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ABSTRACT
Pricing strategies in ride-hailing platforms present complex opti-

mization challenges, attracting considerable research attention in

computer science. Hikima et al. (AAAI 2021) introduced a model for

this problem and achieved a 1/3-approximation for maximizing plat-

form profit. This was later improved to a (1−1/𝑒)-approximation by

Brubach et al. (NeurIPS 2022). In this paper, we extend the problem

to a more general and realistic setting.

Firstly, we consider an online stochastic model where customer

requests arrive sequentially in a random order. This better reflects

real-world scenarios than the offline assumption of known requests.

Secondly, we frame the problem within the context of mechanism

design, allowing us to benchmark our algorithm against the optimal

Bayesian mechanism rather than the more restrictive posted-price

mechanisms used in prior work.

Our main contributions include developing a (1 − 1/𝑒)-approxi-
mation algorithm under these generalized settings, which we regard

as stronger due to the comparison with a more powerful bench-

mark. The key technical innovation is a novel rounding procedure

for fractional matchings. This allows us to devise a new Contention

Resolution Scheme (CRS) for transversal matroids, leading to im-

proved approximation guarantees for posted-price mechanisms

in combinatorial environments. Specifically, we enhance the ratio

from the previous 1/(𝑘 + 1) to (1 − 𝑒−𝑘 )/𝑘 for the intersection of 𝑘

transversal matroids.
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1 INTRODUCTION
In the past decade, digital platforms have changed the way users

access services across many aspects of daily life. Among these,

ride-hailing services such as Uber, LYFT, and Bolt have seen rapid

growth, reshaping urban mobility. However, the unique demands of
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this industry often result in a larger number of metrics to optimize,

alongwith greater complexity of the associated problems, compared

to many other service-based platforms. Solving these challenges re-

quires advanced methods from computational economics, machine

learning, artificial intelligence, and combinatorial optimization. In

this paper, we explore the model of dynamic client-to-cab matching

for maximizing platform profit, as introduced by Hikima et al. [13],

and build upon it to address key challenges within this area.

1.1 The Model of Hikima et al.
Consider how a typical ride-hailing application operates:

• A client opens the app on their phone, selects their destina-

tion, and may provide some additional details if needed;

• After some time between seconds and a minute, the client

gets a proposed price for the chosen fare;

• The client then decides whether to accept or reject the offer;

• If the offer is accepted, the client waits for either an assign-

ment to a cab or a notification that no cab is available.

But how does this process look like from the perspective of the

ride-hailing provider?

• Every minute, the platform receives tens, if not hundreds, of

ride requests from its clients;

• The platform has real-time information about available cabs,

including which cabs can reach which clients within a rea-

sonable time;

• It must determine the optimal prices to offer each client;

• After receiving clients’ responses, the platform computes the

optimal assignment of cabs to clients (potentially rejecting

some requests) in order to maximize overall profit.

Hikima et al. [13] studied such a model, focusing on maximizing

profit for the ride-hailing service. We would like to emphasize that

their approach involves a two-stage process. In the first stage, the

platform collects ride requests within a time window, typically

around one minute, and offers each client a price. In the second

stage, after receiving the clients’ responses, the platform considers

only those who accepted the offers and optimizes the assignment

of cabs to clients to maximize overall profit. This process is thus

made somewhat offline, as each client learns the outcome only at

the end of this entire process. The specific details of their model

are as follows.

Graph of Customers and Taxis. We are given two sets, 𝐶 and 𝑇 ,

representing customers and taxis, respectively. For simplicity, we

assume that the set of customers is 𝐶 = {1, 2, . . . , 𝑛}. Additionally,
for each customer-taxi pair, we are given a tuple (𝑐, 𝑡,𝑤𝑐,𝑡 ), which
indicates that customer 𝑐 can be served by taxi 𝑡 , with𝑤𝑐,𝑡 repre-

senting the cost of the trip. This relationship between customers
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and taxis can be modeled as a bipartite graph 𝐺 = (𝐶,𝑇 ;𝐸), where
one set consists of customers, the other of taxis, and the edges rep-

resent feasible connections—meaning a taxi can reach a customer

within a reasonable amount of time, such as 5 minutes.

Pricing Solution. A key assumption in Hikima’s model is that

for each client 𝑐 , we know the probability distribution of their

valuation 𝑣𝑐 for the trip. The concept of a solution in this model is

represented as a vector of prices (𝜋𝑐 )𝑐 ∈ 𝐶 , where each 𝜋𝑐 is the

price offered to client 𝑐 . Based on the price 𝜋𝑐 , client 𝑐 will accept

the offer if their valuation 𝑣𝑐 ≥ 𝜋𝑐 . Given the distributionV𝑐 of 𝑣𝑐 ,
we can determine that client 𝑐 accepts the price with probability

P [𝑣𝑐 ≥ 𝜋𝑐 ], or rejects it with probability 1 − P [𝑣𝑐 ≥ 𝜋𝑐 ].
If client 𝑐 rejects the proposed price, we remove their corre-

sponding vertex and the incident edges from the graph. Let𝐺𝑜𝑘 =

(𝐶𝑜𝑘 ,𝑇 ;𝐸𝑜𝑘 ) be the graph that results after removing all customers

who did not accept their price. From this reduced graph, we select

a matching𝑀 ⊆ 𝐸𝑜𝑘 , a set of edges where no two share a common

vertex. The value of the solution is the sum of the prices minus

the trip costs, i.e., 𝜋𝑐 −𝑤𝑐,𝑡 , across the edges in the final matching.

Here, the weights𝑤𝑐,𝑡 represent the cost of the fare, such as driver

payments, fuel expenses, and other related costs.

Matching Under Uncertainty. Notice that once the prices (𝜋𝑐 )𝑐∈𝐶
are set and we have learned the customers’ decisions regarding their

acceptance—i.e., the vector (1 [𝑣𝑐 ≥ 𝜋𝑐 ]) 𝑐 ∈ 𝐶 , or equivalently the

set𝐶𝑜𝑘 = {𝑐 ∈ 𝐶 | 𝑣𝑐 ≥ 𝜋𝑐 }—our problem reduces to the classic task

of finding the maximum matching in a weighted bipartite graph.

Let 𝑓 (𝜋1, . . . , 𝜋𝑛 ;𝐶𝑜𝑘 ) denote the solution to this maximization

problem, which can be formulated as follows:

max

𝑧𝐶×𝑇 ∈{0,1}𝐶×𝑇

∑︁
(𝑐,𝑡 ) ∈𝐸

(𝜋𝑐 −𝑤𝑐,𝑡 )𝑧𝑐,𝑡

s.t.

∑︁
𝑡 ∈𝛿 (𝑐 )

𝑧𝑐,𝑡 ≤ 1[𝑐 ∈ 𝐶𝑜𝑘 ] ∀𝑐 ∈ 𝐶,∑︁
𝑐∈𝛿 (𝑡 )

𝑧𝑐,𝑡 ≤ 1 ∀𝑡 ∈ 𝑇,

𝑧𝑐,𝑡 ∈ {0, 1} ∀(𝑐, 𝑡) ∈ 𝐸,

where 𝛿 (𝑐) denotes the set of taxis incident with customer 𝑐 , and

similarly, 𝛿 (𝑡) denotes the set of customers incident with taxi 𝑡 .

Here, 𝑧𝑐,𝑡 ∈ 0, 1 indicates whether client 𝑐 and taxi 𝑡 are matched

(𝑧𝑐,𝑡 = 1) or not (𝑧𝑐,𝑡 = 0). The first constraint ensures that only a

customer 𝑐 who has accepted the proposed price can be matched

with a taxi, while the second constraint guarantees that each taxi 𝑡

is matched with only one client.

The Ride-Hailing Problem. Function 𝑓 represents the weight of

the maximum matching for a given set of prices (𝜋𝑐 )𝑐∈𝐶 , based
on which customers accept the offered prices. However, before

setting the prices (𝜋𝑐 )𝑐∈𝐶 , we do not yet know the realization of

the acceptance decisions (1[𝑣𝑐 ≥ 𝜋𝑐 ])𝑐∈𝐶 . Our objective, then, is to
find a vector of prices (𝜋𝑐 )𝑐∈𝐶 that maximizes the expected value

of the matching weight, where the expectation is taken over all

possible realizations of the acceptance vector (1[𝑣𝑐 ≥ 𝜋𝑐 ])𝑐∈𝐶 .

In other words, our goal is to maximize the following function

of the price vector (𝜋𝑐 )𝑐∈𝐶 :
max

(𝜋𝑐 )𝑐∈𝐶 ∈R+
E(𝑣𝑐 )𝑐∈𝐶 [𝑓 (𝜋1, . . . , 𝜋𝑛 ; {𝑐 ∈ 𝐶 | 𝑣𝑐 ≥ 𝜋𝑐 })] .

We will refer to this problem as the (RH-PROBLEM).

The expected value above can be expressed more intuitively

as a weighted sum of the maximum matchings’ weights over all

possible subsets of clients 𝐶𝑜𝑘 ⊆ 𝐶 . Specifically, for each subset

𝐶𝑜𝑘 , its contribution to the sum is given by:∏
𝑐∈𝐶𝑜𝑘

P(𝑣𝑐 ≥ 𝜋𝑐 ) ·
∏

𝑐∈𝐶\𝐶𝑜𝑘

(1 − P(𝑣𝑐 ≥ 𝜋𝑐 )) · 𝑓 (𝜋1, . . . , 𝜋𝑛 ;𝐶𝑜𝑘 ).

1.2 Posted Price Mechanisms
Note that the (RH-PROBLEM) directly models the price optimiza-

tion problem, and as we solve it, we obtain optimal prices for the

given model. However, one can observe that the model, as stated,

dictates a specific way of interacting with the client: it enforces a

take-it-or-leave-it offer at a given price. These types of mechanisms

are the so-called Posted Price Mechanisms.

Posted price mechanisms have a rich literature, starting with the

paper by Chawla et al. [7]. Very interesting research questions arise

around them because, for obvious reasons, they are suboptimal,

making it incredibly important to determine the extent of this

suboptimality. Despite their inherent limitations, they owe their

popularity to their ease of implementation and the simplicity and

transparency they provide from the client’s perspective. In some

cases, such as the ride-hailing problem we consider, they are even

the only feasible mechanisms.

It would be hard to imagine implementing an optimal Bayesian

mechanism where a client, who wants to get a cab as quickly as

possible, would need to first submit a bid, wait for all other clients

to submit theirs, and then wait again for the service to calculate

the final assignment.

1.3 Room for Improvement
The model of Hikima et al. can be made more realistic and com-

petitive in two key ways: by moving from an offline to an online

setting and by comparing it against a stronger benchmark.

Going From Offline to Online Setting. One of the main limitations

of Hikima’s model is its two-stage procedure, where the platform

must wait for all clients to make their decisions before computing

the optimal assignment. This offline process has been improved

by Brubach et al. [5], who addressed Problem A as proposed by

Hikima in Section 7 of [13]. Their approach essentially views the

problem as if the prices were already set, allowing the probability

function 𝑎(𝑥𝑐 ) to be defined as P(𝑣𝑐 ≥ 𝑥𝑐 ). In this problem, they

consider an undirected bipartite graph 𝐺 = (𝐶,𝑇 , 𝐸), where each
node 𝑐 ∈ 𝐶 has a price 𝑥𝑐 ∈ R given upfront. The process follows

two steps that repeat until either 𝐶 or 𝑇 becomes empty:

(1) Choose some 𝑐 ∈ 𝐶 and 𝑡 ∈ 𝑇 , and attempt to match them,

a process known as probing. The probing succeeds with

probability 𝑎𝑐 (𝑥𝑐 ) and fails with probability 1 − 𝑎𝑐 (𝑥𝑐 );
(2) If the probing succeeds, both 𝑐 and 𝑡 are removed from 𝐶

and 𝑇 , respectively, and a profit of (𝑥𝑐 +𝑤𝑐𝑡 ) is obtained. If
the probing fails, no profit is made, and 𝑐 is removed from𝐶 .



Brubach et al.’s approach introduced a new probing method,

enabling the problem to be solved in an online manner, where client

requests are handled as they arrive rather than all at once. Their

work improves the approximation ratio from the 1/3 achieved by

Hikima to 1− 1/𝑒 . However, despite this improvement, the model’s

limitation persists in that it only benchmarks performance against

other posted price mechanisms.

Stronger Benchmark. In the broader context of mechanism de-

sign, the approaches of both Hikima et al. and Brubach et al. leave

an important question unanswered: can we design a posted price

mechanism that remains competitive against an optimal Bayesian

mechanism?

1.4 Our Contribution
In this paper, we build on the problem posed byHikima et al., linking

it to broader research on stochastic combinatorial optimization and

contention resolution schemes, which have rich applications in

mechanism design [7, 9, 11, 17, 18]. We improve on the known

results by presenting a (1 − 1/𝑒)-approximation algorithm for the

problem of pricing ride-hailing fares.

Our contribution strengthens the work of Brubach et al., who

compared their algorithm against an optimal posted-price mecha-

nism. In contrast, we measure our performance against an optimal

Bayesian mechanism, which provides the most effective pricing

solution in this setup [15], outperforming any posted-price mech-

anism. This broader comparison sets a stronger benchmark, as

posted-price mechanisms are a subset of Bayesian mechanisms.

Algorithm for Ride-Hailing. We introduce an online algorithm

that adheres to the posted-price mechanism model of Hikima et

al. while also evaluating its performance against an optimal Bayesian

mechanism. Our approach begins by formulating a new mathemat-

ical program, which we use to upper bound the performance of

the optimal Bayesian mechanism. We then present a posted-price

mechanism that approximates the optimal solution of this program

by a factor of 1 − 1/𝑒 .
This leads to the main theorem of the paper:

Theorem 1.1. There exists a posted price mechanism for the ride-
hailingmodel of Hikima et al. that provides a (1 − 1/𝑒)-approximation
of an optimal Bayesian mechanism.

The proof of this theorem is divided into two parts. In Section 2,

we introduce the mathematical program that provides a pricing

solution fitting the model of Hikima et al. In Section 4, we demon-

strate that there exists a posted-price mechanism that achieves the

(1 − 1/𝑒) approximation of its optimal value. Additionally, in the

appendix in the full version, we show that the concave program we

utilize is stronger than the (RH-PROBLEM) presented earlier.

Novelty of the Approach. Although our result builds upon prior

work in contention resolution schemes (CRS), it introduces new

insights. On the one hand, we know that for the type of convex

program described in Section 2, a (1 − 1/𝑒)-balanced CRS exists in

matroid environments [14]. However, since our problem involves

matching rather than matroid optimization, a custom scheme is

necessary. On the other hand, the CRS from Brubach et al. can-

not be directly applied in our approach, as the scheme we aim for

needs to be, in a way, exactly (1 − 1/𝑒)-balanced. By this, we mean

that when an edge 𝑒 has a probability 𝑝𝑒 of appearing in the opti-

mal matching, we have to include it in the created solution with

precisely (1 − 1/𝑒) 𝑝𝑒 probability. This stricter requirement arises

because the convex program’s objective contains both positive and

negative terms that depend on 𝑝𝑒 .

While this modification could also be applied to the matching

CRS of Brubach et al., our approach is self-contained and does not

rely on external procedures (i.e., dependent rounding technique

by Gandhi et al. [10]). Instead, we employ differential equations to

calculate the exact probabilities of key events, such as the availabil-

ity of a taxi when clients arrive. This method also provides deeper

insights into the relationships between elements in the system,

especially when processing one element influences another.

Finally, our approach not only addresses the matching environ-

ment in the ride-hailing problem but also leads to two new results

for transversal matroids and stochastic 𝑘-set packing (see the ap-

pendix in the full version).

Contention Resolution Scheme for Transversal Matroids. The tech-
nique used to prove Theorem 1.1 builds on the theory of matroid

optimization under uncertainty, particularly in the context of con-

tention resolution schemes. In addition to solving the matching

environment in the problem of Hikima et al., our method gen-

eralizes to transversal matroids and their intersections. Previous

work achieved a 1/(𝑘 + 1)-balanced CRS for the intersection of 𝑘

transversal matroids, but our approach improves on this result:

Theorem 1.2. There exists a (1 − 𝑒−𝑘 )/𝑘-balanced contention
resolution scheme for the intersection of 𝑘 transversal matroids.

2 NEW BENCHMARK
To introduce our new benchmark, we first need to present the

ride-hailing problem of Hikima et al. within the framework of

mechanism design.

Consider the classical Bayesian single-parameter mechanism

design scenario, as outlined by Chawla et al. [7]. In this setting, we

have a single seller offering a single service to a set 𝐶 of clients,

each 𝑐 ∈ 𝐶 interested in being served. Each client’s valuation for

receiving the service is represented by a nonnegative random vari-

able 𝑣𝑐 , with the valuations being independent of each other and

their distributions known upfront. The problem the seller faces is

defined by a down-closed family F ⊆ 2
𝐶
, which limits the subsets

𝐶 ⊆ 𝐶 that can be served. In our case, feasibility means finding

a matching between 𝐶 and the set 𝑇 (the taxis), where the size of

the matching equals

��𝐶 ��. This is called a "single-parameter" setting

because the seller offers only one type of service. The objective is

to design a truthful mechanism that maximizes expected profit.

This problem is well understood and is optimally solved by My-

erson’s mechanism [15]. However, while Myerson’s mechanism

is theoretically optimal, it is impractical in real-world settings. In

the context of ride-hailing, the mechanism would require collect-

ing bids from clients, computing optimal allocations and prices,

and then informing the clients whether they will be served and at

what price. Implementing such a system on a ride-hailing platform

is unrealistic. A posted-price mechanism, where clients receive a

take-it-or-leave-it price, is a far more practical solution.



As mentioned in the previous section, the study of posted-price

mechanisms in theoretical computer science beganwith the seminal

work of Chawla et al. [7]. This opened the door to a significant

body of research. Notable contributions that are most relevant to

our work include those of Yan [18] and Feldman et al. [9].

2.1 Convex Program
The convex program we use in our algorithm is based on the one

used by Yan [18]. We refer readers to [18] for a deeper discussion

on the so-called ironing of the valuation function, which allows us

to assume that the objective function is concave.

Consider a random set of clients 𝐶∗ ⊆ 𝐶 , 𝐶∗ ∈ F served by

Myerson’s mechanism, i.e., an optimal truthful mechanism, and

let 𝑝∗𝑐 = P [𝑐 ∈ 𝐶∗] be the probability that client 𝑐 gets served.

Moreover, let 𝑝∗𝑐,𝑡 be the probability that the optimal mechanism

serves client 𝑐 with taxi 𝑡 . Since the mechanism always serves at

most one client to at most one taxi, it follows that (𝑝∗𝑐,𝑡 ) (𝑐,𝑡 ) ∈𝐶×𝑇
is a fractional matching in the bipartite graph between 𝐶 and 𝑇 .

Now fix a client 𝑐 with its probability 𝑝∗𝑐 of being served. Imag-

ine for the time being that we focus only on them and we forget

about other clients and feasibility constraints between them. We

know their valuation distributionV𝑐 and hence also its cumulative

distribution function 𝐹𝑐 can be easily determined.

If we would propose to client 𝑐 price 𝐹−1

𝑐

(
1 − 𝑝∗𝑐

)
, then 𝑐 would

accept the price with probability exactly 𝑝∗𝑐 and upon acceptance

we would earn 𝐹−1

𝑐

(
1 − 𝑝∗𝑐

)
. This means that the expected profit

would be 𝐹−1

𝑐

(
1 − 𝑝∗𝑐

)
· 𝑝∗𝑐 . If it would be the case that function

𝑝 ↦→ 𝐹−1

𝑐 (1 − 𝑝) · 𝑝 was concave, then 𝐹−1

𝑐

(
1 − 𝑝∗𝑐

)
would be the

optimal price of serving 𝑐 under the constraint that we want to

serve them with probability 𝑝∗𝑐 . However, it may happen that 𝑝 ↦→
𝐹−1

𝑐 (1 − 𝑝) ·𝑝 is not concave. In such a case, the optimum expected

profit from a single client 𝑐 is proven to be obtained by proposing

to this client a random price for the service.

Based on results by Myerson [15], it follows that the optimal

price distribution can be chosen to be a two-price distribution,

which can be found by the so-called ironing technique, see Yan [18]

for details. We denote by 𝑅𝑐 (𝑝∗𝑐 ) the expected profit of this optimal

distribution, which can be shown to be concave in 𝑝∗𝑐 . Intuitively,
one should think of 𝑝 ↦→ 𝑅𝑐 (𝑝) as being a convex closure of the

𝑝 ↦→ 𝐹−1

𝑐 (1 − 𝑝) · 𝑝 function.

Returning to the general case with multiple clients𝐶 , the mecha-

nism design problems for individual clients (which are independent

of each other) are less constrained than the original mechanism

design problem, where the set of served clients must belong to

F . Therefore, the total expected profit,

∑
𝑐∈𝐶 𝑅𝑐 (𝑝∗𝑐 ), serves as an

upper bound on the expected profit of the optimal mechanism for

the ride-hailing problem.

This discussion is summarized in the following Lemma that can

be found in Yan [18]:

Lemma 2.1 (Myerson). Consider client 𝑐 and their valuation dis-
tribution V𝑐 described by its cumulative distribution function 𝐹𝑐 .
Suppose we are given a target probability 𝑝𝑐 with which we want to
serve client 𝑐 . Then, the price distribution D𝑐 that maximizes

E𝜋∼D𝑐
[𝜋 · (1 − 𝐹 (𝜋))]

subject to the constraint that E𝜋∼D [1 − 𝐹 (𝜋)] = 𝑝𝑐 is a two-price
distribution, where this distribution as well as the profit 𝑅(𝑝𝑐 ) it gives
can be determined from 𝐹 . Moreover, 𝑅(𝑝𝑐 ) is a concave function.

Hence, the following is a concave relaxation of the original ride-

hailing problem.

max

𝑝𝐶×𝑇 ∈R𝐶×𝑇
≥0

∑︁
𝑐∈𝐶

𝑅𝑐 (𝑝𝑐 ) −
∑︁
(𝑐,𝑡 ) ∈𝐸

𝑝𝑐,𝑡 ·𝑤𝑐,𝑡

s.t.

∑︁
𝑡 ∈𝛿 (𝑐 )

𝑝𝑐,𝑡 ≤ 1 ∀𝑐∈𝐶 ,∑︁
𝑐∈𝛿 (𝑡 )

𝑝𝑐,𝑡 ≤ 1 ∀𝑡 ∈𝑇 ,

𝑝𝑐 =
∑︁

𝑡 ∈𝛿 (𝑐 )
𝑝𝑐,𝑡 ∀𝑐∈𝐶 .

(1)

The negative sum in the objective function models the expected

cost of each fare. The concavity of the objective function allows us

to solve the program in polynomial time.

2.2 Discussion
The programming relaxation we build on is similar to that of

Yan [18] and Feldman et al. [9]. Yan provided a beautiful argument

demonstrating that for any combinatorial environment, a posted

price mechanism can approximate the optimal Bayesian mechanism

with the same ratio as the correlation gap. This achieves a 1 − 1/𝑒
approximation for matroids.

For the matching environment, Yan’s approach also provides

a constant approximation. However, since the correlation gap for

bipartite matchings is between 0.509 and 0.544 [6, 16], one might

ask whether this suffices in our model.

It does not. Yan’s reduction relies on Chawla et al.’s [7] greedy

procedure, which repeatedly probes edges. Here, this would mean

offering a client different cabs sequentially, each with a new take-it-

or-leave-it price—an infeasible approach in ride-hailing. Moreover,

our environment is not a matroid, requiring a tailored solution.

As discussed in Section 1, the convex program’s objective func-

tion includes both positive and negative terms dependent on 𝑝𝑒 .

Thus, we design a contention resolution scheme (CRS) that se-

lects elements with carefully chosen probabilities. In Section 4, we

present a posted price mechanism using the 𝑝𝑐 vector to ensure

each client is served with probability exactly (1 − 1/𝑒) 𝑝𝑐 , capturing
exactly (1 − 1/𝑒) of the total objective function value.

3 RELATEDWORK
The model we use in this paper was first proposed by Hikima et

al. [13], who presented a 1/3-approximation to the (RH-PROBLEM).

They approached the problem using the following relaxation:

max

𝑧𝐶×𝑇 ∈R𝐶×𝑇
≥0

∑︁
(𝑐,𝑡 ) ∈𝐸

(𝜋𝑐 −𝑤𝑐,𝑡 )𝑧𝑐,𝑡

s.t.

∑︁
𝑡 ∈𝛿 (𝑐 )

𝑧𝑐,𝑡 ≤ P [𝑣𝑐 ≥ 𝜋𝑐 ] ∀𝑐 ∈ 𝐶,∑︁
𝑐∈𝛿 (𝑡 )

𝑧𝑐,𝑡 ≤ 1 ∀𝑡 ∈ 𝑇,

𝑧𝑐,𝑡 ≥ 0 ∀(𝑐, 𝑡) ∈ 𝐸.



After solving this program using concave min-cost max-flow meth-

ods, they obtained their final solution. They shown that this relax-

ation relates to the well-known Stochastic Matching Problem [2, 4]

and that their algorithm offers a 1/3-approximation, referencing [4].

However, if they had referred to [2], they could have claimed a

stronger 1/2.5-approximation.

Brubach et al. [5] explored the fact that the relaxation proposed

by Hikima et al. is equivalent to a relaxation of a special case of the

Stochastic Matching problem. For this particular relaxation, they

achieved a (1 − 1/𝑒)-approximation.

In this paper, we offer a different perspective by incorporating

posted pricing theory, which was initiated by Chawla et al. [7]. We

utilize a relaxation technique introduced by Yan [18] and further

developed by Feldman et al. [9].We chose this concave relaxation for

its conceptual simplicity, though a linear programming relaxation,

as proposed by Gupta and Nagarajan [11], could also be used to

achieve similar results.

Our approach to solving the mathematical program is grounded

in the broader work on contention resolution schemes. This is

closely related to the work of Feldman et al. [9], Adamczyk and

Włodarczyk [3], Lee and Singla [14], and Pollner et al. [17], who

have developed new contention resolution schemes in the context

of mechanism design. The work of Brubach et al. [5] also fits into

this line of research.

4 NEW ROUNDING ALGORITHM FOR
MATCHING

Before presenting the main result of this paper, we will first discuss

a simpler problem that introduces the tools we will use later.

4.1 A Toy Example
In this subsection, we assume that there are 𝑛 clients sending re-

quests and a single cab available to pick up any of them. As men-

tioned earlier, the first step in our solution is to estimate the proba-

bilities of each client being served by the optimal mechanism and to

set the prices accordingly. Suppose that after following these steps,

we have the set (𝑝𝑢 )𝑢∈𝑈 , where 𝑝𝑢 represents the probability that

client 𝑢 gets served. Here, we change the notation for the sets of

clients and taxis to𝑈 and𝑉 , respectively, to introduce more natural

notation when working with bipartite graphs.

Our goal is to find a procedure that, for each 𝑢 ∈ 𝑈 , selects client

𝑢 with an overall probability of at least 𝑏 · 𝑝𝑢 for some positive

constant 𝑏. It is important to note that, for simplicity, we relax the

strict condition on the serving probability described in Section 2,

which required this probability to be exactly 𝑏 · 𝑝𝑢 . This relaxation
helps make the analysis more comprehensible. Finally, let us denote

the random set of clients who accepted their proposed prices by

𝐴(𝑝). Additionally, for the remainder of this paper, we will stop

using the terms clients and taxis when referring to the elements of

sets𝑈 and 𝑉 .

4.1.1 The Algorithm. Here, we present an algorithm satisfying that

for each 𝑢 ∈ 𝑈 it chooses this element with probability 1 − 1/𝑒
when conditioned on 𝑢 being active. Notice that in the appendix

in the full version, we analyze a naive approach for this problem

that traverses the elements of 𝑈 in random order and selects the

first one that is active, i.e., belongs to𝐴(𝑝). Although it has a worse

probability of 1/2 of choosing each element, the proof steps are

easier and may make for a good introduction to what follows in

this subsection.

To decide in which order to process the elements of 𝑈 , we as-

sign each 𝑢 ∈ 𝑈 an independent exponential random variable

𝑌𝑢 ∼ Exp(1). We interpret its realization as the arrival time of 𝑢. It

is easy to notice that such an ordering corresponds to a random

permutation as (𝑌𝑢 )𝑢∈𝑈 are equally distributed. Now, to improve

the performance of the naive strategy, we add a dumping factor

represented by flipping an asymmetric coin whenever an active ele-

ment arrives. If the toss is successful (heads), we return this element

as the solution. Otherwise, we skip it and wait for the next element

to arrive. The main difficulty with this approach is to find the right

relation between the values of 𝑝𝑢 , 𝑌𝑢 and the probability that the

coin toss for 𝑢 results in heads. We decided to use the probability

present in the pseudocode in Algorithm 1 (the dumping factor for

𝑢 is defined using a binary variable 𝐷𝑢 ). We present an example

run of this algorithm in Figure 1.

Algorithm 1 One Item Selection With a Coin Tossing

Given: 𝑝 = (𝑝𝑢 )𝑢∈𝑈 s.t.

∑
𝑢∈𝑈 𝑝𝑢 ≤ 1

1: for each 𝑢 ∈ 𝑈 do
2: generate an exponential random variable 𝑌𝑢 distributed as

P[𝑌𝑢 ≤ 𝑡] = 1 − 𝑒−𝑡

3: for each 𝑢 ∈ 𝑈 in increasing order of 𝑌𝑢 do
4: if 𝑢 is not active then continue

5: generate a binary random variable 𝐷𝑢 distributed as

P[𝐷𝑢 = 1] = 𝑒−𝑝𝑢 (1−𝑒
−𝑌𝑢 )

6: if 𝐷𝑢 = 1 then return 𝑢

4.1.2 The Analysis. To be able to get the exact probability of ele-

ment 𝑧 being able to block 𝑢 from time 𝑡 to 𝑡 + 𝑑𝑡 ,1 we introduce
the notation of

𝐹𝑆𝑢 (𝑡) = P
[
𝑢 not blocked until 𝑡 and elements of 𝑆

do not arrive before 𝑡 | 𝑌𝑢 = 𝑡
]

for each 𝑢 ∈ 𝑈 and 𝑆 ⊆ 𝑈 \ {𝑢}. The crucial observation is the

following.

Lemma 4.1. Let 𝑆𝑢 = 𝑆 ∪ {𝑢} for 𝑆 ⊆ 𝑈 \ {𝑢}. Moreover, let
𝑝 (𝑆) = ∑

𝑤∈𝑆 𝑝𝑤 . Then, it holds that

𝐹𝑆𝑢 (𝑡) = 𝑒−𝑝 (𝑈 \𝑆𝑢 ) (1−𝑒
−𝑡 )−|𝑆 |𝑡 . (2)

Proof. We proceed by induction on the decreasing cardinality

of 𝑆 ⊆ 𝑈 \ {𝑢}. For the base case, let us consider 𝑆 = 𝑈 \ {𝑢}. It is
easy to notice that it satisfies the following

𝐹
𝑈 \{𝑢}
𝑢 (𝑡) = P

[
𝑢 not blocked until 𝑡 and elements of𝑈 \ {𝑢}

do not arrive before 𝑡 | 𝑌𝑢 = 𝑡
]

= P
[
elements of𝑈 \ {𝑢} do not arrive

before 𝑡 | 𝑌𝑢 = 𝑡
]

1
We say that element 𝑧 blocked 𝑢 whenever 𝑧 is selected by the algorithm, forbidding

𝑢 to get selected as well. We present the exact conditions that need to be satisfied for

an element to block another one in the proof of Lemma 4.1.
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Figure 1: Example on how the arrival order is determined and how the coin tossing algorithm works. Here, we mark active
elements by putting a green dot next to them. Otherwise, we place a red dot. Elements rejected by the algorithm are coloured
orange, while the selected element is coloured light green. To denote the results of these flips, we write H (heads) and T (tails)
next to the element.

since the last event implies 𝑢 being available at 𝑡 . Furthermore, if

we recall that the minimum of independent exponential variables

is exponential with the rate being the sum of components rates [8],

we get

𝐹
𝑈 \{𝑢}
𝑢 (𝑡) = P

[
min

𝑤∈𝑈 \{𝑢}
𝑌𝑤 < 𝑡

]
= 𝑒−|𝑈 \{𝑢} |𝑡 .

Let us move to the induction step now. We may assume that

the hypothesis holds for all sets of cardinality at least 𝑘 for some

𝑘 ∈ N+. Our goal is to prove that all (𝑘 − 1)-element subsets of

𝑈 \ {𝑢} satisfy (2). Let 𝑆 be any of them.

Suppose that we are at some moment 𝑡 , item 𝑢 is still available,

and the elements of 𝑆 have not arrived yet. In order to determine

the dependency between 𝐹𝑆𝑢 (𝑡 + 𝑡𝑑) and 𝐹𝑆𝑢 (𝑡), we need to examine

the two things that can happen from 𝑡 to 𝑡 + 𝑑𝑡 and affect 𝐹𝑆𝑢 (𝑡).
First, an element𝑤 ∈ 𝑆 may arrive during this time. Such an event

happens with probability

P
[
𝑌𝑤 < 𝑡 + 𝑑𝑡 | 𝑌𝑤 ≥ 𝑡

]
· 𝐹𝑆𝑢 (𝑡) = P

[
𝑌𝑤 < 𝑑𝑡

]
· 𝐹𝑆𝑢 (𝑡)

=

(
1 − 𝑒−𝑑𝑡

)
𝐹𝑆𝑢 (𝑡).

(3)

Second, if some other element 𝑧 ∈ 𝑈 \ 𝑆𝑢 has not arrived yet, it

can block 𝑢 before 𝑡 + 𝑑𝑡 . We say that 𝑢 gets blocked by 𝑧 ∈ 𝑈 if we

choose 𝑧 before approaching 𝑢, i.e., it holds that: 1) 𝑌𝑧 < 𝑌𝑢 , 2) 𝑧 is

active, 3) no element was returned before 𝑌𝑧 , 4) 𝑧 is not dumped in

the coin tossing phase. The probability of this event is

P
[
𝑌𝑧 < 𝑡 + 𝑑𝑡 | 𝑌𝑧 ≥ 𝑡

]
· P

[
𝑧 ∈ 𝐴(𝑝)

]
· P

[
𝐷𝑧 = 1

]
· 𝐹𝑆∪{𝑧}𝑢 (𝑡),

which simplifies to

P
[
𝑌𝑧 < 𝑑𝑡

]
· P

[
𝑧 ∈ 𝐴(𝑝)

]
· P

[
𝐷𝑧 = 1

]
· 𝐹𝑆∪{𝑧}𝑢 (𝑡) (4)

as we apply the memoryless property. By the definition of the

exponential distribution, we get P[𝑌𝑧 < 𝑑𝑡] = 1 − 𝑒−𝑑𝑡 . We know

that each element 𝑧 is active with probability 𝑝𝑧 independently of

the other elements, which means that P[𝑧 ∈ 𝐴(𝑝)] = 𝑝𝑧 . Finally,

P[𝐷𝑧 = 1] = 𝑒−𝑝𝑧 (1−𝑒−𝑡 ) by the definition, and 𝐹
𝑆∪{𝑧}
𝑢 (𝑡) can be

expressed using the induction hypothesis. Hence, (4) is equal to(
1 − 𝑒−𝑑𝑡

)
· 𝑝𝑧 · 𝑒−𝑝𝑧 (1−𝑒

−𝑡 ) · 𝑒−𝑝 (𝑈 \(𝑆𝑢∪{𝑧}) ) (1−𝑒
−𝑡 )−|𝑆∪{𝑧} |𝑡 .

After some modifications, we obtain the following formula(
1 − 𝑒−𝑑𝑡

)
· 𝑝𝑧 · 𝑒−𝑡 · 𝑒−𝑝 (𝑈 \𝑆𝑢 ) (1−𝑒

−𝑡 )−|𝑆 |𝑡 .

Thus, the probability of an unwanted event happening from 𝑡 to

𝑡 +𝑑𝑡 is equal to the sum of (3) over elements𝑤 ∈ 𝑆 plus the sum of

(4) over elements 𝑧 ∈ 𝑈 \ 𝑆𝑢 . It holds since the probability of more

than one bad event happening during this interval is negligible as

𝑑𝑡 → 0. After regrouping the components, we obtain(
1 − 𝑒−𝑑𝑡

) (
|𝑆 |𝐹𝑆𝑢 (𝑡) + 𝑝 (𝑈 \ 𝑆𝑢 ) · 𝑒−𝑡 · 𝑒−𝑝 (𝑈 \𝑆𝑢 ) (1−𝑒

−𝑡 )−|𝑆 |𝑡
)
.

Hence, we can write that the following equation holds

𝐹𝑆𝑢 (𝑡 + 𝑡𝑑) = 𝐹𝑆𝑢 (𝑡)−
(
1 − 𝑒−𝑑𝑡

) (
|𝑆 |𝐹𝑆𝑢 (𝑡) + 𝑝 (𝑈 \ 𝑆𝑢 )

·𝑒−𝑡 · 𝑒−𝑝 (𝑈 \𝑆𝑢 ) (1−𝑒
−𝑡 )−|𝑆 |𝑡

)
.

As we move 𝐹𝑆𝑢 (𝑡) to the left-hand side of the equation, divide both
sides by𝑑𝑡 and take the limit𝑑𝑡 → 0, we obtain that (𝐹𝑆𝑢 )′ (𝑡) equals

−
(
|𝑆 |𝐹𝑆𝑢 (𝑡) + 𝑝 (𝐸 \ 𝑆𝑢 ) · 𝑒−𝑡 · 𝑒−𝑝 (𝑈 \𝑆𝑢 ) (1−𝑒

−𝑡 )−|𝑆 |𝑡
)
.

Together with the initial condition 𝐹𝑆𝑢 (0) = 1, the differential equa-

tion above describes the function given by Formula (2), which

concludes the proof. □

Corollary 4.2. For 𝑆 = ∅, we obtain

P
[
𝑢 not blocked at 𝑡 | 𝑌𝑢 = 𝑡

]
= 𝐹 ∅𝑢 (𝑡) = 𝑒−𝑝 (𝑈 \{𝑢}) (1−𝑒

−𝑡 ) .

This allows us to prove the following theorem.

Theorem 4.3. The probability that Algorithm 1 returns element
𝑢 is (1 − 1/𝑒)𝑝𝑢 for each 𝑢 ∈ 𝑈 . In other words, 𝑢 is chosen with
probability 1 − 1/𝑒 when conditioned on being active.

Proof. Algorithm 1 returns element𝑢 ∈ 𝑈 whenever it is active,

not blocked, and the coin toss for 𝑢 results in heads (i.e., 𝐷𝑢 = 1).

Thus, we obtain that P[𝑢 returned] is equal to

E𝑌𝑢
[
1
[
𝑢 ∈ 𝐴(𝑝)

]
· P

[
𝑢 not blocked | 𝑌𝑢

]
· 1

[
𝐷𝑢 = 1

] ]
= 𝑝𝑢 · E𝑌𝑢

[
𝑒−𝑝 (𝑈 \{𝑢}) (1−𝑒

−𝑌𝑢 ) · 𝑒−𝑝𝑢 (1−𝑒
−𝑌𝑢 )

]
= 𝑝𝑢 ·

∫ ∞

0

𝑒−𝑝 (𝑈 \{𝑢}) (1−𝑒
−𝑡 ) · 𝑒−𝑝𝑢 (1−𝑒

−𝑡 ) · 𝑒−𝑡𝑑𝑡

= 𝑝𝑢 ·
∫ ∞

0

𝑒−𝑝 (𝑈 ) (1−𝑒
−𝑡 )−𝑡𝑑𝑡 ≥ 𝑝𝑢 ·

∫ ∞

0

𝑒−(1−𝑒
−𝑡 )−𝑡𝑑𝑡

= 𝑝𝑢 ·
(
−𝑒−(1−𝑒

−𝑡 )
���∞
0

)
=

(
1 − 𝑒−1

)
𝑝𝑢 ,



which concludes the proof. □

4.2 The Actual Algorithm for Matchings
With all the tools and insights introduced for the toy example, we

are ready to tackle the problem of rounding a fractional matching

(𝑝𝑒 ) 𝑒∈𝐸 obtained from program (1). Our goal here is to find a

procedure that returns a matching 𝑀 in a bipartite graph 𝐺 =

(𝑈 ,𝑉 ;𝐸) for which all its endpoints in 𝑈 belong to the set 𝐴(𝑝)
of active elements. At the same time, we want to guarantee that

for each edge 𝑒 ∈ 𝐸, the overall probability of adding 𝑒 to the final

matching equals (1 − 1/𝑒)𝑝𝑒 .
The idea is to first define a procedure that pairs each vertex

𝑢 ∈ 𝑈 with one of its neighbours in 𝑉 and then for each vertex

𝑣 ∈ 𝑉 choose one of the vertices in 𝑈 that paired with it (if such

exists). Then, the edges whose endpoints selected each other will

form the matching in question. We decide to use the controller

mechanism described below to select a pairing for each 𝑢 ∈ 𝑈 and

an adaptation of Algorithm 1 for the vertices of 𝑉 .

4.2.1 Preprocessing. Unlike in the previous problem, this one re-

quires us to obtain the exact probability of 1 − 1/𝑒 of a given edge

being added to the final matching. Thus, instead of relying on the in-

equality

∑
𝑢∈𝛿 (𝑣) 𝑝𝑢,𝑣 ≤ 1 that holds for each 𝑣 ∈ 𝑉 , we want to find

a way to round this sum up to one. For this purpose, for each 𝑣 ∈ 𝑉
we add a new vertex 𝑣 ′ to𝑈 , connect it with vertex 𝑣 and define this

new edge to be activewith probability 𝑝𝑣′ = 𝑝𝑣′,𝑣 = 1−∑𝑢∈𝛿 (𝑣) 𝑝𝑢,𝑣 .
Such a procedure gives us a graph𝐺 ′ = (𝑈 ′,𝑉 ;𝐸′), where𝑈 ′ is the
set of initial vertices extended by the vertices 𝑣 ′ and 𝐸′ is obtained
from 𝐸 by adding all edges of form {𝑣 ′, 𝑣} for 𝑣 ∈ 𝑉 .

4.2.2 Controller Mechanism. By the definition of program (1), it

holds that

∀𝑢∈𝑈 𝑝𝑢 =
∑︁

𝑣∈𝛿 (𝑢 )
𝑝𝑢,𝑣 ≤ 1. (5)

Thus, for each 𝑢 ∈ 𝑈 we can make a randomized choice of a con-
troller 𝑐 (𝑢) ∈ 𝑉 following the distribution

∀𝑣∈𝑉 P [𝑐 (𝑢) = 𝑣] =
𝑝𝑢,𝑣

𝑝𝑢
. (6)

In other words, we make a weighted choice of an edge to represent

𝑢 in the matching that we aim to build. From property (5), we have

that the probabilities of all possible controller choices for every

vertex 𝑢 sum up to 1. Hence, the procedure is defined correctly.

We visualize both the controller mechanism and preprocessing

procedure in Figure 2.

4.2.3 The Algorithm. Finally, we are able to introduce the round-

ing algorithm for the fractional solution (𝑝𝑒 ) 𝑒∈𝐸 obtained from

program (1). We use the following approach.

The first step is to transform graph𝐺 into𝐺 ′ as described before.
Then, to decide in which order to serve the elements of𝑈 ′, we once
again use the exponential variables. Next, at the moment of arrival

of an active element 𝑢 ∈ 𝑈 ′, we choose its controller and flip an

asymmetric coin to determine the fate of 𝑒 = {𝑢, 𝑐 (𝑢)}. If the toss
is successful, we set the value of a helper binary variable 𝑑𝑢,𝑐 (𝑢 ) to
1 to inform that the edge is ready to be included in the matching.

Then, we check whether there exists another edge {𝑧, 𝑐 (𝑢)} ∈ 𝐸

that satisfies 𝑑𝑧,𝑐 (𝑢 ) = 1. If the answer is positive, such an edge can

already be in the matching forcing us to skip 𝑒 . Otherwise, we add

𝑒 to the matching. Formally, we obtain the following algorithm.

Algorithm 2 Rounding Fractional Matchings in Bipartite Graphs

Given: bipartite graph 𝐺 = (𝑈 ,𝑉 ;𝐸); fractional matching 𝑝 =(
𝑝𝑢,𝑣

)
{𝑢,𝑣}∈𝐸 in 𝐺

Structures: 𝑑𝑢,𝑣 for each {𝑢, 𝑣} ∈ 𝐸;𝑀 = ∅
1: transform 𝐺 to 𝐺 ′ as described before

2: choose controllers according to (6)

3: for each 𝑢 ∈ 𝑈 ′ do
4: generate an exponential random variable 𝑌𝑢 distributed as

P [𝑌𝑢 ≤ 𝑡] = 1 − 𝑒−𝑡

5: for each 𝑢 ∈ 𝑈 ′ in increasing order of 𝑌𝑢 do
6: if 𝑢 is not active then continue

7: generate a binary random variable 𝐷𝑢,𝑐 (𝑢 ) s.t.

P
[
𝐷𝑢,𝑐 (𝑢 ) = 1

]
= 𝑒−𝑝𝑢,𝑣 (1−𝑒

−𝑌𝑢 )

8: if 𝐷𝑢,𝑐 (𝑢 ) = 1 then
9: 𝑑𝑢,𝑐 (𝑢 ) ← 1

10: if 𝑢 ∈ 𝑈 and ∀𝑧∈𝛿 (𝑐 (𝑢 ) ),𝑧≠𝑢 𝑑𝑧,𝑐 (𝑢 ) = 0 then
11: add {𝑢, 𝑐 (𝑢)} to𝑀
12: return𝑀

4.2.4 The Analysis. First, we have to justify that the resulting set

𝑀 returned by the algorithm above is a matching. By definition,

the controller mechanism guarantees that each 𝑢 ∈ 𝑈 is covered

by at most one edge from𝑀 . Furthermore, the condition presented

in line 10. guarantees that the same holds for each 𝑣 ∈ 𝑉 .

Before we prove the main theorem of this paper, let us introduce

the notion of blocking between the edges. Let 𝑒 = {𝑢, 𝑣} be any edge
in 𝐸. We say that 𝑒 gets blocked if we set 𝑑𝑧,𝑣 = 1 for some 𝑧 ≠ 𝑢,

before approaching 𝑒 , i.e., it holds that: 1) 𝑌𝑧 < 𝑌𝑢 , 2) 𝑓 = {𝑧, 𝑣} is
active, 3) 𝑣 is chosen as the controller of 𝑧, 4) 𝑓 is considered by the

algorithm (dumping factor 𝐷𝑧,𝑣 equals one). Hence, not blocking 𝑒

is an event when there exists no such edge 𝑓 . Thus, if we condition

on item 𝑢 arriving at a given time 𝑡 , we can define a helper function

𝐹𝑆𝑢,𝑣 (𝑡) = P
[
{𝑢, 𝑣} not blocked until 𝑡 and elements of 𝑆

do not arrive before 𝑡 | 𝑌𝑢 = 𝑡
]

for each {𝑢, 𝑣} ∈ 𝐸 and 𝑆 ⊆ 𝛿 (𝑣) \ {𝑢}. The crucial observation is

the following.

Lemma 4.4. Let {𝑢, 𝑣} ∈ 𝐸 be any edge in 𝐺 , 𝑆 ⊆ 𝛿 (𝑣) \ {𝑢}, and
𝑆𝑢 = 𝑆 ∪ {𝑢}. Moreover, denote

∑
𝑤∈𝑆 𝑝𝑤,𝑣 by 𝑝 (𝑆). Then,

𝐹𝑆𝑢,𝑣 (𝑡) = 𝑒−𝑝 (𝛿 (𝑣)\𝑆𝑢 ) (1−𝑒
−𝑡 )−|𝑆 |𝑡 . (7)

Due to space limitations, we have moved all the proofs from this

subsection to the appendix in the full version.

Corollary 4.5. For 𝑆 = ∅, we look at 𝐹 ∅𝑢,𝑣 (𝑡) and obtain

P
[
{𝑢, 𝑣} not blocked at 𝑡 | 𝑌𝑢 = 𝑡

]
= 𝑒−𝑝 (𝛿 (𝑣)\{𝑢}) (1−𝑒

−𝑡 ) ,

This allows us to prove the following theorem.
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Figure 2: Left side of this figure shows the visualization for the controller selection. In this part, we use the simplified notation
of 𝑝𝑖, 𝑗 to represent 𝑝𝑢𝑖 ,𝑣𝑗 . The graph on the right shows how the preprocessing procedure works. The colours used in this picture
are only supposed to help distinguish between the elements of 𝑉 and the edges incident to them.

Theorem 4.6. The probability of Algorithm 2 adding edge 𝑒 =

{𝑢, 𝑣} to the final matching is (1 − 1/𝑒)𝑝𝑢,𝑣 for each 𝑒 ∈ 𝐸. In other
words, 𝑒 gets added to the matching with probability 1 − 1/𝑒 when
conditioned on it being active.

Together with the reasoning given in Section 2, it implies that

Theorem 1.1 holds.

5 CONTENTION RESOLUTION SCHEME FOR
TRANSVERSAL MATROIDS

In the previous section, we considered the constraints of one-

element selection and building up a subset of edges that forms

a matching in a given bipartite graph. Both of them could be de-

scribed using matroids.

Definition 5.1 (Matroid). Consider a pairM = (𝐸,I), where 𝐸 is

the universe of elements and I ⊆ 2
𝐸
is a family of independent sets.

We say thatM is a matroid if it holds that:

(1) the family I is down-closed, i.e. ∀𝐴∈I𝐵 ⊂ 𝐴 =⇒ 𝐵 ∈ I,
(2) the extension axiom is satisfied, i.e. ∀𝐴,𝐵∈I |𝐴| < |𝐵 | =⇒
∃𝑏∈𝐵\𝐴𝐴 ∪ {𝑏} ∈ I.

In this section, we focus on a more general subclass of matroids

called transversal matroids. To work with them, we use the follow-

ing characterization.

Proposition 5.2. For any transversal matroidM = (𝑈 ,I) there
exists a bipartite graph (𝑈 ,𝑉 ;𝐸) such thatK = {𝑆 ⊆ 𝑈 : there exists
a matching that covers 𝑆} contains exactly the sets that are indepen-
dent inM, namely K = I. Moreover, this relation is bijective, mean-
ing that for any bipartite graph (𝑈 ,𝑉 ;𝐸), the pair (𝑈 ,K) describes
a transversal matroid.

Now, let us recall that both problems in Section 4 came down to

rounding a fractional solution to make it feasible under the given

constraints. Such a problem is known by the name of the contention

resolution scheme (CRS). To introduce it in a more general form,

we need one more definition first.

Definition 5.3 (Matroid Polytope). For a given matroid M =

(𝐸,I), the convex hull of characteristic vectors of all independent
sets in M, namely

{
𝑥 ∈ R𝐸

≥0
| ∀𝐼 ∈I

∑
𝑒∈𝐼 𝑥𝑒 ≤ |𝐼 |

}
, is called the

matroid polytope P(M).
Definition 5.4 (Contention Resolution Scheme). Suppose that there

is set of constraintsC given as a collection ofmatroids {M1,M2, . . .,

M𝑘 } over 𝐸 and a point 𝑥 ∈ ⋂𝑘
𝑖=1
P(M𝑖 ). A contention resolution

scheme is a procedure that takes point 𝑥 and rounds each coordinate

𝑥𝑖 to obtain an integer point that satisfies all the constraints. We say

that a CRS is𝑏-balanced if every element is selected with probability

at least 𝑏 · 𝑥𝑖 .

Finally, we can restate our main theorem regarding transversal

matroids and contention resolution schemes.

Theorem 1.2. There exists a (1 − 𝑒−𝑘 )/𝑘-balanced contention
resolution scheme for the intersection of 𝑘 transversal matroids.

Due to space constraints, we give the proof of this theorem in

the appendix in the full version.

6 CONCLUSIONS
In this paper, we provided a new perspective on the ride-hailing

problem of Hikima et al. [13], grounding it in the microeconomic

context of Myerson’s optimal mechanism [15]. Utilizing tools from

contention resolution schemes, we devised an algorithm that ad-

dresses the ride-hailing problem and generalizes to other combina-

torial optimization settings.

Our approach offers both theoretical and practical benefits. Theo-

retically, it advances the understanding of posted-price mechanisms

in complex matching environments, providing improved approxi-

mation guarantees. Practically, it is easily implementable using the

reduction from Gupta and Nagarajan [11], converting the concave

program into a linear one via one-hot encoding of prices.

To demonstrate practicality, we implemented our approach using

the open-sourced code of Hikima et al. [12] for the sigmoid valua-

tion model. The prices determined by our algorithm yield similar

results to those of Hikima et al., with variations within roughly

±3% on the same dataset, depending on the validation subset.

In ongoing work, we leverage our approach to develop an on-

line algorithm that does not require grouping requests, enabling

real-time processing. We also provide additional implementations

incorporating ideas from submodular optimization [1].
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