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Motivation

Imagine an online chess gaming platform that wants to maximize
the overall satisfaction of the game for its users. Two main factors
contribute to this — for each pair of players, we need to look at
▶ the experience difference (the smaller, the better)

▶ the waiting time to start a game (the shorter, the better).
Problem: each of these parameters needs to be minimized at the ex-
pense of the other. For example, finding an opponent with a similar
level of experience results in a longer waiting time. Thus, the question
arises of how to balance these two parameters.
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In the figure above, e and t represent the experience level and arrival
time, respectively. If we decided to match the players immediatelly (Alice
with Bob, Carol with Dave), we would generate a total cost (e and t dif-
ferences) of 115. However, if we postponed our decisions and matched
Bob with Carol (and Alice with Dave), we would generate a cost of 45.

Problem statement

Min-Cost Perfect Matching with Delays (MPMD) [3]

▶ m requests, each representing an independent player/agent

▶ they arrive at arbitrary times in a metric space M = (X , d)

▶ the metric is equipped with a distance function d

▶ m is an even integer, and X is a set of n points in M
▶ request r: location ℓ(r) ∈ X , arrival time t(r) ∈ R+

▶ matching r and r′ at time t ≥ max{t(r), t(r′)} inquiries:

connection cost d(ℓ(r), ℓ(r′)) and delay cost (t− t(r))+ (t− t(r′))

Target: minimize the total cost produced by the online algorithm for
matching all the requests into pairs

Previous results

Approach: match two requests whenever their total delay cost ex-
ceeds the connection cost (balanced greedy, ALG).

Input: a sequence σ of requests.
Output: a perfect matching of the requests.
for any time t do
if there exist pending requests r, r′ such that
(t− t(r)) + (t− t(r′)) ≥ d(ℓ(r), ℓ(r′)) then
match them into a pair with ties broken arbitrarily.

▶ greedy in adversarial model → O(mlog(1.5+ε))-competitive [2]

▶ any algorithm in this model → Ω(log n/ log log n)-competitive [1]

Beyond worst-case

Assumption: the waiting time between any two consecutive requests
arriving at any metrical point x, follows an exponential
distribution Exp(λx) with parameter λx ≥ 0

▶ the platform needs to minimize the expected cost it produces
when dealing with a random input sequence of m requests

▶ to evaluate the performance of any algorithm A on stochastic input,
we use the ratio-of-expectations → the ratio of the expected costs
of A and the optimal offline solution (OPT)

Our main result

Theorem 1 For MPMD in the Poisson arrival model, the balanced greedy
algorithm achieves a constant ratio-of-expectations.

Arrival models

We use two equivalent models of stochastic arrivals:

▶ look at each metric point independently

▶ use a centralized approach → a single process specifies request
arrivals in the whole metric (one variable determining waiting time)
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Balanced radius notion

To estimate the costs of our greedy algorithm and the optimal one, we
introduce a balanced radius. For any given point x, we compute a ra-
dius ρx such that the expected waiting time between two consecutive
arrivals located in the ball of radius ρx centred at x is equal to ρx.

metric space and stochastic parameters
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With the use of both arrival models and the balanced radius, we can
show that the expected cost of serving a request arriving at x is upper-
bounded by c1ρx for ALG and lower-bounded by c2ρx for OPT, where
c1 and c2 are some specific constants.
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Generalizations and future directions

It is worth noting that the greedy algorithm doesn’t require upfront
knowledge of the metric space and stochastic parameters (it is non-
clairvoyant). In case we have this knowledge, we provide another
algorithm that achieves a two times better competitiveness ratio.
In our work, we also extend the results to the case where:

▶ the delay cost corresponds to an arbitrary positive and non-
decreasing function of the waiting time

▶ the platform can pay a penalty cost to clear some requests

Future directions would be to study similar online problems, such as
k-way MPMD, multi-level aggregation, online service or facility lo-
cation with delays and stochastic arrival times.
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