Computational Complexity — tutorial 7 Boolean circuits 2

Quick reminder: We define the following complexity classes for $k \in \{0, 1, 2, ...\}$:

- AC^k : problems which can be solved by circuits with polynomial size and depth at most $O(\log^k n)$ where n is the number of inputs.
- NC^k : same as AC^k , but all gates have **at most** 2 **inputs** (have fan-in ≤ 2).

 $\mathsf{AC} = \mathsf{AC}^0 \cup \mathsf{AC}^1 \cup \mathsf{AC}^2 \cup \mathsf{AC}^3 \cup \dots, \qquad \qquad \mathsf{NC} = \mathsf{NC}^0 \cup \mathsf{NC}^1 \cup \mathsf{NC}^2 \cup \mathsf{NC}^3 \cup \dots$

Uniform classes ($u-AC^k$, u-AC, $u-NC^k$, u-NC): problems solved by circuits which can be generated in logarithmic space.

[Furst, Saxe, Sipser 1984] The PARITY problem (given *n* inputs, decide if an odd number of them is true) is **not** in AC^0 . It's obviously in NC^1 (and in $u-NC^1$).

Consider the MULTIPLICATION problem: given two *n*-bit numbers, compute their product.

- **1.** Prove that MULTIPLICATION is in AC^1 .
- **2.** Prove that MULTIPLICATION is in NC^1 .

Hint: define a function add3to2 mapping triples of integers (x, y, z) into pairs of integers (x', y') such that x + y + z = x' + y'. Can it be implemented in constant depth using only unary and binary gates?

3. Prove that MULTIPLICATION is not in AC⁰. *Hint: solve* PARITY *using* MULTIPLICATION *as a black-box.*

We consider the relations between the regular languages and circuit complexity classes.

- 4. Prove that there exists a regular language not in AC^0 .
- 5. Prove that there exists a language in AC^0 which is not regular.
- **6.** Prove that all regular languages are in NC^1 (even in $u-NC^1$).

Consider the MAJORITY problem: given n bits (n odd), which bit (0/1) occurs more frequently?

7. Construct a circuit solving MAJORITY of size O(n) and depth $O(\log n)$, using only unary and binary gates. Note that this implies that MAJORITY $\in NC^1$.

8. Prove that MAJORITY is not in AC^0 . *Hint: solve* PARITY *using* MAJORITY *as a black-box.*

We consider the relations between the uniform circuit complexity classes and log-space classes.

- **9.** Prove that u-NC¹ \subseteq LogSpace.
- **10.** Prove that NLogSpace \subseteq u-AC¹.