Computational Complexity — tutorial 8

Boolean circuits 3, probabilistic algorithms 1

1. Prove that MAJORITY is not in AC^0 . *Hint: solve* PARITY *using* MAJORITY *as a black-box.*

We consider the relations between the uniform circuit complexity classes and log-space classes. This will allow us to show that

 $\mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C}^0 \subsetneq \mathsf{u}\mathsf{-}\mathsf{N}\mathsf{C}^1 \subseteq \mathsf{Log}\mathsf{Space} \subseteq \mathsf{N}\mathsf{Log}\mathsf{Space} \subseteq \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C}^1 \subseteq \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C}^2 \subseteq \cdots \subseteq \mathsf{u}\mathsf{-}\mathsf{N}\mathsf{C} = \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C} \subseteq \mathsf{P}.$

2. Prove that LogSpace is closed under compositions.

3. Prove that the u-NC¹ circuit evaluation problem is in LogSpace: given the description of the circuit of logarithmic depth and fan-in ≤ 2 and the input to this circuit, decide if the circuit returns true on this input.

4. Conclude that $u-NC^1 \subseteq LogSpace$.

5. Prove that DIRECTED REACHABILITY is in $u-AC^1$; formally, for a given $n \in \mathbb{N}$, given a sequence of $n^2 + 2n$ bits denoting the $n \times n$ adjacency matrix of a graph and the source and the destination encoded in unary, check if we can reach the destination from the source in the graph.

6. Using the exercise above, prove that $\mathsf{NLogSpace} \subseteq \mathsf{u}-\mathsf{AC}^1$.

7. For $n \in \mathbb{N}$, let p_n be a probability that a random function $f : \{0, 1\}^n \to \{0, 1\}$ can be recognized by a circuit with fan-in 2 of size at most $\frac{2^n}{1000n}$ (and arbitrary depth). Prove that $\lim_{n\to\infty} p_n = 0$.

It can be also proved that every function $f : \{0,1\}^n \to \{0,1\}$ can be recognized by a circuit with fan-in 2 of size at most $\frac{1000 \cdot 2^n}{n}$, but the details are quite messy. We can solve this problem during the consultations if you want.

Class	$\mathbb{P}[\text{algorithm accepts } x]$ if		Bunning time
	$x \in L$	$x\not\in L$	
Р	1	0	polynomial
RP	$\geqslant \frac{1}{2}$	0	polynomial
co-RP	1	$\leq \frac{1}{2}$	polynomial
BPP	$\geqslant \frac{3}{4}$	$\leq \frac{1}{4}$	polynomial
PP	$\geqslant \frac{1}{2}$	$<\frac{1}{2}$	polynomial
ZPP	1	0	expected polynomial

Probabilistic complexity classes compared with P:

Open problems: $\mathsf{RP} \stackrel{?}{=} \mathsf{P}$. The inclusion $\mathsf{P} \subseteq \mathsf{RP}$ is trivial, the other one is hard. In other words: can randomized algorithms be efficiently derandomized?

Schwartz-Zippel lemma (simplified version) Fix a prime p. Given a non-zero polynomial Q (over the integers mod p) with variables x_1, x_2, \ldots, x_n and total degree $d \ge 0$, the probability that $Q(x_1, x_2, \ldots, x_n) = 0 \mod p$ for a random tuple of variables x_1, \ldots, x_n is bounded from above by $\frac{d}{p}$.

8. For an undirected graph G with n vertices, we define the *Tutte matrix* as an $n \times n$ matrix defined as follows:

$$A_{i,j} = \begin{cases} x_{i,j} & \text{if } (i,j) \text{ is an edge of } G \text{ and } i < j, \\ -x_{j,i} & \text{if } (i,j) \text{ is an edge of } G \text{ and } i > j, \\ 0 & \text{otherwise.} \end{cases}$$

Here, each $x_{i,j}$ is a separate variable. For instance, the graph which is a cycle 1 - 2 - 3 - 4 on 4 vertices has the following Tutte matrix:

$$\begin{pmatrix} 0 & x_{1,2} & 0 & x_{1,4} \\ -x_{1,2} & 0 & x_{2,3} & 0 \\ 0 & -x_{2,3} & 0 & x_{3,4} \\ -x_{1,4} & 0 & -x_{3,4} & 0 \end{pmatrix}$$

It can be proved that the determinant of this matrix is non-zero if and only if G has a perfect matching on n vertices.

Prove that verifying whether a given graph has a perfect matching is in RP.

Note: we can also prove that this problem is in P by utilizing Edmonds' blossom algorithm, but we don't talk about this here.

9. Consider the PERMUTATION PATH problem: you're given a directed/undirected graph G with n vertices where each vertex is colored with one of k colors (called 1, 2, ..., k). Does there exist a simple path with k vertices such that the color of the first vertex is 1, the color of the second vertex is 2, ..., the color of the k-th vertex is k?

Prove that PERMUTATION PATH can be solved in polynomial time (without randomization).

10. Consider the COLORFUL PATH problem: you're given a directed/undirected graph G with n vertices where each vertex is colored with one of k colors (called $1, 2, \ldots, k$). Does there exist a simple path with k vertices hitting each color exactly once?

Prove that PERMUTATION PATH can be solved in time $2^k \cdot poly(|G|)$ (without randomization).

11. Consider the k-PATH problem: you're given a directed/undirected graph G with n vertices. Does there exist a simple path with k distinct vertices?

Prove that k-PATH can be solved in time $(2e)^k \cdot \text{poly}(|G|)$ with randomization. Conclude that k-PATH for $k = O(\log n)$ is in RP.

12. Prove the *amplification lemma* for RP: if we replace $\gg \frac{1}{2}$, in the definition of RP with $\gg \varepsilon$ for any constant $0 < \varepsilon < 1$, we'll get exactly the same definition of RP.

In other words: if we run the probabilistic algorithm over and over again, we'll be more and more confident about its answer.

13. Prove the *amplification lemma* for BPP: if we replace $\gg \frac{3}{4}$, $\ll \frac{1}{4}$ in the definition of BPP with $\gg 1 - \varepsilon$, $\ll \varepsilon$ for any constant $0 < \varepsilon < \frac{1}{2}$, we'll get exactly the same definition of BPP.

14. As above, but we assume that $\varepsilon = \frac{1}{2} - \frac{1}{n}$ where n is the length of the input.

15. Prove that $\mathsf{RP} \cap \mathsf{co-RP} = \mathsf{ZPP}$.

16. Prove that $NP \subseteq PP$.

17. Prove that BPP is closed under Kleene star.