
Computational Complexity — tutorial 8
Boolean circuits 3, probabilistic algorithms 1

1. Prove that Majority is not in AC0. Hint: solve Parity using Majority as a black-box.

We consider the relations between the uniform circuit complexity classes and log-space classes.
This will allow us to show that

u-AC0 ( u-NC1 ⊆ LogSpace ⊆ NLogSpace ⊆ u-AC1 ⊆ u-NC2 ⊆ u-AC2 ⊆ · · · ⊆ u-NC = u-AC ⊆ P.

2. Prove that LogSpace is closed under compositions.

3. Prove that the u-NC1 circuit evaluation problem is in LogSpace: given the description of the
circuit of logarithmic depth and fan-in ¬ 2 and the input to this circuit, decide if the circuit
returns true on this input.

4. Conclude that u-NC1 ⊆ LogSpace.

5. Prove that Directed Reachability is in u-AC1; formally, for a given n ∈ N, given a sequence
of n2 + 2n bits denoting the n× n adjacency matrix of a graph and the source and the destination
encoded in unary, check if we can reach the destination from the source in the graph.

6. Using the exercise above, prove that NLogSpace ⊆ u-AC1.

7. For n ∈ N, let pn be a probability that a random function f : {0, 1}n → {0, 1} can be recognized
by a circuit with fan-in 2 of size at most 2n

1000n (and arbitrary depth). Prove that limn→∞ pn = 0.

It can be also proved that every function f : {0, 1}n → {0, 1} can be recognized by a circuit with
fan-in 2 of size at most 1000·2

n

n , but the details are quite messy. We can solve this problem during
the consultations if you want.
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Probabilistic complexity classes compared with P:

Class
P[algorithm accepts x] if

Running time
x ∈ L x 6∈ L

P 1 0 polynomial

RP  12 0 polynomial

co-RP 1 ¬ 12 polynomial

BPP  34 ¬ 14 polynomial

PP  12 < 12 polynomial

ZPP 1 0 expected polynomial

Open problems: RP ?= P. The inclusion P ⊆ RP is trivial, the other one is hard. In other
words: can randomized algorithms be efficiently derandomized?

Schwartz-Zippel lemma (simplified version) Fix a prime p. Given a non-zero polynomial Q
(over the integers mod p) with variables x1, x2, . . . , xn and total degree d  0, the probability that
Q(x1, x2, . . . , xn) = 0 mod p for a random tuple of variables x1, . . . , xn is bounded from above
by dp .

8. For an undirected graph G with n vertices, we define the Tutte matrix as an n×n matrix defined
as follows:

Ai,j =


xi,j if (i, j) is an edge of G and i < j,

−xj,i if (i, j) is an edge of G and i > j,

0 otherwise.

Here, each xi,j is a separate variable. For instance, the graph which is a cycle 1 − 2 − 3 − 4 on 4
vertices has the following Tutte matrix:

0 x1,2 0 x1,4

−x1,2 0 x2,3 0

0 −x2,3 0 x3,4

−x1,4 0 −x3,4 0


It can be proved that the determinant of this matrix is non-zero if and only if G has a perfect
matching on n vertices.

Prove that verifying whether a given graph has a perfect matching is in RP.

Note: we can also prove that this problem is in P by utilizing Edmonds’ blossom algorithm, but
we don’t talk about this here.
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9. Consider the Permutation Path problem: you’re given a directed/undirected graph G with
n vertices where each vertex is colored with one of k colors (called 1, 2, . . . , k). Does there exist a
simple path with k vertices such that the color of the first vertex is 1, the color of the second vertex
is 2, . . . , the color of the k-th vertex is k?

Prove that Permutation Path can be solved in polynomial time (without randomization).

10. Consider the Colorful Path problem: you’re given a directed/undirected graph G with n
vertices where each vertex is colored with one of k colors (called 1, 2, . . . , k). Does there exist a
simple path with k vertices hitting each color exactly once?

Prove that Permutation Path can be solved in time 2k · poly(|G|) (without randomization).

11. Consider the k-Path problem: you’re given a directed/undirected graph G with n vertices.
Does there exist a simple path with k distinct vertices?

Prove that k-Path can be solved in time (2e)k · poly(|G|) with randomization. Conclude that
k-Path for k = O(log n) is in RP.

12. Prove the amplification lemma for RP: if we replace „ 12”, in the definition of RP with „ ε”
for any constant 0 < ε < 1, we’ll get exactly the same definition of RP.

In other words: if we run the probabilistic algorithm over and over again, we’ll be more and
more confident about its answer.

13. Prove the amplification lemma for BPP: if we replace „ 34”, „¬ 14” in the definition of BPP
with „ 1− ε”, „¬ ε” for any constant 0 < ε < 12 , we’ll get exactly the same definition of BPP.

14. As above, but we assume that ε = 1
2 −

1
n where n is the length of the input.

15. Prove that RP ∩ co-RP = ZPP.

16. Prove that NP ⊆ PP.

17. Prove that BPP is closed under Kleene star.
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