
Universal Optimization for Non-Clairvoyant
Subadditive Joint Replenishment

Tomer Ezra∗ Stefano Leonardi† Michał Pawłowski‡ Matteo Russo§

Seeun William Umboh¶

Abstract

The online joint replenishment problem (JRP) is a fundamental problem in the area of
online problems with delay. Over the last decade, several works have studied generalizations
of JRP with different cost functions for servicing requests. Most prior works on JRP and its
generalizations have focused on the clairvoyant setting. Recently, Touitou [Tou23a] developed
a non-clairvoyant framework that provided an O(

√
n log n) upper bound for a wide class of

generalized JRP, where n is the number of request types.
We advance the study of non-clairvoyant algorithms by providing a simpler, modular frame-

work that matches the competitive ratio established by Touitou for the same class of generalized
JRP. Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary
monotone subadditive functions using a simple class of functions termed disjoint. This allows us
to reduce the problem to several independent instances of the TCP Acknowledgement problem,
for which a simple 2-competitive non-clairvoyant algorithm is known. The modularity of our
framework is a major advantage as it allows us to tailor the reduction to specific problems and ob-
tain better competitive ratios. In particular, we obtain tight O(

√
n)-competitive algorithms for

two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive Joint
Replenishment. We also show that, in contrast, Touitou’s algorithm is Ω(

√
n log n)-competitive

for both of these problems.

∗Harvard University. tomer@cmsa.fas.harvard.edu
†Sapienza University of Rome. leonardi@diag.uniroma1.it
‡MIMUW, University of Warsaw and IDEAS NCBR. michal.pawlowski196@gmail.com
§Sapienza University of Rome. mrusso@diag.uniroma1.it
¶The University of Melbourne. william.umboh@unimelb.edu.au

1 Introduction
Online problems with delay have received much attention in the last few years. An important
family of online problems with delay consists of the Joint Replenishment Problem (JRP) and its
variants. A typical instance consists of a sequence of requests that arrive over time. Each request
can be one of n request types, and the cost of serving a set of requests is a subadditive1 function of
their types. We assume that the algorithm has oracle access to the service cost function. Requests
do not need to be served on arrival but each request accumulates a delay cost while unserved. In
particular, each request q has an associated delay cost function dq and its delay cost is dq(t) if it
is served at time t. The goal of the problem is to serve all requests minimizing the total service
cost and delay cost. An important special case is the deadline case; this is when requests do not
incur delay cost but instead must be served by some given time. We call this family of problems
Subadditive JRP.

These problems can be studied under the clairvoyant and non-clairvoyant settings. In the
clairvoyant setting, when a request q arrives, the algorithm is given the entire delay cost function
dq (or its deadline in the case of deadlines). In contrast, in the non-clairvoyant setting, the algorithm
only knows of the delay cost accumulated so far. In the case of deadlines, the algorithm only knows
whether the request’s deadline is now (and must be served immediately) or later.

Most previous works on Subadditive JRP have focused on the clairvoyant setting. Key problems
within the family of Subadditive JRP include (in increasing order of generality): TCP Acknowl-
edgement [KKR01, DGS01, BJN07], Joint Replenishment Problem [BKL+08, BKV12, BBC+14,
CKU22], and Multi-Level Aggregation (MLA) [BFNT17, AT19, BBB+21, BBB+20, McM21]. For
general subadditive service cost functions, deterministic O(log N) (where N is the number of re-
quests) and O(log n) upper bounds are known ([CPSV18] and [AT20], respectively).

There is much less work in the non-clairvoyant setting. For a small number of problems, such
as TCP Acknowledgement and Set Cover with Delay [ACKT20], clairvoyance is not required in the
sense that the same competitive ratio can be attained in both the clairvoyant and non-clairvoyant
settings. However, Azar et al. [AGGP21]’s lower bound for Online Service with Delay (a differ-
ent family of online problems with delay) can be translated into an Ω(

√
n) lower bound against

deterministic algorithms for JRP, and thus, MLA and Subadditive JRP. In contrast, clairvoyant
Subadditive JRP has a O(log n) competitive ratio [AT20]. Recently, Le et al. [LUX23] showed that
randomization does not help in breaking the Ω(

√
n) barrier and also developed algorithms for JRP

and MLA with matching and nearly-matching upper bounds. Shortly after, Touitou [Tou23a] pre-
sented a general non-clairvoyant framework for Subadditive JRP with a deterministic O(

√
n log n)

competitive ratio.
For further related work, we defer to Appendix D.

1.1 Our Results

Our main contribution is a simple, modular framework for non-clairvoyant Subadditive JRP that
matches the current-best competitive ratio of O(

√
n log n), and yields tight O(

√
n) competitive

ratios for the key problems of Multi-Level Aggregation and Weighted Symmetric Subadditive Joint
Replenishment. We also show that the framework of Touitou [Tou23a] is Ω(

√
n log n) for these

problems. We now formally define these problems and state our results.
1A set function over a ground set U is subadditive if f(A) + f(B) ≥ f(A ∪ B) for every A, B ⊆ U .

1

1.1.1 General Framework for Subadditive JRP

Subadditive JRP. We have a set U of n request types and a monotone non-decreasing, subad-
ditive service function f : 2U 7→ R≥0 that satisfies f(∅) = 0. Requests q arrive over time. Each
request q has a type hq ∈ U , an arrival time aq, and a non-decreasing, continuous delay function
dq. At any point in time, the algorithm can serve a subset Q of the requests that have arrived and
incur a service cost of f(SQ) where SQ = {hq : q ∈ Q} is the set of types of Q. Let Cq be the time
when request q was served. The delay cost of request q is dq(Cq).2 The goal is to serve all requests
while minimising the sum of the total service and delay costs.

Approximating set functions. The core idea underlying our framework is the following simple
but powerful observation. Given two set functions f, g over the same ground set U of n elements,
we say that g is an α-approximation of f if f(S) ≤ g(S) ≤ αf(S) for every S ⊆ U . Our observation
is that for a given subadditive service function f , if we can α-approximate f by a simpler service
function g, then we can reduce any instance of Subadditive JRP with service function f to one
with g instead. In fact, this leads us to the following simplification of the problem.

Disjoint TCP Acknowledgement. In Disjoint TCP Acknowledgement, we have a set U of n
request types. We also have a partition of U into subsets S1, . . . , Sk with costs c1, . . . , ck. For
a subset S ⊆ U , we have f(S) =

∑k
i=1 ci · 1 {Si ∩ S ̸= ∅}. In other words, we pay ci for every

part Si that intersects with S. Such a function is called a disjoint service function. Observe that
when k = 1, this is equivalent to the TCP Acknowledgement problem; when k > 1, this corre-
sponds to several independent instances of TCP Acknowledgement. The 2-competitive algorithm
for TCP Acknowledgement can be easily extended to a 2-competitive algorithm for Disjoint TCP
Acknowledgement (see Section 2.1).

We now state our main technical lemma.

Lemma 1.1 (Reduction Lemma). If there exists a disjoint service function g that α-approximates
f , then there exists a non-clairvoyant algorithm that is 2α-competitive non-clairvoyant algorithm
for every Subadditive JRP instance with service cost function f .

A major advantage of our Reduction Lemma is that it reduces the task of designing and analyz-
ing an online algorithm for a Subadditive JRP problem to the much cleaner task of showing that
the corresponding service function f can be approximated by a disjoint service function well. In
particular, this boils down to finding a partition of the set of request types U into subsets S1, . . . , Sk,
for some k, such that the following quantity is small

max
S⊆U

∑k
i=1 f(Si) · 1 {Si ∩ S ̸= ∅}

f(S) .

For general Subadditive JRP, our key insight is that the problem of approximating an arbitrary
service function f by a disjoint service function can be reformulated as the Universal Set Cover
problem.

Universal Set Cover (USC). An instance of the Universal Set Cover (USC) problem consists
of a universe U of n elements, a collection C of subsets of U , and costs c(S) for each set S ∈ C.
A solution is an assignment a of each element e to a set a(e) ∈ C. For any subset X ⊆ U , define

2We assume W.L.O.G. that dq(aq) = 0, i.e., serving a request immediately on arrival incurs no delay cost.

2

a(X) = {a(e) : e ∈ X}. The stretch of the assignment a is maxX⊆U c(a(X))/OPT(X) where
OPT(X) is the cost of the optimal set cover of X.

Jia et al. [JLN+05] introduced the Universal Set Cover problem and showed that a O(
√

n log n)-
stretch assignment can always be found efficiently. We show that this implies that any sub-
additive service function f can be approximated by a disjoint service function to within a fac-
tor of O(

√
n log n) (Lemma 2.2). Together with our Reduction Lemma, we get a deterministic

O(
√

n log n)-competitive algorithm for Non-Clairvoyant Subadditive JRP, matching the current
state-of-the-art [Tou23a].

1.1.2 Our Techniques for MLA and Weighted Symmetric Subadditive JRP

One main technical contribution of the paper is to exploit the inherent structure of the MLA and
Weighted Symmetric Subadditive JRP functions to show that they can be O(

√
n)-approximated by

disjoint service functions. We then employ the Reduction Lemma to prove tight O(
√

n)-competitive
ratios for the two corresponding problems.

Multi-Level Aggregation. In the Multi-Level Aggregation (MLA) problem, the service function
f is defined by a rooted aggregation tree T , where each node corresponds to a different request type.
Let r be the root of T and let c(v) be the cost of node v for each v ∈ T . For a subset V of nodes,
f(V) is defined to be the total cost of the nodes in the minimal subtree connecting V to r.

Theorem 1.2. There exists an efficient deterministic O(
√

n)-competitive algorithm for the Non-
Clairvoyant Multi-Level Aggregation problem.

To show the above result, given Lemma 1.1, our goal is to find a good partition P of the tree
T ’s nodes into subtrees and subforests (that we refer to as clusters). More precisely, let us use P to
define a disjoint service function g where for each subset V of nodes of T , g(V) =

∑
C∈P :C∩V ̸=∅ f(C).

The crucial idea is to notice that since we aim for the gap of order at most
√

n between g and f ,
we can see it as g being assigned a budget of roughly

√
nf(V) to serve V for each subset V of T ’s

nodes. Since the cost that f incured on a set V equals the cost of the minimal subtree connecting
all the nodes in V to the root r of T , the value of g(V) cannot exceed β

√
n times this cost for some

fixed β ∈ N. To achieve this, we generate a partition consisting of two types of clusters. First are
the subtrees rooted at “expensive” nodes. The intuition is that their cost alone multiplied by α

√
n

for some α ∈ N is enough to “cover” the cost of both their subtree and the path to r. The second
type is the clusters that contain more than

√
n nodes, since there cannot be many of them.

Weighted Symmetric Subadditive JRP. In Weighted Symmetric Subadditive JRP, the ser-
vice function f is a function of the total weight w(S) =

∑
i∈S wi of the set of types being served. In

particular, f is a monotone non-decreasing subadditive function with f(S) = f(w(S)) and f(0) = 0,
that satisfies that for every weights x, y, f(x + y) ≤ f(x) + f(y). We refer to these functions as
weighted symmetric subadditive.

Theorem 1.3. There exists an efficient deterministic O(
√

n)-competitive algorithm for the Non-
Clairvoyant Weighted Symmetric Subadditive Joint Replenishment problem.

As in the MLA case, given Lemma 1.1, our goal is to devise a partitioning algorithm inducing a
disjoint service function that O(

√
n)-approximates the corresponding weighted symmetric subad-

ditive service cost function. We first consider the special case where each weight equals 1. In this
scenario, the service function f is symmetric and becomes a function of the cardinality of the set

3

of types being served. Consequently, the partition of elements should ideally reflect this symmetry
by ensuring equal-sized parts.

Determining the optimal size for each part involves striking a delicate balance. Larger sizes
enable us to leverage the subadditivity of f but excessively large sizes incur higher costs for smaller
sets. We demonstrate that selecting sets of size O(

√
n) is the optimal tradeoff in worst-case sce-

narios. Notably, this partition remains effective across all symmetric subadditive functions simul-
taneously.

Extending this approach to the general case of weighted symmetric subadditive functions in-
volves categorizing elements into weight classes based on powers of 2, ensuring approximate size
equivalence, and then partitioning into sets of size

√
n. However, this approach risks generating an

excessive number of sets. To address this challenge, we devise a partitioning strategy that accom-
modates light-weight elements first. Subsequently, for heavier-weight elements, we further partition
by a factor of 2, provided it is feasible, to achieve a refined division.

1.1.3 Lower bounds on approximating subadditive service functions.

Since Non-Clairvoyant MLA and Weighted Symmetric Subadditive JRP have a Ω(
√

n) lower
bound [AGGP21, LUX23], the Reduction Lemma implies that MLA and Weighted Symmetric
Subadditive JRP service functions do not admit o(

√
n)-approximation by disjoint service func-

tions. Nevertheless, we also give direct proofs in Sections 3 and 4, respectively. The latter provides
a simpler alternative proof for the Ω(

√
n) lower bound for unweighted Universal Set Cover shown

in [JLN+05]. We also show, in Proposition B.1, that Jia et al.’s analysis of their Universal Set
Cover algorithm [JLN+05] is tight. Thus, we need a different approach to o(

√
n log n)-approximate

arbitrary subadditive service functions by disjoint service functions. Finally, in Proposition C.1,
we exhibit an MLA and Weighted Symmetric Subadditive JRP instance where Touitou’s algorithm
[Tou23a] can only achieve an Ω(

√
n log n)-approximation to the respective service cost functions.

1.2 Future Directions

Our work leaves several tantalizing open questions. The main open problem is whether subadditive
service functions admit better than O(

√
n log n)-approximation by disjoint service functions. This

would immediately improve the competitive ratio for general non-clairvoyant Subadditive JRP. It
would also be interesting to find better approximations of other interesting subclasses such as XOS
and submodular functions.

2 Subadditive Joint Replenishment
In this section, we prove our Reduction Lemma (Lemma 1.1) and apply it to Subadditive JRP.

2.1 Reduction Lemma

We begin by showing that there is a simple deterministic 2-competitive algorithm for Disjoint TCP
Acknowledgement via a straightforward extension of the classic algorithm for TCP Acknowledge-
ment (Lemma 2.1).

In the following, we use λ to denote a service and Qλ to be the set of request types transmitted
by λ. We also use OPT to mean both the optimal solution and the cost of the optimal solution.

Lemma 2.1. There is a deterministic 2-competitive algorithm for Disjoint TCP Acknowledgement.

4

Proof. Suppose there is a partition of H into subsets S1, . . . , Sk with costs c1, . . . , ck and f(S) =∑k
i=1 ci ·1 {Si ∩ S ̸= ∅}. Our algorithm works as follows: for each set Si, transmit Si whenever the

pending requests in Si have accumulated a total delay equal to ci.
It is clear that the total service cost of the algorithm is at most its total delay cost. We now

show that the latter is at most the cost of the optimal solution. To this end, let us consider the
cost of the optimal solution. Suppose that the optimal solution makes a set of services Λ∗. Let
Λ∗

i denote the subset of services that transmit a request type in Si. The total service cost of the
optimal solution is then

∑
λ∈Λ∗

f(Qλ) =
∑

λ∈Λ∗

k∑
i=1

ci · 1 {Si ∩ Qλ ̸= ∅} =
k∑

i=1
ci · |Λ∗

i |.

Define dOPT
q and dALG

q to be the delay cost of q in the optimal solution and algorithm’s solution,
respectively. Let OPTi = ci ·|Λ∗

i |+
∑

q:hq∈Si
dOPT

q . This is the total cost that OPT incurs on requests
on Si. Observe that OPT =

∑k
i=1 OPTi.

We now show that
∑

q:hq∈Si
dALG

q ≤ OPTi for each set Si. Suppose that the algorithm transmits
Si at times t1, . . . , tℓ. Since every request must be served eventually, no request with type in Si

arrives after tℓ. Consider the intervals [0, t1], (t1, t2], . . . (tℓ−1, tℓ). By construction, the delay cost of
the algorithm is exactly ℓci. For each interval I, let Q(I) denote the requests with types in Si that
arrived during the interval. During I, the optimal solution either transmits a type in Si or incurs
a delay cost of ci on the requests in Q(I). Since the intervals are disjoint, OPTi ≥ ℓci, as desired.

The lemma now follows from the fact that the total service cost of the algorithm is exactly its
delay cost, which in turn is at most OPT.

We are now ready to prove the Reduction Lemma which we restate here.

Lemma 1.1 (Reduction Lemma). If there exists a disjoint service function g that α-approximates
f , then there exists a non-clairvoyant algorithm that is 2α-competitive non-clairvoyant algorithm
for every Subadditive JRP instance with service cost function f .

Proof. Lemma 2.1 implies that it suffices to reduce the Subadditive JRP instance to an instance of
Disjoint TCP Acknowledgement losing at most a factor of α. Let Q be the set of requests of the
Subadditive JRP instance and let OPTf denote the cost of the optimal solution. Our reduction
creates an instance of Disjoint TCP Acknowledgement with the same set of requests but with service
cost function g. Let OPTg denote the cost of the optimal solution to the instance of Disjoint TCP
Acknowledgement. We now show that OPTf ≤ OPTg ≤ αOPTf . Let Λ be a feasible solution to
Q, cf (Λ) be its cost in the Subadditive JRP instance and cg(Λ) be its cost in the Disjoint TCP
Acknowledgement instance. The delay cost of Λ is the same in both instances. The service cost of Λ
in the Subadditive JRP instance has cost

∑
λ∈Λ f(Qλ) and in the Disjoint TCP Acknowledgement

instance, it has cost
∑

λ∈Λ g(Qλ). Since g α-approximates f , we get that cf (Λ) ≤ cg(Λ) ≤ αcf (Λ).
This implies that OPTf ≤ OPTg ≤ αOPTf , as desired.

2.2 Applying the Reduction Lemma to Subadditive JRP

We use the Reduction Lemma proved earlier to give a simple deterministic O(
√

n log n)-competitive
algorithm for Non-Clairvoyant Subadditive JRP. The main insight is to reduce the problem of
showing that an arbitrary service function f can be approximated by a disjoint service function to
the Universal Set Cover problem.

5

Lemma 2.2. Suppose every instance of USC admits a α-stretch assignment. Then every subaddi-
tive service function f can be α-approximated by some disjoint service function g.

Proof. We will construct an instance of USC and use the α-stretch assignment to construct g.
Consider the instance of USC with universe U = H, C = 2H , and c(S) = f(S) for every S ∈ C.
Note that OPT(S) = f(S) since f is monotone non-decreasing and subadditive.

Let a be an α-stretch assignment for this USC instance. Suppose a(U) = {S1, . . . , Sk}. Since
a maps each element to a set containing it, we have that a−1(Si) ⊆ Si. Moreover, f is monon-
tone non-decreasing, so we can assume W.L.O.G. that a−1(Si) = Si;3 thus S1, . . . , Sk are disjoint
and partition H. Define the disjoint service function g with the partition {S1, . . . , Sk} and costs
c1, . . . , ck where ci = f(Si). Observe that g(S) = c(a(S)) ≥ OPT(S) = f(S). Since a has α-stretch,
we get that for every S, f(S) ≤ g(S) ≤ αf(S).

Jia et al. [JLN+05] showed that every instance of USC has a O(
√

n log n)-stretch assignment.
Together with the above lemma, we get the following theorem.

Theorem 2.3. For every subadditive service function f , there is a disjoint service function g that
O(

√
n log n)-approximates f .

Combining this with the Reduction Lemma yields the desired theorem.

Theorem 2.4. There is a deterministic O(
√

n log n)-competitive algorithm for Non-Clairvoyant
Subadditive JRP.

3 Multi-Level Aggregation
In this section, we consider the Multi-Level Aggregation (MLA) problem. Let T = (U, E) be a
rooted tree defined over the universe U of n request types and let c : U 7→ R≥0 be a cost function
assigning weights to the nodes. We recall that c determines the service function f : 2U 7→ R≥0
for this problem as f assigns to each subset of nodes V ⊆ U the cost of the minimal subtree that
connects all the nodes in V to the root r. Here, we prove that for every MLA service function f ,
there exists a disjoint service function g : 2U 7→ R≥0 that O(

√
n)-approximates f . In other words,

we show that for every MLA instance (T, c), there exists a partition P1, . . . , Pk of nodes of T for
some k (which defines g(X) =

∑
i∈[k] f(Pi) ·1 {Pi ∩ X ̸= ∅} for all X ⊆ U), such that for all V ⊆ U ,

it holds that g(V)/f(V) ≤ O(
√

n). Moreover, one can find such a partition in polynomial time.

3.1 Notation and Algorithm Overview

Throughout this section, we assume tree T is the current MLA instance that we work with and
thus is known from the context. In what follows, we refer to the maximal subtree of T rooted at
node v and to the path connecting v to the root r by simply writing T (v) and R(v), respectively.
Moreover, to denote these objects with node v excluded, we use To(v) and Ro(v). Finally, we let
C(v) be the set of v’s children in T .

First, we present the idea behind our approach. Recall that our goal is to find a partition
P1, . . . , Pk of nodes of T such that the gap between the values f(V) and g(V) is at most of order√

n for all the sets V ⊆ U . Here, f(V) is the cost of minimal subtree TV of T that connects all
the nodes in V to the root, as stated before. On the other hand, g(V) needs to cover the costs of
all the parts in P that intersect with V . For instance, if V intersects exactly two parts A and B

3Otherwise, we can assign the elements in the preimage of Si under a, i.e., a−1(Si), to the preimage itself.

6

r r r r

v

r

rK

w

Figure 1: In the first three figures we show the costs of serving the orange nodes. The first figure corresponds to the
cost of f on these nodes. The following two figures show the cost of g on these nodes, assuming that they belong to
different clusters A and B. Fourth figure shows the set of active nodes in the tree (colored in green) after T (v) gets
clustered. Fifth figure presents the setting in Proposition 3.7.

in P , then g(V) = f(A) + f(B). Although these parts themselves are disjoint by the definition of
partition P , as we pay for each of them separately in g (by paying for set A, we mean generating
the cost of f(A)), we incur not only the costs of their nodes c(A) and c(B) but also the costs of
the paths that connect them to the root r (see Figure 1).

Note that this process can cause us to incur two types of additional costs with respect to the
optimal value f(V). First, both parts A and B may contain not only the nodes in V but also their
neighbors, for which we need to pay as well. Second, as we pay for each part separately, we may
be forced to pay for some nodes on the paths to the root multiple times (see Figure 1).

Since f(V) is equal to the cost of the nodes in TV and we aim for g to be
√

n-approximation
of f , the intuition is that g can afford to pay the cost of each node in TV roughly

√
n times (as

this gives the desired ratio). This observation provides the foundations for our algorithm. Let us
remark that at the beginning, all the nodes in T are unpartitioned, i.e., P = ∅. Our algorithm
revolves around two procedures. The first one can be seen as assigning each node v in T a budget
of α

√
n · c(v) for some α ∈ N. A vertex v may then use such a budget to create a new part K in

the partition. We allow v to generate only one form of a cluster, i.e., a part to be included in P ,
that consists of all the unpartitioned nodes in its subtree T (v). Furthermore, for such a part K to
be added to P , it needs to hold that the costs of (the unpartitioned nodes in) T (v) and R(v) both
fit into v’s budget. If we manage to add K to P , we call both node v and cluster K heavy.

Whenever the first procedure cannot be applied, i.e., there are no vertices that can generate
heavy clusters from the unpartitioned nodes, we run the second procedure. The idea then is to
find a subtree (or a family of subtrees) of size roughly

√
n (details to be presented later) and group

them together into a new part in the partition. We call this part a light cluster. In case there are
nodes that become heavy after this action (as their descendants got clustered), we go back to the
first procedure, which starts a new iteration of the main algorithm.

Notice that the idea behind the second procedure is to upper bound the number of times we
need to pay the cost of the paths connecting the clusters to the root r. Since T has n nodes and
each light cluster is of size close to

√
n, we can only create roughly

√
n such clusters. Thus, even

when V intersects all the light clusters, we pay for the nodes in TV at most O(
√

n) times, which
we can afford. It remains to estimate the cluster costs, which follow in the next section.

3.2 MLA Partitioning Algorithm

Heavy clusters. Let us first present two definitions. Here, we assume that whenever we are
given a partially created partition P̃ of nodes of an MLA tree T , then the set of nodes it already
partitioned, i.e., V (P̃) =

⋃
P̃ , does not disconnect T , i.e., tree T ′ = T \

⋃
P̃ is a subtree of T .

Definition 3.1. Let T be a tree given in an MLA instance, denote the set of its nodes by U , and
let P̃ be a partially created partition of U (i.e., V (P̃) =

⋃
P̃ is a proper subset of U). Then we call

7

all the nodes that are not partitioned yet, i.e., belong to U \ V (P̃), active (see Figure 1). We use
the notation of V |act to restrict any subset V of nodes in T to the nodes that are active.

Definition 3.2. Let (T, c) be an MLA instance, and let P̃ be a partially created partition of T ’s
nodes. We say that an active node v is heavy if the costs of path R(v) and subtree Tact(v) are at
most 4

√
n · c(v) each. If we extend P̃ by adding Tact(v), we call this new part a heavy cluster.

Now, we can prove a simple fact about heavy clusters.

Proposition 3.3. Let (T, c) be an MLA instance. Take any partition P of nodes of T and let Ph,1,
. . ., Ph,s be a sublist of all heavy clusters in P . We denote their roots by vh,1, . . ., vh,s, respectively,
and the set containing them by Vh. Then, it holds that

∑s
i=1 f(Ph,i) ≤ 8

√
n · f(Vh).

Proof. By Definition 3.2, we have that for each node vh,i the following is satisfied: c(Ph,i) ≤
4
√

n · c(vh,i) and c(R(vh,i)) ≤ 4
√

n · c(vh,i). The first inequality here comes from the fact that
cluster Ph,i was the set of all active nodes (Definition 3.1) contained in the subtree T (vh,i) at the
moment it was created (i.e., it was Tact(vh,i)). Hence, it holds that

f(Ph,i) = c(Ph,i) + c(Ro(v)) ≤ c(Ph,i) + c(R(v))

≤ 4
√

n · c(vh,i) + 4
√

n · c(vh,i) = 8
√

n · c(vh,i), (1)

where the first equality comes from the fact that Ph,i is a subtree, which means that the minimal
tree containing all its nodes and the root r is only missing the path from v to r (with v excluded
as we already counted it in the cluster). Moreover, let us notice that f(Vh) ≥

∑s
i=1 c(vh,i), as it is

the cost of the minimal tree containing all the nodes vh,i. Thus, to obtain the desired inequality,
we only need to sum (1) over all the heavy clusters and then apply the inequality above.

Light clusters. Here, we present a procedure that generates a light cluster.

Definition 3.4. Let (T, c) be an MLA instance, and let P̃ be a partially created partition of T ’s
nodes. We say that a subset K of nodes of Tact is a light cluster if (1) its size fits into the range
I(n) := [

√
n, 2

√
n], (2) it is either a maximal subtree in Tact or a collection of maximal subtrees

having the same parent, and (3) Tact does not contain any heavy nodes.4 In case Tact is of size
smaller than

√
n, and we set K = Tact, we drop the first condition and still call K a light cluster.

Given the definition above, we present Algorithm 1 that shows how to find such a cluster.

Proposition 3.5. If there are no heavy nodes in Tact (see condition (3) in Definition 3.4), then
Algorithm 1 finds a light cluster in Tact.

Proof. Notice that we start the search of a new cluster by checking whether the size of Tact (the
subtree containing all the active nodes in T) is smaller or equal to 2

√
n (line 1). If so, we return

the whole tree Tact since it fits into the description given in the last sentence of Definition 3.4.
Otherwise, we set r to be the current node we are at, which we denote by u (line 3). Then, we go
through the while loop from line 4 to 5, each time picking a child v of the current node u such that
the subtree Tact(v) is of size greater than 2

√
n. If such a node exists, we move to it, setting u = v,

and we leave the while loop otherwise.
In the second case, we know that, as we go to line 6, two conditions are satisfied. First, the

size of the subtree Tact(u) rooted at the current node u is at least 2
√

n. Indeed, we either stayed
4This third condition is for analysis purposes only and the property giving the name to light clusters.

8

Algorithm 1 MLA Light Cluster Search
Input: MLA tree T with some nodes marked active (Tact is a subtree of T containing its root r)
Output: light cluster formed of the nodes in Tact

1: if |Tact| ≤ 2
√

n
2: return Tact

3: u := r
4: while there exist a node v ∈ Cact(u) such that |Tact(v)| > 2

√
n

5: u := v
6: if there exist a node v ∈ Cact(u) such that |Tact(v)| ≥

√
n then

7: return Tact(v)
8: else
9: denote all the elements in Cact(u) by v1, v2, . . . , vj for some j

10: set iterator i = 1 and initialize a new cluster V with an empty set
11: while |V | <

√
n

12: add Tact(vi) to V
13: increment i by 1
14: return V

at the root node, not satisfying the condition in the if statement in line 1, or we further went from
r through a sequence of its descendants, each having a subtree of size greater than 2

√
n. Second,

none of u’s children has a subtree of size greater than 2
√

n, as we already left the while loop.
Now, in line 6, we check whether there exists a child v of the current node, which subtree Tact(v)

is of size at least
√

n. If so, we return Tact(v), as it satisfies the conditions to be a light cluster.
Otherwise (line 8), we iterate through u’s children vi (line 11) and add the nodes contained in their
subtrees Tact(vi) to a set V . We stop at the moment when the size of V becomes at least

√
n and

return V as a new cluster. It is easy to notice that in the while loop, we indeed need to pass the√
n size threshold, as |Tact(u)| > 2

√
n. Moreover, we know that before we added the nodes of the

last subtree T ′ to V , V had a size smaller than
√

n. Since |T ′| <
√

n, we have that the whole group
is of size smaller than 2

√
n.

Main algorithm. Before we describe the partitioning algorithm, let us introduce a helper func-
tion. We define method cluster(V) to group all the elements of V together and include them as a
new part in the partition. Let us also emphasize that after this call, all the elements in V become
inactive. With the above notation, we can formalize our approach as presented in Algorithm 2.

As mentioned in the first part of this section, the main partitioning algorithm runs heavy and
light cluster searches in a loop. In the first step, it iteratively finds the heavy clusters in the tree
Tact determined by the already created partition (lines 3 to 4). Then, if tree T is not yet partitioned
(condition in line 5 does not hold), it goes to the second step that finds one light cluster and adds
it to the partition (lines 7 to 8). After this point, it goes to the initial step and loops.

Let us emphasize that during the whole partitioning procedure, the set Tact of all active elements
in T forms a proper subtree containing the root r of T . Indeed, in the beginning, Tact = T and all
the cluster calls truncate one or more maximal subtrees from Tact. Now, given Algorithm 2, we
go back to proving the properties of light clusters.

Proposition 3.6. Let T be an MLA tree rooted at some node r and let P be the partition of nodes
of T created by Algorithm 2. We denote all the light clusters in P by Pℓ,1, Pℓ,2, . . . , Pℓ,t and require
them to be listed in the creation order. Then, it holds that there are at most

√
n + 1 parts Pℓ,i.

9

Algorithm 2 MLA Partitioning Algorithm
Input: MLA instance (T, c)
Output: partition P of the nodes of T

1: initialize an empty partition P
2: while Tact is not empty
3: while there exist a heavy node v ∈ Tact

4: cluster(Tact(v))
5: if Tact is empty
6: break
7: apply Algorithm 1 to find a light cluster V in Tact

8: cluster(V)
9: return P

Proof. Notice that by the definition, the only light cluster that can have a size smaller than
√

n
is the one containing the root r. Thus, all the light clusters created before, i.e., at least t − 1 of
them, have the size at least

√
n. Since there are n nodes in tree T , we get that there are at most

n/
√

n =
√

n such clusters. Thus, t ≤
√

n + 1, which concludes the proof.

In the remaining part of this section, we refer to the clusters created in lines 2, 7 of Algorithm
2, i.e., the ones that consist of a single subtree, as the light clusters of type I. We call the light
clusters consisting of forests (created in line 14) the light clusters of type II. We prove that the cost
function c satisfies the following properties. Here, we overuse the notation of c and extend it to the
subsets as well, i.e., for any V ⊆ U we set c(V) =

∑
v∈V c(v).

Proposition 3.7. Let (T, c) be an MLA instance and let P be the partition obtained on it by
Algorithm 2. Take any light cluster K in P and denote by rK the root of K if it is a cluster of
type I. Otherwise, if K is a cluster of type II, we use rK to denote the parent node of the forest
contained in K. Then it holds that c(P (rK)) ≥ c(K).

Proof. Without the loss of generality, assume that K is of type I. Let w be the node in K that has
the highest cost. By Definition 3.4, we know that |K| ≤ 2

√
n. Hence, by an averaging argument,

we have c(w) ≥ c(K)/(2
√

n), which implies 2
√

n · c(w) ≥ c(K). Now, assume by contradiction
that c(P (r(K))) < c(K). Then, if we split the path from w to r into two parts by cutting it
on the node rK , we got c(P (w)) = c(P (w) ∩ K) + c(Po(rK). Since c(P (w) ∩ K) ≤ c(K) and
c(P (rK) ≤ c(K) by our assumption, we get that c(P (w)) ≤ 2c(K) ≤ 2 · 2

√
n · c(w) = 4

√
n · c(w).

However, this means that w is a heavy node, which contradicts the initial assumption. Thus, it
holds that c(P (rK)) ≥ c(K). The proof for type II follows the same steps.

Corollary 3.8. Let us subsume the notation and the conditions of Proposition 3.7. Then, it holds
that f(K) ≤ 2f(rK).

Proof. Notice that for type I cluster K, f(K) consists of the cost of K and the cost of the path
connecting it to the root r of T (to be precise, excluding rK from this path, as we already count
its cost in the cluster). Thus, the following holds

f(K) = c(K) + c(Po(rK)) ≤ c(P (rK)) + c(Po(rK)) ≤ 2c(P (rK)) = 2f(rK),

where the first inequality is implied by Proposition 3.7, the second one comes from the fact that
we added the cost of rK to the right side, and the last inequality is by the definition of f .

10

Given the above, we can prove the main theorem of this section.

Theorem 3.9. For any MLA service function f , there exists a disjoint service function g that
O(

√
n)-approximates f . It can be found in time polynomial w.r.t. MLA instance defining f .

Proof. Let (T, c) be the MLA instance that defines f , and let U be the set of nodes in T . The idea
is to prove that the partition P = {P1, P2, . . . , Pk} generated on T by Algorithm 2 induces a set
function g(V) =

∑
i∈[k] f(Pi)1 {Pi ∩ V ̸= ∅} on all subsets V ⊆ U that is an O(

√
n)-approximation

to f . The function g is a disjoint service function by design.
For this purpose, we need to show that maxV ⊆U g(V)/f(V) is of order at most

√
n. Let us note

that in our case, f(V) is just the cost of the minimal subtree connecting V to the root. Thus, for
any subset V ′ of V it holds that f(V ′) ≤ f(V).

Let V ⊆ U be any subset of nodes and let Ph,1, . . ., Ph,s and Pℓ,1, Pℓ,2, . . . , Pℓ,t be the lists of all
the heavy and light clusters that intersect V , respectively. We also denote the roots of the heavy
clusters by vh,1, . . ., vh,s, respectively, and the set containing them by Vh. Similarly, we use the
convention from Proposition 3.7 to define light cluster nodes. For Pℓ,i, we denote its root by rℓ,i.

By Proposition 3.3, it holds that
∑s

i=1 f(Ph,i) ≤ 8
√

n · f(Vh). Moreover, since V intersects all
these heavy clusters, it either contains their roots or some nodes that are their descendants. Thus,
the minimal subtree connecting V to the root r contains the minimal subtree connecting Vh to the
root r. Hence,

s∑
i=1

f(Ph,i) ≤ 8
√

n · f(Vh) ≤ 8
√

n · f(V). (2)

Now, for each light cluster Pℓ,i, we notice that since V intersects it, the minimal tree connecting
V to r contains the path from rℓ,i to r. Thus, f(V) ≥ f(rℓ,i) and by Proposition 3.3, we get that

f(Pℓ,i) ≤ 2f(rK) ≤ 2f(V) (3)

for each ℓ ∈ [t]. Note that g(V) =
∑

K∈P :V ∩K ̸=∅ f(K). Combining inequalities 2 and 3, we obtain
that

g(V)
f(V) =

∑
K∈P :V ∩K ̸=∅ f(K)

f(V) =
∑s

i=1 f(Ph,i) +
∑t

i=1 f(Pℓ,i)
f(V) ≤ 8

√
n · f(V) +

∑t
i=1 2f(V)

f(V)

≤ 8
√

n · f(V) + 2(
√

n + 1) · f(V)
f(V) = 10

√
n + 2,

with the last inequality implied by Proposition 3.6. This concludes the proof that g is an O(
√

n)-
approximation to f .

Finally, it is easy to notice that the algorithm runs in polynomial time. We can define a dynamic
structure over the tree T that, for each node v, stores its subtree and path costs (c(T (v)), c(P (v)),
together with the size |T (v)| of its subtree. Updates on such a structure take at most polynomial
time in n (as we create a cluster, we go from the cluster root to the root of T , updating the data on
all the nodes on the path, which is of length at most n). With such a structure, checking whether
a node is heavy or going through a path from r in search of a light cluster also takes at most linear
time in n.

Thus, by Lemma 1.1, the following holds:

Theorem 1.2. There exists an efficient deterministic O(
√

n)-competitive algorithm for the Non-
Clairvoyant Multi-Level Aggregation problem.

11

The result of Theorem 3.9 is tight, we defer its proof to Appendix A.

Proposition 3.10. There exists a decreasing MLA instance T, c with n nodes, such that for every
partition P1, . . . , Pk of T for some k, there exists a non-empty set S ⊆ T such that∑

i∈[k] f(Pi)1 {S ∩ Pi ̸= ∅}
f(S) = Ω(

√
n).

4 Weighted Symmetric Subadditive Joint Replenishment
In this section, we study Weighted Symmetric Subadditive JRP. We have a set U of n request types
with weights w({j}) = wj for each j ∈ U . Let f be the set function over U : In this setting, we
have that the service cost of a set S only depends on the total weight of the elements belonging
to S, as opposed to the identity of those elements. Formally, f(S) = f(w(S)), where function
f is now intended as a monotone non-decreasing subadditive function of weights of a set with
f(0) = 0, and for every two weights x, y, it holds that f(x + y) ≤ f(x) + f(y). For brevity, we
call these functions weighted symmetric subadditive. Our goal is to show that for every weighted
symmetric subadditive service function f on U , there exists a partition of U into sets S1, . . . , Sk

for some k, such that the disjoint service function g : U → R≥0 defined by this partition where
g(S) =

∑k
i=1 f(Si) · 1[S ∩ Si ̸= ∅] satisfies g(S) ≤ O(

√
n)f(S) for every S ⊆ U .

We begin, in Section 4.1, by analyzing a special case of unweighted symmetric subadditive
service costs. Namely, where the weight of each element is 1, and thus, w(S) = |S|: These functions
are simply referred to as symmetric subadditive. We achieve a tight Θ(

√
n)-stretch with a simple

partitioning algorithm (partition into
√

n sets of size
√

n each), and this serves as a warm-up to
the weighted symmetric subadditive case presented in Section 4.2, where we also achieve a tight
Θ(

√
n)-stretch.

4.1 Symmetric Subadditive JRP

We first consider symmetric subadditive service functions. Observe that these functions are sym-
metric (i.e., f(S) = f(S′) for all sets S, S′ ⊆ U such that |S| = |S′|). For convenience, for a
cardinality 0 ≤ s ≤ |U |, we use f(s) as the value of sets of size s. We show that for symmetric
subadditive f , one can construct a disjoint service function g that O(

√
n)-approximates f . We

then show that O(
√

n) is tight even in the special case of f being a symmetric unweighted set cover
function. This provides an alternative, simpler proof for the lower bound on USC of [JLN+05]. We
first state the following simple but useful observation.

Observation 4.1. For all symmetric subadditive functions f : R+ → R+, and all y ≥ x > 0, it
holds that f(y)/f(x) ≤ ⌈y/x⌉.

Proof. Let k = ⌈y/x⌉. Then,

f(y) ≤ f(kx) ≤ f(x) + f((k − 1)x) ≤ f(x) + . . . + f(x) = k · f(x),

where the first inequality is by monotonicity, and the second and third inequalities are by subad-
ditivity.

Lemma 4.2. For every symmetric subadditive service function f , there exists a disjoint service
function g that O(

√
n)-approximates it.

12

Proof. Let us consider an arbitrary symmetric subadditive service function f on request types U .
Let g be the disjoint service function that induces an arbitrary partition of the elements of U into
sets {X1, . . . , Xk}, where k = ⌈

√
n⌉, each of cardinality |Xi| ≤ ⌈

√
n⌉ (such a partition always

exists). We now bound the following fraction for every S ⊆ U :∑
i∈[k] f(Xi) · 1 {S ∩ Xi ̸= ∅}

f(S) ≤
∑

i∈[k] f(⌈
√

n⌉) · 1 {S ∩ Xi ̸= ∅}

f
(∑

i∈[k] 1 {S ∩ Xi ̸= ∅}
)

≤

 ∑
i∈[k]

1 {S ∩ Xi ̸= ∅}

 ·
⌈

⌈
√

n⌉∑
i∈[k] 1 {S ∩ Xi ̸= ∅}

⌉
≤ 2⌈

√
n⌉,

where the first equality derives from the fact that |Xi| ≤ ⌈
√

n⌉ and from the fact that, since
Xi’s are disjoint, the size of S is at least the number of non-empty intersections with sets Xi’s.
The second inequality follows by applying Observation 4.1, and the third inequality follows since
⌈a

b ⌉ ≤ 2 · a
b , for every a

b ≥ 1
2 , and the denominator

∑
i∈[k] 1 {S ∩ Xi ̸= ∅} ≤

√
n + 1, so that the

ratio ⌈
√

n⌉∑
i∈[k] 1{S∩Xi ̸=∅} ≥

√
n√

n+1 ≥ 1
2 .

Thus, by Lemma 1.1 and Lemma 4.2, the following holds:
Theorem 4.3. There exists a deterministic O(

√
n)-competitive algorithm for the Non-Clairvoyant

Symmetric Subadditive Joint Replenishment problem.
Remark 4.4. The partition created by Lemma 4.2 did not use the information regarding the func-
tion f (since it partitioned it just based on the sizes), thus the same partition works for all symmetric
subadditive functions simultaneously.

We complement the above result by exhibiting an instance such that a disjoint service function
cannot approximate a symmetric subadditive service function by a (multiplicative) factor better
than Ω(

√
n). We defer the proof to the Appendix.

Theorem 4.5. There exists a symmetric subadditive service function such that every disjoint ser-
vice function is an Ω(

√
n)-approximation of it.

Remark 4.6. Our symmetric subadditive service function f described in Theorem 4.5 is an un-
weighted set cover function (where the collection of sets is all sets of size

√
n), the above is a simpler

alternative proof for a lower bound of Ω(
√

n) for the unweighted universal set cover problem, shown
in [JLN+05].

4.2 Weighted Symmetric Subadditive JRP

We now relax the assumption of w(S) = |S| and provide a O(
√

n)-approximation for every weighted
subadditive function. We begin with some facts about weighted subadditive and symmetric concave
functions. Every symmetric concave function is the pointwise infimum of a set of affine functions,
and can be approximated by a set of affine functions with exponentially decreasing slopes. The
next lemma combine this fact with the fact that every weighted subadditive function can be ap-
proximated by a symmetric concave function.
Lemma 4.7. Let g : {0, 1 . . . , W} → R≥0 be a monotone non-decreasing subadditive function.
Then, there exists a finite set of affine functions {g1, . . . , gp} for some p ≤ log(W) where gi(x) =
σi + x · δi such that σi+1 > 2σi and δi+1 < δi/2 for every i < p, and the function ĝ defined by
ĝ(x) = mini gi(x) satisfies that for every x ∈ {0, . . . , W}, it holds that:

g(x) ≤ ĝ(x) ≤ 8g(x).

13

Proof. By [EFRS20], we know that there exists a concave function g′ : {0, . . . , W} → R≥0 that
approximates g within a factor of 2. Now, for every i = 2, . . . , ⌈log(W)⌉ consider the affine function
g′

i : {0, . . . , W} → R≥0 that interpolates between (2i−1, g′(2i−1)) and (2i, g′(2i)), and g′
1(x) that

interpolates between (0, g′(0)) and (1, g′(1)). It holds that for every x ∈ {0, . . . , W} then

g′(x)/2 ≤ min
i=1,...,p

g′
i(x) ≤ g′(x),

where the first inequality holds since

g′(x) ≤ g′(2⌈log(x)⌉) ≤ 2g′(2⌊log(x)⌋) ≤ 2g′
2⌊log(x)⌋(2⌊log(x)⌋) = 2 min

i=1,...,p
g′

i(2⌊log(x)⌋) ≤ 2 min
i=1,...,p

g′
i(x),

and the second inequality holds by concavity of g′. In [GMM09], they present an algorithm that
reduces the set of affine functions such that the coefficients and slopes satisfy the conditions of the
lemma while losing a factor of 2, which, if applied to the set of affine functions 2g′

i, concludes the
proof.

Henceforth, we will denote by W = w(U), and assume that f is defined on {0, . . . , W}, and is
a pointwise infimum of p affine functions g1, . . . , gp where gi(x) = σi + x · δi and the σis and δis
satisfy the properties stated in the lemma. Proving the theorem for f that satisfies the condition
proves the same (with additional loss of a factor of 8) for general symmetric subadditive functions.

The following lemma will be useful to lower bound f(w(S)) using the largest weight in S.

Lemma 4.8. For every k ∈ {2, . . . , p}, if x ≥ σk
δk−1

, then f(x) ≥ σk.

Proof. Recall that f(x) = min1≤i≤p σi + xδi. For i < k, we have σi + xδi ≥ xδk−1 ≥ σk. For i ≥ k,
we have σi + xδi ≥ σk. Thus, f(x) ≥ σk.

Henceforth, for brevity, we write f(S) to mean f(w(S)), for an arbitrary set S. In the following,
we frequently use the fact that for any set H, f(H) = min1≤i′≤p σi′ + w(S)δi′ ≤ σi + w(H)δi for
every i.

High-Level Overview. Let S be a set chosen by an adversary, unknown to us. Suppose that
f(S) = min1≤i≤p σi + w(S)δi = σℓ + w(S)δℓ. The idea is to construct a partition such that some
of the parts that intersect S can be charged to σℓ, and the remaining parts that intersect S can be
charged to w(S)δℓ. Towards this end, we first classify each type j as follows. We say that type j is
eligible for class 2 ≤ k ≤ p if wj ≥ σk

δk−1
. All types are eligible for class 1. Define the class of type

j to be the largest class it is eligible for and Xk to be the set of class-k types.
Next, we partition Xk into heavy and light types. The light part Zk contains all types j ∈ Xk

with wjδk ≤ σk/
√

n. Since Zk is light, f(Zk) ≤ σk + w(Zk)δk ≤ O(
√

n)σk. Also, if S ∩ Xk ̸= ∅,
then Lemma 4.8 implies that f(S) ≥ σk. We can then use the fact that σk’s are geometric to show
that the total value of the parts Zk that intersect S is at most O(

√
n)f(S).

Now, consider the heavy types in Xk, i.e. those types j with wjδk > σk/
√

n. We further partition
these types according to their weights in powers of 2. Let Rk,i = {j ∈ Xk \ Zk : wj ∈ [2i, 2i+1)}.
For each weight class i, we greedily partition Rk,i into as many parts of size ⌈

√
n⌉ as we can. This

produces a collection Fk,i of parts of size ⌈
√

n⌉ and at most one leftover part Gk,i of size less than√
n. We say that a part is nice if it belongs to Fk,i and the part Gk,i a leftover part.

Observe that there are at most ⌈
√

n⌉ nice parts, each of size at most ⌈
√

n⌉ and contains types
of roughly the same weight. Thus, we can use a similar argument as in the unweighted case to

14

show that the total value of the nice parts that intersect S is at most O(
√

n)f(S). For the leftover
parts, we charge the parts Gk,i that intersect S with k < ℓ to w(S)δℓ and those with k ≥ ℓ to σℓ.

Algorithm 3 Weighted Symmetric Subadditive Partitioning Algorithm
1: for k = 1 to p do
2: Create a part Zk = {j ∈ Xk : wjδk ≤ σk/

√
n}

3: Let Rk,i = {j ∈ Xk \ Zk : wj ∈ [2i, 2i+1)}
4: for each i do
5: Greedily partition Rk,i into as many sets of size exactly ⌈

√
n⌉ as possible

6: Let Fk,i denote the sets of size of size ⌈
√

n⌉
7: Let Gk,i denote the remaining set of size less than

√
n, if it exists

8: Create a part for each set in Fk,i and a part for the set Gk,i

9: end for
10: end for

We now give the detailed analysis below.

Theorem 4.9. For any weighted symmetric subadditive service function f , there exists a disjoint
service function g that O(

√
n)-approximates f . It can be found in time polynomial w.r.t. the weights

defining f .

Proof. Let S be an arbitrary set and suppose f(S) = min1≤i≤p σi + w(S)δi = σℓ + w(S)δℓ. We now
decompose w(S) using the partition produced by our algorithm. In particular, we have

f(S) = σℓ +

∑
k

w(Zk ∩ S) +
∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S) +
∑
k,i

w(Gk,i ∩ S)

 · δℓ.

Define F ′
k,i as the subset of parts in Fk,i that intersects with S. We now show that the algorithm

pays at most O(
√

n)f(S). In other words, we will prove that the total value of the parts that
intersect S are upper bounded as follows:∑

k:Zk∩S ̸=∅
f(Zk) +

∑
k,i

∑
T ∈F ′

k,i

f(T) +
∑

k,i:Gk,i∩S ̸=∅
f(Gk,i) ≤ O(

√
n)f(S).

We begin by bounding
∑

k:Zk∩S ̸=∅ f(Zk). Let kmax be the largest k such that Zk∩S ̸= ∅. (If none
exists, then we do not need to bound this term.) We have that w(S)·δkmax−1 ≥ w(Zk ∩S)·δkmax−1 ≥
σkmax . Thus, Lemma 4.8 implies that f(S) ≥ σkmax . On the other hand,∑

k:Zk∩S ̸=∅
f(Zk) ≤

∑
k:Zk∩S ̸=∅

O(
√

n)σk ≤ O(
√

n)σkmax ≤ O(
√

n)f(S).

where the first inequality follows directly from the definition of Zk in line 2 of Algorithm 3 and
since there are at most n elements in Zk, the second inequality is since the σk’s are geometrically
increasing.

Next, we bound
∑

k,i

∑
T ∈F ′

k,i
f(T). Since every set T ∈ F ′

k,i has size ⌈
√

n⌉, we have
∑

k,i |F ′
k,i| ≤

√
n. Moreover, every j ∈ T has wj ∈ [2i, 2i+1), so w(T) ≤ O(

√
n)w(T ∩ S). Thus, we have∑

k,i

∑
T ∈F ′

k,i

f(T) ≤
∑
k,i

∑
T ∈F ′

k,i

σℓ + w(T)δℓ

15

≤
∑
k,i

|F ′
k,i|σℓ + O(

√
n)

∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S)δℓ

≤ O(
√

n)

σℓ +
∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S)δℓ

 ≤ O(
√

n)f(S).

where the last inequality follows from the fact that all T ∈ F ′
k,i are disjoint so we have that

w(S) ≥
∑

k,i

∑
T ∈F ′

k,i
w(T ∩ S).

We now turn to bounding
∑

k,i:Gk,i∩S ̸=∅ f(Gk,i). Consider a set Gk,i that intersects S for ℓ ≤
k ≤ p. Since Gk,i is a subset of Xk \ Zk and is at most of size

√
n, we have that

f(Gk,i) ≤ σk + w(Gk,i)δk ≤ O(
√

n)w(Gk,i ∩ S)δk.

Since δk ≤ δℓ, we get that∑
k≥ℓ

∑
i:Gk,i∩S ̸=∅

f(Gk,i) ≤
∑
k≥ℓ

∑
i:Gk,i∩S ̸=∅

O(
√

n)w(Gk,i ∩ S)δℓ ≤ O(
√

n)f(S).

Finally, when ℓ = 1, the argument is complete. Let us now consider the case when ℓ > 1.
Consider a set Gk,i that intersects S for 1 ≤ k < ℓ. We have that f(Gk,i) ≤ σk + w(Gk,i)δk ≤
O(

√
n)2i+1δk. Moreover, since every j ∈ Xk has wjδk < σk+1, we have that∑

k<ℓ

∑
i:Gk,i∩S ̸=∅

f(Gk,i) ≤ O(
√

n)
∑
k<ℓ

σk+1 ≤ O(
√

n)σℓ ≤ O(
√

n)f(S).

Finally, it is not hard to see that, by design, Algorithm 3 can be implemented in polynomial
time in the logarithm of the total weight, log(w(U)). This concludes the proof.

Thus, by Lemma 1.1, the following holds:

Theorem 1.3. There exists an efficient deterministic O(
√

n)-competitive algorithm for the Non-
Clairvoyant Weighted Symmetric Subadditive Joint Replenishment problem.

16

References
[AAC+17] Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul

Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with
delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2017, volume 81 of LIPIcs, pages 1:1–1:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

[ACK17] Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the competitive-
ness of min-cost perfect matching with delays. In Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, pages 1051–1061. SIAM, 2017.

[ACKT20] Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay -
clairvoyance is not required. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[AF20] Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays. Theory
Comput. Syst., 64(4):572–592, 2020.

[AGGP21] Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. ACM
Trans. Algorithms, 17(3):23:1–23:31, 2021.

[ARV21] Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays
problem. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, pages 301–320. SIAM, 2021.

[AT19] Yossi Azar and Noam Touitou. General framework for metric optimization problems with delay
or with deadlines. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
60–71. IEEE Computer Society, 2019.

[AT20] Yossi Azar and Noam Touitou. Beyond tree embeddings - a deterministic framework for network
design with deadlines or delay. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1368–1379. IEEE,
2020.

[BBB+20] Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. Online algorithms
for multilevel aggregation. Oper. Res., 68(1):214–232, 2020.

[BBB+21] Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. New results on
multi-level aggregation. Theor. Comput. Sci., 861:133–143, 2021.

[BBBM] Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, and Jan Marcinkowski. Online facility
location with linear delay. In APPROX 2022.

[BBC+14] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian Nogneng, and Jirí
Sgall. Better approximation bounds for the joint replenishment problem. In Chandra Chekuri,
editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 42–54. SIAM, 2014.

[BDF+12] Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan, and
Tim Roughgarden. Sketching valuation functions. In SODA, pages 1025–1035. SIAM, 2012.

17

[BFNT17] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Philip N. Klein, editor, Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1235–1244. SIAM, 2017.

[BJN07] Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for maximizing
ad-auctions revenue. In Lars Arge, Michael Hoffmann, and Emo Welzl, editors, Algorithms -
ESA 2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
volume 4698 of Lecture Notes in Computer Science, pages 253–264. Springer, 2007.

[BKL+08] Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In Shang-
Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 952–961.
SIAM, 2008.

[BKLS18] Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual online
deterministic algorithm for matching with delays. In Approximation and Online Algorithms -
Proceedings of the 16th International Workshop, WAOA 2018, Helsinki, Finland, August 23-
24, 2018, Revised Selected Papers, volume 11312 of Lecture Notes in Computer Science, pages
51–68. Springer, 2018.

[BKS17] Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. A match in time saves nine: Deter-
ministic online matching with delays. In Approximation and Online Algorithms - Proceedings
of the 15th International Workshop, WAOA 2017, volume 10787 of Lecture Notes in Computer
Science, pages 132–146. Springer, 2017.

[BKS18] Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line. In
Zvi Lotker and Boaz Patt-Shamir, editors, Structural Information and Communication Com-
plexity - 25th International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June
18-21, 2018, Revised Selected Papers, volume 11085 of Lecture Notes in Computer Science,
pages 237–248. Springer, 2018.

[BKV12] Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization
networks or multicast acknowledgment: How much to wait? Algorithmica, 64(4):584–605, 2012.

[BR11] Kshipra Bhawalkar and Tim Roughgarden. Welfare guarantees for combinatorial auctions with
item bidding. In SODA, pages 700–709. SIAM, 2011.

[CKU22] Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint
replenishment problem with delay. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 40:1–40:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[CPSV18] Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae. The online set aggregation
problem. In Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro, editors, LATIN
2018: Theoretical Informatics - 13th Latin American Symposium, Buenos Aires, Argentina,
April 16-19, 2018, Proceedings, volume 10807 of Lecture Notes in Computer Science, pages
245–259. Springer, 2018.

[DFF21] Shahar Dobzinski, Uriel Feige, and Michal Feldman. Are gross substitutes a substitute for
submodular valuations? In EC, pages 390–408. ACM, 2021.

[DGS01] Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of the TCP
acknowledgment delay problem. J. ACM, 48(2):243–273, 2001.

18

[Dob07] Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In APPROX-
RANDOM, volume 4627 of Lecture Notes in Computer Science, pages 89–103. Springer, 2007.

[DU23] Lindsey Deryckere and Seeun William Umboh. Online matching with set and concave delays.
In APPROX 2023, page to appear, 2023.

[EFRS20] Tomer Ezra, Michal Feldman, Tim Roughgarden, and Warut Suksompong. Pricing multi-unit
markets. ACM Trans. Economics and Comput., 7(4):20:1–20:29, 2020.

[EKW16] Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, pages 333–344. ACM, 2016.

[ESW19] Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays for
two sources. Theor. Comput. Sci., 754:122–129, 2019.

[GHIM09] Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni. Approxi-
mating submodular functions everywhere. In SODA, pages 535–544. SIAM, 2009.

[GKP20] Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.

[GKP21] Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. A hitting set relaxation for k-
server and an extension to time-windows. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 504–515.
IEEE, 2021.

[GMM09] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. A constant factor approximation for
the single sink edge installation problem. SIAM J. Comput., 38(6):2426–2442, 2009.

[JLN+05] Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Univer-
sal approximations for tsp, steiner tree, and set cover. In Harold N. Gabow and Ronald Fagin,
editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 386–395. ACM, 2005.

[KC82] Alexander S. Kelso and Vincent P. Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica, 50(6):1483–1504, 1982.

[KKR01] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgement and
other stories about e/(e-1). In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis,
editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001,
Heraklion, Crete, Greece, pages 502–509. ACM, 2001.

[KMWW20] Predrag Krnetic, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. The k-server problem
with delays on the uniform metric space. In Yixin Cao, Siu-Wing Cheng, and Minming Li, ed-
itors, 31st International Symposium on Algorithms and Computation, ISAAC 2020, December
14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 61:1–61:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[LLN06] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav., 55(2):270–296, 2006.

[LPWW18] Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Impatient online matching.
In Proceedings of the 29th International Symposium on Algorithms and Computation, ISAAC
2018, volume 123 of LIPIcs, pages 62:1–62:12. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2018.

19

[LUX23] Ngoc Mai Le, Seeun William Umboh, and Ningyuan Xie. The power of clairvoyance for multi-
level aggregation and set cover with delay. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 1594–1610. SIAM, 2023.

[McM21] Jeremy McMahan. A d-competitive algorithm for the multilevel aggregation problem with
deadlines. CoRR, abs/2108.04422, 2021.

[Tou21] Noam Touitou. Nearly-tight lower bounds for set cover and network design with dead-
lines/delay. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium
on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume
212 of LIPIcs, pages 53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Tou23a] Noam Touitou. Frameworks for nonclairvoyant network design with deadlines or delay. In 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023, page to
appear, 2023.

[Tou23b] Noam Touitou. Improved and deterministic online service with deadlines or delay. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 761–774.
ACM, 2023.

A Omitted Proofs

A.1 Omitted Proofs from Section 3

Proposition 3.10. There exists a decreasing MLA instance T, c with n nodes, such that for every
partition P1, . . . , Pk of T for some k, there exists a non-empty set S ⊆ T such that∑

i∈[k] f(Pi)1 {S ∩ Pi ̸= ∅}
f(S) = Ω(

√
n).

Proof. Consider the tree T with a root r and n − 1 children of r denoted by v1, . . . , vn−1. The cost
c is such that c(r) =

√
n, while for all i ∈ [n−1], c(vi) = 1. Now, consider any partition P1, . . . , Pk.

If k >
√

n, then consider a set S that intersects each Pi exactly once. Thus, f(S) ≤
√

n + k ≤ 2k,
while

∑
i∈[k] f(Pi)1 {S ∩ Pi ̸= ∅} ≥ k ·

√
n, which proves this case. Else (k ≤

√
n), consider a set S

that intersects Pi once if and only if |Pi| <
√

n/2 (otherwise does not intersect at all). It holds that
f(S) ≤ 2

√
n because one has

√
n from r and

√
n intersections with Pi’s in the worst case, while∑

i∈[k]
f(Pi)1 {S ∩ Pi ̸= ∅} ≥ n −

∑
i∈[k]

|Pi| · 1 {S ∩ Pi = ∅} ≥ n − k
√

n/2 ≥ n/2,

which concludes the proof.

A.2 Omitted Proofs from Section 4

Theorem 4.5. There exists a symmetric subadditive service function such that every disjoint ser-
vice function is an Ω(

√
n)-approximation of it.

Proof. Let U be the set of request types. For simplicity of the proof, we assume that n = |U | has
an integer square root. Let us consider the service function f(S) =

⌈
|S|√

n

⌉
, which is symmetric and

subadditive, let g be any disjoint service function, let S be the collection of disjoint sets Xi’s that
g generates, and let k be the number of parts in the partition S.

20

Consider some X ⊆ U that intersects each Xi exactly once. We now analyze the cost of this
induced partition on X:

∑k
i=1 f(Xi)
f(X) =

∑k
i=1

⌈
|Xi|√

n

⌉
⌈

k√
n

⌉ ≥ max{k,
√

n}⌈
k√
n

⌉ ,

where the inequality holds since the it is a sum of k terms where each is at least 1, and since the
sets X1, . . . , Xk cover U , thus

∑k
i=1 |Xi| = n.

Now, if k ≤
√

n then
max{k,

√
n}⌈

k√
n

⌉ =
√

n.

Otherwise, k√
n

> 1, thus
⌈

k√
n

⌉
≤ 2 k√

n
, which implies that

max{k,
√

n}⌈
k√
n

⌉ ≥ k

2k/
√

n
=

√
n

2 ,

which concludes the proof.

B An Ω(
√

n log n) Tight Instance for the Algorithm of [JLN+05]
Proposition B.1. There exists a weighted set cover instance for which the Universal Set Cover
algorithm of [JLN+05] has stretch Ω(

√
n log n).

Proof. The algorithm of [JLN+05] works as follows: while the set U of elements e for which f(e) is
undefined is non-empty, pick the set S that minimizes c(S)√

|S∩U |
and for all e ∈ S ∩U , define f(e) = S.

The high-level idea is that [JLN+05]’s analysis uses the Cauchy-Schwarz inequality and the
tight instance is created by looking at when the Cauchy-Schwarz inequality is tight.

Consider the following set system where we have sets S, S1, . . . , Sk for some k that we will choose
later. The set S contains k elements and set Si contains

⌊
k

k−(i−1)

⌋
elements. The sets also satisfy

that |S ∩ Si| = 1 and Si ∩ Sj = ∅ for 1 ≤ i < j ≤ k. Moreover, the sets Si form a partition of all

the n elements. The costs of the sets are: c(S) = 1, c(Si) =
√

|Si|√
k−(i−1)

.
We now claim that in the i-th iteration, the algorithm chooses Si. First observe that for

1 ≤ i < j ≤ k, we have
c(Si)√

|Si|
<

c(Sj)√
|Sj |

.

Thus, it suffices to show that in each iteration i, the algorithm chooses Si over S. We do this by
induction on i. When i = 1, we have that

c(S1)√
|S1|

= 1/
√

k = c(S)√
|S|

.

Now consider i > 1. By induction, we have that |S ∩ U | = k − (i − 1) and Si ∩ U = Si (the latter
is because the only set that intersects Si is S). Thus, we also have

c(Si)√
|Si|

= 1/
√

k − (i − 1) = c(S)√
|S ∩ U |

.

21

.
ww

1

v2 vn

v0

v1

Figure 2: Tight instance for [Tou23a], where w =
√

n log n−1
n−1 .

We conclude that in each iteration i, the algorithm chooses Si.
Thus, the competitive ratio of the algorithm is at least (

∑k
i=1 c(Si))/c(S) =

∑k
i=1 c(Si) since

c(S) = 1. We have that

k∑
i=1

c(Si) =
k∑

i=1

√⌊
k

k−(i−1)

⌋
√

k − (i − 1)
= Ω(

√
k log k). (4)

It now remains to maximize k. The constraint on k is that
∑k

i=1 |Si| = n since Sis are dis-
joint. Now,

∑k
i=1 |Si| =

∑k
i=1

⌊
k

k−(i−1)

⌋
= Θ(k log k). Thus, setting k = Θ(n/ log n) satisfies the

constraint on k. Plugging this into (4) yields the claim.

C An Ω(
√

n log n) Tight Instance for the Algorithm of [Tou23a]
We complement the O(

√
n)-stretch achieved by Algorithm 2 and Algorithm 3 with a JRP instance

such that the algorithm of [Tou23a] (Algorithm 2) must suffer a stretch of at least Ω(
√

n log n).
Note that the instance we present in Figure 2 is both an MLA instance and a weighted concave
one. This shows that for the specific case of MLA and weighted concave functions, not only is
our algorithm optimal, but also that Touitou’s algorithm cannot achieve the same guarantee. At a
high level, whenever Touitou’s algorithm decides to serve some requests, it issues up to two services
(lines 9 and 12). One of them serves a subset of requests R for which delay and service costs are the
same. At the same time, a second service with a budget of up to

√
n log n · c(R) can be issued to

serve some pending requests in advance. The following example is one where the optimal algorithm
rarely issues this second service.

Proposition C.1. There exists an instance for which the algorithm of [Tou23a] has stretch Ω(
√

n log n).
Moreover, this is an MLA and a weighted concave instance.

Proof. Let us consider the JRP tree T in Figure 2, where w =
√

n log n−1
n−1 and the delay cost functions

on the nodes read

di(t) =
{

2t, if i = 1
εt, if i ≥ 2

,

for ε ≪ w to be set later. In particular, at each time step, there are n requests arriving on tree T ,
one per node.

Let us first observe that the optimum algorithm only serves the requests at v1, paying a service
cost of 1 at each time step. Moreover, it serves requests arriving at any vi with i ≥ 2 once εt = w,

22

i.e., every w/ε time steps, and pays (n − 1)w + 1 =
√

n log n. Thus, letting τ be the length of the
requests sequence, the overall optimal cost is OPT(τ) = τ + ετ

w

√
n log n ≤ 2τ , by setting ε = w/n.

Algorithm 2 in [Tou23a] (whose cost is referred to as ALG from now on) serves a request
arriving at v1 (line 9) as soon as its accumulated delay equals its service cost (this is when the
UponCritical event occurs). Once a request at v1 arrives, the algorithm waits until the time
elapsed t is such that 2t = 1 to serve it. That is, when the j-th request located at v1 arrives, the
algorithm serves it at time tj = j + 1

2 . Right after, it issues a second service (line 12) to serve all
other requests at v2, . . . , vn. Overall, the algorithm pays ALG(τ) = τ · (1 + (n − 1)w) = τ

√
n log n.

Hence,
ALG(τ)
OPT(τ) ≥

√
n log n

2 ,

for all τ ≥ 1. To conclude, the fact that the instance in Figure 2 is an MLA one comes directly
from the fact that it is a depth 2 tree. Moreover, observe that no matter how we choose S ⊆ V ,
f(S) = f(w(S)), and thus the instance in Figure 2 is also a weighted concave instance.

D Further Related Work
Network Design with Delay. Network Design with Delay is very closely related to Subadditive
JRP. In Network Design with Delay, we are given a universe of n request types and m items with
costs. Each request type h has a corresponding upwards-closed collection Ch of subsets of items
that satisfy it. At any point in time, the algorithm can transmit a set of items. A request of type h
is served by a transmission that contains some subset in Ch. Some specific problems are Set Cover
with Delay [CPSV18, ACKT20, Tou21], Facility Location [AT19, AT20, BBBM] and other network
design problems [AT19, AT20]. Network Design with Delay is equivalent to Subadditive JRP as
the optimal cost of satisfying a subset of request types is subadditive, and Subadditive JRP can be
formulated as Set Cover with Delay with exponentially many sets.

Online problems with delay. There has been a lot of work on other online problems with
delay as well. In Online Service with Delay, we are given one or multiple servers on a metric space.
Requests arrive on points of the metric space and are served when a server is moved to their location.
In Online Matching with Delay, we are given an underlying metric space. Requests arrive on points
of the metric space and are served when they are matched. Most of the work on Online Service
with Delay [AGGP21, GKP20, GKP21, BKS18, KMWW20, Tou23b] and Online Matching with
Delay [EKW16, ACK17, AAC+17, BKS17, AF20, BKLS18, ESW19, ARV21, LPWW18, DU23] has
been in the clairvoyant setting. Nevertheless, non-clairvoyant algorithms have been designed for
Online Service with Delay [KMWW20] and Online Matching with Delay [DU23].

Approximating subadditive functions. The approximation of subadditive functions has been
a focal point of research, at least since the introduction of the complement-free hierarchy of functions
introduced in [LLN06]. This consists of the class of submodular function, which is strictly contained
into the XOS class, which in turn is strictly contained in the general subadditive class.5 As for
approximation, it is known that XOS approximates subadditive within a factor of O(log(n)), which
is tight [Dob07, BR11]. The approximability gap between Submodular and XOS is Θ(

√
n) [BDF+12,

GHIM09]. In a similar vein, [DFF21] prove that Gross-Substitute functions (first introduced in
5Several other classes within the submodular class have been considered (e.g. additive, unit-demand, Gross-

Substitutes).

23

[KC82]) cannot approximate submodular set functions within a factor better than Ω
(

log(n)
log log(n)

)
.

In the context of symmetric function approximation, [EFRS20] show that symmetric subadditive,
symmetric XOS and symmetric submodular6 functions are all 2-close to each other, which is tight.

6We use the term symmetric submodular to indicate functions that are (monotone) concave in the size of the set.

24

	Introduction
	Our Results
	General Framework for Subadditive JRP
	Our Techniques for MLA and Weighted Symmetric Subadditive JRP
	Lower bounds on approximating subadditive service functions.

	Future Directions

	Subadditive Joint Replenishment
	Reduction Lemma
	Applying the Reduction Lemma to Subadditive JRP

	Multi-Level Aggregation
	Notation and Algorithm Overview
	MLA Partitioning Algorithm

	Weighted Symmetric Subadditive Joint Replenishment
	Symmetric Subadditive JRP
	Weighted Symmetric Subadditive JRP

	Omitted Proofs
	Omitted Proofs from Section 3
	Omitted Proofs from Section 4

	An (nn) Tight Instance for the Algorithm of JiaLNRS05
	An (nn) Tight Instance for the Algorithm of Touitou23
	Further Related Work

