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Motivation

Supply chain management

manager of a factory needs to deliver

demanded products to the shops

shop owners inform the manager about

out-of-stock products and wait for the

restocking

delay cost = waiting time

manager needs to order a truck to

deliver products

service cost = distance travelled
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Problem statement

Multi-Level Aggregation with Delays

tree T rooted at some node � and

a weight function w : E (T ) ! R+

requests arrive at arbitrary times

at nodes V (T )

each request r is characterized by its

location `(r) 2 V (T ) and

arrival time t(r) 2 R+

to serve any set of requests R at time t, a subtree T
0
containing

the tree root and locations of all the requests in R needs to be

bought at a service cost equal to the total weight of edges in T
0

the target is to minimize the total cost produced by the online

algorithm for serving all the requests
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Adversarial model

adversary determines the arrival times and locations of requests

online setting

the current best competitiveness is O(d
2
) (where d denotes the

depth of the tree) [Azar, Touitou, FOCS’19]

no online algorithm can achieve a competitive ratio better than

2 + � ⇡ 3.618 [Bieńkowski et al., WADS’13]

o✏ine setting

the problem is NP-hard in both deadline and delay versions

[Arkin et al., Becchetti et al.]

2-approximation algorithm was proposed by Becchetti et al.
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Stochastic model

for many applications it is too pessimistic to assume that

no stochastic information on the input is available

factory owners have all the historical data and can estimate

the frequency of the requests from a given shop

we can assume that requests follow a stochastic distribution

Poisson arrival process

waiting time between any two consecutive requests arriving at any

node v follows an exponential distribution Exp(�v )
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How to compare performance?

Ratio of expectations

Algorithm ALG for MLA has a ratio of expectations C � 1, if

lim
⌧!1

E⌧
�[ALG(�)]

E⌧
�[OPT(�)]

 C

,

where E⌧
�[ALG(�)] (resp. E⌧

�[OPT(�)]) denotes the expected cost

generated by ALG (resp. an optimal o✏ine solution) on the random

request sequence � generated by the Poisson arrival process within

the time interval [0, ⌧ ].

Main theorem

For MLA with linear delays in the Poisson arrival model, there exists a

deterministic algorithm that achieves a constant ratio of expectations.
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Exponential variables recap

Memoryless property

If X is an exponential variable with parameter �, then for all s, t � 0, we

have

P (X > s + t | X > s) = P(X > t) = e
��t .

Minimum of exponential variables

Given n independent exponential variables Xi ⇠ Exp(�i ) for 1  i  n, let

Z := min{X1,X2, . . . ,Xn} and let � :=
Pn

i=1 �i . It holds that

Z ⇠ Exp(�), P(Z = Xi ) = �i/�, Z ? {Z = Xi},

where ? denotes independence.
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Poisson arrival process

distributed version

waiting time between any two consecutive requests arriving at

any node v follows an exponential distribution Exp(�v )

centralized version

waiting time between any two consecutive requests in the given

tree T follows an exponential distribution with parameter

�(V (T )) :=
P

v2V (T ) �v

each time a request arrives, the probability of it appearing at

node v equals �v/�(V (T ))
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One edge — two approaches

X ⇠ Exp(�) then E[X ] = 1/�

edge e = (�, u): weight w , arrival rate of node u equal �

w < 1/�

not worth waiting for the

next request to serve both

of them together

ALG: serve all the requests

immediately at the moment

of their arrival

cost: �⌧ · w

w � 1/�

delaying service in this case

is profitable

ALG: wait until the total

expected delay cost equals

w , i.e., for p =
p

2w/�,
serve all the request then

cost: (�p2/2 + w) · ⌧/p
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One edge — light case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w < 1/�

divide timeline into intervals of length 1/�

let us analyse the cost of OPT within one interval

probability that � 1 request arrives equals 1� e
�1

assume that at least one request arrives at node u

then OPT pays at least min(D,w), D ⇠ U(1/�)

thus, in expectation OPT pays at least w/2
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One edge — heavy case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w � 1/�

divide timeline into intervals of length p =
p

2w/�

let us analyse the cost of OPT within a given interval

probability that � n0 = d�pe requests arrive is at least 1/2

assume that at least n0 requests arrive at node u

then OPT pays at least min(w ,
Pn0

j=1 Uj), Uj ⇠ U(p)

we can show that in expectation OPT pays at least 3/4w

in total it gives us 3/8w · ⌧/p

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 12 / 19



One edge — heavy case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w � 1/�

divide timeline into intervals of length p =
p
2w/�

let us analyse the cost of OPT within a given interval

probability that � n0 = d�pe requests arrive is at least 1/2

assume that at least n0 requests arrive at node u

then OPT pays at least min(w ,
Pn0

j=1 Uj), Uj ⇠ U(p)

we can show that in expectation OPT pays at least 3/4w

in total it gives us 3/8w · ⌧/p

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 12 / 19



One edge — heavy case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w � 1/�

divide timeline into intervals of length p =
p
2w/�

let us analyse the cost of OPT within a given interval

probability that � n0 = d�pe requests arrive is at least 1/2

assume that at least n0 requests arrive at node u

then OPT pays at least min(w ,
Pn0

j=1 Uj), Uj ⇠ U(p)

we can show that in expectation OPT pays at least 3/4w

in total it gives us 3/8w · ⌧/p

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 12 / 19



One edge — heavy case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w � 1/�

divide timeline into intervals of length p =
p
2w/�

let us analyse the cost of OPT within a given interval

probability that � n0 = d�pe requests arrive is at least 1/2

assume that at least n0 requests arrive at node u

then OPT pays at least min(w ,
Pn0

j=1 Uj), Uj ⇠ U(p)

we can show that in expectation OPT pays at least 3/4w

in total it gives us 3/8w · ⌧/p

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 12 / 19



One edge — heavy case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w � 1/�

divide timeline into intervals of length p =
p
2w/�

let us analyse the cost of OPT within a given interval

probability that � n0 = d�pe requests arrive is at least 1/2

assume that at least n0 requests arrive at node u

then OPT pays at least min(w ,
Pn0

j=1 Uj), Uj ⇠ U(p)

we can show that in expectation OPT pays at least 3/4w

in total it gives us 3/8w · ⌧/p

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 12 / 19



One edge — heavy case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w � 1/�

divide timeline into intervals of length p =
p
2w/�

let us analyse the cost of OPT within a given interval

probability that � n0 = d�pe requests arrive is at least 1/2

assume that at least n0 requests arrive at node u

then OPT pays at least min(w ,
Pn0

j=1 Uj), Uj ⇠ U(p)

we can show that in expectation OPT pays at least 3/4w

in total it gives us 3/8w · ⌧/p

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 12 / 19



One edge — heavy case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w � 1/�

divide timeline into intervals of length p =
p
2w/�

let us analyse the cost of OPT within a given interval

probability that � n0 = d�pe requests arrive is at least 1/2

assume that at least n0 requests arrive at node u

then OPT pays at least min(w ,
Pn0

j=1 Uj), Uj ⇠ U(p)

we can show that in expectation OPT pays at least 3/4w

in total it gives us 3/8w · ⌧/p

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 12 / 19



One edge — heavy case

in a Poisson process with parameter � over [0, ⌧ ] conditioned on n

requests arriving, all the arrival times follow a uniform distribution U(⌧)

w � 1/�

divide timeline into intervals of length p =
p
2w/�

let us analyse the cost of OPT within a given interval

probability that � n0 = d�pe requests arrive is at least 1/2

assume that at least n0 requests arrive at node u

then OPT pays at least min(w ,
Pn0

j=1 Uj), Uj ⇠ U(p)

we can show that in expectation OPT pays at least 3/4w

in total it gives us 3/8w · ⌧/p

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 12 / 19



Heavy instances

in a Poisson process with parameter � the expected total waiting

time generated by requests within the time interval [0, ⌧ ] is �⌧2/2

let us consider an edge-weighted tree T

assume that for each edge e = (u, v) in T , w(e) � 1/�(v)?
should we serve this tree periodically?
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Heavy instances — analysis

assume that a heavy tree T is assigned period p

denote the cost share of node v by ŵv := �(v)/2 · p2

X

v2T

�(v) · p2

2
=

X

v2T
ŵv =

X

v2T
wv �

X

v2T

1

�(v)
.

let L ✓ T be the subset of nodes v for which p  1/�(v)

X

v2L
ŵv =

X

v2L

�(v) · p2

2
 1

2

X

v2L

�(v)

�2(v)

=
1

2

X

v2L

1

�(v)
 1

2

X

v2T

1

�(v)
 1

2

X

v2T
wv
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X

v2T

�(v) · p2

2
=

X

v2T
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Light instances

Definition

A stochastic MLA instance (T ,w ,�) is called light if

X

v2V (T )

�(v)

�(T )
d(v , �)  1

�(T )
,

where d is the distance function based on w .
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Open problems

1 does the greedy algorithm achieve a constant ratio of expectations?

2 how to define and analyse similar problems (Facility Location,

Online Service) in the stochastic environment?
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Thank you!

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD November 10, 2023 19 / 19


