Computational Complexity — tutorial 10 Probabilistic algorithms 2

Class	$\mathbb{P}[\text{algorithm accepts } x]$ if		Bunning time	Why is it named so?
	$x \in L$	$x\not\in L$	Trunning time	wity is it named so.
Ρ	1	0	polynomial	\mathbf{P} olynomial
RP	$\geqslant \frac{1}{2}$	0	polynomial	${f R}$ andomized ${f P}$ olynomial
co-RP	1	$\leqslant \frac{1}{2}$	polynomial	
BPP	$\geqslant \frac{3}{4}$	$\leq \frac{1}{4}$	polynomial	Bounded-error Probabilistic Polynomial
PP	$\geqslant \frac{1}{2}$	$<\frac{1}{2}$	polynomial	\mathbf{P} robabilistic \mathbf{P} olynomial
ZPP	1	0	expected polynomial	Zero-error Probabilistic Polynomial

Probabilistic complexity classes compared with P:

1. Prove the amplification lemma for RP: if we replace $\gg \frac{1}{2}$, in the definition of RP with $\gg \varepsilon$ for any constant $0 < \varepsilon < 1$, we'll get exactly the same definition of RP.

In other words: if we run the probabilistic algorithm over and over again, we'll be more and more confident about its answer.

2. Prove the *amplification lemma* for BPP: if we replace $\gg \frac{3}{4}$, $\ll \frac{1}{4}$ in the definition of BPP with $\gg 1 - \varepsilon$, $\ll \varepsilon$ for any constant $0 < \varepsilon < \frac{1}{2}$, we'll get exactly the same definition of BPP.

Hint: you can (but don't have to) use a variant of Chernoff bound for Bernoulli variables — for independent variables $X_1, X_2, \ldots, X_n \in \{0, 1\}, \ \mu = \mathbb{E}[X_1 + \cdots + X_n], \ \delta \in (0, 1)$:

$$\mathbb{P}[X_1 + \dots + X_n \leq (1 - \delta)\mu] \leq e^{-\frac{1}{2}\delta^2\mu}$$

- **3.** As above, but we assume that $\varepsilon = \frac{1}{2} \frac{1}{n}$ where n is the length of the input.
- **4.** Prove that $\mathsf{RP} \cap \mathsf{co}\mathsf{-}\mathsf{RP} = \mathsf{ZPP}$.
- **5.** Prove that $P \subseteq RP \subseteq NP \subseteq PP \subseteq PS$ pace.

The exercises above can be used to prove the following diagram of inclusions:

6. Prove that RP is closed under union, concatenation and Kleene star.

7. Prove that BPP is closed under union, complementation, concatenation and Kleene star.

8. Prove that $\mathsf{BPP}/\mathsf{Poly} = \mathsf{P}/\mathsf{Poly}$.

Reminder: a decision problem L is in P/Poly if there is a sequence of polynomial sized strings $w_0, w_1, w_2, w_3, \ldots$ (called advice) and a polynomial time algorithm $A(x, w_{|x|})$ deciding if $x \in L$; that is, the algorithm is additionally shown an advice string dependent on the length of x. Note that the sequence w_0, w_1, w_2, \ldots doesn't even have to be computable.

BPP/Poly is defined analogously, but the algorithm may have $\leq \frac{1}{4}$ two-way error. BPP \subseteq P/Poly was proved in the lecture (Adleman's theorem).

9. (exam '17) Assume that there exists a polynomial time deterministic algorithm A which approximates with $\frac{2}{5}$ error the probability that a given circuit C with n inputs accepts a random n-bit input. Formally, given a circuit $C(x_1, \ldots, x_n)$, the algorithm computes a rational number A(C) such that

$$\left|\mathbb{P}[C(x_1,\ldots,x_n)=1]-A(C)\right| \leqslant \frac{2}{5}.$$

Prove that the existence of such an algorithm implies P = BPP.