
Computational Complexity — tutorial 5’
Completeness cntd.

Here, we’ll solve Problem 4 from last week’s tutorial session in detail (there’s also some discus-
sion about the problem, so if you wrote down the solution, it would be quite a bit shorter). You
may want to understand this proof and try to modify it in order to prove that some problems about
deterministic and non-deterministic automata are PSpace-complete.

4. (homework 2017) Let pattern be a word consisting of letters and question marks. A pattern p
matches a word w if p can be obtained by taking an infix of w and replacing some of its characters
by question marks. For instance, ab?d? matches abcde, ababadddd, but not abcd or abaaaadx.
Consider the following problem: given an alphabet Σ and two sets P and N of patterns, decide
whether there exists a word w ∈ Σ∗ matching all patterns in P and no pattern in N . Prove that
this problem is PSpace-complete.

The proof of completeness, as always, consists of two parts: proving that the problem is in
PSpace, and proving that the problem is PSpace-hard.

Part 1: The problem is in PSpace.

We need to find a polynomial space algorithm solving our problem. It’s not as easy as it seems
since it might turn out that there exists a word as in the statement of the problem, but this word
is exponentially long on the size of the input (see Exercise at the end of this document). We’ll,
however, apply a trick which is sometimes useful when designing polynomial space algorithms: we’ll
design a non-deterministic polynomial space algorithm which „guesses” the characters of a solution
one by one (if such a solution exists). Since we cannot afford to store the whole solution in memory,
we’ll store some information about the prefix of our solution in some succinct way; this information
should allow us to decide if the word we guess is a solution to the instance of the problem. If we do
this correctly (in polynomial space), we’ll prove that our problem is in NPSpace (non-deterministic
polynomial space). By Savitch’s theorem, we have NPSpace = PSpace, so our problem is in PSpace
as well.

We shall now describe how to store information about a (potentially very long) prefix of the
solution in a succinct way. For each pattern p (either in P or in N), we can easily create a non-
deterministic finite automaton (NFA) with |p|+1 states recognizing all words matching this pattern.
Now, we want to determine if there exists a word w such that:

• w is accepted by all NFAs for patterns in P , and

• w is rejected by all NFAs for patterns in N (equivalently, w is accepted by complements of
these NFAs).

Complementing an NFA requires the determinization of the automaton, which might produce an
exponentially large automaton. Hence, it’s infeasible to store the complements of NFAs in our
memory. However, we can get away with a simple trick: after having consumed a prefix of the
solution, for each NFA we want to maintain a subset of the states our NFA might currently be in.
This way, after we read a prefix of w, for each NFA (corresponding to a pattern p) we only keep:
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• The description of this NFA, which has a polynomial size O(|p| · |Σ|), and

• The set of states the NFA can be possibly in after reading this prefix of w (this requires |p|+1
bits, one for each state of the NFA).

Adding a character to the prefix of w requires us to update the set of state for each NFA, which
can be easily done in polynomial space (even in polynomial time). As soon as for some prefix of w,
we can reach an accepting state of every NFA for patterns in P , and we cannot reach any accepting
state in any NFA for patterns in N , we accept. Hence, we have a non-deterministic polynomial
space solution to the problem. A deterministic polynomial space solution follows from Savitch’s
theorem.

Still, there’s one problem: our non-deterministic machine may not terminate! I know two ways
of resolving the problem:

• We know that the information about any prefix of any word can be stored in S :=
∑
p∈P∪N (|p|+

1) bits. Hence, if there is a word solving our problem, then the shortest such word has length
at most 2S . We can implement an S-bit binary counter which assures us that the solution
„guessed” non-deterministically doesn’t grow too much.

• We can analyze the proof of Savitch’s theorem and understand that it always produces a
terminating Turing machine. So even if the original non-deterministic Turing machine might
sometimes not terminate, the determinization of it will always stop.

Part 2: The problem is PSpace-hard.

We’ll prove this by a reduction from the following PSpace-complete problem:

PSpace Halting Problem
Input: deterministic Turing Machine M, its input w, integer k in unary
Output: does M(w) accept so that the memory usage of M does not exceed k?

In this description, all additional details will be grayed out.
Given M, w, k, we’ll create (in polynomial time) a set of patterns encoding accepting runs of

M which don’t use more than k memory cells. The encoding will have the following format:

#initial configuration#configuration after 1 step#after 2 steps#...#accepting configuration#

where each configuration is a word of length k encoding the contents of the tape of M, position of
the head of the machine and the current state of the machine. Formally, if the alphabet of TM is
Σ, and the set of states is Q, then each character of the description is either c ∈ Σ, or

(c
q

)
for c ∈ Σ,

q ∈ Q. The initial configuration of M is
(w1
q0

)
w2w3 . . . w|w| BBBBBB...B︸ ︷︷ ︸

k−|w| blanks

, where q0 is the initial state

of M, and B is a blank.
We can assume that M terminates at the first position on the tape, having cleared the tape

(we can add a couple of additional states to M which will ensure this). Hence, the accepting
configuration of M is unique:

( B
qacc

)
Bk−1 for qacc—the accepting state.

We now proceed to describe the patterns:
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• We ensure that the sought word starts with the initial configuration; that is, it contains the in-
itial configuration as a substring, but it doesn’t contain it anywhere after the first character of
the solution. Formally, we add #

(w1
q0

)
w2w3 . . . w|w|B

k−|w|# to P, and ?#
(w1
q0

)
w2w3 . . . w|w|B

k−|w|#
to N.

• We analogously ensure that the sought word has the accepting configuration as a suffix. We
add #

( B
qacc

)
Bk−1# to P, and #

( B
qacc

)
Bk−1#? to N.

• We ensure that the hashes (#) are at distance k + 1 from each other. For each 1 ¬ i ¬ k,
we add a pattern forbidding two hashes from appearing at distance i (we add #?i# to N for
each i). Then, for each c in the alphabet of the constructed word different than #, we forbid
c from appearing at distance exactly k+ 1 characters from any # (we add #?kc to N for each
c ∈ Σ ∪ {

(s
q

)
| s ∈ Σ, q ∈ Q}).

• Now, let’s denote two adjacent configurations as a1a2 . . . ak, a′1a
′
2 . . . a

′
k (where ai is either

a character or a character together with a state). Since we consider deterministic Turing
machines, we can convince ourselves that each a′i only depends on the values of ai−1, ai, and
ai+1 since the head of the machine can only move one cell at a time. Formally, there exists
a function f : Cell3 → Cell such that a′i = f(ai−1, ai, ai+1) for each i ∈ {1, . . . , k}, where for
simplicity we set a0 = ak+1 = B.

Now, we want to say a bunch of statements of the form „given the contents of the cells ai−1,
ai, and ai+1 in the previous configuration, the contents of a′i in the following configuration
cannot be equal to x” (for each i ∈ {1, 2, . . . , k}, each ai−1, ai, ai+1 ∈ Cell, and x ∈ Cell, x 6=
f(ai−1, ai, ai+1)). We can do this by adding patterns of the following form to N:

#?i−2ai−1aiai+1?k−i−1#?i−1x?k−i#.

(There are a few special cases for i = 1 and i = k since ai−1 or ai+1 don’t exist, but this
isn’t much of a problem.)

In total, we add O(k · |Cell|4) patterns of length 2k + 3 (which is still a polynomial on k and
the size of the Turing machine).

These requirements are enough to encode terminating runs of Turing machines as finite words (and
only them). Hence, the reduction is complete. This reduction can be performed easily in polynomial
time, so the problem is PSpace-hard.

Since the problem is in PSpace (Part 1) and PSpace-hard (Part 2), the problem is PSpace-
complete.

Exercise. Try to modify the proof above to prove that the following problems are PSpace-
complete:

(a) DFA Intersection Non-emptiness
Input: n deterministic finite automatons A1, A2, . . . , An over the same alphabet Σ
Output: is there a word w ∈ Σ∗ such that w ∈ L(A1) ∩ L(A2) ∩ · · · ∩ L(An)?
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(b) NFA Universality
Input: a non-deterministic finite automaton A over an alphabet Σ
Output: is L(A) = Σ∗?

Hint: the proofs stay mostly the same. Understand that the „problem belongs to PSpace” part
works analogously as before (maybe it’s even a bit simpler than before). In the reduction part, try
writing (one or many) automatons matching each of the four conditions: the word starts with the
initial configuration; it ends with the accepting configuration; the hashes are at distance k+ 1 from
each other; each cell in each following configuration depends only on the values of this cell and two
neighboring cells in the previous configuration (assuming that the hashes are already at distance
k+ 1 from each other). Note that directly translating the patterns in the proof into DFAs might not
always work; some care/ingenuity is needed.
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Exercise. Prove that for each n ∈ N, there exists a set of positive patterns P and a set of
negative patterns N , so that the total size of the patterns is polynomial in n, and the only word
matching all patterns in P and no patterns in N is the following string of length (n+ 1)2n + 1:

# 0000..000︸ ︷︷ ︸
0n

#0000..001#0000...010#0000..011#0000..100#...#1111..110# 1111..111︸ ︷︷ ︸
1n

#

Hint.

• Write two patterns (one positive, one negative) requiring that the word starts with #0n# —
that is, it contains this pattern somewhere, but it cannot contain it after the first character
of the word.

• Do similarly for #1n# at the end of the word.

• Disallow two #’s from being in distance n or smaller from each other.

• For each #, require that the character exactly n+ 1 positions later (if such character should
exist) is #. Now we have that all #’s are evenly spaced, partitioning the word into binary
blocks of length n.

• Write incrementation rules:

– If in a block, k-th digit is 0 and all later digits are 1, then in the following block, k-th
digit must be 1 (=it cannot be 0). (This can be done using n negative rules.)

– If in a block, k-th digit is 1 and all later digits are 1, then in the following block, k-th
digit must be 0.

– Similarly, if in a block, k-th digit is 0/1, and there exists some later digit in that block
equal to 0, then in the following block, k-th digit is unchanged. (This can be done using
O(n2) negative rules.)

• In total, you’ll write O(n2) rules of total length O(n3) for which the shortest matching word
has length O(2n · n).
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