Multi-Level Aggregation with Delays and Stochastic Arrivals

Mathieu Mari, **Michał Pawłowski**, Runtian Ren, Piotr Sankowski

Imagine a factory that needs to **schedule product deliveries** (services) to keep the cooperating shops running. Once a product is in **shortage** for a shop owner (agent), they inform the factory for **replenishment** (send a request). Each time the factory **schedules a service** to deliver some products, a **truck has to travel** from the factory to the locations of chosen agents. This incurs a cost proportional to the total travelling distance (we call it the service cost). Thus, to save on the delivery costs, it is beneficial to **accumulate** the replenishment **requests** from many stores and then deliver the ordered products altogether in one service. However, this **accumulated delay** in delivering the products may cause some agents **unsatisfied**. Typically, we measure this factor by looking at the **time gap between ordering and delivering** each requested product (and call it the delay cost of this request). example a product is in
the factory for reply
schedules a service
or exploration the factory to the
or exploration of the tots
hus, to save on the del
blenishment requests
roducts altogether in c
delivering the products
we

Keywords: **online algorithms, multi-level aggregation, online network design, Poisson arrivals**

Motivation

- **Multi-Level Aggregation (MLA) with Delays** [2]
- \blacktriangleright **edge-weighted** tree *T* rooted at γ
-
- \blacktriangleright efficient when requests are frequent enough $\rightarrow w > 1/\lambda$
- ▶ we choose the period such that the expected delay cost generated by all the requests arriving within $[0, p]$ equals *w*, i.e., $p = \sqrt{2w/\lambda}$

- \blacktriangleright *V* represents the set of *T*'s nodes, $n := |V|$
- \blacktriangleright sequence σ of m **requests arriving online**
- \blacktriangleright request *r*: **location** $\ell(r) \in V$, arrival time $t(r) \in \mathbb{R}^+$
- \triangleright service *s* issued at time *t* to serve a set *R* of requests incurs the **delay cost** of $\sum_{r \in R} (t - t(r))$ and the **service cost** being the weight of the minimum spanning tree containing all locations $\ell(r)$ for $r \in R$ **Target: minimize the total cost** produced by the online algorithm for
	- serving all the arriving requests

Assumption: the **waiting time** between any two consecutive requests arriving at any node *u* **follows an exponential distribution** $\text{Exp}(\lambda_u)$ with parameter $\lambda_u \geq 0$

Goal: plan the delivery schedule in an online manner such that the total service cost and the total delay cost are minimized

Problem statement

- \blacktriangleright *T* has only **one edge** (u, γ) of weight *w*
- \blacktriangleright denote the arrival rate of *u* by $\lambda \rightarrow$ and consider **two strategies**
- **Instant strategy:** serve each request as soon as it arrives
- \blacktriangleright efficient when the requests are **not so frequent** $\rightarrow w \leq 1/\lambda$
- **Periodic strategy**: group several requests arriving within a selected **period** *p* and **serve them together**

UNIVERSITY OF WARSAW

- \triangleright **instant** strategy \rightarrow trees for which the **average node-root distance**, weighted by the arrival rates, **is small**er than the expected waiting time between two consecutive requests arrivals
- \triangleright periodic strategy \rightarrow trees for which each edge satisfies the single**edge case condition**; here, we use an edge-saturation-based process to assign each node its period

Previous results

- \blacktriangleright in **adversarial model** $\rightarrow O(d^2)$ -competitive [1]
- **any algorithm** in this model $\rightarrow \Omega(2 + \phi)$ -competitive [3]
- \triangleright offline problem is NP-hard, 2-approximation exists
- ▶ some of the nodes located **close to the root** should be served using **instant** strategy
- **If** for the remaining ones, we need to **transform the tree** they form into a corresponding **heavy tree** and assign periods accordingly

Beyond worst-case

Our main result

Theorem. *For MLA with delays in the Poisson arrival model, there exists an algorithm with a constant ratio-of-expectations.*

Single-edge case

Extending to more complex trees

General trees

Bibliography

- [1] Yossi Azar and Noam Touitou. General framework for metric optimization problems with delay or with deadlines. In *Proc. FOCS*, pages 60–71, 2019.
- [2] Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš Folwarcznỳ, Łukasz Jeż, Jiří Sgall, Nguyen Kim Thang, and Pavel Vesely. Online algorithms for multi-level aggregation. In ` *Proc. ESA*, 2016.
- [3] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Łukasz Jeż, Jiří Sgall, and Grzegorz Stachowiak. Online control message aggregation in chain networks. In *Proc. WADS*, pages 133–145, 2013.

- \blacktriangleright the factory needs to **minimize the expected cost** it produces when dealing with a random input sequence of requests arriving over some time horizon τ for large τ
- \blacktriangleright to evaluate the performance of any algorithm A on stochastic input, we use the **ratio-of-expectations** \rightarrow the ratio of the expected costs of A and the optimal offline solution (OPT)

Contact: Michał Pawłowski michal.pawlowski@ideas-ncbr.pl