
Computational Complexity — tutorial 4’
NP-completeness, PSpace-completeness

Reductions

A (Karp) reduction from a decision problem X to a decision problem Y is a function f mapping
inputs of X to the inputs of Y which preserves the answer (YES/NO) to the problem.

Simple examples:

• if X is a decision problem „is the number n given to you divisible by 10?”, and Y is „does
the remainder of the division of n by 10 equal 3?”, then f(n) = n+ 3 is a reduction from X
to Y—n is divisible by 10 if and only if the remainder of the division of f(n) by 10 equals 3.

• if X is a decision problem „is the number n prime?”, and Y is a decision problem „given
(n, k), is the number n pairwise coprime with all the numbers in range [1, k]?”, then there
exists a reduction from X to Y : f(n) = (n, d

√
ne).

Time/space bounds. A reduction f is said to be polynomial time (or logarithmic space) if f can
be computed in polynomial time (or logarithmic space).

Intuition. If there is a reduction f from X to Y , then—in some sense—X is easier/not harder
to solve than Y . Why? If we had a function SolveY which solves Y , then using it we can also solve
X: SolveX(input) := SolveY(f(input)).

So, if a reduction f is reasonably fast (polynomial time/logarithmic space), then e.g. a polyno-
mial time solution to Y immediately implies a polynomial time solution to X.

NP-completeness

A problem X is said to be NP-complete if X is in NP and X is NP-hard (i.e., every problem in NP
can be reduced in polynomial time (logarithmic space) to X). In some sense, NP-complete problems
are the hardest problems in NP. Note that if we solve any NP-complete problem in polynomial time,
then we immediately get a polynomial-time solution to every problem in NP (see above).

The following two problems can be directly shown to be NP-complete:

NP Halting Problem
Input: non-deterministing Turing Machine M, its input w, integer k in unary
Output: is there an accepting run of M(w) terminating in at most k steps?

SAT
Input: a binary formula ϕ with variables x1, x2, . . . , xn for some n
Output: is there an assignment (x1, . . . , xn) ∈ {false, true}n which satisfies the formula?

The latter fact is known as Cook’s theorem, and its NP-completeness was shown on the 3rd
lecture.

1

Proving NP-completeness directly is painful, but there’s an easier way.

Observation. Let X, Y be two decision problems in NP. X is NP-complete. If there is a
polynomial time reduction from X to Y , then Y is also NP-complete.
Proof.We know that X is NP-hard, i.e. each decision problem Z which is in NP can be reduced

to X in polynomial time. We also assumed that Y is in NP, so we only need to show that Y is
NP-hard. In order to do that, let’s pick an arbitrary decision problem Z ∈ NP, and let’s show that
Z can be reduced to Y in polynomial time.

Let fXY be the polynomial time reduction from X to Y (which exists per our assumptions). Let
also fZX be the polynomial time reduction from Z to X (which exists since X is NP-hard). We define
fZY , a polynomial time reduction from Z to Y , in a natural way: fZY (input) := fXY (fZX(input)).
We note that:

• fZY can be computed in polynomial time (since obviously the composition of any two poly-
nomial time functions is itself polynomial time).

• For every instance input of Z, the answer to input must be the same as the answer to
fZX(input) in X (since fZX is a reduction), which in turn must be the same as the answer
to fXY (fZX(input) in Y (since fXY is a reduction).

Hence, fZY is a polynomial time reduction from Z to Y as well. As Z was an arbitrary problem in
NP, this concludes the proof.

Note that we can do a similar proof for logarithmic space reductions, but there’s one part of
the proof that doesn’t translate easily to this case—namely:

Lemma. if f , g are any two functions computable in logarithmic space, then the composition
of f and g (i.e., x→ g(f(x))) is computable in logarithmic space as well.
In other words, the class LogSpace is closed under compositions.

We won’t prove this lemma yet (we will later, though), but this is a really nice exercise for you!

So, how to prove NP-completeness?

The observation above provides us with a powerful method of proving that some decision problem
is NP-complete:

1. We want to prove that some decision problem X is NP-complete.

2. We first show that X is in NP. It’s usually the most straightforward step—in most problems
in NP, you can easily understand what would be a solution to your problem (e.g. 3-coloring
of a given graph, a satisfying assignment of binary variables). You can „guess” this solution
non-deterministically and then verify its correctness.

3. In order to show that X is NP-hard, pick any problem that you already know that it’s NP-
complete (e.g. NP Halting Problem, SAT, or maybe any of the problems we’ll see in the
following section). You just need one such problem! Let’s call this problem A.

4. Find a polynomial time reduction from A to X (an efficient way of transforming any correct
input to A to an equivalent input of X). The Observation above implies that X is NP-hard.

5. Since X is in NP and it is NP-hard, we find that X is NP-complete.

2

More NP-complete problems

Using the method above, we can prove that the following, more manageable, variants of SAT are
also NP-complete.

Circuit-Sat
Input: a binary circuit (with binary OR/AND gates, unary NOT gates), with n inputs, named
x1, x2, . . . , xn, and one output, named y. The circuit cannot have any cycles.
Output: is there an assignment (x1, . . . , xn) ∈ {false, true}n, for which y = true?

Proof. Circuit-Sat is obviously in NP: guess an assignment of logic variables on the inputs,
and verify that the output is true.

Now, we want to pick any logical formula ϕ and convert it to an equivalent binary circuit. Assume
that ϕ has n variables: x1, x2, . . . , xn. We turn each of these variables into inputs x1, x2, . . . , xn of
our circuit. Now, we’ll build our circuit recursively:

• If ϕ = xi for some i ∈ [1, n], the output of the circuit is simply the input xi. We can easily
see that the output of the circuit is true if and only if xi = true.

• If ϕ = ¬ψ for some formula ψ, we create the circuit for ψ recursively, and append a NOT gate
to the output of that circuit. We can see that the output of the circuit is true iff ψ evaluates
to false, or equivalently, ϕ evaluates to true.

• If ϕ = ψ1 ∨ψ2 for some formulas ψ1 and ψ2, we create two circuits for ψ1 and ψ2 recursively;
for simiplicity, assume that these circuits share the inputs x1, . . . , xn. Let the output of the
first circuit be y1, and the output of the second circuit—y2. We now create an OR gate whose
inputs are y1 and y2, and whose output is y. We let y be the output of the circuit for ϕ. It’s
obvious that y = true if and only if ϕ evaluates to true.

• If ϕ = ψ1 ∧ ψ2, we do similarly to above, only that we use an AND gate instead.

Obviously, the circuit can be created in linear (polynomial) time. Moreover, it’s easy to see that
the circuit evaluates to true for some inputs x1, x2, . . . , xn if and only if the same assignment of
variables satisfies the initial formula ϕ. Hence, the circuit is satisfiable (=the answer to an instance
of Circuit-Sat is positive) if and only if the original formula was satisfiable (=the answer to
an instance of Sat is positive). Therefore, we provided a polynomial-time reduction from Sat to
Circuit-Sat. We get that Circuit-Sat is NP-hard. Since it was also in NP, we conclude that
Circuit-Sat is NP-complete.

In order to introduce another variant of SAT, we need a definition. We say that a formula ϕ
is in k-CNF form if it is a conjunction (AND) of k-clauses, each k-clause is a disjunction (OR) of
exactly k literals, and each literal is of the form xi or ¬xi. E.g. (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ x3) ∧
(¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ ¬x5) is in 3-CNF.

3-CNF-SAT
Input: a binary formula ϕ with variables x1, x2, . . . , xn for some n, in 3-CNF form
Output: is there an assignment (x1, . . . , xn) ∈ {false, true}n which satisfies the formula?

Proof. Obviously, 3-CNF-SAT is in NP (we guess the assignment of variables and check in
polynomial time if the formula evaluates to true).

3

We now prove that 3-CNF-SAT is NP-hard through a reduction from Circuit-Sat (we can do
that now since we now know that Circuit-Sat is NP-complete!).

Assume that we’re given a binary circuit C with inputs x1, x2, . . . , xn and output y, and we
want to convert it to an equivalent formula in 3-CNF form, which is satisfiable if and only if there
exists an assignment of variables x1, . . . , xn which makes y true. To that goal, we’ll create a 3-CNF
formula with the following variables:

• x1, x2, . . . , xn, denoting the inputs of the circuit C,

• y1, y2, . . . , ym with m equal to the number of logic gates in C, corresponding to the outputs
of these logic gates. We can assume for simplicity that y = ym (i.e., ym is the output of C).

Each yi is the result of a logic operation (OR/AND/NOT) on one or two inputs (variables). For
instance, from some circuit C we can have that y1 = x1 ∧ x3, y2 = y1 ∨ x2, y3 = ¬y1, y4 = x2 ∧ y3.
Hence, the following formula is satisfiable if and only if the circuit C is satisfiable:

(y1 = x1 ∧ x3) ∧ (y2 = y1 ∨ x2) ∧ (y3 = ¬y1) ∧ (y4 = x2 ∧ y3) ∧ y4.

This is not in 3-CNF form yet, but it somehow resembles 3-CNF: we have a conjunction (AND)
of a bunch of formulas, each regarding at most three different variables. Thanks to this, we can
transform it into 3-CNF in a straightforward way:

• The term ym is not a 3-clause. But we can write (ym ∨ ym ∨ ym) instead.

• Let’s transform a formula of the form (p = ¬q) into 3-clauses. We have q → ¬p (or equiva-
lently, ¬p ∨ ¬q), and similarly ¬q → p (or equivalently, p ∨ q). Hence,

(p = ¬q) ⇔ (p ∨ q) ∧ (¬p ∨ ¬q) ⇔ (p ∨ p ∨ q) ∧ (¬p ∨ ¬p ∨ ¬q).

• Let’s transform a formula of the form (p = q ∨ r) into 3-clauses. Note that we cannot have
simultaneously q = false, r = false, and p = true. Hence, ¬(¬q ∧ ¬r ∧ p), or equivalently,
(q ∨ r ∨ ¬p). We can write analogous conditions for any combinations of q and r. Hence,

(p = q ∨ r) ⇔ (q ∨ r ∨ ¬p) ∧ (q ∨ ¬r ∨ p) ∧ (¬q ∨ r ∨ p) ∧ (¬q ∨ ¬r ∨ p).

• We can do similarly for (p = q ∧ r).

This way, we produced a 3-CNF formula which is satisfiable if and only if the circuit C was
satisfiable. Since all the steps are easy to do in polynomial time complexity, we conclude that the
problem 3-CNF-SAT is NP-hard. Since it’s also in NP, we get that 3-CNF-SAT is NP-complete.

Now, try to solve the following problem:

Input: three boolean formulas ϕ1, ϕ2, ϕ3.
Output: is there an assignment (x1, . . . , xn) ∈ {false, true}n which satisfies at least two formulas at
the same time?

Hint 1: reduce from SAT.
Hint 2: f(ϕ) = (ϕ,ϕ, ϕ).
Hint 3: prove that ϕ is satisfiable if and only if in the triple of formulas (ϕ,ϕ, ϕ), at least two

formulas are satisfiable at the same time.

4

Another problem with a (mostly) full solution:

Clique
Input: an undirected graph G, an integer k
Output: is there a subset A ⊆ V (G), |A| = k, which is a clique in G?

Hint 1: reduce from 3-CNF-SAT. Hence, we are writing a function transforming inputs to
3-CNF-SAT into inputs to CLIQUE. The function should preserve the answer to the problem
(YES/NO)—if the formula ϕ is satisfiable, we must produce a graph with a sufficiently large clique,
otherwise a graph with no large cliques.

Hint 2: assume there are m clauses in the formula ϕ. Create 3m variables: one for each literal.
Hint 3: k = m. We want to ensure that the clique picks exactly one literal from each clause and

that no contradiction arises.

Solution (assuming you read all the hints): it’s trivial to see that Clique is in NP. We remind
that we write a reduction from 3-CNF-SAT to Clique. Hence, we need to write a function taking
an arbitrary formula ϕ and transforming it into an instance of Clique.

We assume that ϕ has n variables and m clauses (things of the form (xi ∨ ¬xj ∨ ¬xk)). In the
i-th clause (1 ¬ i ¬ m), for each of three literals (thing of the form xi or ¬xi), we create a vertex
vij (j ∈ {1, 2, 3}); vij corresponds to the j-th literal in the i-th clause.

We connect two vertices vi1j1 , vi2j2 with an edge if:

• i1 6= i2, and

• vi1j1 , vi2j2 do not represent contradictory clauses; e.g. they can represent x3 and ¬x5, as well
as x2 and x2; but they cannot represent x6 and ¬x6.

We also set k := m. We have finished the construction of the instance of Clique: we just
provided a graph and the value of k. It remains to show that the answer to the input to 3-CNF-
SAT is the same as the answer to the constructed instance of Clique.

If the formula ϕ has a satisfying assignment (x1, x2, . . . , xn) ∈ {false, true}n, then we can pick
one satisfied literal from each clause: j1-st literal from the first clause, j2-nd literal from the second
clause, ..., jm-th literal from the m-th clause. We can now easily show that {v1j1 , v2j2 , . . . , vmjm} is
a clique of size m (an easy exercise).

Conversely, assume that the graph contains a clique of size m. Since no pair of vertices vi1j1 , vi2j2
is connected by an edge for i1 = i2, we infer that each vertex vij in the clique must have a
different i. Hence, the clique consists of vertices v1j1 , v2j2 , . . . , vmjm for some j1, j2, . . . , jm ∈ {1, 2, 3}.
These vertices correspond to m mutually non-contradictory literals (that is, no pair of vertices can
correspond to literals xi and ¬xi, correspondingly). Hence, we can recover a satisfying assignment
from these literals—e.g. if some variable xi occurs only positively (without negation) in the selected
literals, we set xi = true. Otherwise, we set xi = false.

Therefore, the reduction preserves the answer—the positive instances of 3-CNF-SAT are trans-
formed into positives of Clique, and negative instances—into negative instances.

5

PSPACE-completeness

We define PSpace-completeness analogously to NP-completeness. A problem X is PSpace-complete
if:

• X is in PSpace,

• X is PSpace-hard (i.e., for all problems Y in PSpace, there exists a polynomial time reduction
from Y to X).

Or equivalently (since the Observation from NP-completeness works here as well):

• X is in PSpace,

• X is PSpace-hard (i.e., for some PSpace-complete problem Y , there is a polynomial time
reduction from Y to X).

Some well known PSpace-complete problems:

PSpace Halting Problem
Input: deterministing Turing Machine M, its input w, integer k in unary
Output: does M(w) accept so that the memory usage of M does not exceed k?

QBF (Quantified Boolean Formula)
Input: a binary formula ϕ with quantifiers and no free variables, e.g. ∃x1∀x2∃x3(x1 ∧ (¬x2 ∨ x3))
Output: is ϕ true?

Note that in QBF, we can assume that all quantifiers occur at the beginning of the formula: e.g.
a formula ∃x1∀x2[(x1∨x2)∧∃x3(x3∧¬x1)] can be transformed into ∃x1∀x2∃x3(x1∨x2)∧(x3∧¬x1).

We’ll see that the following problem is PSpace-hard:

Formula Game
Input: a binary formula ϕ with variables x1, x2, . . . , xn.
Output: Consider a two-player game where players alternately choose the values of variables: the
first player chooses the value of x1 ∈ {false, true}, then the second player chooses the value of x2,
then the first player chooses x3 etc. The first player wins if ϕ evaluates to true when the values of all
variables have been chosen. Does the first player win?

Proof: we can easily prove that Formula Game is in PSpace, by an exhaustive search of the
game tree; we just need to take care not to memoize any of the states we have previously visited:

Returns whether the first player can win on formula [phi] with remaining [variables],
with [player_to_move] indicating the player which chooses next variable.
def FormulaGame(phi, player_to_move, variables):
if no variables remain:
return phi.evaluate() == True

elif player_to_move == First:
first_var = variables[0]
We win if we can pick any move forcing the second player to lose.
return (FormulaGame(phi.set(first_var, False), Second, variables[1:]) or

FormulaGame(phi.set(first_var, True), Second, variables[1:]))

6

else:
first_var = variables[0]
The first player wins if the second player cannot force the first player to lose.
return (FormulaGame(phi.set(first_var, False), First, variables[1:]) and

FormulaGame(phi.set(first_var, True), First, variables[1:]))

(Note: we don’t have to be such meticulous about proving that a problem is in PSpace; the first
paragraph is OK, I just wanted to show the full algorithm for more clarity.)

In order to prove that Formula Game is PSpace-hard, we’ll reduce from Quantified Bo-
olean Formula. Given a quantified binary formula ϕ, we want to create (in polynomial time) a
binary formula ψ such that the first player wins Formula Game on ψ if and only if ϕ is true.

As above, we can assume that in ϕ (the instance of QBF), all quantifiers precede the remaining
part of the formula. Also, we can transform ϕ to a form in which the first quantifier is ∃ (existential),
and the quantifier kinds alternate; that is, the sequence of quantifiers looks like this: ∃∀∃∀∃∀ . . . ∃∀.
If the original formula is not of this form, we can introduce dummy variables and quantify over
them in an arbitrary part of the formula, e.g.

∃t1∀t2∀t3∀t4 α(t1, t2, t3, t4) ⇔ ∃t1∀t2∃z1∀t3∃z2∀t4 α(t1, t2, t3, t4) for every formula α.

Now, assume that the formula ϕ looks like this: ∃x1∀x2∃x3∀x4 . . . ∃xn−1∀xnψ(x1, x2, . . . , xn) (the last
quantifier will be ∃ instead if n is odd).
Lemma. ϕ is true if and only if the first player wins the Formula Game on ψ.
The proof of the lemma is inductive. For n = 0, the proof is obvious. Now, assume that the

lemma holds for all formulas with n quantifiers, and let’s prove that it works for all formulas with
n+ 1 quantifiers. Let’s pick a formula with n+ 1 quantifiers:

∃x1∀x2∃x3∀x4 . . . ∀xn∃xn+1ψ(x1, x2, . . . , xn, xn+1).

(Note: this sequence of quantifiers assumes that n is even; for n odd the final quantifier would be
∀, but the overall proof wouldn’t change.)

Let’s rewrite the formula above equivalently:

∃x1 ¬[∃x2∀x3∃x4 . . . ∃xn∀xn+1 ¬ψ(x1, x2, . . . , xn, xn+1)]. (0.1)

(We added two negations, and all quantifiers after the first one changed to the opposite.)
We now notice two things:

• After the first player picks the value of x1, say, true, the second player, in fact, starts an
n-round Formula Game on ¬(ψ[x1 := true]) (so the game is played on ¬ψ instead of ψ,
and the first and second players swap). From the inductive assumption, the second player
(starting this sub-game) wins this game if and only if

∃x2∀x3∃x4 . . . ∃xn∀xn+1 ¬ψ(true, x2, . . . , xn, xn+1).

• The first player has a winning strategy if and only if they have a move which requires the
second player to lose (if both players then play optimally). We can now easily see that this is
exactly what Equation (0.1) means. Hence, the first player wins if and only if Equation (0.1)
holds.

7

This finishes the proof of the lemma.

The lemma, in fact, proves that the reduction is correct—we generated a Formula Game
instance ψ in which the first player wins if and only if the original QBF formula ϕ was true. We
can easily see that the reduction can be done in polynomial time. Hence, Formula Game is
PSpace-hard, and since it’s in PSpace, it’s PSpace-complete as well.

TODO: Generalized Geography.

8

