
Computational Complexity — tutorial 11
Probabilistic algorithms 3, fine-grained complexity 1

Class
P[algorithm accepts x] if

Running time Why is it named so?
x ∈ L x 6∈ L

P 1 0 polynomial Polynomial

RP ­ 12 0 polynomial Randomized Polynomial

co-RP 1 ¬ 12 polynomial

BPP ­ 34 ¬ 14 polynomial Bounded-error Probabilistic Polynomial

PP ­ 12 < 12 polynomial Probabilistic Polynomial

ZPP 1 0 expected polynomial Zero-error Probabilistic Polynomial

1. Prove that RP is closed under union and concatenation.

2. Prove that BPP is closed under union, complementation and concatenation.

3. (exam ’17) Assume that there exists a polynomial time deterministic algorithm A which appro-
ximates with 25 error the probability that a given circuit C with n inputs accepts a random n-bit
input. Formally, given a circuit C(x1, . . . , xn), the algorithm computes a rational number A(C)
such that

|P[C(x1, . . . , xn) = 1]−A(C)| ¬ 2
5
.

Prove that the existence of such an algorithm implies P = BPP.

Fine-grained complexity starts on the next page.
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Let sk be the smallest real number such that k-CNF-SAT with n variables and m clauses can be
solved in 2skn · poly(m) time1.

We know that s2 = 0 (as 2-CNF-SAT can be solved in polynomial—and even linear—time).
We know that 0 ¬ s3 ¬ s4 ¬ s5 ¬ · · · ¬ 1.

Exponential Time Hypothesis (ETH). s3 > 0; that is, 3-CNF-SAT has no subexponential
algorithm.

Strong Exponential Time Hypothesis (SETH). limk→∞ sk = 1. It follows that CNF-SAT
cannot be solved in (2− ε)n time for any ε > 0.

Orthogonal Vectors Conjecture (OVC). The following decision problem cannot be solved
in O(n2−ε · poly(d)) time for any ε > 0:

Orthogonal Vectors
Input: two sets A = {v1, v2, . . . , vn}, B = {w1, w2, . . . , wn} of bit vectors, each of length d
Output: are there two vectors vi ∈ A, wj ∈ B such that 〈vi, wj〉 = 0? That is, on each position, at
least one of these two vectors should have a 0 bit.

We know that SETH ⇒ OVC and that SETH ⇒ ETH ⇒ P 6= NP.
There are other various similar conjectures: 3SUM, 3XOR, APSP etc.

4. Prove that the following statements are equivalent. Note that (a) is equivalent to the negation
of OVC.

(a) For some ε > 0, there exists an O(n2−ε·poly(d)) algorithm solvingOrthogonal Vectors.

(b) For some ε > 0, there exists an O(n2−ε · poly(d)) algorithm for Orthogonal Vectors
which additionally returns a pair of orthogonal vectors if it exists.

(c) For some ε > 0, there exists an O(n2−ε · poly(d)) algorithm for Orthogonal Vectors
constrained to A = B.

(d) For some ε > 0, there exists an O(n1.5−ε ·poly(d)) algorithm solving the following problem:

Square Root Orthogonal Vectors
Input: two sets A = {v1, . . . , vn}, B = {w1, . . . , w√n} of bit vectors, each of length d
Output: are there two vectors vi ∈ A, wj ∈ B such that 〈vi, wj〉 = 0?

(e) For some ε > 0, there exists an O(n2−ε · poly(d)) algorithm for the following problem:

Subset Vectors
Input: two sets A = {v1, v2, . . . , vn}, B = {w1, w2, . . . , wn} of bit vectors, each of length d
Output: are there two vectors vi ∈ A, wj ∈ B such that for each bit set in vi, the corre-
sponding bit in wj is also set?

1This is slightly oversimplified. Formally, sk is the infimum of the set of real numbers δ such that k-CNF-SAT can
be solved in 2δn · poly(m) time. If, for each p ­ 1, there existed a 2(1.15+1/p)nnp algorithm solving 7-CNF-SAT, we
would have s7 = 1.15 although there’s no 21.15npoly(m) algorithm solving the problem.
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5. Assuming SETH, prove that the following problem cannot be solved in O(nk−ε · poly(d)) time
for any ε > 0:

k-Orthogonal Vectors
Input: k sets A1, A2, . . . , Ak of n bit vectors, each of length d
Output: are there k vectors w1 ∈ A1, w2 ∈ A2, . . . , wk ∈ Ak such that, on each of d positions, at
least one of the chosen vectors has a 0 bit?

Note that 2-Orthogonal Vectors is exactly Orthogonal Vectors.
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