
Computational Complexity — tutorial 6
Boolean circuits

Theory: understand Lecture 4 and the statement of theorem in Lecture 5.

We define the following complexity classes for k ∈ {0, 1, 2, . . . }:

• ACk: problems which can be solved by circuits with polynomial size and depth at most
O(logk n) where n is the number of inputs.

Also: AC = AC0 ∪ AC1 ∪ AC2 ∪ AC3 ∪ . . . .

• NCk: problems which can be solved by circuits with polynomial size and depth at most
O(logk n) in which all gates have at most 2 inputs (have fan-in ¬ 2).

Also: NC = NC0 ∪ NC1 ∪ NC2 ∪ NC3 ∪ . . . .

Also, these classes have uniform variants (sometimes written u-ACk, u-AC, u-NCk, u-NC) where
we only consider circuits which can be generated in logarithmic space. Formally, there must exist
a logarithmic space algorithm which, given an input 1n (n ones), outputs the description of the
circuit with n inputs. Of course, u-ACk ⊆ ACk and u-NCk ⊆ NCk. Warning: some people/sources
define ACk and NCk as the uniform variants of the classes themselves.

We know that for each k  0, we have NCk ⊆ ACk (by definition) and ACk ⊆ NCk+1 (an OR
gate with m inputs can be replaced with a binary tree of OR gates of depth O(logm) with m leaves,
and m is a polynomial of n; similarly for AND gates). Hence, AC = NC. An equivalent description
follows for uniform complexity classes.

[trivial] NC0 ( AC0 since circuits with bounded fan-in and bounded depth cannot even compute
the OR of all inputs (assuming sufficiently many inputs), which can be done using a single gate
with unbounded fan-in.

[Furst, Saxe, Sipser 1984] The Parity problem (given n inputs, decide if an odd number of
them is true) is not in AC0. It’s obviously in NC1 (and in u-NC1). Hence:

NC0 ( AC0 ( NC1 ⊆ AC1 ⊆ NC2 ⊆ AC2 ⊆ NC3 ⊆ AC3 ⊆ · · · ⊆ NC = AC.

Similarly:

u-NC0 ( u-AC0 ( u-NC1 ⊆ u-AC1 ⊆ u-NC2 ⊆ u-AC2 ⊆ u-NC3 ⊆ u-AC3 ⊆ · · · ⊆ u-NC = u-AC ⊆ P.

Open problems:

• Is u-NC ?= P? (Equivalently, u-AC ?= P.)

• Can we prove NCk
?
( ACk or ACk

?
( NCk+1 for some k  1? (similar for uniform variants)

• Describe the hierarchy NC1 ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC. We only know that if NCi = NCi+1 for
some i, then NCi = NCi+1 = NCi+2 = · · · = NC. Otherwise, all inclusions are strict. (similar
for uniform variants)
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1. We consider the Addition problem: given two n-bit numbers, produce their sum (formally,
construct a function add : {0, 1}2n → {0, 1}n+1 which adds n low bits of the argument to n high
bits of the argument).

(a) Find a circuit of size O(n) solving Addition1.

(b) Prove that Addition is in AC0 (i.e., find a circuit of constant depth, polynomial size and
potentially unbounded fan-in).

(c) Find a circuit of size O(n), depth O(log n), and bounded fan-in solving Addition2.

2. Prove the following fact: for every circuit with n gates and depth d with arbitrary AND, OR
& NOT gates, there exists an equivalent circuit with ¬ 2n gates and depth ¬ d where NOT gates
can only be applied directly to the inputs of the circuit (but AND & OR gates can still be used
arbitrarily).

3. We consider the Multiplication problem: given two n-bit numbers, produce their product.

(a) Prove that Multiplication is in AC1.

(b) (a bit tricky) Prove that Multiplication is in NC1.

Hint: define a function add3to2 mapping triples of integers (x, y, z) into pairs of integers
(x′, y′) such that x + y + z = x′ + y′. Can it be implemented in constant depth using only
unary and binary gates?

(c) Prove that Multiplication is not in AC0.

Hint: solve Parity using Multiplication as a black-box.

4. We consider the relations between the regular languages and circuit complexity classes.

(a) Prove that there exists a regular language not in AC0.

(b) Prove that there exists a language in AC0 which is not regular.

(c) Prove that all regular languages are in NC1 (even in u-NC1).

5. (a bit harder) Construct a Boolean circuit with n inputs x1, x2, . . . , xn, n outputs y1, y2, . . . , yn,
O(n) gates and wires (gates can have unbounded fan-in), and constant depth which computes the
prefix OR-sums of the sequence. Formally, for each i ∈ {1, 2, . . . , n}, we want the i-th output yi to
be equal to x1 ∨ x2 ∨ · · · ∨ xi.

The problem was a homework assignment in the 2015/2016 course, though a significant hint
was added to the statement of the original problem. Click [here] if you’re looking for one.

1This is also called a ripple-carry adder.
2This is also called a carry-lookahead adder.
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https://www.mimuw.edu.pl/~parys/teaching/zlo2020/historia/2016-domowa2.pdf

