Output: are there two vectors vi ∈ A, wj ∈ B such that for each bit set in vi, the corre-
sponding bit in wj is also set?

2. Assuming SETH, prove that the following problem cannot be solved in O(nk−ε · poly(d)) time
for any ε > 0:

k-Orthogonal Vectors
Input: k sets A1, A2, . . . , Ak of n bit vectors, each of length d
Output: are there k vectors w1 ∈ A1, w2 ∈ A2, . . . , wk ∈ Ak such that, on each of d positions, at
least one of the chosen vectors has a 0 bit?

Note that 2-Orthogonal Vectors is exactly Orthogonal Vectors.
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A problem L ⊆ Σ∗ × N is parameterized if the inputs (w, k) to this problem consist of the word
w ∈ Σ∗ and a parameter k ∈ N. E.g.

• Given a graph G and a parameter k, does G have a vertex cover of size k?

• Given a graph G and a parameter k, does G have a clique of size k?

• Given a graph G and a parameter k such that G has treewidth ¬ k, does G have a Hamiltonian
cycle?

A problem L ⊆ Σ∗ × N is fixed-parameter tractable (FPT) if it works in f(k) · poly(n) time,
where f is a computable function and n = |w| + k is the size of the input (input encodes both w
and k).

3. Recall from the lecture the 2k · (n+m) time algorithm solving Vertex Cover.

An FPT reduction from problem L to problem M is an algorithm mapping the inputs (w, k) of
the problem L to the inputs (w′, k′) of the problem M such that:

• (w, k) ∈ L ⇔ (w′, k′) ∈M ,

• the reduction works in f(k) · poly(n) time for some computable function f ,

• k′ ¬ g(k) for some computable function g.

There are some problems predicted to not be in FPT, e.g. Clique, Dominating Set.

4. Take any two problems L, M such that there is an FPT reduction from L to M . Prove that if
M ∈ FPT, then also L ∈ FPT.

(Conversely, if L 6∈ FPT, then M 6∈ FPT.)

5. Find an FPT reduction fromClique (parameterized by the size k of the clique) to Independent
Set (parameterized by the size k of the independent set). Note that it follows that we don’t expect
Independent Set to be FPT.

6. Propose a reduction from Independent Set to Vertex Cover. Why doesn’t it work as an
FPT reduction?

7. Find an FPT reduction from from Clique to Clique on Regular Graphs (given a graph G
such that each vertex has the same degree, and an integer k, decide if G has any k-clique).

8. Find an FPT reduction from Clique on Regular Graphs to Independent Set on Regu-
lar Graphs.

9. Find an FPT reduction from Independent Set on Regular Graphs to Partial Vertex
Cover defined below:

Partial Vertex Cover
Input: graph G, two integers k, s
Parameter: k (the size of the solution)
Output: is there a subset of k vertices which is incident to at least s edges?

Note that it follows that we don’t expect Partial Vertex Cover to have an FPT algorithm
(even though Vertex Cover has many such algorithms!)
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10. Find an FPT reduction fromDominating Set to Bipartite Dominating Set defined below:

Bipartite Dominating Set
Input: a bipartite graph G (V (G) = A ∪B and there are only edges between A and B), integer k
Parameter: k (the size of the solution)
Output: is there a subset of k vertices of A such that every vertex of B is dominated by some selected
vertex of A?

11. Consider the following recursive algorithm solving the parameterized variant of Vertex Co-
ver:

# Returns True if [graph] has a vertex cover of size at most [k].
def HasVertexCover(graph, k):
if k < 0: return False
if graph.empty(): return True
if graph has no vertices of degree more than 2:
# Each component of [graph] is either a path or a cycle.
# The minimum vertex cover in each such component can be computed using
# simple formulas.
min_vertex_cover = ComputeVertexCoverForPathsAndCycles(graph)
return (k >= min_vertex_cover)

else:
v = vertex of maximum degree in [graph]
A = the set of neighbors of [v]
# Two cases:
# a) we take [v] to the vertex cover; or
# b) we don’t take [v] to the vertex cover; then, we must take
# all vertices in [A] to the cover.
return (
HasVertexCover(graph.remove(v), k - 1) or
HasVertexCover(graph.remove(v).remove(A), k - len(A)))

This is the algorithm from the lecture, with an additional case where the graph has only vertices
of small degree.

Prove that this algorithm solves Vertex Cover in time 1.466k · (n+m).
Hint: let f(k) be maximum number of recursive calls to HasVertexCover if the initial parameter

is equal to k. Prove that f(k) ¬ f(k − 1) + f(k − 3) for k ­ 3.
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