Online Matchings with Delays and Stochastic Arrival Times

Michał Pawłowski

University of Warsaw, IDEAS NCBR

December 2, 2022

4 0 8

 QQ

online matchings with delays

∢ ロ ▶ ィ 伊

D ٠ D. \sim É

online matchings with delays

4 0 8

∢母

 \sim \sim É

stochastic model

> 4 0 F ∢母

online matchings with delays

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 2/23

 \mathbb{B} is

É

stochastic model

4 0 F

online matchings with delays

÷,

online matchings with delays

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 2/23

4 0 F

 \Rightarrow э

online matchings with delays

4 D F

Э× э

4 D F

 \Rightarrow э

Online chess gaming platforms

• players log into an online platform

É

 299

Kロト K個 K

 \mathcal{A} . Ξ

Online chess gaming platforms

• players log into an online platform

Þ \mathbf{p}

K ロ ▶ K 倒 ▶

÷,

Online chess gaming platforms

• players log into an online platform

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 3/23

÷

∢ ロ ▶ (伊)

÷,

Online chess gaming platforms

• players log into an online platform

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 3/23

◆ ロ ▶ → 何

÷,

Online chess gaming platforms

• players log into an online platform

Online chess gaming platforms

• players log into an **online** platform to be **paired** with each other

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game
- **•** player prefers to be paired with someone of **similar gaming skills**

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game
- **•** player prefers to be paired with someone of **similar gaming skills**

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game
- **•** player prefers to be paired with someone of **similar gaming skills**
- \bullet first measure: connection cost = experience gap

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game
- **•** player prefers to be paired with someone of **similar gaming skills**
- \bullet first measure: connection cost = experience gap
- player prefers to be **matched** as fast as possible

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game
- **•** player prefers to be paired with someone of **similar gaming skills**
- \bullet first measure: connection cost = experience gap
- player prefers to be **matched** as fast as possible
- \bullet second measure: **delay cost** = waiting time

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game
- **•** player prefers to be paired with someone of **similar gaming skills**
- \bullet first measure: connection cost = experience gap
- player prefers to be **matched** as fast as possible
- \bullet second measure: **delay cost** = waiting time

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game
- **•** player prefers to be paired with someone of **similar gaming skills**
- \bullet first measure: connection cost = experience gap
- player prefers to be **matched** as fast as possible
- \bullet second measure: **delay cost** = waiting time

Online chess gaming platforms

- **•** players log into an **online** platform to be **paired** with each other
- **•** matching should **maximize** the overall satisfaction from the game
- **•** player prefers to be paired with someone of **similar gaming skills**
- \bullet first measure: connection cost = experience gap
- player prefers to be **matched** as fast as possible
- \bullet second measure: **delay cost** = waiting time

optimal: $20 + 10 + 5 + 10 = 45$

◂**◻▸ ◂ਗ਼▸**

4 0 F

Þ

• metric space $\mathcal{M} = (\mathcal{X}, d)$ equipped with a distance function d

• metric space $\mathcal{M} = (\mathcal{X}, d)$ equipped with a distance function d

• *m* requests arriving at arbitrary times at points of X assume $2|m$

 Ω

- metric space $\mathcal{M} = (\mathcal{X}, d)$ equipped with a distance function d
- *m* requests arriving at arbitrary times at points of X assume $2|m$
- **e** each request r is characterized by its **location** $\ell(r) \in \mathcal{X}$ and **arrival time** $t(r) \in \mathbb{R}^+$

 Ω

- metric space $\mathcal{M} = (\mathcal{X}, d)$ equipped with a distance function d
- *m* requests arriving at arbitrary times at points of X assume $2|m$
- **e** each request r is characterized by its **location** $\ell(r) \in \mathcal{X}$ and **arrival time** $t(r) \in \mathbb{R}^+$
- when two requests r and r^\prime are ${\sf matched}$ into a pair at time $t \geq \max\{t(r), t(r')\}$, a connection cost of $d(\ell(r), \ell(r'))$ plus a delay cost $(t-t(r)) + (t-t(r'))$ is incurred

- **metric space** $\mathcal{M} = (\mathcal{X}, d)$ equipped with a distance function d
- *m* requests arriving at arbitrary times at points of X assume $2|m$
- **e** each request r is characterized by its **location** $\ell(r) \in \mathcal{X}$ and **arrival time** $t(r) \in \mathbb{R}^+$
- when two requests r and r^\prime are ${\sf matched}$ into a pair at time $t \geq \max\{t(r), t(r')\}$, a connection cost of $d(\ell(r), \ell(r'))$ plus a delay cost $(t-t(r)) + (t-t(r'))$ is incurred
- **•** the target is to **minimize the total cost** produced by the online algorithm for matching all the requests into pairs

4 D F

∍

known metric

4 0 8

∍

 QQ

known metric

• the current best competitiveness is $O(log n)$ (where *n* denotes the number of points in the metric) [Azar at al., SODA'17]

つひひ

known metric

- the current best competitiveness is $O(\log n)$ (where *n* denotes the number of points in the metric) [Azar at al., SODA'17]
- **o** no online algorithm can achieve competitive ratio better than $\Omega(\log n / \log \log n)$ [Ashlagi et al., APPROX/RANDOM'17]

 Ω

known metric

- the current best competitiveness is $O(log n)$ (where *n* denotes the number of points in the metric) [Azar at al., SODA'17]
- **o** no online algorithm can achieve competitive ratio **better than** $\Omega(\log n / \log \log n)$ [Ashlagi et al., APPROX/RANDOM'17]

unknown metric

つへへ

known metric

- the current best competitiveness is $O(\log n)$ (where *n* denotes the number of points in the metric) [Azar at al., SODA'17]
- **o** no online algorithm can achieve competitive ratio **better than** $\Omega(\log n / \log \log n)$ [Ashlagi et al., APPROX/RANDOM'17]

unknown metric

the **current best** competitiveness is $O(m^{\log \frac{3}{2} + \varepsilon})$ (with $\varepsilon > 0$ arbitrarily small) [Azar et al., TOCS'20]

つひひ

• for many applications it is too pessimistic to assume that no stochastic information on the input is available
- **•** for many applications it is **too pessimistic** to assume that no stochastic information on the input is available
- o online gaming platform has all the **historical data** and can **estimate** the arrival frequency of the players with each particular skill level

 Ω

- **•** for many applications it is **too pessimistic** to assume that no stochastic information on the input is available
- o online gaming platform has all the **historical data** and can **estimate** the arrival frequency of the players with each particular skill level
- we can assume that requests follow a stochastic distribution

つひひ

- **•** for many applications it is **too pessimistic** to assume that no stochastic information on the input is available
- o online gaming platform has all the **historical data** and can **estimate** the arrival frequency of the players with each particular skill level
- we can assume that requests follow a stochastic distribution

Poisson arrival process

つひい

- **•** for many applications it is **too pessimistic** to assume that no stochastic information on the input is available
- o online gaming platform has all the **historical data** and can **estimate** the arrival frequency of the players with each particular skill level
- we can assume that requests follow a stochastic distribution

Poisson arrival process

• waiting time between any two consecutive requests arriving at any metrical point x follows an **exponential distribution** $Exp(\lambda_x)$

 Ω

- **•** for many applications it is **too pessimistic** to assume that no stochastic information on the input is available
- o online gaming platform has all the **historical data** and can **estimate** the arrival frequency of the players with each particular skill level
- we can assume that requests follow a stochastic distribution

Poisson arrival process

• waiting time between any two consecutive requests arriving at any metrical point x follows an **exponential distribution** $Exp(\lambda_x)$ (we will refer to this model as distributed Poisson arrival model)

 Ω

Ratio of expectations

4 0 8

∢母

÷,

Ratio of expectations

Ratio of expectations

Algorithm ALG for MPMD has a ratio-of-expectations $C > 1$, if

lim m→∞ $\mathbb{E}_{\sigma}^{m}[\text{ALG}(\sigma)]$ $\frac{\mathbb{E}_{\sigma}\left[\text{PISG}(S)\right]}{\mathbb{E}_{\sigma}^{m}[\text{OPT}(\sigma)]} \leq C$

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 7/23

 \overline{CD} 4 周 $\rightarrow t_{x}$

· · ·

Ratio of expectations

Ratio of expectations

Algorithm ALG for MPMD has a ratio-of-expectations $C > 1$, if

lim m→∞ $\mathbb{E}_{\sigma}^{m}[\text{ALG}(\sigma)]$ $\frac{\mathbb{E}_{\sigma}\left[\mathrm{P}\mathrm{H}\right]\mathrm{C}(\sigma)}{\mathbb{E}_{\sigma}^{m}[\mathrm{OPT}(\sigma)]}\leq C,$

where $\mathbb{E}^{m}_{\sigma}[\text{ALG}(\sigma)]$ (resp. $\mathbb{E}^{m}_{\sigma}[\text{OPT}(\sigma)])$ denotes the $\bm{\text{expected cost}}$ generated by ALG (resp. an **optimal offline solution**) on the **random request sequence** σ , $|\sigma| = m$, generated by the Poisson arrival process.

← ロ ▶ → イ 何 ▶

Memoryless property

If X is an exponential variable with parameter λ , then for all $s, t \geq 0$, we have

$$
\mathbb{P}\left(X>s+t\mid X>s\right)=\mathbb{P}(X>t)=e^{-\lambda t}.
$$

4 0 8

 Ω

Memoryless property

If X is an exponential variable with parameter λ , then for all $s, t \geq 0$, we have

$$
\mathbb{P}\left(X>s+t\mid X>s\right)=\mathbb{P}(X>t)=e^{-\lambda t}.
$$

Minimum of exponential variables

Given *n* independent exponential variables $X_i \sim \text{Exp}(\lambda_i)$ for $1 \le i \le n$, let $Z:=\mathsf{min}\{X_1,X_2,\ldots,X_n\}$ and let $\lambda:=\sum_{i=1}^n\lambda_i.$ It holds that

$$
Z \sim \text{Exp}(\lambda), \qquad \mathbb{P}(Z = X_i) = \lambda_i/\lambda, \qquad Z \perp \{Z = X_i\},
$$

where \perp denotes independence.

Distributed Poisson arrival model $=$ timers without resets

э. **IN**

4 0 F

 299

Þ

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 10/23

Timers with resets

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 11/23

4 **D F** ∢●● Э× Þ

Timers with resets $=$ centralized Poisson arrival model

4 **D F**

 299

Þ

distributed version

• waiting time between any two consecutive requests arriving at any **metrical point** x follows an exponential distribution $Exp(\lambda_x)$

centralized version

- waiting time between any two consecutive requests in the given metric space follows an exponential distribution with parameter $\lambda(\mathcal{X}) := \sum_{\mathsf{x} \in \mathcal{X}} \lambda_{\mathsf{x}}$
- **e** each time a request arrives, the probability of it appearing at point x equals $\lambda_x/\lambda(\mathcal{X})$

Lower bounding the optimal solution

• for a given sequence σ of requests denote the minimum total cost of r in σ as

$$
c(\sigma,r):=\min_{r'\in\sigma,r'\neq r}\big\{d(\ell(r),\ell(r'))+|t(r)-t(r')|\big\}
$$

Lower bounding the optimal solution

• for a given sequence σ of requests denote the **minimum total cost** of r in σ as

$$
c(\sigma,r):=\min_{r'\in\sigma,r'\neq r}\big\{d(\ell(r),\ell(r'))+|t(r)-t(r')|\big\}
$$

• given a pair of requests (r_1, r_2) paired by the OPT we have that $c(\sigma, r_i) \leq d(\ell(r_1), \ell(r_2)) + |t(r_1) - t(r_2)|$ for $i \in \{1, 2\}$

Lower bounding the optimal solution

• for a given sequence σ of requests denote the minimum total cost of r in σ as

$$
c(\sigma,r):=\min_{r'\in\sigma,r'\neq r}\big\{d(\ell(r),\ell(r'))+|t(r)-t(r')|\big\}
$$

- given a pair of requests (r_1, r_2) paired by the OPT we have that $c(\sigma, r_i) \leq d(\ell(r_1), \ell(r_2)) + |t(r_1) - t(r_2)|$ for $i \in \{1, 2\}$
- for any input sequence σ it holds that

$$
\mathrm{OPT}(\sigma) \geq \frac{1}{2} \sum_{r \in \sigma} c(\sigma, r)
$$

• we want to lower bound

$$
\mathbb{E}_{\sigma}^{m}\left[\frac{1}{2}\sum_{i=1}^{m}c(\sigma,r_{i})\right]
$$

4 0 F

Þ

• we want to **lower bound**

$$
\mathbb{E}_{\sigma}^{m}\left[\frac{1}{2}\sum_{i=1}^{m}c(\sigma,r_{i})\right]
$$

o by the **linearity of expectation**, it suffices to estimate

 \mathbb{E}^m_σ [c(σ , r_i)]

• we want to **lower bound**

$$
\mathbb{E}_{\sigma}^{m}\left[\frac{1}{2}\sum_{i=1}^{m}c(\sigma,r_{i})\right]
$$

o by the linearity of expectation, it suffices to estimate

 \mathbb{E}^m_σ [c(σ , r_i)]

• the definition of the centralized Poisson arrival model allows us to focus on bounding

$$
\mathbb{E}_{\sigma}^{m}[c(\sigma,r_{i})\mid \ell(r_{i})=x]
$$

 Ω

• we want to lower bound

$$
\mathbb{E}_{\sigma}^{m}\left[\frac{1}{2}\sum_{i=1}^{m}c(\sigma,r_{i})\right]
$$

o by the **linearity of expectation**, it suffices to estimate

$$
\mathbb{E}_{\sigma}^{m}\left[c(\sigma,r_{i})\right]=\sum_{x\in\mathcal{X}}\mathbb{P}_{\sigma}(\ell(r_{i})=x)\cdot\mathbb{E}_{\sigma}^{m}\left[c(\sigma,r_{i})\mid\ell(r_{i})=x\right]
$$

• the definition of the centralized Poisson arrival model allows us to focus on bounding

$$
\mathbb{E}_{\sigma}^{m}[c(\sigma,r_{i})\mid \ell(r_{i})=x]
$$

 Ω

← ロ → → ← 何 →

э

医毛囊 医牙骨下的

G.

イロト イ母 トイヨ トイヨ トー

Radius definition — part 1

Finding a trade-off between distance and delay cost

◂**◻▸ ◂◚▸**

э

医单侧 医单侧

Radius definition — part 1

Finding a trade-off between distance and delay cost

◂**◻▸ ◂◚▸**

э

ヨメ メヨメ

Radius definition — part 1

Finding a trade-off between distance and delay cost

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 15/23

重

イロト イ母 トイヨ トイヨ トー

イロト イ押ト イヨト イヨト

 299

重

Arrival distribution for a subset

э

 \mathcal{A} .

⋍ \mathbf{b}

4 0 F ∢母

Arrival distribution for a subset

Michał Pawłowski (MIMUW, IDEAS) [Stochastic MPMD](#page-0-0) December 2, 2022 16/23

4 **D F**

э D. 299

イロト イ押ト イヨト イヨト

 299
Finding a trade-off between distance and delay cost

イロト イ押ト イヨト イヨト

 299

э

Finding a trade-off between distance and delay cost

イロト イ押ト イヨト イヨト

 299

э

Finding a trade-off between distance and delay cost

イロト イ押ト イヨト イヨト

 299

э

given a request r_i from the sequence σ , we want to lower bound

$$
c(\sigma,r_i):=\min_{r'\in\sigma,r'\neq r_i}\big\{d(\ell(r_i),\ell(r'))+|t(r_i)-t(r')|\big\}
$$

 Ω

given a request r_i from the sequence σ , we want to lower bound

$$
c(\sigma,r_i):=\min_{r'\in\sigma,r'\neq r_i}\big\{d(\ell(r_i),\ell(r'))+|t(r_i)-t(r')|\big\}
$$

• we condition on $\ell(r_i) = x$ and define ρ_x to be the **radius** for x

 Ω

given a request r_i from the sequence σ , we want to lower bound

$$
c(\sigma,r_i):=\min_{r'\in\sigma,r'\neq r_i}\big\{d(\ell(r_i),\ell(r'))+|t(r_i)-t(r')|\big\}
$$

• we condition on $\ell(r_i) = x$ and define ρ_x to be the **radius** for x

• notice that r_i can be matched either with a request arriving **before**, or with a request arriving **after** its arrival time $t(r_i)$

given a request r_i from the sequence σ , we want to lower bound

$$
c(\sigma,r_i):=\min_{r'\in\sigma,r'\neq r_i}\big\{d(\ell(r_i),\ell(r'))+|t(r_i)-t(r')|\big\}
$$

• we condition on $\ell(r_i) = x$ and define ρ_x to be the **radius** for x

- notice that r_i can be matched either with a request arriving **before**, or with a request arriving **after** its arrival time $t(r_i)$
- then OPT pays the minimum of three costs:

given a request r_i from the sequence σ , we want to lower bound

$$
c(\sigma,r_i):=\min_{r'\in\sigma,r'\neq r_i}\big\{d(\ell(r_i),\ell(r'))+|t(r_i)-t(r')|\big\}
$$

• we condition on $\ell(r_i) = x$ and define ρ_x to be the **radius** for x

- notice that r_i can be matched either with a request arriving **before**, or with a request arriving **after** its arrival time $t(r_i)$
- then OPT pays the minimum of three costs:
	- waiting time of the previous request generated within distance $\rho_{\mathbf{x}}$

given a request r_i from the sequence σ , we want to lower bound

$$
c(\sigma,r_i):=\min_{r'\in\sigma,r'\neq r_i}\big\{d(\ell(r_i),\ell(r'))+|t(r_i)-t(r')|\big\}
$$

• we condition on $\ell(r_i) = x$ and define ρ_x to be the **radius** for x

- notice that r_i can be matched either with a request arriving **before**, or with a request arriving **after** its arrival time $t(r_i)$
- then OPT pays the minimum of three costs:
	- waiting time of the previous request generated within distance ρ_x
	- waiting time for the next request generated within distance $\rho_{\mathbf{x}}$

given a request r_i from the sequence σ , we want to lower bound

$$
c(\sigma,r_i):=\min_{r'\in\sigma,r'\neq r_i}\big\{d(\ell(r_i),\ell(r'))+|t(r_i)-t(r')|\big\}
$$

• we condition on $\ell(r_i) = x$ and define ρ_x to be the **radius** for x

- notice that r_i can be matched either with a request arriving **before**, or with a request arriving **after** its arrival time $t(r_i)$
- then OPT pays the minimum of three costs:
	- waiting time of the previous request generated within distance $\rho_{\mathbf{x}}$
	- waiting time for the next request generated within distance $\rho_{\mathbf{x}}$
	- distance to a request generated outside of $\rho_{\mathbf{x}}$ -circle

given a request r_i from the sequence σ , we want to lower bound

$$
c(\sigma,r_i):=\min_{r'\in\sigma,r'\neq r_i}\big\{d(\ell(r_i),\ell(r'))+|t(r_i)-t(r')|\big\}
$$

• we condition on $\ell(r_i) = x$ and define ρ_x to be the **radius** for x

- notice that r_i can be matched either with a request arriving **before**, or with a request arriving **after** its arrival time $t(r_i)$
- then OPT pays the minimum of three costs:
	- waiting time of the previous request generated within distance $\rho_{\mathbf{x}}$
	- waiting time for the next request generated within distance $\rho_{\mathbf{x}}$
	- distance to a request generated outside of $\rho_{\mathbf{x}}$ -circle

• hence, it holds

$$
c(\sigma, r_i) \geq \min (W_{prev}, W_{next}, \rho_X)
$$

• we have that W_{prev} and W_{next} are **independent** and follow the same distribution $Exp(1/\rho_X)$

4 0 8

- we have that W_{prev} and W_{next} are independent and follow the same distribution $Exp(1/\rho_X)$
- one can calculate that

$$
\mathbb{E}_{\sigma}^{m}[c(\sigma,r_{i}) \mid \ell(r_{i}) = x] \geq \mathbb{E}_{\sigma}^{m}[\min{(W_{prev}, W_{next}, \rho_{x})}] = \frac{1-e^{-2}}{2}\rho_{x}
$$

- we have that W_{prev} and W_{next} are **independent** and follow the same distribution $Exp(1/\rho_X)$
- one can calculate that

$$
\mathbb{E}_{\sigma}^{m}[c(\sigma,r_{i}) | \ell(r_{i})=x] \geq \mathbb{E}_{\sigma}^{m}[\min{(W_{prev}, W_{next}, \rho_{x})}]=\frac{1-e^{-2}}{2}\rho_{x}
$$

it is enough to upper bound $\mathbb{E}_{\sigma}^{m}[ALG(\sigma,r_{i})\mid \ell(r_{i})=x]$ by some $C\cdot \rho_{x}$

at any time t if there exist pending requests r, r^\prime such that $\left(t-t(r)\right)+\left(t-t(r^{\prime})\right) \geq d(\ell(r),\ell(r^{\prime})),$ match them into a pair with ties broken arbitrarily

at any time t if there exist pending requests r, r^\prime such that $\left(t-t(r)\right)+\left(t-t(r^{\prime})\right) \geq d(\ell(r),\ell(r^{\prime})),$ match them into a pair with ties broken arbitrarily

Analysis sketch

• total cost generated by ALG is at most twice its delay cost

at any time t if there exist pending requests r, r^\prime such that $\left(t-t(r)\right)+\left(t-t(r^{\prime})\right) \geq d(\ell(r),\ell(r^{\prime})),$ match them into a pair with ties broken arbitrarily

Analysis sketch

- **total cost** generated by ALG is at most twice its delay cost
- \bullet for a request r_i arriving at x the expected waiting time to be matched by ALG is at most $\rho_x + \mathbb{E}[W_{next}] = 2\rho_x$

つへへ

at any time t if there exist pending requests r, r^\prime such that $\left(t-t(r)\right)+\left(t-t(r^{\prime})\right) \geq d(\ell(r),\ell(r^{\prime})),$ match them into a pair with ties broken arbitrarily

Analysis sketch

- **total cost** generated by ALG is at most twice its delay cost
- \bullet for a request r_i arriving at x the expected waiting time to be matched by ALG is at most $\rho_x + \mathbb{E}[W_{next}] = 2\rho_x$
- hence, the total cost of serving r_i does not exceed $4\rho_x$

1 second algorithm achieving a **better ratio** of expectations

4 D F

э

- **1** second algorithm achieving a **better ratio** of expectations
- 2 analysis for a **general delay cost** described by an arbitrary positive and non-decreasing function

 Ω

- **1** second algorithm achieving a **better ratio** of expectations
- 2 analysis for a **general delay cost** described by an arbitrary positive and non-decreasing function
- **3** variant with **penalties** to clear pending requests

 Ω

4 D F

Þ

- **1** can we generalize this result to work for the bipartite case?
- \bullet is there a constant competitive algorithm for matching *k*-tuples?

4 0 8

- **1** can we generalize this result to work for the bipartite case?
- **2** is there a constant competitive algorithm for matching k-tuples?
- **3** how to define and analyse similar problems (Facility Location, Online Service, Multi-Level Aggregation) in the stochastic environment?

Thank you!

D ٠ D. 重