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Problem Statement

Joint Replenishment Problem (JRP) and its generalizations

a sequence of requests that arrive over time

each request can be one of n request types U

cost of serving a set of requests is a subadditive function of

their types, i.e., f (A) + f (B) � f (A [ B) for A,B ✓ U

requests do not need to be served on arrival

each request accumulates a delay cost while unserved

Goal: serve all requests minimizing the total service cost and delay cost
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Overview

Clairvoyant vs Non-Clairvoyant:

most prior works on JRP, and its generalizations have focused on

the clairvoyant setting (whole delay function known at arrival)

Touitou (ICALP 2023) developed a non-clairvoyant framework that

provided an O(
p
n log n) upper bound for a wide class of

generalized JRP problems

Our results:

we provide a simpler, modular framework that matches the

competitive ratio established by Touitou for the same class of

generalized JRP

we obtain tight O(
p
n)-competitive algorithms for two significant

problems: Multi-Level Aggregation and Weighted Symmetric

Subadditive JRP
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Towards the Reduction to Disjoint TCP

Theorem [Jia et al., STOC 2005]

For every subadditive service function f , there is a disjoint service

function g that O(
p
n log n)-approximates function f .

1 function g partitions the universe U of request types into a family of

non-overlapping sets S1, S2, . . ., Sk and given a set S ✓ U assigns

it the cost of

g(S) =

kX

i=1

f (Si ) · {Si \ S 6= ;}

2 it holds that f (S)  g(S) 
p
n log n · f (S) for every S ✓ U
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Subadditive JRP vs Disjoint TCP Acknowledgement
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Subadditive JRP Disjoint TCP Ack

original instance partitioned instance

·
service cost f : SU-R+ service cost

g
: SU- R +

f(s) f(s) g(s) =
yn f(s)

-

Il

f(S1) + f(Sz)



Cost Comparison for Disjoint TCP Solutions
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Reduction Cost

Theorem [Jia et al., STOC 2005]

For every subadditive service function f , there is a disjoint service

function g that O(
p
n log n)-approximates function f .

Proposition

There is a deterministic 2-competitive algorithm for the Disjoint TCP

Acknowledgement Problem.

Theorem (Subadditive JRP)

There exists a deterministic O(
p
n log n)-competitive algorithm for

Non-Clairvoyant Subadditive JRP.
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Competitive Algorithm for TCP Acknowledgement

consider a greedy algorithm that transmits Si whenever waiting

requests accumulate a delay cost equal to the service cost f (Si )

assume that this algorithm transmits Si at times t1, t2, . . ., tl

then within each interval [0, t1], (t1, t2], . . ., (tl�1, tl ] optimal o✏ine

solution either incurs the service cost of f (Si ) or the delay cost of

the same value
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Improved Results

Theorem (Subadditive JRP)

There exists a deterministic O(
p
n log n)-competitive algorithm for

Non-Clairvoyant Subadditive JRP.

Reduction Lemma

If there exists a disjoint service function g that ↵-approximates f , then

there exists a non-clairvoyant 2↵-competitive algorithm for every

Subadditive JRP instance with service cost function f .

Can we achieve better competitiveness for some subproblems?

Theorem (Multi-Level Aggregation)

There exists an e�cient deterministic O(
p
n)-competitive algorithm for

the Non-Clairvoyant Multi-Level Aggregation problem.
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There exists an e�cient deterministic O(
p
n)-competitive algorithm for

the Non-Clairvoyant Multi-Level Aggregation problem.
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Multi-Level Aggregation

the service function f is defined by a rooted aggregation tree T ,

where each node corresponds to a di↵erent request type

let r be the root of T and let c(v) be the cost of node v for v 2 T

for a subset V of nodes, f (V ) is defined to be the total cost of the

nodes in the minimal subtree connecting V to r
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Service Cost Comparison

Goal: minimize the cost of serving set V of request types (nodes)

Optimal solution: cost f (V ) of the minimum spanning tree connecting V

to the root r

Disjoint approach: partition all the nodes U in T into a family of disjoint

subsets T1, T2, . . ., Tk ; pay
Pk

i=1 f (Ti ) · {Ti \ V 6= ;}
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Heavy Clusters

Goal: find a node v for which both the cost of its subtree and the cost of

the path leading to the root are at most O(
p
n)c(v)
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Light Clusters

Goal: find a node v which subtree is of size roughly
p
n
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Subtree Cost vs Path Cost
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Approximation Factor Analysis

Theorem (Multi-Level Aggregation)

For any MLA service function f , there exists a disjoint service function g

that O(
p
n)-approximates f . It can be found in time polynomial with

respect to the MLA instance defining f .
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Conclusions

Our results

we provide a simpler, modular framework that matches the

competitive ratio established by Touitou for the same class of

generalized JRP

we obtain tight O(
p
n)-competitive algorithms for two significant

problems: Multi-Level Aggregation and Weighted Symmetric

Subadditive JRP
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Thank you!
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