Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Tomer Ezra ¹ Stefano Leonardi ² **Michał Pawłowski** ^{2, 3, 4} Matteo Russo ² Seeun William Umboh ⁵

¹Harvard University

²Sapienza University of Rome

³University of Warsaw

⁴IDEAS NCBR

⁵University of Melbourne

Michał Pawłowski (IDEAS NCBR)

Non-Clairvoyant Subadditive JRP

APPROX 2024

Joint Replenishment Problem (JRP) and its generalizations

• a sequence of requests that arrive over time

- a sequence of requests that arrive over time
- each request can be one of n request types U

- a sequence of requests that arrive over time
- each request can be one of *n* request **types** *U*
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U

- a sequence of requests that arrive over time
- each request can be one of *n* request **types** *U*
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival

- a sequence of requests that arrive over time
- each request can be one of *n* request **types** *U*
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

Joint Replenishment Problem (JRP) and its generalizations

- a sequence of requests that arrive over time
- each request can be one of n request types U
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

Joint Replenishment Problem (JRP) and its generalizations

- a sequence of requests that arrive over time
- each request can be one of n request types U
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

Joint Replenishment Problem (JRP) and its generalizations

- a sequence of requests that arrive over time
- each request can be one of n request types U
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

Joint Replenishment Problem (JRP) and its generalizations

- a sequence of requests that arrive over time
- each request can be one of n request types U
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

Joint Replenishment Problem (JRP) and its generalizations

- a sequence of requests that arrive over time
- each request can be one of n request types U
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

Joint Replenishment Problem (JRP) and its generalizations

- a sequence of requests that arrive over time
- each request can be one of *n* request **types** *U*
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

Joint Replenishment Problem (JRP) and its generalizations

- a sequence of requests that arrive over time
- each request can be one of n request types U
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

Joint Replenishment Problem (JRP) and its generalizations

- a sequence of requests that arrive over time
- each request can be one of *n* request **types** *U*
- cost of serving a set of requests is a subadditive function of their types, i.e., f(A) + f(B) ≥ f(A ∪ B) for A, B ⊆ U
- requests do not need to be served on arrival
- each request accumulates a delay cost while unserved

3 N 3

Overview

Clairvoyant vs Non-Clairvoyant:

• most prior works on JRP, and its generalizations have focused on the **clairvoyant** setting (whole delay function known at arrival)

- most prior works on JRP, and its generalizations have focused on the **clairvoyant** setting (whole delay function known at arrival)
- Touitou (ICALP 2023) developed a non-clairvoyant framework that provided an O(√n log n) upper bound for a wide class of generalized JRP problems

- most prior works on JRP, and its generalizations have focused on the **clairvoyant** setting (whole delay function known at arrival)
- Touitou (ICALP 2023) developed a **non-clairvoyant** framework that provided an $O(\sqrt{n \log n})$ upper bound for a wide class of generalized JRP problems

Our results:

- most prior works on JRP, and its generalizations have focused on the **clairvoyant** setting (whole delay function known at arrival)
- Touitou (ICALP 2023) developed a non-clairvoyant framework that provided an O(\sqrt{n \log n}) upper bound for a wide class of generalized JRP problems

Our results:

• we provide a **simpler, modular framework** that matches the competitive ratio established by Touitou for the same class of generalized JRP

- most prior works on JRP, and its generalizations have focused on the **clairvoyant** setting (whole delay function known at arrival)
- Touitou (ICALP 2023) developed a **non-clairvoyant** framework that provided an $O(\sqrt{n \log n})$ upper bound for a wide class of generalized JRP problems

Our results:

- we provide a **simpler, modular framework** that matches the competitive ratio established by Touitou for the same class of generalized JRP
- we obtain tight O(√n)-competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive JRP

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Inction g partitions the universe U of request types into a family of non-overlapping sets S₁, S₂, ..., S_k and given a set S ⊆ U assigns it the cost of

$$g(S) = \sum_{i=1} f(S_i) \cdot \mathbb{1} \{S_i \cap S
eq \emptyset\}$$

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Inction g partitions the universe U of request types into a family of non-overlapping sets S₁, S₂, ..., S_k and given a set S ⊆ U assigns it the cost of

$$g(S) = \sum_{i=1} f(S_i) \cdot \mathbb{1} \{S_i \cap S \neq \emptyset\}$$

3 it holds that $f(S) \leq g(S) \leq \sqrt{n \log n} \cdot f(S)$ for every $S \subseteq U$

∃ >

< A > <

Michał Pawłowski (IDEAS NCBR)

VS

< ∃⇒

5/17

f (5)

٧S

・ 何 ト ・ ヨ ト ・ ヨ ト

f(5)

VS

< (17) > < (17) > <

< ∃⇒

f (5)

partitioned instance S Service $cos+q: S \subseteq U \rightarrow \mathbb{R}_+$ $f(S) \leq q(S) \leq \sqrt{n \log n} f(S)$ $f(S_{4}) + f(S_{2})$

VS

service cost q: S⊆U → R+

 $f(S) \leq g(S) \leq \sqrt{n \log n} f(S)$ $f(S_{1}) + f(S_{2})$

- 4 間 ト - 4 三 ト - 4 三 ト

Cost Comparison for Disjoint TCP Solutions

< 4 → < <

Cost Comparison for Disjoint TCP Solutions

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Proposition

There is a **deterministic** 2-**competitive** algorithm for the Disjoint TCP Acknowledgement Problem.

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Proposition

There is a **deterministic** 2-**competitive** algorithm for the Disjoint TCP Acknowledgement Problem.

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Proposition

There is a **deterministic** 2-**competitive** algorithm for the Disjoint TCP Acknowledgement Problem.

Reduction Cost

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Proposition

There is a **deterministic** 2-**competitive** algorithm for the Disjoint TCP Acknowledgement Problem.

Reduction Cost

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Proposition

There is a **deterministic** 2-**competitive** algorithm for the Disjoint TCP Acknowledgement Problem.

Reduction Cost

Theorem [Jia et al., STOC 2005]

For every subadditive service function f, there is a **disjoint service** function g that $O(\sqrt{n \log n})$ -approximates function f.

Proposition

There is a **deterministic** 2-**competitive** algorithm for the Disjoint TCP Acknowledgement Problem.

Theorem (Subadditive JRP)

There exists a **deterministic** $O(\sqrt{n \log n})$ -competitive algorithm for **Non-Clairvoyant Subadditive JRP**.

< (17) > < (17) > <

• consider a **greedy** algorithm that transmits S_i whenever waiting requests accumulate a **delay cost equal to the service cost** $f(S_i)$

- consider a **greedy** algorithm that transmits S_i whenever waiting requests accumulate a **delay cost equal to the service cost** $f(S_i)$
- assume that this algorithm transmits S_i at times t_1, t_2, \ldots, t_l

- consider a greedy algorithm that transmits S_i whenever waiting requests accumulate a delay cost equal to the service cost f(S_i)
- assume that this algorithm transmits S_i at times t_1, t_2, \ldots, t_l
- then within **each interval** $[0, t_1]$, $(t_1, t_2]$, ..., $(t_{l-1}, t_l]$ optimal offline solution either incurs the **service cost** of $f(S_i)$ or the **delay cost** of the same value

- consider a greedy algorithm that transmits S_i whenever waiting requests accumulate a delay cost equal to the service cost f(S_i)
- assume that this algorithm transmits S_i at times t_1, t_2, \ldots, t_l
- then within **each interval** $[0, t_1]$, $(t_1, t_2]$, ..., $(t_{l-1}, t_l]$ optimal offline solution either incurs the **service cost** of $f(S_i)$ or the **delay cost** of the same value

Improved Results

Theorem (Subadditive JRP)

There exists a **deterministic** $O(\sqrt{n \log n})$ -competitive algorithm for **Non-Clairvoyant Subadditive JRP**.

Improved Results

Theorem (Subadditive JRP)

There exists a **deterministic** $O(\sqrt{n \log n})$ -competitive algorithm for **Non-Clairvoyant Subadditive JRP**.

Reduction Lemma

If there exists a **disjoint** service function g that α -**approximates** f, then there exists a **non-clairvoyant** 2α -**competitive** algorithm for every Subadditive JRP instance with service cost function f.

Theorem (Subadditive JRP)

There exists a **deterministic** $O(\sqrt{n \log n})$ -competitive algorithm for **Non-Clairvoyant Subadditive JRP**.

Reduction Lemma

If there exists a **disjoint** service function g that α -**approximates** f, then there exists a **non-clairvoyant** 2α -**competitive** algorithm for every Subadditive JRP instance with service cost function f.

Can we achieve better competitiveness for some subproblems?

Improved Results

Theorem (Subadditive JRP)

There exists a **deterministic** $O(\sqrt{n \log n})$ -competitive algorithm for **Non-Clairvoyant Subadditive JRP**.

Reduction Lemma

If there exists a **disjoint** service function g that α -**approximates** f, then there exists a **non-clairvoyant** 2α -**competitive** algorithm for every Subadditive JRP instance with service cost function f.

Can we achieve better competitiveness for some subproblems?

Theorem (Multi-Level Aggregation)

There exists an efficient deterministic $O(\sqrt{n})$ -competitive algorithm for the Non-Clairvoyant **Multi-Level Aggregation** problem.

Michał Pawłowski (IDEAS NCBR)

Non-Clairvoyant Subadditive JRP

< //>
</ >
</ >

• the service function *f* is defined by a rooted **aggregation tree** *T*, where each **node** corresponds to a different **request type**

- the service function *f* is defined by a rooted **aggregation tree** *T*, where each **node** corresponds to a different **request type**
- let r be the root of T and let c(v) be the cost of node v for $v \in T$

- the service function *f* is defined by a rooted **aggregation tree** *T*, where each **node** corresponds to a different **request type**
- let r be the root of T and let c(v) be the cost of node v for $v \in T$
- for a subset V of nodes, f(V) is defined to be the total cost of the nodes in the **minimal subtree** connecting V to r

- the service function *f* is defined by a rooted **aggregation tree** *T*, where each **node** corresponds to a different **request type**
- let r be the root of T and let c(v) be the cost of node v for $v \in T$
- for a subset V of nodes, f(V) is defined to be the total cost of the nodes in the **minimal subtree** connecting V to r

- the service function *f* is defined by a rooted **aggregation tree** *T*, where each **node** corresponds to a different **request type**
- let r be the root of T and let c(v) be the cost of node v for $v \in T$
- for a subset V of nodes, f(V) is defined to be the total cost of the nodes in the **minimal subtree** connecting V to r

- the service function *f* is defined by a rooted **aggregation tree** *T*, where each **node** corresponds to a different **request type**
- let r be the root of T and let c(v) be the cost of node v for $v \in T$
- for a subset V of nodes, f(V) is defined to be the total cost of the nodes in the **minimal subtree** connecting V to r

10/17

- the service function f is defined by a rooted **aggregation tree** T, where each node corresponds to a different request type
- let r be the root of T and let c(v) be the cost of node v for $v \in T$
- for a subset V of nodes, f(V) is defined to be the total cost of the nodes in the **minimal subtree** connecting V to r

Service Cost Comparison

Goal: minimize the cost of serving set V of request types (nodes)

Optimal solution: cost f(V) of the minimum spanning tree connecting V to the root r

Optimal solution: cost f(V) of the minimum spanning tree connecting V to the root r

Optimal solution: cost f(V) of the minimum spanning tree connecting V to the root r

Optimal solution: cost f(V) of the minimum spanning tree connecting V to the root r

Optimal solution: cost f(V) of the minimum spanning tree connecting V to the root r

Optimal solution: cost f(V) of the minimum spanning tree connecting V to the root r

Goal: find a node v which **subtree** is of size roughly \sqrt{n}

13/17

Goal: find a node v which **subtree** is of size roughly \sqrt{n}

< A > <

< 円

문 문 문

take the heaviest node $w \in K$

take the heaviest node w E K c(w) > c(k) 21 2. [m. c(w) > c(K)

take the heaviest node
$$\omega \in K$$

 $c(\omega) \geqslant \frac{c(k)}{2\sqrt{n}}$
 $2\sqrt{n} \cdot c(\omega) \geqslant c(k)$
assume: $c(P(v)) < c(k)$

Michał Pawłowski (IDEAS NCBR)

포⊁ 포

take the heaviest node
$$\omega \in K$$

 $c(\omega) \geqslant \frac{c(k)}{2\sqrt{n}}$
 $2\sqrt{n} \cdot c(\omega) \geqslant c(k)$
assume: $c(P(v)) < c(k)$
 $c(P(\omega)) \leqslant c(P(v)) + c(k)$

Michał Pawłowski (IDEAS NCBR)

æ

take the heaviest node
$$\omega \in K$$

 $c(\omega) \geqslant \frac{c(K)}{2\sqrt{n}}$
 $2\sqrt{n} \cdot c(\omega) \geqslant c(K)$
assume: $c(P(v)) < c(K)$
 $c(P(\omega)) \leqslant c(P(v)) + c(K)$
 $\leqslant 2c(K)$

Michał Pawłowski (IDEAS NCBR)

4/17

포⊁ 포

take	the	heavies	it node	. w E K
c	(し)		(K) 2 [n	
ູ	In ·	د(س))، ﴿	K)
assum	ne:	c (Pív	n) < a	. (K)
Ċ	(Pr	≽ ((س	c (Prv)) + c(K)
		\$ ¢	2 c (K)	
		\$	4 m ·	c(k)

æ

take	the	heaviest node v	ລ∈ K
	د (<i>س</i>)	$\frac{c(k)}{2(n)}$	
	25.	c(w) Z c(K)	
assu	me:	c (P(v)) < c (1	<i>د</i>)
	c(Pf	ω)) ≼ c(P[v)) +	+ c(K)
		< 2c(K)	
		< 4m · c(1	k)
thu	s: c	(P(v)) ≥ c(K)

< 円

문 문 문

Theorem (Multi-Level Aggregation)

For any MLA service function f, there exists a **disjoint** service function g that $O(\sqrt{n})$ -approximates f. It can be found in time **polynomial** with respect to the MLA instance defining f.

15/17

Theorem (Multi-Level Aggregation)

For any MLA service function f, there exists a **disjoint** service function g that $O(\sqrt{n})$ -approximates f. It can be found in time **polynomial** with respect to the MLA instance defining f.

Theorem (Multi-Level Aggregation)

For any MLA service function f, there exists a **disjoint** service function g that $O(\sqrt{n})$ -approximates f. It can be found in time **polynomial** with respect to the MLA instance defining f.

Our results

- we provide a **simpler, modular framework** that matches the competitive ratio established by Touitou for the same class of generalized JRP
- we obtain tight $O(\sqrt{n})$ -competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive JRP

Thank you!

Michał Pawłowski (IDEAS NCBR)

Non-Clairvoyant Subadditive JRP

▶ < ≣ ▶ < ≣ ▶ APPROX 2024

æ