Computational Complexity — tutorial 11

Probabilistic algorithms 3, fine-grained complexity 1

Class	$\mathbb{P}[\text{algorithm accepts } x]$ if		Bunning time	Why is it named so?
	$x \in L$	$x\not\in L$		wily is it named so.
Р	1	0	polynomial	\mathbf{P} olynomial
RP	$\geqslant \frac{1}{2}$	0	polynomial	${f R}$ andomized ${f P}$ olynomial
co-RP	1	$\leqslant \frac{1}{2}$	polynomial	
BPP	$\geqslant \frac{3}{4}$	$\leqslant \frac{1}{4}$	polynomial	Bounded-error Probabilistic Polynomial
PP	$\geqslant \frac{1}{2}$	$<\frac{1}{2}$	polynomial	\mathbf{P} robabilistic \mathbf{P} olynomial
ZPP	1	0	expected polynomial	\mathbf{Z} ero-error \mathbf{P} robabilistic \mathbf{P} olynomial

1. Prove that RP is closed under union and concatenation.

2. Prove that BPP is closed under union, complementation and concatenation.

3. (exam '17) Assume that there exists a polynomial time deterministic algorithm A which approximates with $\frac{2}{5}$ error the probability that a given circuit C with n inputs accepts a random n-bit input. Formally, given a circuit $C(x_1, \ldots, x_n)$, the algorithm computes a rational number A(C)such that

$$\left|\mathbb{P}[C(x_1,\ldots,x_n)=1] - A(C)\right| \leqslant \frac{2}{5}$$

Prove that the existence of such an algorithm implies P = BPP.

Fine-grained complexity starts on the next page.

Let s_k be the smallest real number such that k-CNF-SAT with n variables and m clauses can be solved in $2^{s_k n} \cdot \text{poly}(m)$ time¹.

We know that $s_2 = 0$ (as 2-CNF-SAT can be solved in polynomial—and even linear—time). We know that $0 \le s_3 \le s_4 \le s_5 \le \cdots \le 1$.

Exponential Time Hypothesis (ETH). $s_3 > 0$; that is, 3-CNF-SAT has no subexponential algorithm.

Strong Exponential Time Hypothesis (SETH). $\lim_{k\to\infty} s_k = 1$. It follows that CNF-SAT cannot be solved in $(2 - \varepsilon)^n$ time for any $\varepsilon > 0$.

Orthogonal Vectors Conjecture (OVC). The following decision problem cannot be solved in $O(n^{2-\varepsilon} \cdot \text{poly}(d))$ time for any $\varepsilon > 0$:

ORTHOGONAL VECTORS

INPUT: two sets $A = \{v_1, v_2, \ldots, v_n\}$, $B = \{w_1, w_2, \ldots, w_n\}$ of bit vectors, each of length dOUTPUT: are there two vectors $v_i \in A$, $w_j \in B$ such that $\langle v_i, w_j \rangle = 0$? That is, on each position, at least one of these two vectors should have a 0 bit.

We know that SETH \Rightarrow OVC and that SETH \Rightarrow ETH \Rightarrow P \neq NP. There are other various similar conjectures: 3SUM, 3XOR, APSP etc.

4. Prove that the following statements are equivalent. Note that (a) is equivalent to the negation of OVC.

- (a) For some $\varepsilon > 0$, there exists an $O(n^{2-\varepsilon} \cdot \operatorname{poly}(d))$ algorithm solving ORTHOGONAL VECTORS.
- (b) For some $\varepsilon > 0$, there exists an $O(n^{2-\varepsilon} \cdot \text{poly}(d))$ algorithm for ORTHOGONAL VECTORS which additionally returns a pair of orthogonal vectors if it exists.
- (c) For some $\varepsilon > 0$, there exists an $O(n^{2-\varepsilon} \cdot \operatorname{poly}(d))$ algorithm for ORTHOGONAL VECTORS constrained to A = B.
- (d) For some $\varepsilon > 0$, there exists an $O(n^{1.5-\varepsilon} \cdot \text{poly}(d))$ algorithm solving the following problem:

SQUARE ROOT ORTHOGONAL VECTORS INPUT: two sets $A = \{v_1, \ldots, v_n\}, B = \{w_1, \ldots, w_{\sqrt{n}}\}$ of bit vectors, each of length dOUTPUT: are there two vectors $v_i \in A, w_j \in B$ such that $\langle v_i, w_j \rangle = 0$?

(e) For some $\varepsilon > 0$, there exists an $O(n^{2-\varepsilon} \cdot \operatorname{poly}(d))$ algorithm for the following problem:

SUBSET VECTORS INPUT: two sets $A = \{v_1, v_2, \ldots, v_n\}$, $B = \{w_1, w_2, \ldots, w_n\}$ of bit vectors, each of length dOUTPUT: are there two vectors $v_i \in A$, $w_j \in B$ such that for each bit set in v_i , the corresponding bit in w_j is also set?

¹This is slightly oversimplified. Formally, s_k is the infimum of the set of real numbers δ such that k-CNF-SAT can be solved in $2^{\delta n} \cdot \text{poly}(m)$ time. If, for each $p \ge 1$, there existed a $2^{(1.15+1/p)n}n^p$ algorithm solving 7-CNF-SAT, we would have $s_7 = 1.15$ although there's no $2^{1.15n}$ poly(m) algorithm solving the problem.

5. Assuming SETH, prove that the following problem cannot be solved in $O(n^{k-\varepsilon} \cdot \text{poly}(d))$ time for any $\varepsilon > 0$:

k-ORTHOGONAL VECTORS INPUT: *k* sets A_1, A_2, \ldots, A_k of *n* bit vectors, each of length *d* OUTPUT: are there *k* vectors $w_1 \in A_1, w_2 \in A_2, \ldots, w_k \in A_k$ such that, on each of *d* positions, at least one of the chosen vectors has a 0 bit?

Note that 2-ORTHOGONAL VECTORS is exactly ORTHOGONAL VECTORS.