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ABSTRACT

Pricing strategies in ride-hailing platforms present complex opti-
mization challenges, attracting considerable research attention in
computer science. Hikima et al. (AAAI 2021) introduced a model for
this problem and achieved a 1/3-approximation for maximizing plat-
form profit. This was later improved to a (1—1/e)-approximation by
Brubach et al. (NeurIPS 2022). In this paper, we extend the problem
to a more general and realistic setting.

Firstly, we consider an online stochastic model where customer
requests arrive sequentially in a random order. This better reflects
real-world scenarios than the offline assumption of known requests.
Secondly, we frame the problem within the context of mechanism
design, allowing us to benchmark our algorithm against the optimal
Bayesian mechanism rather than the more restrictive posted-price
mechanisms used in prior work.

Our main contributions include developing a (1 — 1/e)-approxi-
mation algorithm under these generalized settings, which we regard
as stronger due to the comparison with a more powerful bench-
mark. The key technical innovation is a novel rounding procedure
for fractional matchings. This allows us to devise a new Contention
Resolution Scheme (CRS) for transversal matroids, leading to im-
proved approximation guarantees for posted-price mechanisms
in combinatorial environments. Specifically, we enhance the ratio
from the previous 1/(k+1) to (1 — e~ k) /k for the intersection of k
transversal matroids.
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1 INTRODUCTION

In the past decade, digital platforms have changed the way users
access services across many aspects of daily life. Among these,
ride-hailing services such as Uber, LYFT, and Bolt have seen rapid
growth, reshaping urban mobility. However, the unique demands of
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this industry often result in a larger number of metrics to optimize,
along with greater complexity of the associated problems, compared
to many other service-based platforms. Solving these challenges re-
quires advanced methods from computational economics, machine
learning, artificial intelligence, and combinatorial optimization. In
this paper, we explore the model of dynamic client-to-cab matching
for maximizing platform profit, as introduced by Hikima et al. [13],
and build upon it to address key challenges within this area.

1.1 The Model of Hikima et al.

Consider how a typical ride-hailing application operates:

o A client opens the app on their phone, selects their destina-
tion, and may provide some additional details if needed,;

o After some time between seconds and a minute, the client
gets a proposed price for the chosen fare;

o The client then decides whether to accept or reject the offer;

o If the offer is accepted, the client waits for either an assign-
ment to a cab or a notification that no cab is available.

But how does this process look like from the perspective of the
ride-hailing provider?

e Every minute, the platform receives tens, if not hundreds, of
ride requests from its clients;

o The platform has real-time information about available cabs,
including which cabs can reach which clients within a rea-
sonable time;

o It must determine the optimal prices to offer each client;

o After receiving clients’ responses, the platform computes the
optimal assignment of cabs to clients (potentially rejecting
some requests) in order to maximize overall profit.

Hikima et al. [13] studied such a model, focusing on maximizing
profit for the ride-hailing service. We would like to emphasize that
their approach involves a two-stage process. In the first stage, the
platform collects ride requests within a time window, typically
around one minute, and offers each client a price. In the second
stage, after receiving the clients’ responses, the platform considers
only those who accepted the offers and optimizes the assignment
of cabs to clients to maximize overall profit. This process is thus
made somewhat offline, as each client learns the outcome only at
the end of this entire process. The specific details of their model
are as follows.

Graph of Customers and Taxis. We are given two sets, C and T,
representing customers and taxis, respectively. For simplicity, we
assume that the set of customers is C = {1, 2, ..., n}. Additionally,
for each customer-taxi pair, we are given a tuple (c, ¢, w¢ ¢ ), which
indicates that customer ¢ can be served by taxi ¢, with w¢; repre-
senting the cost of the trip. This relationship between customers
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and taxis can be modeled as a bipartite graph G = (C, T; E), where
one set consists of customers, the other of taxis, and the edges rep-
resent feasible connections—meaning a taxi can reach a customer
within a reasonable amount of time, such as 5 minutes.

Pricing Solution. A key assumption in Hikima’s model is that
for each client ¢, we know the probability distribution of their
valuation v, for the trip. The concept of a solution in this model is
represented as a vector of prices (7¢)c € C, where each nc is the
price offered to client c. Based on the price 7, client ¢ will accept
the offer if their valuation v, > .. Given the distribution V, of v,
we can determine that client ¢ accepts the price with probability
P [ve > 7], or rejects it with probability 1 — P [v, > 7c].

If client ¢ rejects the proposed price, we remove their corre-
sponding vertex and the incident edges from the graph. Let G, =
(Cok> T; Eoi ) be the graph that results after removing all customers
who did not accept their price. From this reduced graph, we select
a matching M C E,, a set of edges where no two share a common
vertex. The value of the solution is the sum of the prices minus
the trip costs, i.e., 7. — wc,t, across the edges in the final matching.
Here, the weights w, ; represent the cost of the fare, such as driver
payments, fuel expenses, and other related costs.

Matching Under Uncertainty. Notice that once the prices (7¢)cec
are set and we have learned the customers’ decisions regarding their
acceptance—i.e., the vector (1 [v; > m]) ¢ € C, or equivalently the
set Cop = { ¢ € Cluc = 7 }—our problem reduces to the classic task
of finding the maximum matching in a weighted bipartite graph.
Let f(m1,...,7n;Cor) denote the solution to this maximization
problem, which can be formulated as follows:

max Z (7me = we,t)ze,
zexr€{0,1} (c.t)€E

s.t. Z zet < 1[c € Cor] VeeC(,
0]

Z zes <1 VteT,
& (t)

zer €{0,1} V(e t) €E,

where §(c) denotes the set of taxis incident with customer ¢, and
similarly, §(t) denotes the set of customers incident with taxi t.
Here, z¢; € 0,1 indicates whether client ¢ and taxi ¢ are matched
(zc,t = 1) or not (z¢; = 0). The first constraint ensures that only a
customer ¢ who has accepted the proposed price can be matched
with a taxi, while the second constraint guarantees that each taxi t
is matched with only one client.

The Ride-Hailing Problem. Function f represents the weight of
the maximum matching for a given set of prices (7¢).ec, based
on which customers accept the offered prices. However, before
setting the prices (77¢)cec, we do not yet know the realization of
the acceptance decisions (1[v. > 7¢])cec. Our objective, then, is to
find a vector of prices (¢ )cec that maximizes the expected value
of the matching weight, where the expectation is taken over all
possible realizations of the acceptance vector (1[ve > 7¢])cec-

In other words, our goal is to maximize the following function
of the price vector (7¢)cec:

max By [f(r,.. s {c € Cloc 2 mc})].

(1) cec€R?

We will refer to this problem as the (RH-PROBLEM).

The expected value above can be expressed more intuitively
as a weighted sum of the maximum matchings’ weights over all
possible subsets of clients C,x C C. Specifically, for each subset
Cok> its contribution to the sum is given by:

]_[ P(ve > 7¢) - ]_[ (1=P(ve > 7e)) - F(m1, - ., 73 Copc)-

ceCor ceC\Cok

1.2 Posted Price Mechanisms

Note that the (RH-PROBLEM) directly models the price optimiza-
tion problem, and as we solve it, we obtain optimal prices for the
given model. However, one can observe that the model, as stated,
dictates a specific way of interacting with the client: it enforces a
take-it-or-leave-it offer at a given price. These types of mechanisms
are the so-called Posted Price Mechanisms.

Posted price mechanisms have a rich literature, starting with the
paper by Chawla et al. [7]. Very interesting research questions arise
around them because, for obvious reasons, they are suboptimal,
making it incredibly important to determine the extent of this
suboptimality. Despite their inherent limitations, they owe their
popularity to their ease of implementation and the simplicity and
transparency they provide from the client’s perspective. In some
cases, such as the ride-hailing problem we consider, they are even
the only feasible mechanisms.

It would be hard to imagine implementing an optimal Bayesian
mechanism where a client, who wants to get a cab as quickly as
possible, would need to first submit a bid, wait for all other clients
to submit theirs, and then wait again for the service to calculate
the final assignment.

1.3 Room for Improvement

The model of Hikima et al. can be made more realistic and com-
petitive in two key ways: by moving from an offline to an online
setting and by comparing it against a stronger benchmark.

Going From Offline to Online Setting. One of the main limitations
of Hikima’s model is its two-stage procedure, where the platform
must wait for all clients to make their decisions before computing
the optimal assignment. This offline process has been improved
by Brubach et al. [5], who addressed Problem A as proposed by
Hikima in Section 7 of [13]. Their approach essentially views the
problem as if the prices were already set, allowing the probability
function a(x.) to be defined as P(v. > x¢). In this problem, they
consider an undirected bipartite graph G = (C, T, E), where each
node ¢ € C has a price x. € R given upfront. The process follows
two steps that repeat until either C or T becomes empty:

(1) Choose some c € C and t € T, and attempt to match them,
a process known as probing. The probing succeeds with
probability a.(x.) and fails with probability 1 — ac(xc);

(2) If the probing succeeds, both ¢ and t are removed from C
and T, respectively, and a profit of (x¢ + w¢;) is obtained. If
the probing fails, no profit is made, and ¢ is removed from C.



Brubach et al’s approach introduced a new probing method,
enabling the problem to be solved in an online manner, where client
requests are handled as they arrive rather than all at once. Their
work improves the approximation ratio from the 1/3 achieved by
Hikima to 1 — 1/e. However, despite this improvement, the model’s
limitation persists in that it only benchmarks performance against
other posted price mechanisms.

Stronger Benchmark. In the broader context of mechanism de-
sign, the approaches of both Hikima et al. and Brubach et al. leave
an important question unanswered: can we design a posted price
mechanism that remains competitive against an optimal Bayesian
mechanism?

1.4 Our Contribution

In this paper, we build on the problem posed by Hikima et al., linking
it to broader research on stochastic combinatorial optimization and
contention resolution schemes, which have rich applications in
mechanism design [7, 9, 11, 17, 18]. We improve on the known
results by presenting a (1 — 1/e)-approximation algorithm for the
problem of pricing ride-hailing fares.

Our contribution strengthens the work of Brubach et al., who
compared their algorithm against an optimal posted-price mecha-
nism. In contrast, we measure our performance against an optimal
Bayesian mechanism, which provides the most effective pricing
solution in this setup [15], outperforming any posted-price mech-
anism. This broader comparison sets a stronger benchmark, as
posted-price mechanisms are a subset of Bayesian mechanisms.

Algorithm for Ride-Hailing. We introduce an online algorithm
that adheres to the posted-price mechanism model of Hikima et
al. while also evaluating its performance against an optimal Bayesian
mechanism. Our approach begins by formulating a new mathemat-
ical program, which we use to upper bound the performance of
the optimal Bayesian mechanism. We then present a posted-price
mechanism that approximates the optimal solution of this program
by a factor of 1 — 1/e.

This leads to the main theorem of the paper:

THEOREM 1.1. There exists a posted price mechanism for the ride-
hailing model of Hikima et al. that provides a (1 — 1/e)-approximation
of an optimal Bayesian mechanism.

The proof of this theorem is divided into two parts. In Section 2,
we introduce the mathematical program that provides a pricing
solution fitting the model of Hikima et al. In Section 4, we demon-
strate that there exists a posted-price mechanism that achieves the
(1 - 1/e) approximation of its optimal value. Additionally, in the
appendix in the full version, we show that the concave program we
utilize is stronger than the (RH-PROBLEM) presented earlier.

Novelty of the Approach. Although our result builds upon prior
work in contention resolution schemes (CRS), it introduces new
insights. On the one hand, we know that for the type of convex
program described in Section 2, a (1 — 1/e)-balanced CRS exists in
matroid environments [14]. However, since our problem involves
matching rather than matroid optimization, a custom scheme is
necessary. On the other hand, the CRS from Brubach et al. can-
not be directly applied in our approach, as the scheme we aim for

needs to be, in a way, exactly (1 — 1/e)-balanced. By this, we mean
that when an edge e has a probability p,. of appearing in the opti-
mal matching, we have to include it in the created solution with
precisely (1 — 1/e) pe probability. This stricter requirement arises
because the convex program’s objective contains both positive and
negative terms that depend on pe.

While this modification could also be applied to the matching
CRS of Brubach et al., our approach is self-contained and does not
rely on external procedures (i.e., dependent rounding technique
by Gandhi et al. [10]). Instead, we employ differential equations to
calculate the exact probabilities of key events, such as the availabil-
ity of a taxi when clients arrive. This method also provides deeper
insights into the relationships between elements in the system,
especially when processing one element influences another.

Finally, our approach not only addresses the matching environ-
ment in the ride-hailing problem but also leads to two new results
for transversal matroids and stochastic k-set packing (see the ap-
pendix in the full version).

Contention Resolution Scheme for Transversal Matroids. The tech-
nique used to prove Theorem 1.1 builds on the theory of matroid
optimization under uncertainty, particularly in the context of con-
tention resolution schemes. In addition to solving the matching
environment in the problem of Hikima et al., our method gen-
eralizes to transversal matroids and their intersections. Previous
work achieved a 1/(k + 1)-balanced CRS for the intersection of k
transversal matroids, but our approach improves on this result:

THEOREM 1.2. There exists a (1 — e %) /k-balanced contention
resolution scheme for the intersection of k transversal matroids.

2 NEW BENCHMARK

To introduce our new benchmark, we first need to present the
ride-hailing problem of Hikima et al. within the framework of
mechanism design.

Consider the classical Bayesian single-parameter mechanism
design scenario, as outlined by Chawla et al. [7]. In this setting, we
have a single seller offering a single service to a set C of clients,
each ¢ € C interested in being served. Each client’s valuation for
receiving the service is represented by a nonnegative random vari-
able v, with the valuations being independent of each other and
their distributions known upfront. The problem the seller faces is
defined by a down-closed family # C 2€, which limits the subsets
C C C that can be served. In our case, feasibility means finding
a matching between C and the set T (the taxis), where the size of
the matching equals \C_ i This is called a "single-parameter” setting
because the seller offers only one type of service. The objective is
to design a truthful mechanism that maximizes expected profit.

This problem is well understood and is optimally solved by My-
erson’s mechanism [15]. However, while Myerson’s mechanism
is theoretically optimal, it is impractical in real-world settings. In
the context of ride-hailing, the mechanism would require collect-
ing bids from clients, computing optimal allocations and prices,
and then informing the clients whether they will be served and at
what price. Implementing such a system on a ride-hailing platform
is unrealistic. A posted-price mechanism, where clients receive a
take-it-or-leave-it price, is a far more practical solution.



As mentioned in the previous section, the study of posted-price
mechanisms in theoretical computer science began with the seminal
work of Chawla et al. [7]. This opened the door to a significant
body of research. Notable contributions that are most relevant to
our work include those of Yan [18] and Feldman et al. [9].

2.1 Convex Program

The convex program we use in our algorithm is based on the one
used by Yan [18]. We refer readers to [18] for a deeper discussion
on the so-called ironing of the valuation function, which allows us
to assume that the objective function is concave.

Consider a random set of clients C* C C, C* € F served by
Myerson’s mechanism, i.e., an optimal truthful mechanism, and
let p; = P[c € C*] be the probability that client ¢ gets served.
Moreover, let py, ; be the probability that the optimal mechanism
serves client ¢ with taxi . Since the mechanism always serves at
most one client to at most one taxi, it follows that (py ;) (c.r)ecxT
is a fractional matching in the bipartite graph between C and T.

Now fix a client ¢ with its probability p; of being served. Imag-
ine for the time being that we focus only on them and we forget
about other clients and feasibility constraints between them. We
know their valuation distribution ‘V, and hence also its cumulative
distribution function F, can be easily determined.

If we would propose to client c price F;'! (1 - p}), then ¢ would
accept the price with probability exactly p; and upon acceptance
we would earn F ! (1 - p%). This means that the expected profit
would be F; 1 (1 - pf) - pi. If it would be the case that function
p > F71(1-p) - p was concave, then F; ! (1 - p¥) would be the
optimal price of serving ¢ under the constraint that we want to
serve them with probability p;. However, it may happen that p —
F;1 (1~ p)-pis not concave. In such a case, the optimum expected
profit from a single client ¢ is proven to be obtained by proposing
to this client a random price for the service.

Based on results by Myerson [15], it follows that the optimal
price distribution can be chosen to be a two-price distribution,
which can be found by the so-called ironing technique, see Yan [18]
for details. We denote by R (p?) the expected profit of this optimal
distribution, which can be shown to be concave in p}. Intuitively,
one should think of p — R.(p) as being a convex closure of the
p+— F-1(1-p) - p function.

Returning to the general case with multiple clients C, the mecha-
nism design problems for individual clients (which are independent
of each other) are less constrained than the original mechanism
design problem, where the set of served clients must belong to
F . Therefore, the total expected profit, ¥.ccc Re(pl), serves as an
upper bound on the expected profit of the optimal mechanism for
the ride-hailing problem.

This discussion is summarized in the following Lemma that can
be found in Yan [18]:

LEMMA 2.1 (MYERSON). Consider client ¢ and their valuation dis-
tribution V; described by its cumulative distribution function F.
Suppose we are given a target probability p. with which we want to
serve client c. Then, the price distribution D, that maximizes

Erep, [7-(1-F(n))]

subject to the constraint that E, ¢ [1 — F(r)] = pc is a two-price
distribution, where this distribution as well as the profit R(p.) it gives
can be determined from F. Moreover, R(p.) is a concave function.

Hence, the following is a concave relaxation of the original ride-
hailing problem.

max Z R_C(Pc) - Z Pe,t " We,t

pexreR$GT L8
st Y per <1 Veeo,
(1)

Pc= Z pPet Veec-
ted(c)

The negative sum in the objective function models the expected
cost of each fare. The concavity of the objective function allows us
to solve the program in polynomial time.

2.2 Discussion

The programming relaxation we build on is similar to that of
Yan [18] and Feldman et al. [9]. Yan provided a beautiful argument
demonstrating that for any combinatorial environment, a posted
price mechanism can approximate the optimal Bayesian mechanism
with the same ratio as the correlation gap. This achievesa 1 —1/e
approximation for matroids.

For the matching environment, Yan’s approach also provides
a constant approximation. However, since the correlation gap for
bipartite matchings is between 0.509 and 0.544 [6, 16], one might
ask whether this suffices in our model.

It does not. Yan’s reduction relies on Chawla et al’s [7] greedy
procedure, which repeatedly probes edges. Here, this would mean
offering a client different cabs sequentially, each with a new take-it-
or-leave-it price—an infeasible approach in ride-hailing. Moreover,
our environment is not a matroid, requiring a tailored solution.

As discussed in Section 1, the convex program’s objective func-
tion includes both positive and negative terms dependent on pe.
Thus, we design a contention resolution scheme (CRS) that se-
lects elements with carefully chosen probabilities. In Section 4, we
present a posted price mechanism using the p. vector to ensure
each client is served with probability exactly (1 — 1/e) p, capturing
exactly (1 — 1/e) of the total objective function value.

3 RELATED WORK

The model we use in this paper was first proposed by Hikima et
al. [13], who presented a 1/3-approximation to the (RH-PROBLEM).
They approached the problem using the following relaxation:

max Z (e = We,t)ze,

zexreRGT ek
s.t. Z zet SPloe 2 7m] VeeC,
t€8(c)
Z Zer <1 VteT,
ced(t)

Zer 20 V(ct) €E.



After solving this program using concave min-cost max-flow meth-
ods, they obtained their final solution. They shown that this relax-
ation relates to the well-known Stochastic Matching Problem [2, 4]
and that their algorithm offers a 1/3-approximation, referencing [4].
However, if they had referred to [2], they could have claimed a
stronger 1/2.5-approximation.

Brubach et al. [5] explored the fact that the relaxation proposed
by Hikima et al. is equivalent to a relaxation of a special case of the
Stochastic Matching problem. For this particular relaxation, they
achieved a (1 — 1/e)-approximation.

In this paper, we offer a different perspective by incorporating
posted pricing theory, which was initiated by Chawla et al. [7]. We
utilize a relaxation technique introduced by Yan [18] and further
developed by Feldman et al. [9]. We chose this concave relaxation for
its conceptual simplicity, though a linear programming relaxation,
as proposed by Gupta and Nagarajan [11], could also be used to
achieve similar results.

Our approach to solving the mathematical program is grounded
in the broader work on contention resolution schemes. This is
closely related to the work of Feldman et al. [9], Adamczyk and
Wilodarczyk [3], Lee and Singla [14], and Pollner et al. [17], who
have developed new contention resolution schemes in the context
of mechanism design. The work of Brubach et al. [5] also fits into
this line of research.

4 NEW ROUNDING ALGORITHM FOR
MATCHING

Before presenting the main result of this paper, we will first discuss
a simpler problem that introduces the tools we will use later.

4.1 A Toy Example

In this subsection, we assume that there are n clients sending re-
quests and a single cab available to pick up any of them. As men-
tioned earlier, the first step in our solution is to estimate the proba-
bilities of each client being served by the optimal mechanism and to
set the prices accordingly. Suppose that after following these steps,
we have the set (py),, <7, Where py, represents the probability that
client u gets served. Here, we change the notation for the sets of
clients and taxis to U and V, respectively, to introduce more natural
notation when working with bipartite graphs.

Our goal is to find a procedure that, for each u € U, selects client
u with an overall probability of at least b - p,, for some positive
constant b. It is important to note that, for simplicity, we relax the
strict condition on the serving probability described in Section 2,
which required this probability to be exactly b - p,,. This relaxation
helps make the analysis more comprehensible. Finally, let us denote
the random set of clients who accepted their proposed prices by
A(p). Additionally, for the remainder of this paper, we will stop
using the terms clients and taxis when referring to the elements of
sets U and V.

4.1.1 The Algorithm. Here, we present an algorithm satisfying that
for each u € U it chooses this element with probability 1 — 1/e
when conditioned on u being active. Notice that in the appendix
in the full version, we analyze a naive approach for this problem
that traverses the elements of U in random order and selects the
first one that is active, i.e., belongs to A(p). Although it has a worse

probability of 1/2 of choosing each element, the proof steps are
easier and may make for a good introduction to what follows in
this subsection.

To decide in which order to process the elements of U, we as-
sign each u € U an independent exponential random variable
Y, ~ Exp(1). We interpret its realization as the arrival time of u. It
is easy to notice that such an ordering corresponds to a random
permutation as (Y;,),cu are equally distributed. Now, to improve
the performance of the naive strategy, we add a dumping factor
represented by flipping an asymmetric coin whenever an active ele-
ment arrives. If the toss is successful (heads), we return this element
as the solution. Otherwise, we skip it and wait for the next element
to arrive. The main difficulty with this approach is to find the right
relation between the values of py, V;, and the probability that the
coin toss for u results in heads. We decided to use the probability
present in the pseudocode in Algorithm 1 (the dumping factor for
u is defined using a binary variable D,,). We present an example
run of this algorithm in Figure 1.

Algorithm 1 One Item Selection With a Coin Tossing

Given: p = (pu)yey St Zuecv Pu <1
1: for eachu € U do
2. generate an exponential random variable Y;, distributed as

P[Y,<t]=1-¢"!

3: for each u € U in increasing order of ¥;, do
4. if u is not active then continue
5. generate a binary random variable D,, distributed as
-y,
P[Dy =1] = e—Pu(l—e “)

6: if D, = 1 then return u

4.1.2  The Analysis. To be able to get the exact probability of ele-
ment z being able to block u from time ¢ to ¢ + dt,! we introduce
the notation of

Fi(t) = P[u not blocked until ¢ and elements of S

do not arrive before t | Y, = t]

N

for eachu € U and S
following.

U \ {u}. The crucial observation is the

LEMMA 4.1. Let S, = S U {u} for S € U \ {u}. Moreover, let
P(S) = X wes Pw- Then, it holds that

Fg(t) — e_P(U\Su)(I_eit)_‘Slt. (2)
Proor. We proceed by induction on the decreasing cardinality

of S C U \ {u}. For the base case, let us consider S = U \ {u}. It is
easy to notice that it satisfies the following
Fg\{u} (t) = P[u not blocked until ¢ and elements of U \ {u}
do not arrive before t | Y, = t]
= ]P’[elements of U \ {u} do not arrive
beforet | Yy, = t]
IWe say that element z blocked u whenever z is selected by the algorithm, forbidding

u to get selected as well. We present the exact conditions that need to be satisfied for
an element to block another one in the proof of Lemma 4.1.
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Figure 1: Example on how the arrival order is determined and how the coin tossing algorithm works. Here, we mark active
elements by putting a green dot next to them. Otherwise, we place a red dot. Elements rejected by the algorithm are coloured
orange, while the selected element is coloured light green. To denote the results of these flips, we write H (heads) and T (tails)

next to the element.

since the last event implies u being available at ¢. Furthermore, if
we recall that the minimum of independent exponential variables
is exponential with the rate being the sum of components rates [8],
we get

—[U\{u}lt

min Y,, <t
weU\{u} "

= €

MWy = p

Let us move to the induction step now. We may assume that
the hypothesis holds for all sets of cardinality at least k for some
k € N;. Our goal is to prove that all (k — 1)-element subsets of
U \ {u} satisfy (2). Let S be any of them.

Suppose that we are at some moment ¢, item u is still available,
and the elements of S have not arrived yet. In order to determine
the dependency between FE (t+td) and F;j (t), we need to examine
the two things that can happen from ¢ to ¢ + dt and affect Fj (t).
First, an element w € S may arrive during this time. Such an event
happens with probability

P[Yy <t+dt| Y, > t]-F5(t)

P|Y,, < dt] - F5 (1)
(1 - e-‘“) ES ().

Second, if some other element z € U \ S, has not arrived yet, it
can block u before t + dt. We say that u gets blocked by z € U if we
choose z before approaching u, i.e., it holds that: 1) Y; < ¥, 2) z is
active, 3) no element was returned before Y, 4) z is not dumped in
the coin tossing phase. The probability of this event is

®)

P|Y, <t+dt|Y, > t|-P[z € A(p)| -P[D; = 1] ~F3U{Z}(t),
which simplifies to
PlY, <dt] -Plze A(p)| -P[D, =1] - F;" () (@

as we apply the memoryless property. By the definition of the
exponential distribution, we get P[Y; < dt] =1 - e~ 9. We know
that each element z is active with probability p, independently of
the other elements, which means that P[z € A(p)] = p,. Finally,

P[D, =1] = epz(1-¢7") by the definition, and F,fU{Z}(t) can be
expressed using the induction hypothesis. Hence, (4) is equal to

(1 - e—dt) py e P=(1m) L mp(UNSUL{z)) (1=e")~ISU{z}E

After some modifications, we obtain the following formula

(1= ) pe- et P @S (=) ISl

Thus, the probability of an unwanted event happening from ¢ to
t+dt is equal to the sum of (3) over elements w € S plus the sum of
(4) over elements z € U \ Sy,. It holds since the probability of more
than one bad event happening during this interval is negligible as
dt — 0. After regrouping the components, we obtain

(1 - e-df) (|s|F5(t) +p(U\Sy) et e-PW\Su)(l-e")—lSlf) .
Hence, we can write that the following equation holds
Fi(t+td) = Fi(n= (1= ¢7) (IIFS () +p (U \ Su)
et e—p(U\Su)(l—e”)—|S|t) .
As we move Fy (t) to the left-hand side of the equation, divide both
sides by dt and take the limit dt — 0, we obtain that (Fg )’ (t) equals

—(ISIES (0 4 p (B 8y) - e - 7P WS (1=eT)ISle)

Together with the initial condition F5 (0) = 1, the differential equa-
tion above describes the function given by Formula (2), which
concludes the proof. O

COROLLARY 4.2. For S = (0, we obtain
P[u not blocked at t | Y, = t| = For) = e PO\ (1-¢7)
This allows us to prove the following theorem.

THEOREM 4.3. The probability that Algorithm 1 returns element
u is (1 — 1/e)py for each u € U. In other words, u is chosen with
probability 1 — 1/e when conditioned on being active.

Proor. Algorithm 1 returns element u € U whenever it is active,
not blocked, and the coin toss for u results in heads (i.e., D, = 1).
Thus, we obtain that P[u returned] is equal to

Ey, [Il [u € A(p)] - P[unot blocked | Yy, ] - 1[Dy = 1]]
= Pu- EYu [e_P(U\{u})(l_e—Yu) . e_Pu(l—e’Yu)]

= Pu- /oo e PUMED (1=¢™) L opuli=e™) o=t gy
0

= [P0t . [Tt
0 0

_ pu.(_e—(l—ff’) :) - (1—e‘1)pu,




which concludes the proof. O

4.2 The Actual Algorithm for Matchings

With all the tools and insights introduced for the toy example, we
are ready to tackle the problem of rounding a fractional matching
(pe) ecE obtained from program (1). Our goal here is to find a
procedure that returns a matching M in a bipartite graph G =
(U, V;E) for which all its endpoints in U belong to the set A(p)
of active elements. At the same time, we want to guarantee that
for each edge e € E, the overall probability of adding e to the final
matching equals (1 —1/e)pe.

The idea is to first define a procedure that pairs each vertex
u € U with one of its neighbours in V and then for each vertex
v € V choose one of the vertices in U that paired with it (if such
exists). Then, the edges whose endpoints selected each other will
form the matching in question. We decide to use the controller
mechanism described below to select a pairing for each u € U and
an adaptation of Algorithm 1 for the vertices of V.

4.2.1 Preprocessing. Unlike in the previous problem, this one re-
quires us to obtain the exact probability of 1 — 1/e of a given edge
being added to the final matching. Thus, instead of relying on the in-
equality >\,e5(v) Puo < 1thatholds for eachv € V, we want to find
a way to round this sum up to one. For this purpose, for eachv € V
we add a new vertex v’ to U, connect it with vertex v and define this
new edge to be active with probability py = py,0 = 1-2ye5(0) Puo-
Such a procedure gives us a graph G’ = (U, V;E’), where U’ is the
set of initial vertices extended by the vertices v’ and E’ is obtained
from E by adding all edges of form {v’,v} forv € V.

4.2.2  Controller Mechanism. By the definition of program (1), it
holds that
Vue Pu = )| Pup <1 ®)
ved(u)
Thus, for each u € U we can make a randomized choice of a con-
troller c(u) € V following the distribution

Voev Ple(u) =o] = ’;— ©)

u
In other words, we make a weighted choice of an edge to represent
u in the matching that we aim to build. From property (5), we have
that the probabilities of all possible controller choices for every
vertex u sum up to 1. Hence, the procedure is defined correctly.
We visualize both the controller mechanism and preprocessing
procedure in Figure 2.

4.2.3 The Algorithm. Finally, we are able to introduce the round-
ing algorithm for the fractional solution (p¢) ccg obtained from
program (1). We use the following approach.

The first step is to transform graph G into G’ as described before.
Then, to decide in which order to serve the elements of U’, we once
again use the exponential variables. Next, at the moment of arrival
of an active element u € U’, we choose its controller and flip an
asymmetric coin to determine the fate of e = {u, c(u)}. If the toss
is successful, we set the value of a helper binary variable d,, ¢ (4, to
1 to inform that the edge is ready to be included in the matching.
Then, we check whether there exists another edge {z,c(u)} € E
that satisfies d; .(,,) = 1. If the answer is positive, such an edge can

already be in the matching forcing us to skip e. Otherwise, we add
e to the matching. Formally, we obtain the following algorithm.

Algorithm 2 Rounding Fractional Matchings in Bipartite Graphs

Given: bipartite graph G = (U, V;E); fractional matching p =

(Pu,v) {u,0}€E inG
Structures: dy, , for each {u,0} € E; M =0

1: transform G to G’ as described before

2: choose controllers according to (6)

3: for eachu € U’ do

4 generate an exponential random variable Y, distributed as
PlY,<t]=1-¢"

5: for each u € U’ in increasing order of Y, do
6:  if u is not active then continue
7:  generate a binary random variable Dy, () s.t.

P|D _ Yu
[ u,c(u) = 1] =e Pu,u(l e )
& if Du,C(u) =1 then

9: du,c(u) — 1
10: ifu e U and Vz€5(c(u)),z¢u dz,c(u) =0 then
11: add {u,c(u)} to M

12: return M

4.2.4 The Analysis. First, we have to justify that the resulting set
M returned by the algorithm above is a matching. By definition,
the controller mechanism guarantees that each u € U is covered
by at most one edge from M. Furthermore, the condition presented
in line 10. guarantees that the same holds for eachv € V.

Before we prove the main theorem of this paper, let us introduce
the notion of blocking between the edges. Let e = {u, v} be any edge
in E. We say that e gets blocked if we set d;, = 1 for some z # u,
before approaching e, i.e., it holds that: 1) Y, < ¥y, 2) f = {z,0} is
active, 3) v is chosen as the controller of z, 4) f is considered by the
algorithm (dumping factor D, , equals one). Hence, not blocking e
is an event when there exists no such edge f. Thus, if we condition
on item u arriving at a given time ¢, we can define a helper function

F;j’v(t) = P[ {u,v} not blocked until ¢t and elements of S

do not arrive before t | Y, = t]

for each {u,v} € Eand S C §(v) \ {u}. The crucial observation is
the following.

LEMMA 4.4. Let {u,v} € E be any edge in G, S C 6(v) \ {u}, and
Su =S U {u}. Moreover, denote 3, ,,cs Pw,o by p(S). Then,

FS (1) = e PO\ (1=e")-Isl o

Due to space limitations, we have moved all the proofs from this
subsection to the appendix in the full version.

COROLLARY 4.5. ForS = 0, we look atF,?sv(t) and obtain
P[{u 0} not blocked att|Y, =t| = e PG\ u})(1-e7)

This allows us to prove the following theorem.
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Figure 2: Left side of this figure shows the visualization for the controller selection. In this part, we use the simplified notation
of p;, j to represent py,, ;. The graph on the right shows how the preprocessing procedure works. The colours used in this picture
are only supposed to help distinguish between the elements of V and the edges incident to them.

THEOREM 4.6. The probability of Algorithm 2 adding edge e =
{u, v} to the final matching is (1 — 1/e)py, for each e € E. In other
words, e gets added to the matching with probability 1 — 1/e when
conditioned on it being active.

Together with the reasoning given in Section 2, it implies that
Theorem 1.1 holds.

5 CONTENTION RESOLUTION SCHEME FOR
TRANSVERSAL MATROIDS

In the previous section, we considered the constraints of one-
element selection and building up a subset of edges that forms
a matching in a given bipartite graph. Both of them could be de-
scribed using matroids.

Definition 5.1 (Matroid). Consider a pair M = (E, '), where E is
the universe of elements and 7 C 2£ is a family of independent sets.
We say that M is a matroid if it holds that:

(1) the family 7 is down-closed, i.e.V4cyfBCA = Be I,

(2) the extension axiom is satisfied, i.e. V4 ge 7|A| < |B|] =

EIbeB\AA U {b} elrl.

In this section, we focus on a more general subclass of matroids
called transversal matroids. To work with them, we use the follow-
ing characterization.

PROPOSITION 5.2. For any transversal matroid M = (U, I') there
exists a bipartite graph (U, V; E) such that K = {S C U : there exists
a matching that covers S} contains exactly the sets that are indepen-
dent in M, namely K = I . Moreover, this relation is bijective, mean-
ing that for any bipartite graph (U, V; E), the pair (U, K) describes
a transversal matroid.

Now, let us recall that both problems in Section 4 came down to
rounding a fractional solution to make it feasible under the given
constraints. Such a problem is known by the name of the contention
resolution scheme (CRS). To introduce it in a more general form,
we need one more definition first.

Definition 5.3 (Matroid Polytope). For a given matroid M =
(E, I), the convex hull of characteristic vectors of all independent
sets in M, namely {x € REO | Vier ZeerXe < |I|}, is called the
matroid polytope P (M).

Definition 5.4 (Contention Resolution Scheme). Suppose that there
is set of constraints C given as a collection of matroids { M, Ma, .. .,

M.} over E and a point x € ﬂ{le P (M;). A contention resolution
scheme is a procedure that takes point x and rounds each coordinate
x; to obtain an integer point that satisfies all the constraints. We say
that a CRS is b-balanced if every element is selected with probability
at least b - x;j.

Finally, we can restate our main theorem regarding transversal
matroids and contention resolution schemes.

THEOREM 1.2. There exists a (1 — e %) /k-balanced contention
resolution scheme for the intersection of k transversal matroids.

Due to space constraints, we give the proof of this theorem in
the appendix in the full version.

6 CONCLUSIONS

In this paper, we provided a new perspective on the ride-hailing
problem of Hikima et al. [13], grounding it in the microeconomic
context of Myerson’s optimal mechanism [15]. Utilizing tools from
contention resolution schemes, we devised an algorithm that ad-
dresses the ride-hailing problem and generalizes to other combina-
torial optimization settings.

Our approach offers both theoretical and practical benefits. Theo-
retically, it advances the understanding of posted-price mechanisms
in complex matching environments, providing improved approxi-
mation guarantees. Practically, it is easily implementable using the
reduction from Gupta and Nagarajan [11], converting the concave
program into a linear one via one-hot encoding of prices.

To demonstrate practicality, we implemented our approach using
the open-sourced code of Hikima et al. [12] for the sigmoid valua-
tion model. The prices determined by our algorithm yield similar
results to those of Hikima et al., with variations within roughly
+3% on the same dataset, depending on the validation subset.

In ongoing work, we leverage our approach to develop an on-
line algorithm that does not require grouping requests, enabling
real-time processing. We also provide additional implementations
incorporating ideas from submodular optimization [1].
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