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Abstract. We study relationships between classes of special subsets of the
reals (e.g. meager-additive sets, γ-sets, C”-sets, λ-sets) and the ideals related
to the forcing notions of Laver, Mathias, Miller and Silver.

1. Introduction

This paper is meant to be a sequel of [4] and [10], where the relationships between
various classes of small sets and the ideals (l0) and (m0) related to the forcing
notions of Laver and Miller were studied.

In the present paper, we add the Silver forcing to the list of the forcing notions
under consideration. We begin with studying inclusions between the classes of
small sets already investigated in [4] and we consider also the σ-ideal (v0) related
naturally to the forcing notion of Silver. Later we take into consideration more
classes of special subsets of the real line and study their relationships with all
the three ideals (l0), (m0) and (v0). We also mention the classical ideal (cr0) of
completely Ramsey-null sets related to the Mathias forcing, solving a problem of
J. Brown concerning σ-sets.

The definitions of Laver and Miller trees as well as the ideals (l0), (m0) and the
classes of perfectly meager, strongly null and universally null sets are provided in
[4]. We continue using all the notation and terminology from above. Here, we shall
sometimes abuse terminology by conflating a tree T with the set [T ] of its branches.

Let us briefly remind the reader that we treat the Baire space ωω as a co-
countable subset of the Cantor space 2ω. This identification allows us to think
about (sets of branches of) Laver and Miller trees as subsets of 2ω. The embedding
was described precisely in [4], let us just say that first we identified ωω with the
space of strictly increasing sequences of natural numbers ω↑ω in a natural way (and
the homeomorphism we used preserved Laver and Miller trees). Then a strictly
increasing sequence is identified with the set of its values, which is an element of
[ω]ω ⊆ 2ω.

Sometimes it is more convenient to refer directly to the intermediate step of the
construction of that embedding, i.e. to think about (sets of branches of) Laver and
Miller trees as subsets of ω↑ω. We denote by L↑ and M↑ the collections of Laver
and Miller trees consisting of strictly increasing sequences.
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Although it was said in [4] that the results of that paper hold if one uses any
other (but fixed) embedding of ωω onto a co-countable subset of 2ω, we do not
know whether this remains true for all the theorems proved in the present article.

Definition 1.1. A Silver tree (or a uniform tree) is a perfect tree T ⊆ 2<ω such
that for every n > 0 either T ∩ 2n ⊆ Split(T ) or for all s, t ∈ T ∩ 2n+1 we have
s(n) = t(n).

The collection of Silver trees will be denoted by V. The family V ordered by
inclusion is known as the Silver forcing. There are two other more popular repre-
sentations of conditions of this forcing. Observe that each Silver tree corresponds
to the set

[f ] = {x ∈ 2ω : x ¹ dom(f) = f}
for a function f : dom(f) → 2, where dom(f) is a co-infinite subset of ω. It also
corresponds to the family

{x ⊆ ω : a ⊆ x ⊆ b} ,

where a ⊆ b are subsets of ω such that |b \ a| = ω. Families of this type are
sometimes called doughnuts (see [3]).

Definition 1.2. We shall say that a set X ⊆ 2ω has the v0-property (or X ∈ (v0))
if for every Silver tree T , there exists a Silver tree T ′ ⊆ T such that [T ′] ∩X = ∅.

We use standard notation concerning the Mathias forcing and basic Ellentuck
sets. For s ∈ [ω]<ω and A ∈ [ω]ω such that s < A (i.e. max(s) < min(A)), we
define basic Ellentuck set [s,A] as follows

[s,A] = {B ∈ [ω]ω : s ⊆ B ⊆ A} .

Observe that [s,A] is a closed subset of [ω]ω. When we identify [ω]ω with ωω using
the identification described in [4], the tree corresponding to [s,A] is in particular a
Laver tree (but obviously not every Laver tree is of this type).

Definition 1.3. For a set X ⊆ 2ω, we say that X is completely Ramsey-null, or
X ∈ (cr0), if for every Ellentuck set [s,A] there exists an Ellentuck set [t, B] ⊆ [s, A],
such that [t, B] ∩X = ∅. Equivalently, for every [s,A], there exists B ∈ [A]ω such
that [s, B] is disjoint with X.

The notion of completely Ramsey-null sets is naturally extended to subsets of
ωω using the identification of ωω with [ω]ω.

2. Small sets and doughnuts

Theorem 2.1. Every perfectly meager set has the v0-property.

Proof. The proof is analogous to the argument from [4] for PM ⊆ (m0) and uses
some ideas from [3].

It was observed in [3] that every co-meager set in 2ω contains [T ] for some T ∈ V.
Notice that if T ∈ V and X ⊆ 2ω is perfectly meager, then X ∩ [T ] is meager in [T ].
As [T ] is homeomorphic to the space 2ω and the canonical homeomorphism from
2ω to [T ] sends Silver trees to Silver trees, we are done (see a similar argument in
[4]). ¤

Corollary 2.2. Every very meager, strongly meager and additively null set in 2ω

has the v0-property. ¤
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Theorem 2.3. Every universally null set has the v0-property.

Proof. We shall use the following lemma.

Lemma 2.4. Every measurable subset of 2ω of positive measure contains a dough-
nut.

Proof. Let F ⊆ 2ω be a measurable set of positive measure; without loss of gen-
erality we may assume that F is closed. We inductively construct an increasing
sequence of natural numbers 〈nk : k ∈ ω〉 and a sequence 〈sk : k ∈ ω〉 such that

(1) sk : dom(sk) → 2
(2) dom(s0) = {0, . . . , n0 − 1}
(3) dom(sk+1) = {nk + 1, . . . , nk+1 − 1}, for k ∈ ω,
(4) for every k ∈ ω, there exists yk ∈ 2[nk+1,∞) such that every x ∈ [

(
⋃

i6k si)∪
yk

]
is a density point of F .

Observe that if we put f =
⋃

k∈ω sk, then [f ] is a doughnut, that is, f : dom(f) →
2 and dom(f) is a co-infinite subset of ω. Indeed, dom(f) = ω \ {nk : k ∈ ω}.
Moreover, as F is closed, (4) easily implies that [f ] is contained in F .

To begin the construction, use the Lebesgue Density Theorem ([11]) to find a
density point y0 ∈ F and n0 ∈ ω so large that for s0 = y0 ¹ n0, we have that

λ
(
[s_

0 0] ∩ F
)

2−(n0+1)
>

1
2

and
λ
(
[s_

0 1] ∩ F
)

2−(n0+1)
>

1
2
.

From these inequalities, it follows easily that the sequences s_
0 0 and s_

0 1 have a
common extension to a density point of F .

Suppose now that ni, si, yi have been constructed for i 6 k. As each of 2k+1

elements of
[
(
⋃

i6k si) ∪ yk

]
is a density point of F , we can find nk+1 > nk such

that putting sk+1 = yk ¹ ({nk + 1, . . . , nk+1 − 1}), we get

λ
(
[s] ∩ F

)

2nk+1+1
> 1− 1

2k+2
,

for every s ∈ 2{0,...,nk+1} such that s ∈ ⋂k+1
i=0 [si]. The above inequality implies that

all such sequences s have a common extension yk+1 to a density point of F . ¤
Now, let X ∈ UN and let T ∈ V. Let ϕ : 2ω → [T ] be the canonical homeomor-

phism taking Silver trees to Silver trees. The set ϕ−1[X] has measure zero, so by
Lemma 2.4, there exists a Silver tree [T ′] disjoint with ϕ−1[X]. Then ϕ

[
[T ′]

]
is a

doughnut contained in [T ] and disjoint with X. ¤
Corollary 2.5. Every strongly null subset of the Cantor space has the v0-property.

3. Below and around strongly null sets

In [4], we considered the question of whether strongly null sets have l0- and
m0-properties. We proved that the answer is positive in the Baire space with the
natural metric, but consistently negative in the Cantor space (with every metric
giving this space its standard topology). The question of strongly null sets and the
v0-property was settled in the previous section.

In this section we consider some stronger properties than being strongly null and
the question of whether they imply the l0- and/or m0-property for subsets of the
Cantor space. We also consider some other properties of subsets of the Baire space
which imply the l0- and m0-properties.
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Proposition 3.1. Every Lusin set (in 2ω and in ωω) has the l0- and the m0-
property.

Proof. We can shrink every Laver (respectively Miller) tree to a meager one. A
Lusin set intersects it on a countable subset which can be easily avoided by a yet
thinner tree. ¤

Proposition 3.2. Under CH there exists a C”-set in 2ω which does not have the
l0-property. Similarly, under CH there exists a C”-set in 2ω which does not have
the m0-property.

Proof. In [4], sets concentrated on Q and not having the l0- and m0-properties were
constructed under CH. If X is concentrated on Q, then Q ∪X ∈ C”. ¤

Every subset of the Baire space with Rothberger’s property has the (l0)- and the
(m0)-property ([4]). Actually, a weaker assumption is sufficient.

Theorem 3.3. If a set X ⊆ ωω has the Menger property, then X has the l0- and
the m0-property.

Proof. We prove it only for Miller trees, the proof for Laver is analogous.
Let X ⊆ ωω have the Menger property and let T be a Miller tree. Then X ∩ [T ],

as a closed subspace of X, has the Menger property too. Let {sm
k : k ∈ ω} be an

injective enumeration of Splitm+1(T ). Then Um = {[sm
k ] ∩X : k ∈ ω} is a sequence

of open coverings of X ∩ [T ]. The Menger property implies1 that for each m ∈ ω,
there exists km ∈ ω such that X ∩ [T ] ⊆ ⋃ {[sm

i ] : i < km}. Let T ′ be the smallest
tree containing all sm

i , for i > km. It is easy to see that [T ′] ∩X = ∅ and T ′ is a
Miller subtree of T . ¤

A set X ⊆ 2ω is meager-additive, if X + M = {x + y : x ∈ X, y ∈ M} is meager,
for every meager set M ⊆ 2ω. Every meager-additive set is strongly null, and thus
has the v0-property.

We give a short proof of thr the following proposition (compare with Theorem
24 in [8]).

Proposition 3.4. Every meager-additive set X ⊆ 2ω is perfectly meager.

Proof. We use the following notation: for an increasing function f ∈ ωω we shall
put If

n = {k ∈ ω : f(n) 6 k < f(n + 1)}.
Let X be meager-additive. From Theorem 2.7.17 in [1] we get that for every

increasing function f ∈ ωω there exists g ∈ ω↑ω and y ∈ 2ω such that

X ⊆
⋃

m∈ω

⋂
n>m

{
x ∈ 2ω : ∃k ∈ ω (If

k ⊆ Ig
n) ∧ (x ¹ If

k = y ¹ If
k )

}
,

Let P ⊆ 2ω be a perfect set and let T ⊆ 2<ω be a perfect tree such that P = [T ].
Observe that {[s] ∩ P : s ∈ T} is a basis of the relative topology on P . Let f ∈ ωω

be an increasing function such that for every t ∈ T ∩ 2f(k) there exists at least two
different elements s1, s2 ∈ T ∩ 2f(k+1) extending t.

1Some authors require that open covers considered in the Menger property do not have a finite
subcover. Observe that if one of our covers has a finite subcover, we are also done.
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To show that X ∩ P is meager in P , it is enough to show that for every m ∈ ω
the set

Fm = P ∩
⋂

n>m

{
x ∈ 2ω : ∃k ∈ ω (If

k ⊆ Ig
n) ∧ (x ¹ If

k = y ¹ If
k )

}

is nowhere dense in P . To this end, let t ∈ T . By extending t we may always assume
that |t| = f(k), where k is minimal such that If

k ⊆ Ig
n, for some n > m. Let j ∈ ω

be maximal such that If
k+j ⊆ Ig

n. We can find an extension t0 ⊇ t such that t0 ∈ T ,
|t0| = f(k + 1) and t0 ¹ If

k 6= y ¹ If
k . This is possible since by the choice of f we

have two candidates for such an extension, so one of them is different from y ¹ If
k .

Then we apply the same procedure to find ti for i 6 j, such that ti+1 extends ti,
|ti| = f(k + i + 1) and ti ¹ If

k+i 6= y ¹ If
k+i. It is clear that [tj ] ∩ Fm = ∅. ¤

Corollary 3.5. Every meager-additive set in 2ω has the m0-property.

Theorem 3.6. Under CH there exists a meager-additive set in 2ω which does not
have the l0-property.

Proof. We use similar arguments to those from the proof of Theorem 4.3 in [9]. We
need the following lemma.

Lemma 3.7. For every M ∈M, there exists M ′ ∈M such that M + (2ω \M ′) ∈
(l0).

Proof. Let M ⊆ 2ω be meager. By considering a translate of M (which can always
be done), we can assume that there exists a partition of ω into consecutive finite
intervals {Ik : k ∈ ω} such that M ⊆ {x ∈ 2ω : ∀∞k ∈ ω x ¹ Ik 6≡ 0} (see [1]). Let
Jk = I2k ∪ I2k+1 and define M ′ = {x ∈ 2ω : ∀∞k ∈ ω x ¹ Jk 6≡ 0}. Clearly, M ′ ∈
M.

To check that M + (2ω \M ′) ∈ (l0), assume that T ∈ L↑. We define T ′ ⊆ T by
induction on the length of its elements. Let stem(T ′) = stem(T ). For t ⊇ stem(T ′)
already included in T ′, put in T ′ the elements of the set

{n ∈ ω : (t_n ∈ T ) ∧ (n > min(Jk+1))} ,

where Jk contains the last term of t. Observe that for every x ∈ [T ′] (treated as a
subset of ω) and for almost all k ∈ ω, we have |x ∩ Jk| 6 1.

We will show that [T ′]∩ (
M + (2ω \M ′)

)
= ∅. Let x ∈ [T ′] and assume towards

a contradiction that x = m + m′, where m ∈ M and m′ 6∈ M ′. By definition of
M and M ′, there exists an arbitrarily large k ∈ ω such that m ¹ I2k 6≡ 0 and
m ¹ I2k+1 6≡ 0, but m′ ¹ Jk ≡ 0. Then x ¹ Jk = (m + m′) ¹ Jk = m ¹ Jk must take
value 1 at least two times which contradicts the fact that x ∈ [T ′]. ¤

The rest of the proof is analogous to the argument from [9] but we present
it here for completeness. Assuming CH, let {Mα : α ∈ ω1} be an enumeration of
all meager Fσ sets and let {Tα : α ∈ ω1} be an enumeration of all Laver trees.
For every Mα find M ′

α such that Mα + (2ω \ M ′
α) ∈ (l0). In step α < ω1, pick

xα ∈ [Tα] \⋃
ξ<α

(
Mξ + (2ω \M ′

ξ)
)
. If we put X = {xα : α ∈ ω1}, then obviously

X 6∈ (l0). To see that X is meager additive, observe that X+Mα ⊆
( {xξ : ξ 6 α}+

Mα

) ∪M ′
α. ¤

If X is a γ-set and X ⊆ ωω, then X has Rothberger’s property, so X has the
l0- and the m0-property. However if X ⊆ 2ω is a γ-set, then X ∩ [ω]ω need not be
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a γ-set, so it is not obvious that γ-sets in 2ω have these properties. Rothberger’s
property can be destroyed by subtracting the countable set [ω]<ω and in [4] we have
seen that this affects the l0- and m0-properties. Nevertheless, we can still prove
that γ-sets in the Cantor space have these properties.

Theorem 3.8. Every γ-set in 2ω has the l0- and the m0-property.

Proof. We shall use the following lemma.

Lemma 3.9 (see Theorem 2.1 in [9]). Let X ⊆ 2ω be a γ-set. There exists A ∈ [ω]ω

such that [A]ω ∩X = ∅. In particular, there exists T ∈ L such that [T ]∩X = ∅. ¤

Lemma 3.10. For every T ∈ L↑, there exists a homeomorphism ψ : 2ω → [T ] ⊆ 2ω

such that for every Laver tree T ′, the set ψ
[
[T ′]

] ⊆ [ω]ω and is the set of branches
of a Laver tree.

Similarly, for every T ∈ M↑, there exists a homeomorphism ψ : 2ω → [T ] ⊆ 2ω

such that for every Miller tree T ′, the set ψ
[
[T ′]

] ⊆ [ω]ω and is the set of branches
of a Miller tree.

Proof. We prove only the first part, the other one is similar.
Recall that we embed the set [T ] (for a Laver tree T consisting of strictly

increasing functions), into [ω]ω ⊆ 2ω, naturally identifying a function with its
range. The same can be done with elements of such a tree T (i.e. finite increas-
ing sequences of natural numbers), thus we may think of T as a subset of Q =
{x ∈ 2ω : ∀∞n ∈ ω x(n) = 0} ⊆ 2ω. Under this identification we have T ∪ [T ] =
[T ] ⊆ 2ω.

Now we define ψ̂ : S → T , where S ⊆ 2<ω consists of finite binary sequences
ending with 1 and finite sequences constantly equal to 0 by induction on the number
of ones in t ∈ S. If t is constantly equal to 0, we put ψ̂(t) = stem(T ). Assume
that t ∈ S, m = |t| − 1, t(n − 1) = 1, t(m) = 1 and t(i) = 0 for n − 1 < i < m.
As ψ̂(t ¹ n) ∈ T has been already defined, we put ψ̂(t) = ψ̂(t ¹ n)_k, where k is
the m − n − 1-th element of the set

{
j ∈ ω : ψ̂(t ¹ n)_j ∈ T

}
. This is a correct

definition, since T ∈ L.
Observe that if s, t ∈ S and s ⊆ t, then ψ̂(s) ⊆ ψ̂(t). Thus, it makes sense to

define a function ψ : 2ω → [T ] ∪ T as follows

ψ(x) =
⋃{

ψ̂(x ¹ n) : n ∈ ω ∧ x(n− 1) = 1
}

.

This function is easily seen to be one-to-one and continuous. It also takes Laver
trees to Laver trees as it preserves infinite-branching nodes. ¤

Now let X ⊆ 2ω be a γ-set and let T be a Laver tree. Without loss of generality
we may assume that T ∈ L↑. Then X ∩ [T ] is a γ-set. Using ψ from lemma 3.10,
we obtain that ψ−1

[
X ∩ [T ]

]
is a γ-set. Then from lemma 3.9 we get a Laver tree

T ′ disjoint with ψ−1
[
X ∩ [T ]

]
and consequently ψ

[
[T ′]

]
is a Laver tree disjoint with

X.
The second part (i.e. for Miller trees) is proved in a similar way. ¤

Remark 3.11. Notice that we essentially proved that if P is a class of subspaces of
2ω closed under taking closed subsets and homeomorphisms, then

P ⊆ (cr0) =⇒ P ⊆ (l0) =⇒ P ⊆ (m0) =⇒ P ⊆ (s0).
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A similar argument shows that for such a class, we also have that

P ⊆ (v0) =⇒ P ⊆ (s0).

Remark 3.12. By a modification of the proof of Theorem 2.2 from [9] one can show
that if X is a T ′-set and Y is strongly meager (see [9] for definitions), then X + Y
has the (l0)− and the (m0)-property. This obviously gives a different argument for
the fact proved in Theorem 3.8. We plan to treat the subject of inclusions algebraic
sums of special sets and forcing ideals in a separate paper.

4. Special sets related to Borel hierarchy

In this section we study special sets defined in terms of Borel hierarchy. A set
X is said to be a Q-set, if every subset of X is a relative Gδ, X is a σ-set if every
relative Fσ in X is a relative Gδ and it is a λ-set if every countable subset of X is a
relative Gδ in X. We shall say that a set X is a λ′ set, if X ∪Y is a λ-set for every
countable Y . Properties Q, σ and λ are topological; λ′ makes sense for subsets of
a topological space, which should always be clear from the context.

Inclusions between these classes and the ideal (cr0) were investigated by Brown
in [2].

Proposition 4.1. Every Q-set has the l0-, m0- and v0-properties.

Proof. If X is a Q-set, then |X| < c. ¤
Proposition 4.2. Every λ-set (in ωω and in 2ω) has the m0- and the v0-property.
In particular, every σ-set has these properties.

Proof. Every λ-set is perfectly meager (see [5]). ¤
As the relations of λ- and σ-sets with (m0) and (v0) have been clarified, we are

going to consider relations of these classes with (l0) and (cr0).
The next theorem answers in particular a question of J. Brown from [2] about

σ-sets and the (cr0) ideal. The other part, concerning the (l0) ideal was proved
independently by A. W. Miller in [7].

Theorem 4.3. Every σ-set (in 2ω and in ωω) has the (l0) and the (cr0)-property.

Proof. First observe that we may consider σ-sets contained in ωω. For (l0) and
(cr0), only the part contained in [ω]ω is relevant and every subset of a σ-set is a
σ-set.

Next, notice that the inclusion σ ⊆ (cr0) is equivalent to the statement: for
every σ-set X, there exists an Ellentuck set disjoint with X. This follows from the
fact that an Ellentuck set is a closed set homeomorphic to the whole space with the
canonical homeomorphism sending Ellentuck sets to Ellentuck sets. Therefore to
prove the theorem it is enough to show that for every σ-set there exists a disjoint
Ellentuck set.

So let X ⊆ [ω]ω be a σ-set and let {tn : n ∈ ω} be a fixed bijective enumeration
of 2<ω. Consider D = {A ∈ [ω]ω : ∀n,m ∈ A tn ⊆ tm ∨ tm ⊆ tn}. Let f : D → 2ω

be a function defined by the formula

f(A) =
⋃
{tn : n ∈ A} .

Clearly, f is continuous, so by a result of RecÃlaw (see [6]), it cannot map D ∩ X
onto 2ω. So let y ∈ 2ω be such that for no A ∈ D ∩ X, f(A) = y. If we put
B = {n ∈ ω : tn ⊆ y}, then [B]ω = [∅, B] ⊆ D and [∅, B] ∩X = ∅.



8 MARCIN KYSIAK, ANDRZEJ NOWIK, AND TOMASZ WEISS

The inclusion σ ⊆ (l0) follows from Remark 3.11. ¤
Proposition 4.4. Under CH there exists a λ′-set in ωω which does not have the
l0-property. In particular, this set is a λ-set in 2ω.

Proof. It follows from the fact that an ω1-scale (i.e. strictly increasing in the sense
of 6∗ and dominating ω1-sequence of elements of ωω) is a λ′-set in ωω (see [5]). An
ω1-scale not having the l0-property was constructed under CH in [4]. ¤
Proposition 4.5. Every λ′-set in 2ω has the l0-property.

Proof. This is a modification of Brown’s argument from [2]. If X ⊆ 2ω is a λ′-set,
then X ∪Q is a λ-set. Consequently Q is a Gδ set in X ∪Q, so X ∩ωω is a bounded
set in ωω. It is easy to see that each bounded set has the l0-property. ¤
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