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Motivation

Online chess gaming platforms

players log into an online platform

to be paired with each other

matching should maximize the overall satisfaction from the game

player prefers to be paired with someone of similar gaming skills

first measure: connection cost = experience gap

player prefers to be matched as fast as possible

second measure: delay cost = waiting time

Alice

l = 100
t = 10

BP

Bob

l = 50
t = 20

BP

Bob

l = 50
t = 20

Carol

l = 60
t = 25

Carol

l = 60
t = 25

Dave

l = 110
t = 30

optimal:

20 + 10 + 5 + 10 = 45
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Problem statement

Min-cost Perfect Matching with Delays

metric space M = (X , d) equipped with a distance function d

m requests arriving at arbitrary times at points of X assume 2|m
each request r is characterized by its location ℓ(r) ∈ X
and arrival time t(r) ∈ R+

when two requests r and r ′ are matched into a pair at time
t ≥ max{t(r), t(r ′)}, a connection cost of d(ℓ(r), ℓ(r ′)) plus
a delay cost (t − t(r)) + (t − t(r ′)) is incurred

the target is to minimize the total cost produced by the online
algorithm for matching all the requests into pairs
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Adversarial model

adversary determines the arrival times and locations of requests

known metric

the current best competitiveness is O(log n) (where n denotes the
number of points in the metric) [Azar at al., SODA’17]

no online algorithm can achieve competitive ratio better than
Ω(log n/ log log n) [Ashlagi et al., APPROX/RANDOM’17]

unknown metric

the current best competitiveness is O(mlog 3
2

+ε) (with ε > 0
arbitrarily small) [Azar et al., TOCS’20]
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Stochastic model

for many applications it is too pessimistic to assume that
no stochastic information on the input is available

online gaming platform has all the historical data and can estimate
the arrival frequency of the players with each particular skill level

we can assume that requests follow a stochastic distribution

Poisson arrival process

waiting time between any two consecutive requests arriving at any
metrical point x follows an exponential distribution Exp(λx)

(we will refer to this model as distributed Poisson arrival model)
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Ratio of expectations

Distributed Poisson arrival model

x

y

z

tx
Y 1
x Y 2

x
· · ·

ty
Y 1
y · · ·

tz
Y 1
z Y 2

z
· · ·

Ratio of expectations

Algorithm ALG for MPMD has a ratio-of-expectations C ≥ 1, if

lim
m→∞

Em
σ [ALG(σ)]

Em
σ [OPT(σ)]

≤ C

,

where Em
σ [ALG(σ)] (resp. Em

σ [OPT(σ)]) denotes the expected cost
generated by ALG (resp. an optimal offline solution) on the random
request sequence σ, |σ| = m, generated by the Poisson arrival process.
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Exponential variables recap

Memoryless property

If X is an exponential variable with parameter λ, then for all s, t ≥ 0, we
have

P (X > s + t | X > s) = P(X > t) = e−λt .

Minimum of exponential variables

Given n independent exponential variables Xi ∼ Exp(λi ) for 1 ≤ i ≤ n, let
Z := min{X1,X2, . . . ,Xn} and let λ :=

∑n
i=1 λi . It holds that

Z ∼ Exp(λ), P(Z = Xi ) = λi/λ, Z ⊥ {Z = Xi},

where ⊥ denotes independence.
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Alternative arrival models — part 1

Distributed Poisson arrival model

= timers without resets

x

y

z

tx
Y 1
x Y 2

x
· · ·

ty
Y 1
y · · ·

tz
Y 1
z Y 2

z
· · ·

x

y

z

tx
T x,0
x T x,1

x
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Alternative arrival models — part 2

Timers without resets

= timers with resets
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Alternative arrival models — part 3

Timers with resets

= centralized Poisson arrival model
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Poisson arrival process

distributed version

waiting time between any two consecutive requests arriving at any
metrical point x follows an exponential distribution Exp(λx)

centralized version

waiting time between any two consecutive requests in the given
metric space follows an exponential distribution with parameter
λ(X ) :=

∑
x∈X λx

each time a request arrives, the probability of it appearing at
point x equals λx/λ(X )
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Lower bounding the optimal solution

for a given sequence σ of requests denote the minimum total cost
of r in σ as

c(σ, r) := min
r ′∈σ,r ′ ̸=r

{
d(ℓ(r), ℓ(r ′)) + |t(r) − t(r ′)|

}

given a pair of requests (r1, r2) paired by the OPT we have that
c(σ, ri ) ≤ d(ℓ(r1), ℓ(r2)) + |t(r1) − t(r2)| for i ∈ {1, 2}

for any input sequence σ it holds that

OPT(σ) ≥ 1

2

∑
r∈σ

c(σ, r)
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Minimum total cost of a request

we want to lower bound

Em
σ

[
1

2

m∑
i=1

c(σ, ri )

]

by the linearity of expectation, it suffices to estimate

Em
σ [c(σ, ri )]

the definition of the centralized Poisson arrival model allows us to
focus on bounding

Em
σ [c(σ, ri ) | ℓ(ri ) = x ]

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD December 2, 2022 14 / 23



Minimum total cost of a request

we want to lower bound

Em
σ

[
1

2

m∑
i=1

c(σ, ri )

]

by the linearity of expectation, it suffices to estimate

Em
σ [c(σ, ri )]

the definition of the centralized Poisson arrival model allows us to
focus on bounding

Em
σ [c(σ, ri ) | ℓ(ri ) = x ]

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD December 2, 2022 14 / 23



Minimum total cost of a request

we want to lower bound

Em
σ

[
1

2

m∑
i=1

c(σ, ri )

]

by the linearity of expectation, it suffices to estimate

Em
σ [c(σ, ri )]

the definition of the centralized Poisson arrival model allows us to
focus on bounding

Em
σ [c(σ, ri ) | ℓ(ri ) = x ]

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD December 2, 2022 14 / 23



Minimum total cost of a request

we want to lower bound

Em
σ

[
1

2

m∑
i=1

c(σ, ri )

]

by the linearity of expectation, it suffices to estimate

Em
σ [c(σ, ri )] =

∑
x∈X

Pσ(ℓ(ri ) = x) · Em
σ [c(σ, ri ) | ℓ(ri ) = x ]

the definition of the centralized Poisson arrival model allows us to
focus on bounding

Em
σ [c(σ, ri ) | ℓ(ri ) = x ]

Micha l Paw lowski (MIMUW, IDEAS) Stochastic MPMD December 2, 2022 14 / 23



Radius definition — part 1

Finding a trade-off between distance and delay cost

metric space and stochastic parameters
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Radius definition — part 2

Arrival distribution for a subset
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Radius definition — part 3

Finding a trade-off between distance and delay cost

metric space and stochastic parameters
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Bounding the minimum total cost of a request

given a request ri from the sequence σ, we want to lower bound

c(σ, ri ) := min
r ′∈σ,r ′ ̸=ri

{
d(ℓ(ri ), ℓ(r

′)) + |t(ri ) − t(r ′)|
}

we condition on ℓ(ri ) = x and define ρx to be the radius for x

notice that ri can be matched either with a request arriving before,
or with a request arriving after its arrival time t(ri )

then OPT pays the minimum of three costs:

waiting time of the previous request generated within distance ρx
waiting time for the next request generated within distance ρx
distance to a request generated outside of ρx -circle

hence, it holds

c(σ, ri ) ≥ min (Wprev ,Wnext , ρx)
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hence, it holds

c(σ, ri ) ≥ min (Wprev ,Wnext , ρx)
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Taking the expectation

we have that Wprev and Wnext are independent and follow
the same distribution Exp(1/ρx)

one can calculate that

Em
σ [c(σ, ri ) | ℓ(ri ) = x ] ≥ Em

σ [min (Wprev ,Wnext , ρx)] =
1 − e−2

2
ρx

it is enough to upper bound Em
σ [ALG (σ, ri ) | ℓ(ri ) = x ] by some C · ρx
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Greedy algorithm

Greedy algorithm ALG

at any time t if there exist pending requests r, r ′ such that
(t − t(r)) + (t − t(r ′)) ≥ d(ℓ(r), ℓ(r ′)), match them
into a pair with ties broken arbitrarily

Analysis sketch

total cost generated by ALG is at most twice its delay cost

for a request ri arriving at x the expected waiting time to be
matched by ALG is at most ρx + E[Wnext ] = 2ρx

hence, the total cost of serving ri does not exceed 4ρx
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Other results

1 second algorithm achieving a better ratio of expectations

2 analysis for a general delay cost described by an arbitrary
positive and non-decreasing function

3 variant with penalties to clear pending requests
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Open problems

1 can we generalize this result to work for the bipartite case?

2 is there a constant competitive algorithm for matching k-tuples?

3 how to define and analyse similar problems (Facility Location, Online
Service, Multi-Level Aggregation) in the stochastic environment?
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Thank you!
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