Sparsity — tutorial 12

VC dimension and hitting sets

Problem 1. Let \mathcal{C} be a nowhere dense class of graphs and let $G \in \mathcal{C}$. For $r \in \mathbb{N}$ and a vertex ordering σ of G, let

$$\mathcal{W}_{r,\sigma} = \{ \operatorname{WReach}_r[G, \sigma, v] : v \in V(G) \}.$$

Prove that there exists a constant k, depending only on C and r (and not on G and σ), such that $\mathcal{W}_{r,\sigma}$ has VC-dimension at most k.

Problem 2. Let G be a graph. Consider the following linear program for fractional dominating sets.

Dominating Set LP

- Variables: x_v for all $v \in V(G)$
- Objective: minimize $\sum_{v \in V(G)} x_v$
- Constraints:

 $-\sum_{w\in N[v]} x_w \ge 1 \text{ for all } v \in V(G); \text{ and} \\ -x_v \ge 0 \text{ for all } v \in V(G).$

Assume G is d-degenerate. Let $D_1 = \{v \in V(G) : x_v \ge 1/(3d)\}$ and $D_2 = V(G) \setminus N[D_1]$, that is, D_1 consists of all vertices which get weight at least 1/(3d) and D_2 are the vertices that are not dominated by D_1 . Clearly, $D_1 \cup D_2$ is a dominating set of G.

Prove that $|D_1 \cup D_2| \leq 3dk$, where k is the size of a minimum dominating set of G.

Problem 3. Let \mathcal{F} be a set system over a finite ground set A. We define the *dual* set system \mathcal{F}^* as follows: the ground set of \mathcal{F}^* is \mathcal{F} , and for each $e \in A$ we add to \mathcal{F}^* the set $\{X \in \mathcal{F} : e \in X\}$. Prove that if the VC dimension of \mathcal{F} is k, then the VC dimension of \mathcal{F}^* is at most $2^{k+1} - 1$.

Problem 4. Let \mathcal{F} be a set family on ground set A. A set cover for A with sets from \mathcal{F} is a subset $\mathcal{G} \subseteq \mathcal{F}$ such that $\bigcup_{F \in \mathcal{G}} F = A$. Prove that there exists a randomized polynomial-time algorithm which given a set system \mathcal{F} of VC dimension $d \geq 2$, computes a set cover for \mathcal{F} that has size at most $\mathcal{O}(d \cdot \tau(\mathcal{F}) \ln \tau(\mathcal{F}))$ with probability at least $\frac{1}{2}$.