Online Multi-Level Aggregation with Delays and Stochastic Arrival Times

Michał Pawłowski

University of Warsaw, IDEAS NCBR

November 10, 2023

online multi-level aggregation with delays

э

adversarial model stochastic model

online multi-level aggregation with delays

Michał Pawłowski (MIMUW, IDEAS)

Stochastic MPMD

November 10, 2023 2 / 19

э

adversarial model stochastic model

online multi-level aggregation with delays

Michał Pawłowski (MIMUW, IDEAS)

Stochastic MPMD

November 10, 2023 2 / 19

э

adversarial model stochastic model

online multi-level aggregation with delays

stochastic model

online multi-level aggregation with delays

online multi-level aggregation with delays

Michał Pawłowski (MIMUW, IDEAS)

Stochastic MPMD

November 10, 2023

November 10, 2023

Motivation

Supply chain management

▶ < ∃ >

< □ > < 同 >

æ

Motivation

Supply chain management

 manager of a factory needs to deliver demanded products to the shops

- manager of a factory needs to deliver demanded products to the shops
- shop owners inform the manager about out-of-stock products and wait for the restocking

- manager of a factory needs to deliver demanded products to the shops
- shop owners inform the manager about out-of-stock products and wait for the restocking

delay cost = waiting time

- manager of a factory needs to deliver demanded products to the shops
- shop owners inform the manager about out-of-stock products and wait for the restocking

delay cost = waiting time

 manager needs to order a truck to deliver products

- manager of a factory needs to deliver demanded products to the shops
- shop owners inform the manager about out-of-stock products and wait for the restocking

delay cost = waiting time

 manager needs to order a truck to deliver products

- manager of a factory needs to deliver demanded products to the shops
- shop owners inform the manager about out-of-stock products and wait for the restocking

delay cost = waiting time

 manager needs to order a truck to deliver products

- manager of a factory needs to deliver demanded products to the shops
- shop owners inform the manager about out-of-stock products and wait for the restocking

delay cost = waiting time

 manager needs to order a truck to deliver products

- manager of a factory needs to deliver demanded products to the shops
- shop owners inform the manager about out-of-stock products and wait for the restocking

delay cost = waiting time

 manager needs to order a truck to deliver products

• tree T rooted at some node γ and a weight function $w : E(T) \rightarrow \mathbb{R}_+$

- tree T rooted at some node γ and a weight function w : E(T) → ℝ₊
- requests arrive at arbitrary times at nodes V(T)

- tree T rooted at some node γ and a weight function w : E(T) → ℝ₊
- requests arrive at arbitrary times at nodes V(T)
- each request r is characterized by its
 - location $\ell(r) \in V(T)$ and
 - arrival time $t(r) \in \mathbb{R}_+$

- tree T rooted at some node γ and a weight function w : E(T) → ℝ₊
- requests arrive at **arbitrary times** at nodes V(T)
- each request r is characterized by its
 - location $\ell(r) \in V(T)$ and
 - arrival time $t(r) \in \mathbb{R}_+$

• to serve any set of requests *R* at time *t*, a subtree *T'* containing the tree root and locations of all the requests in *R* needs to be bought at a service cost equal to the total weight of edges in *T'*

4/19

- tree T rooted at some node γ and a weight function w : E(T) → ℝ₊
- requests arrive at **arbitrary times** at nodes V(T)
- each request r is characterized by its
 - location $\ell(r) \in V(T)$ and
 - arrival time $t(r) \in \mathbb{R}_+$

- to serve any set of requests *R* at time *t*, a subtree *T'* containing the tree root and locations of all the requests in *R* needs to be bought at a service cost equal to the total weight of edges in *T'*
- the target is to **minimize the total cost** produced by the online algorithm for serving all the requests

online setting

online setting

• the **current best** competitiveness is $O(d^2)$ (where *d* denotes the depth of the tree) [Azar, Touitou, FOCS'19]

online setting

- the **current best** competitiveness is $O(d^2)$ (where *d* denotes the depth of the tree) [Azar, Touitou, FOCS'19]
- no online algorithm can achieve a competitive ratio better than $2 + \phi \approx 3.618$ [Bieńkowski et al., WADS'13]

online setting

- the **current best** competitiveness is $O(d^2)$ (where *d* denotes the depth of the tree) [Azar, Touitou, FOCS'19]
- no online algorithm can achieve a competitive ratio better than $2 + \phi \approx 3.618$ [Bieńkowski et al., WADS'13]

offline setting

online setting

- the **current best** competitiveness is $O(d^2)$ (where *d* denotes the depth of the tree) [Azar, Touitou, FOCS'19]
- no online algorithm can achieve a competitive ratio better than $2 + \phi \approx 3.618$ [Bieńkowski et al., WADS'13]

offline setting

• the problem is **NP-hard** in both deadline and delay versions [Arkin et al., Becchetti et al.]

online setting

- the **current best** competitiveness is $O(d^2)$ (where *d* denotes the depth of the tree) [Azar, Touitou, FOCS'19]
- no online algorithm can achieve a competitive ratio better than $2 + \phi \approx 3.618$ [Bieńkowski et al., WADS'13]

offline setting

- the problem is **NP-hard** in both deadline and delay versions [Arkin et al., Becchetti et al.]
- 2-approximation algorithm was proposed by Becchetti et al.

• for many applications it is **too pessimistic** to assume that **no stochastic information** on the input is available

- for many applications it is **too pessimistic** to assume that **no stochastic information** on the input is available
- factory owners have all the **historical data** and can **estimate the frequency** of the requests from a given shop

- for many applications it is **too pessimistic** to assume that **no stochastic information** on the input is available
- factory owners have all the **historical data** and can **estimate the frequency** of the requests from a given shop
- we can assume that requests follow a stochastic distribution

- for many applications it is **too pessimistic** to assume that **no stochastic information** on the input is available
- factory owners have all the **historical data** and can **estimate the frequency** of the requests from a given shop
- we can assume that requests follow a stochastic distribution

Poisson arrival process

- for many applications it is **too pessimistic** to assume that **no stochastic information** on the input is available
- factory owners have all the **historical data** and can **estimate the frequency** of the requests from a given shop
- we can assume that requests follow a stochastic distribution

Poisson arrival process

 waiting time between any two consecutive requests arriving at any node ν follows an exponential distribution Exp(λ_ν)

How to compare performance?

Ratio of expectations

Algorithm ALG for MLA has a ratio of expectations $C \ge 1$, if

$$\overline{\lim_{\tau \to \infty}} \frac{\mathbb{E}_{\sigma}^{\tau}[\operatorname{ALG}(\sigma)]}{\mathbb{E}_{\sigma}^{\tau}[\operatorname{OPT}(\sigma)]} \leq C$$

Ratio of expectations

Algorithm ALG for MLA has a ratio of expectations $C \ge 1$, if

$$\overline{\lim_{\tau \to \infty}} \frac{\mathbb{E}_{\sigma}^{\tau}[\operatorname{ALG}(\sigma)]}{\mathbb{E}_{\sigma}^{\tau}[\operatorname{OPT}(\sigma)]} \leq C,$$

where $\mathbb{E}_{\sigma}^{\tau}[ALG(\sigma)]$ (resp. $\mathbb{E}_{\sigma}^{\tau}[OPT(\sigma)]$) denotes the **expected cost** generated by ALG (resp. an **optimal offline solution**) on the **random request sequence** σ generated by the Poisson arrival process within the time interval $[0, \tau]$.

7/19
Ratio of expectations

Algorithm ALG for MLA has a ratio of expectations $C \ge 1$, if

 $\overline{\lim_{\tau \to \infty}} \frac{\mathbb{E}_{\sigma}^{\tau}[\operatorname{ALG}(\sigma)]}{\mathbb{E}_{\sigma}^{\tau}[\operatorname{OPT}(\sigma)]} \leq C,$

where $\mathbb{E}_{\sigma}^{\tau}[ALG(\sigma)]$ (resp. $\mathbb{E}_{\sigma}^{\tau}[OPT(\sigma)]$) denotes the **expected cost** generated by ALG (resp. an **optimal offline solution**) on the **random request sequence** σ generated by the Poisson arrival process within the time interval $[0, \tau]$.

Main theorem

For MLA with linear delays in the Poisson arrival model, there exists a deterministic algorithm that achieves a **constant ratio of expectations**.

イロト 不得 ト イヨト イヨト

Memoryless property

If X is an exponential variable with parameter λ , then for all $s, t \ge 0$, we have

$$\mathbb{P}\left(X>s+t\mid X>s
ight)=\mathbb{P}(X>t)=e^{-\lambda t}.$$

Memoryless property

If X is an exponential variable with parameter λ , then for all $s, t \ge 0$, we have

$$\mathbb{P}\left(X>s+t\mid X>s
ight)=\mathbb{P}(X>t)=e^{-\lambda t}$$
 .

Minimum of exponential variables

Given *n* independent exponential variables $X_i \sim \text{Exp}(\lambda_i)$ for $1 \le i \le n$, let $Z := \min\{X_1, X_2, \ldots, X_n\}$ and let $\lambda := \sum_{i=1}^n \lambda_i$. It holds that

$$Z \sim \operatorname{Exp}(\lambda), \qquad \mathbb{P}(Z = X_i) = \lambda_i / \lambda, \qquad Z \perp \{Z = X_i\},$$

where \perp denotes independence.

distributed version

 waiting time between any two consecutive requests arriving at any node ν follows an exponential distribution Exp(λ_ν)

distributed version

 waiting time between any two consecutive requests arriving at any node ν follows an exponential distribution Exp(λ_ν)

centralized version

- waiting time between any two consecutive requests in the given tree *T* follows an exponential distribution with parameter λ(V(T)) := Σ_{v∈V(T)} λ_v
- each time a request arrives, the probability of it appearing at node v equals $\lambda_v/\lambda(V(T))$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

Image: Image:

э

$$X \sim \operatorname{Exp}(\lambda)$$
 then $\mathbb{E}[X] = 1/\lambda$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

Image: Image:

э

$$X \sim \operatorname{Exp}(\lambda)$$
 then $\mathbb{E}[X] = 1/\lambda$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

$w < 1/\lambda$	$w \geq 1/\lambda$

Image: A matrix

э

 $X \sim \operatorname{Exp}(\lambda)$ then $\mathbb{E}[X] = 1/\lambda$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

 $X \sim \operatorname{Exp}(\lambda)$ then $\mathbb{E}[X] = 1/\lambda$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

w $< 1/\lambda$

- not worth waiting for the next request to serve both of them together
- ALG: serve all the requests immediately at the moment of their arrival

$w \ge 1/\lambda$

 $X \sim \operatorname{Exp}(\lambda)$ then $\mathbb{E}[X] = 1/\lambda$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

w $< 1/\lambda$

- not worth waiting for the next request to serve both of them together
- ALG: serve all the requests immediately at the moment of their arrival
- cost: $\lambda \tau \cdot w$

 $X \sim \operatorname{Exp}(\lambda)$ then $\mathbb{E}[X] = 1/\lambda$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

w $< 1/\lambda$

- not worth waiting for the next request to serve both of them together
- ALG: serve all the requests immediately at the moment of their arrival
- cost: $\lambda \tau \cdot w$

w $\geq 1/\lambda$

• **delaying** service in this case is profitable

 $X \sim \operatorname{Exp}(\lambda)$ then $\mathbb{E}[X] = 1/\lambda$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

w $< 1/\lambda$

- not worth waiting for the next request to serve both of them together
- ALG: serve all the requests immediately at the moment of their arrival
- cost: $\lambda \tau \cdot w$

w $\geq 1/\lambda$

- **delaying** service in this case is profitable
- ALG: wait until the total expected delay cost equals w, i.e., for $p = \sqrt{2w/\lambda}$, serve all the request then

10 / 19

 $X \sim \operatorname{Exp}(\lambda)$ then $\mathbb{E}[X] = 1/\lambda$

edge $e = (\gamma, u)$: weight w, arrival rate of node u equal λ

w $< 1/\lambda$

- not worth waiting for the next request to serve both of them together
- ALG: serve all the requests immediately at the moment of their arrival
- cost: $\lambda \tau \cdot w$

w $\geq 1/\lambda$

- **delaying** service in this case is profitable
- ALG: wait until the total expected delay cost equals w, i.e., for $p = \sqrt{2w/\lambda}$, serve all the request then

• cost:
$$(\lambda p^2/2 + w) \cdot \tau/p$$

One edge — light case

$w < 1/\lambda$

イロト イヨト イヨト イヨト

2

 $w < 1/\lambda$

w
$$< 1/\lambda$$

• divide timeline into intervals of length $1/\lambda$

w
$$< 1/\lambda$$

- divide timeline into intervals of length $1/\lambda$
- let us analyse the cost of OPT within one interval

w
$$< 1/\lambda$$

- divide timeline into intervals of length $1/\lambda$
- let us analyse the cost of OPT within one interval
- probability that ≥ 1 request arrives equals $1 e^{-1}$

w
$$< 1/\lambda$$

- divide timeline into intervals of length $1/\lambda$
- let us analyse the cost of OPT within one interval
- probability that ≥ 1 request arrives equals $1 e^{-1}$
- assume that at least one request arrives at node u

w
$$< 1/\lambda$$

- divide timeline into intervals of length $1/\lambda$
- let us analyse the cost of OPT within one interval
- probability that ≥ 1 request arrives equals $1 e^{-1}$
- assume that at least one request arrives at node u
- then OPT pays at least min(D, w), $D \sim \mathrm{U}(1/\lambda)$

w
$$< 1/\lambda$$

- divide timeline into intervals of length $1/\lambda$
- let us analyse the cost of OPT within one interval
- probability that ≥ 1 request arrives equals $1 e^{-1}$
- assume that at least one request arrives at node u
- then OPT pays at least min(D, w), $D \sim \mathrm{U}(1/\lambda)$
- thus, in expectation OPT pays at least w/2

w
$$< 1/\lambda$$

- divide timeline into intervals of length $1/\lambda$
- let us analyse the cost of OPT within one interval
- probability that ≥ 1 request arrives equals $1-e^{-1}$
- assume that at least one request arrives at node u
- then OPT pays at least min(D, w), $D \sim \mathrm{U}(1/\lambda)$
- thus, in expectation OPT pays at least w/2
- in total it gives us $\lambda au \cdot (1-e^{-1})w/2$

w $\geq 1/\lambda$

w
$$\geq 1/\lambda$$

• divide timeline into intervals of length $p = \sqrt{2w/\lambda}$

w
$$\geq 1/\lambda$$

- divide timeline into intervals of length $p = \sqrt{2w/\lambda}$
- let us analyse the cost of OPT within a given interval

w
$$\geq 1/\lambda$$

- divide timeline into intervals of length $p = \sqrt{2w/\lambda}$
- let us analyse the cost of OPT within a given interval
- probability that $\geq n_0 = \lceil \lambda p \rceil$ requests arrive is at least 1/2

w
$$\geq 1/\lambda$$

- divide timeline into intervals of length $p = \sqrt{2w/\lambda}$
- let us analyse the cost of OPT within a given interval
- probability that $\geq n_0 = \lceil \lambda p \rceil$ requests arrive is at least 1/2
- assume that at least n₀ requests arrive at node u

w
$$\geq 1/\lambda$$

- divide timeline into intervals of length $p = \sqrt{2w/\lambda}$
- let us analyse the cost of OPT within a given interval
- probability that $\geq n_0 = \lceil \lambda p \rceil$ requests arrive is at least 1/2
- assume that at least n₀ requests arrive at node u
- then OPT pays at least min $(w, \sum_{j=1}^{n_0} U_j)$, $U_j \sim \mathrm{U}(\mathrm{p})$

w
$$\geq 1/\lambda$$

- divide timeline into intervals of length $p = \sqrt{2w/\lambda}$
- let us analyse the cost of OPT within a given interval
- probability that $\geq n_0 = \lceil \lambda p \rceil$ requests arrive is at least 1/2
- assume that at least n₀ requests arrive at node u
- then OPT pays at least min $(w, \sum_{j=1}^{n_0} U_j)$, $U_j \sim \mathrm{U}(\mathrm{p})$
- we can show that in expectation OPT pays at least 3/4w

12 / 19

w
$$\geq 1/\lambda$$

- divide timeline into intervals of length $p = \sqrt{2w/\lambda}$
- let us analyse the cost of OPT within a given interval
- probability that $\geq n_0 = \lceil \lambda p \rceil$ requests arrive is at least 1/2
- assume that at least n₀ requests arrive at node u
- then OPT pays at least min $(w, \sum_{j=1}^{n_0} U_j)$, $U_j \sim \mathrm{U}(\mathrm{p})$
- we can show that in expectation OPT pays at least 3/4w
- in total it gives us $3/8w \cdot \tau/p$

12 / 19

let us consider an edge-weighted tree T

let us consider an edge-weighted tree Tassume that for each edge e = (u, v) in T, $w(e) \ge 1/\lambda(v)$?

let us consider an **edge-weighted tree** T assume that **for each edge** e = (u, v) in T, $w(e) \ge 1/\lambda(v)$? should we serve this tree **periodically**?

in a Poisson process with parameter λ the expected **total waiting time** generated by requests within the time interval $[0, \tau]$ is $\lambda \tau^2/2$

let us consider an edge-weighted tree T

assume that for each edge e = (u, v) in T, $w(e) \ge 1/\lambda(v)$? should we serve this tree periodically? in a Poisson process with parameter λ the expected **total waiting time** generated by requests within the time interval $[0, \tau]$ is $\lambda \tau^2/2$

let us consider an edge-weighted tree T

assume that for each edge e = (u, v) in T, $w(e) \ge 1/\lambda(v)$? should we serve this tree periodically?

in a Poisson process with parameter λ the expected **total waiting time** generated by requests within the time interval $[0, \tau]$ is $\lambda \tau^2/2$

let us consider an edge-weighted tree T

assume that for each edge e = (u, v) in T, $w(e) \ge 1/\lambda(v)$? should we serve this tree periodically?

in a Poisson process with parameter λ the expected **total waiting time** generated by requests within the time interval $[0, \tau]$ is $\lambda \tau^2/2$

let us consider an edge-weighted tree T

assume that for each edge e = (u, v) in T, $w(e) \ge 1/\lambda(v)$? should we serve this tree periodically?

13/19

in a Poisson process with parameter λ the expected **total waiting time** generated by requests within the time interval $[0, \tau]$ is $\lambda \tau^2/2$

let us consider an edge-weighted tree T

assume that for each edge e = (u, v) in T, $w(e) \ge 1/\lambda(v)$? should we serve this tree periodically?

13/19

Image: A matrix

2

2

< ∃⇒ November 10, 2023

Image: A matrix

Michał Pawłowski (MIMUW, IDEAS)

November 10, 2023

< ∃⇒

Michał Pawłowski (MIMUW, IDEAS)

< ∃⇒ November 10, 2023

Michał Pawłowski (MIMUW, IDEAS)

Stochastic MPMD

November 10, 2023

Stochastic MPMD

Michał Pawłowski (MIMUW, IDEAS)

Stochastic MPMD

November 10, 2023

Heavy instances — analysis

assume that a heavy tree T is assigned period p

assume that a heavy tree T is assigned period p denote the cost share of node v by $\hat{w}_v := \lambda(v)/2 \cdot p^2$

assume that a heavy tree T is assigned period p denote the cost share of node v by $\hat{w}_v := \lambda(v)/2 \cdot p^2$

$$\sum_{\nu \in T} \frac{\lambda(\nu) \cdot p^2}{2} = \sum_{\nu \in T} \hat{w}_{\nu} = \sum_{\nu \in T} w_{\nu} \ge \sum_{\nu \in T} \frac{1}{\lambda(\nu)}.$$

assume that a heavy tree T is assigned period p denote the cost share of node v by $\hat{w}_v := \lambda(v)/2 \cdot p^2$

$$\sum_{\nu \in T} \frac{\lambda(\nu) \cdot p^2}{2} = \sum_{\nu \in T} \hat{w}_{\nu} = \sum_{\nu \in T} w_{\nu} \ge \sum_{\nu \in T} \frac{1}{\lambda(\nu)}.$$

let $L \subseteq T$ be the subset of nodes v for which $p \leq 1/\lambda(v)$

assume that a heavy tree T is assigned period p denote the cost share of node v by $\hat{w}_v := \lambda(v)/2 \cdot p^2$

$$\sum_{\nu \in T} \frac{\lambda(\nu) \cdot p^2}{2} = \sum_{\nu \in T} \hat{w}_{\nu} = \sum_{\nu \in T} w_{\nu} \ge \sum_{\nu \in T} \frac{1}{\lambda(\nu)}.$$

let $L \subseteq T$ be the subset of nodes v for which $p \leq 1/\lambda(v)$

$$\sum_{v \in L} \hat{w}_v = \sum_{v \in L} \frac{\lambda(v) \cdot p^2}{2} \le \frac{1}{2} \sum_{v \in L} \frac{\lambda(v)}{\lambda^2(v)}$$
$$= \frac{1}{2} \sum_{v \in L} \frac{1}{\lambda(v)} \le \frac{1}{2} \sum_{v \in T} \frac{1}{\lambda(v)} \le \frac{1}{2} \sum_{v \in T} w_v$$

15/19

Definition

A stochastic MLA instance (T, w, λ) is called light if

$$\sum_{\nu \in V(T)} \frac{\lambda(\nu)}{\lambda(T)} d(\nu, \gamma) \leq \frac{1}{\lambda(T)},$$

where d is the distance function based on w.

∃ ► < ∃ ►

Image: Image:

Definition

A stochastic MLA instance (T, w, λ) is called light if

$$\sum_{v \in V(T)} rac{\lambda(v)}{\lambda(T)} d(v, \gamma) \leq rac{1}{\lambda(T)},$$

Definition

A stochastic MLA instance (T, w, λ) is called light if

$$\sum_{v \in V(\mathcal{T})} rac{\lambda(v)}{\lambda(\mathcal{T})} d(v, \gamma) \leq rac{1}{\lambda(\mathcal{T})},$$

Definition

A stochastic MLA instance (T, w, λ) is called light if

$$\sum_{v \in V(T)} \frac{\lambda(v)}{\lambda(T)} d(v, \gamma) \leq \frac{1}{\lambda(T)},$$

Definition

A stochastic MLA instance (T, w, λ) is called light if

$$\sum_{v \in V(T)} rac{\lambda(v)}{\lambda(T)} d(v, \gamma) \leq rac{1}{\lambda(T)},$$

Definition

A stochastic MLA instance (T, w, λ) is called light if

$$\sum_{v \in V(T)} rac{\lambda(v)}{\lambda(T)} d(v, \gamma) \leq rac{1}{\lambda(T)},$$

3

문 문 문

글▶ 글

글▶ 글

• does the greedy algorithm achieve a constant ratio of expectations?

- Output the greedy algorithm achieve a constant ratio of expectations?
- A how to define and analyse similar problems (Facility Location, Online Service) in the stochastic environment?

Thank you!

2