Sparsity — homework 1

Measuring sparsity, deadline: October 23rd, 2017, 14:15 CET

Problem 1. The *arboricity* of an undirected graph G, denoted $\operatorname{arb}(G)$, is the smallest integer k such that the edge set of G can be partitioned into k subsets, each inducing a forest. Prove that for every graph G it holds that

$$\operatorname{arb}(G) \leq \operatorname{deg}(G) \leq 2 \cdot \operatorname{arb}(G) - 1,$$

where $\deg(G)$ is the degeneracy of G.

Problem 2. Let \mathcal{C} be a somewhere dense graph class that is closed under taking subgraphs. Prove that there exists $r \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ there exists a graph $G \in \mathcal{C}$ and a vertex subset $A \subseteq V(G)$ of size n with the following property: for each subset $B \subseteq A$ there exists some vertex $u \in V(G)$ such that $B = N_G^r[u] \cap A$.

Problem 3. Suppose \mathcal{F} is a family of closed Euclidean balls in \mathbb{R}^d , not necessarily of equal radii and not necessarily disjoint. The *ply* of \mathcal{F} is the maximum number of balls that intersect at one point; that is, \mathcal{F} has ply at most ρ iff every point in \mathbb{R}^d is in at most ρ balls of \mathcal{F} . For $\rho, d \in \mathbb{N}$, let $\mathcal{B}_{\rho,d}$ be the class of intersection graphs of families of balls of ply at most ρ in \mathbb{R}^d ; that is, $G \in \mathcal{B}_{\rho,d}$ if with every vertex of G we can associate a closed ball in \mathbb{R}^d so that the balls form a family of ply at most ρ and two vertices are adjacent in G if and only if the corresponding balls intersect.

Prove that for all fixed $\rho, d \in \mathbb{N}$, there is a polynomial $p(\cdot)$ of degree d such that $\nabla_r(\mathcal{B}_{\rho,d}) \leq p(r)$ for all $r \in \mathbb{N}$.