Computational Complexity — tutorial 6 Boolean circuits

Dooroan on oard

Theory: understand Lecture 4 and the statement of theorem in Lecture 5.

We define the following complexity classes for $k \in \{0, 1, 2, ...\}$:

• AC^k : problems which can be solved by circuits with polynomial size and depth at most $O(\log^k n)$ where n is the number of inputs.

Also: $\mathsf{AC} = \mathsf{AC}^0 \cup \mathsf{AC}^1 \cup \mathsf{AC}^2 \cup \mathsf{AC}^3 \cup \dots$

NC^k: problems which can be solved by circuits with polynomial size and depth at most O(log^k n) in which all gates have at most 2 inputs (have fan-in ≤ 2).
 Also: NC = NC⁰ ∪ NC¹ ∪ NC² ∪ NC³ ∪

Also, these classes have **uniform** variants (sometimes written $u-AC^k$, u-AC, $u-NC^k$, u-NC) where we only consider circuits which can be generated in logarithmic space. Formally, there must exist a logarithmic space algorithm which, given an input 1^n (*n* ones), outputs the description of the circuit with *n* inputs. Of course, $u-AC^k \subseteq AC^k$ and $u-NC^k \subseteq NC^k$. Warning: some people/sources define AC^k and NC^k as the uniform variants of the classes themselves.

We know that for each $k \ge 0$, we have $\mathsf{NC}^k \subseteq \mathsf{AC}^k$ (by definition) and $\mathsf{AC}^k \subseteq \mathsf{NC}^{k+1}$ (an OR gate with *m* inputs can be replaced with a binary tree of OR gates of depth $O(\log m)$ with *m* leaves, and *m* is a polynomial of *n*; similarly for AND gates). Hence, $\mathsf{AC} = \mathsf{NC}$. An equivalent description follows for uniform complexity classes.

[trivial] $NC^0 \subsetneq AC^0$ since circuits with bounded fan-in and bounded depth cannot even compute the OR of all inputs (assuming sufficiently many inputs), which can be done using a single gate with unbounded fan-in.

[Furst, Saxe, Sipser 1984] The PARITY problem (given n inputs, decide if an odd number of them is true) is **not** in AC⁰. It's obviously in NC¹ (and in u-NC¹). Hence:

$$\mathsf{NC}^0 \subsetneq \mathsf{AC}^0 \subsetneq \mathsf{NC}^1 \subseteq \mathsf{AC}^1 \subseteq \mathsf{NC}^2 \subseteq \mathsf{AC}^2 \subseteq \mathsf{NC}^3 \subseteq \mathsf{AC}^3 \subseteq \cdots \subseteq \mathsf{NC} = \mathsf{AC}.$$

Similarly:

 $\mathsf{u}\mathsf{-}\mathsf{N}\mathsf{C}^0 \subsetneq \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C}^0 \subsetneq \mathsf{u}\mathsf{-}\mathsf{N}\mathsf{C}^1 \subseteq \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C}^1 \subseteq \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C}^2 \subseteq \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C}^3 \subseteq \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C}^3 \subseteq \cdots \subseteq \mathsf{u}\mathsf{-}\mathsf{N}\mathsf{C} = \mathsf{u}\mathsf{-}\mathsf{A}\mathsf{C} \subseteq \mathsf{P}.$

Open problems:

- Is $u-NC \stackrel{?}{=} P$? (Equivalently, $u-AC \stackrel{?}{=} P$.)
- Can we prove $\mathsf{NC}^k \stackrel{?}{\subsetneq} \mathsf{AC}^k$ or $\mathsf{AC}^k \stackrel{?}{\subsetneq} \mathsf{NC}^{k+1}$ for some $k \ge 1$? (similar for uniform variants)
- Describe the hierarchy $NC^1 \subseteq NC^2 \subseteq NC^3 \subseteq \cdots \subseteq NC$. We only know that if $NC^i = NC^{i+1}$ for some *i*, then $NC^i = NC^{i+1} = NC^{i+2} = \cdots = NC$. Otherwise, all inclusions are strict. (similar for uniform variants)

1. We consider the ADDITION problem: given two *n*-bit numbers, produce their sum (formally, construct a function add : $\{0,1\}^{2n} \to \{0,1\}^{n+1}$ which adds *n* low bits of the argument to *n* high bits of the argument).

- (a) Find a circuit of size O(n) solving ADDITION¹.
- (b) Prove that ADDITION is in AC^0 (i.e., find a circuit of constant depth, polynomial size and potentially unbounded fan-in).
- (c) Find a circuit of size O(n), depth $O(\log n)$, and bounded fan-in solving ADDITION².

2. Prove the following fact: for every circuit with n gates and depth d with arbitrary AND, OR & NOT gates, there exists an equivalent circuit with $\leq 2n$ gates and depth $\leq d$ where NOT gates can only be applied directly to the inputs of the circuit (but AND & OR gates can still be used arbitrarily).

- 3. We consider the MULTIPLICATION problem: given two *n*-bit numbers, produce their product.
 - (a) Prove that MULTIPLICATION is in AC^1 .
 - (b) (a bit tricky) Prove that MULTIPLICATION is in NC^{1} .

Hint: define a function add3to2 mapping triples of integers (x, y, z) into pairs of integers (x', y') such that x + y + z = x' + y'. Can it be implemented in constant depth using only unary and binary gates?

- (c) Prove that MULTIPLICATION is not in AC⁰.
 Hint: solve PARITY using MULTIPLICATION as a black-box.
- 4. We consider the relations between the regular languages and circuit complexity classes.
 - (a) Prove that there exists a regular language not in AC^0 .
 - (b) Prove that there exists a language in AC^0 which is not regular.
 - (c) Prove that all regular languages are in NC^1 (even in $u-NC^1$).

5. (a bit harder) Construct a Boolean circuit with n inputs x_1, x_2, \ldots, x_n , n outputs y_1, y_2, \ldots, y_n , O(n) gates **and wires** (gates can have unbounded fan-in), and constant depth which computes the prefix OR-sums of the sequence. Formally, for each $i \in \{1, 2, \ldots, n\}$, we want the *i*-th output y_i to be equal to $x_1 \vee x_2 \vee \cdots \vee x_i$.

The problem was a homework assignment in the 2015/2016 course, though a significant hint was added to the statement of the original problem. Click [here] if you're looking for one.

¹This is also called a ripple-carry adder.

²This is also called a carry-lookahead adder.