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Abstract. We present a theorem which generalizes some known theorems on
the existence of nonmeasurable (in various senses) sets of the form X+Y . Some
additional related questions concerning measure, category and the algebra of
Borel sets are also studied.

Sierpiński showed in [14] that there exist two sets X, Y ⊆ R of Lebesgue measure
zero such that their algebraic sum, i.e. the set X + Y = {x + y : x ∈ X, y ∈ Y } is
nonmeasurable. The analogous result is also true for the Baire property.

Sierpiński’s construction has been generalized to other σ-algebras and σ-ideals
of subsets of R. Kharazishvili proves in [10] that for every σ-ideal I which is not
closed under algebraic sums and every σ-algebra A such that the quotient algebra
A/I satisfies the countable chain condition, there exist sets X,Y ∈ I such that
X + Y 6∈ A. A similar result was proved by Cichoń and Jasiński in [3] for every
σ-ideal I with coanalytic base and the algebra Bor[I] (i.e. the smallest algebra
containing I and Bor).

Ciesielski, Fejzić and Freiling prove in [4] a stronger version of Sierpiński’s the-
orem. They show that for every set C ⊆ R such that C + C has positive outer
measure there exists X ⊆ C such that X + X is not Lebesgue measurable. In
particular, starting with such a set C of measure zero (the “middle third” Cantor
set in [0, 1] for example), we obtain Sierpiński’s example as a corollary.

In the first section our paper we introduce an elementary notion of the Perfect
Set Property of pairs 〈I,A〉, where I is a σ-ideal of subsets of R and A ⊇ I is
any family of subsets of R. Using a simple argument, we generalize the results
of Sierpiński, Cichoń–Jasiński and Ciesielski–Fejzić–Freiling onto pairs with the
Perfect Set Property.

The main result of the second section is a stronger version of this theorem for
measure and category. Namely, we show that if C is a measurable set such that
C + C does not have measure zero, then we can find a measure zero set X ⊆ C
such that X +X is nonmeasurable. The analogue for Baire category is also proved.

In section 3 similar questions concerning the algebra of Borel sets are studied.
Although it is known that this algebra is not closed under taking algebraic sums,
we show that there exists an uncountable Borel set P ⊆ R such that for every pair
of Borel sets A,B ⊆ P the set A + B is Borel.

Standard set-theoretic notation and terminology is used throughout the paper.
The reader may check [1] or [9] for basic definitions.

We work in the space R (as an additive group, with Lebesgue measure). The
arguments of the first section can be easily generalized to Polish groups which have
a structure of a linear space over a countable field. In particular, they remain valid

2000 Mathematics Subject Classification. Primary: 28A05, 03E15; secondary 54H05.
Key words and phrases. Algebraic sum, Lebesgue measure, Baire property, nonmeasurable set.

1



2 MARCIN KYSIAK

in separable Banach spaces or in the space 2ω. The results of section 2. remain
valid also in 2ω, but the author does not know how general they are.

We denote by M and N the collections of meager and null sets (the space, its
topology and measure should be always clear from the context). Similarly, M∗,N ∗

stand for collections of co-meager and full measure sets. BP is the collection of sets
with the Baire property and LM is the collection of Lebesgue measurable sets.

The symbol Bor denotes the σ-algebra of Borel sets. For a σ-ideal I by Bor[I] we
denote the smallest σ-algebra containing Bor and I. Observe that LM = Bor[N ]
and BP = Bor[M]. We say that a σ-ideal has co-analytic base, if it has a base
consisting of Π1

1 sets.
The results from this paper were obtained during work on the author’s Ph.D.

thesis. The author would like to thank his advisor, professor Piotr Zakrzewski, for
his help during research and preparation of this paper. Many thanks also to RafaÃl
Filipów for inspiring discussions about Marczewski measurable sets.

1. Perfect Set Property

Definition 1.1. Let I be a σ-ideal of subsets of R and let A ⊆ P(R) be any family
of sets containing I. We say that the pair 〈I,A〉 has the Perfect Set Property, if
every set X ∈ A \ I contains a perfect set.

The following theorem is the main result of this section.

Theorem 1.2. Suppose that a pair 〈I,A〉 has the Perfect Set Property. Then
• for every set A ⊆ R such that A+A 6∈ I there exists a set X ⊆ A such that

X + X 6∈ A.
• for every pair of sets A,B ⊆ R such that A + B 6∈ I there exist X ⊆ A and

Y ⊆ B such that X + Y 6∈ A.

As an immediate corollary we get

Corollary 1.3. Suppose that a pair 〈I,A〉 has the Perfect Set Property. Then the
following conditions are equivalent:

• ∃X ∈ I X + X 6∈ I
• ∃X ∈ I X + X 6∈ A
• ∃X, Y ∈ I X + Y 6∈ I
• ∃X, Y ∈ I X + Y 6∈ A ¤

To prove the theorem 1.2 we need the following simple observation.

Lemma 1.4. There exists a subgroup G ⊆ R such that |R/G| = ω and G is a
Bernstein set in R.

Proof. First observe that if a proper subgroup G ⊆ R intersects every perfect
set then G is a Bernstein set. Indeed, if there exists a perfect set P ⊆ G then
(x + P ) ∩G = ∅ for any x 6∈ G.

We inductively construct a linear subspace G′ of R (as a linear space over Q)
which contains Q, intersects every perfect set and does not contain

√
2. Finally,

we can extend G′ to a maximal subspace G not containing
√

2. It is easy to check
that |R/G| = ω. ¤

Proof of Theorem 1.2. First observe that if G is as in lemma 1.4 then the union of
a finite nonempty family T of cosets of G is a Bernstein set. Indeed, each coset
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is a Bernstein set, so
⋃ T intersects every perfect set. On the other hand, as T is

finite, there exists a coset T 6∈ T . But T is also a Bernstein set and T ∩⋃ T = ∅,
so

⋃ T cannot contain any perfect set.
Now, assume that A+A 6∈ I and let G be as above. Let us fix a 1−1 enumeration

R/G = {Tn : n ∈ ω} and put An = A ∩ Tn. As A + A =
⋃

n,m∈ω An + Am 6∈ I,
there exist n,m ∈ ω such that An + Am 6∈ I. Let X = An ∪Am. We have

X + X = (An + An) ∪ (An + Am) ∪ (Am + Am) 6∈ I.

We can see that the set X+X intersects at most three cosets of G, so X+X cannot
contain a perfect set. As X + X 6∈ I, by the perfect set property, X + X 6∈ A.

The proof of the second part is similar. ¤

As the pairs 〈N ,LM〉 and 〈M,BP〉 have the perfect set property, we immedi-
ately obtain the following corollaries.

Corollary 1.5 (Ciesielski–Fejzić–Freiling). If A ⊆ R is a set such that A + A has
positive outer measure then there exists X ⊆ A such that X + X is nonmeasurable.

Corollary 1.6. If A ⊆ R is a set such that A + A is non-meager then there exists
X ⊆ A such that X + X does not have the Baire property.

Remark 1.1. To prove only the preceding two corollaries concerning measure and
category, yet simpler argument can be used. In these cases, instead of a group
constructed in lemma 1.4 one can use any dense subgroup of R of countable index.
Such a group can be easily obtained using a Hamel basis. The further part of
the proof follows the same pattern, the only observation needed is the fact that the
union of finitely many cosets has inner measure zero (does not contain a non-meager
Borel set, respectively).

As corollaries we can also obtain a little stronger versions of the main theorem
of [3].

Corollary 1.7. Suppose that I ⊆ P(R) is a σ-ideal with a co-analytic base con-
taining all singletons. Then

• for every set A ⊆ 2ω such that A + A 6∈ I there exists X ⊆ A such that
X + X 6∈ Bor[I],

• for every pair of sets A,B such that A + B 6∈ I there exists X ⊆ A and
Y ⊆ B such that X + Y 6∈ Bor[I].

Corollary 1.8. Let I ⊆ P(R) be a σ-ideal with a co-analytic base, containing all
singletons. Then the following conditions are equivalent:

(1) ∃A ∈ I A + A 6∈ I,
(2) ∃A ∈ I A + A 6∈ Bor[I],
(3) ∃A,B ∈ I A + B 6∈ I,
(4) ∃A,B ∈ I A + B 6∈ Bor[I].

Proof. It is enough to observe that the pair 〈I, Bor[I]〉 has the Perfect Set Property.
Let X ∈ Bor[I] \ I. We can find a Borel set B such that B4X ∈ I, obviously
B 6∈ I. Let C ∈ I be a Π1

1 set such that B4X ⊆ C. Then B \C is a Σ1
1 set which

is not in I. In particular, this set is uncountable, so it contains a perfect set P . As
P is disjoint from B4X, we have P ⊆ X. ¤

Another application of theorem 1.2 concerns Marczewski measurable sets.
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Definition 1.9. A set X is
• Marczewski-null (X ∈ (s0)), if for every perfect set P there exists a perfect

set Q ⊆ P such that Q ∩X = ∅,
• Marczewski-measurable (X ∈ (s)), if for every perfect set P there exists a

perfect set Q ⊆ P such that either Q ∩X = ∅, or Q ⊆ X.

Additive properties of Marczewski measurable sets have been already studied in
the literature. It is known that the σ-ideal (s0) is not closed under algebraic sums.
This fact is probably a part of folklore, it follows easily from some results from [11].
Filipów and Dorais in [5] construct a set X ∈ (s0) such that X + X 6∈ (s).

As the pair 〈(s0), (s)〉 clearly has the perfect set property, we obtain the following.

Corollary 1.10.
• For every set A ⊆ R such that A + A 6∈ (s0) there exists X ⊆ A such that

X + X 6∈ (s),
• For every pair of sets A,B ⊆ R such that A + B 6∈ (s0) there exist X ⊆ A

and Y ⊆ B such that X + Y 6∈ (s).

This argument can be also generalized for some other σ-ideals and σ-algebras
having similar definitions. For instance, the pair 〈(cr0), (cr)〉 of completely Ramsey-
null and completely Ramsey subsets of 2ω (see [9]) has the Perfect Set Property.

2. More on measure and category

The starting point of our paper was Sierpiński’s example: there exist two measure
zero sets X, Y such that X+Y is nonmeasurable. In the previous section we showed
that given any pair of sets A,B such that A + B has positive measure we can find
X ⊆ A and Y ⊆ B such that X+Y is nonmeasurable (and the analogue for category
as well). One may ask whether we can strengthen our theorems to obtain measure
zero (or meager) subsets X, Y of given sets A,B such that A+B has positive outer
measure (is non-meager, respectively). This turns out to be false with an obvious
counterexample of A = Q and B = R. Also, under CH, a Sierpiński set X such that
X +X = R is a counterexample for measure and a Lusin set with this property is a
counterexample for category (see [1] for constructions of such sets). In this section,
we obtain positive answer imposing some additional restrictions on A and B.

Our underlying space will still be R. One can easily see from the proofs that the
arguments work in the Cantor space as well.

We begin with the results for the Baire category.

Theorem 2.1. Let A,B be non-meager sets with the Baire property. Then there
exist meager sets X ⊆ A and Y ⊆ B such that X + Y does not have the Baire
property.

Proof. We will need the following lemma:

Lemma 2.2. Let G ⊆ R be co-meager. Then there exist meager sets F0, F1 ⊆ G
such that F0 + F1 = R.

Proof. Without loss of generality we can assume that G = G + Z. By routine
argument, this allows us to work in [0, 1] with addition mod 1 instead of R.

Let ϕ : 2ω → [0, 1] be given by the formula

ϕ(x) =
∞∑

n=0

x(n)
2n+1

.



NONMEASURABLE ALGEBRAIC SUMS OF SETS OF REALS 5

Then G′ = ϕ−1[G] is a co-meager subset of 2ω. Thus, by lemma 2.2.4 of [1] there
exists a partition of ω into consecutive finite intervals 〈In : n ∈ ω〉 and xG ∈ 2ω

such that
G′ ⊇ {x ∈ 2ω : ∃∞n x ¹ In = xG ¹ In}.

Let F ∗0 = {x ∈ 2ω : ∀n ∈ ω x ¹ I2n = xG ¹ I2n} and F ∗1 = {x ∈ 2ω : ∀n ∈ ω x ¹
I2n+1 = xG ¹ I2n+1}. We put F0 = ϕ[F ∗0 ] and F1 = ϕ[F ∗1 ].

Let z ∈ [0, 1] and y = z − ϕ(xG). Fix y∗ ∈ 2ω such that ϕ(y∗) = y. We define
x∗0 ∈ F ∗0 and x∗1 ∈ F ∗1 as follows

x∗0 ¹ In =
{

y∗ ¹ In for n odd,
x∗G ¹ In for n even.

x∗1 ¹ In =
{

x∗G ¹ In for n odd,
y∗ ¹ In for n even.

It is easy to check that

ϕ(x∗0) + ϕ(x∗1) = ϕ(y∗) + ϕ(xG) = y + ϕ(xG) = z.

¤

First observe that we can assume that A,B are co-meager. Indeed, let us consider
A′ = A + Q, B′ = B + Q. If we can find meager sets X ′ ⊆ A′ and Y ′ ⊆ B′ such
that X ′ + Y ′ is nonmeasurable, we put Xq = X ′ ∩ (A + q), Yq = Y ′ ∩ (B + q), for
q ∈ Q. Then there exist p, q ∈ Q such that Xp + Yq is nonmeasurable. We put
X = Xp − p and Y = Yq − q.

Assuming that A,B are co-meager, we apply lemma 2.2 to G = A ∩ B. We
obtain meager sets F0 ⊆ A and F1 ⊆ B such that F0 + F1 = R. Now we apply
theorem 1.2 to F0 and F1 to obtain X and Y as needed. ¤

Corollary 2.3. Suppose that a set A ⊆ R has the Baire property and A + A is
non-meager. Then there exists a meager set X ⊆ A such that X +X does not have
the Baire property.

Proof. If A is meager we simply apply corollary 1.6. If not, from the previous
theorem we get two meager sets X0, X1 ⊆ A such that X0 + X1 is non-meager.
Then X ′ = X0 ∪X1 ⊆ A is meager as well and X ′ + X ′ is non-meager. Now apply
corollary 1.6 to X ′. ¤

Now we are going to prove the analogue of theorem 2.1 for measure. The proof
is more complicated than for category. We will use the following theorem.

Theorem 2.4 (Carlson, [2]). Let M |= ZFC and let c ∈ R be a Cohen real over
M . Then in M [c] there exists a full measure set D ⊆ R such that ∀t ∈ R |(t+D)∩
(R)M | ≤ ω.

The following fact follows from Lemma 9 from [6] as well as from Lemma 3 from
[12].

Lemma 2.5. For every measure zero set N ⊆ R there exists a perfect set P ⊆ R
such that 0 ∈ P and P + N ∈ N .

Theorem 2.6. Let A,B be measurable sets with positive measure. Then there exist
null sets X ⊆ A, Y ⊆ B such that X + Y is nonmeasurable.
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Proof. The proof is analogous to the category case. We only need to prove (a
weaker) analogue of lemma 2.2.

Lemma 2.7. For every set G ∈ N ∗ there exists a measure zero set H ⊆ G such
that H + H has full measure.

Proof. Without loss of generality we can assume that G = −G and G + Q = G.
Let M be a countable transitive model of ZFC∗ such that G ∈ M (precisely: we
assume that G is a full measure Borel set coded in M). Let P ∈ M be a perfect
set such that 0 ∈ P and (R \G)− P ∈ N .

Working in M , consider the set
⋂

p∈P (G − p) ⊆ G. By the choice of P this set
has full measure, so we can find a full measure Borel set G̃ ⊆ ⋂

p∈P (G − p) ⊆ G.
Observe that for every p ∈ P we have p + G̃ ⊆ G. Indeed, if x ∈ G̃ then x ∈ G− p
so p + x ∈ p − p + G = G. Moreover, for a fixed p ∈ P ∩M this property of the
sets G̃, G holds in every generic extension of M .

Let c ∈ R be a Cohen real over M . Working in M [c], let D ∈ N ∗ be as in
theorem 2.4. We put H0 = G \ D and H1 = GM = G ∩ (R)M . Both sets have
measure zero, the first as a difference between two full measure sets, the second as
a subset of (R)M which is known to have measure zero in M [c] (see [1]).

We want to show that (in M [c]) the set H0 + H1 = {t ∈ R : (t + H0) ∩H1 6= ∅}
has full measure. Observe that, from the choice of D and H1 we have {t ∈ R :
(t + G) ∩H1 ≥ ω1} ⊆ {t ∈ R : (t + H0) ∩H1 6= ∅}, so it is sufficient to show that
the first set has full measure.

To get this, fix an arbitrary x ∈ G̃M = G̃ ∩M and take any t ∈ x− G̃. Observe
that x ∈ (t + G̃) ∩GM , so for every p ∈ PM we have x + p ∈ (t + G) ∩GM . Thus
x + PM ⊆ (t + G)∩GM . As M [c] |= |PM | > ω, this shows that for every t ∈ x− G̃
the set (t + G) ∩H1 is uncountable, so

H0 +H1 = {t ∈ R : (t+H0)∩H1 6= ∅} ⊇ {t ∈ R : (t+G)∩H1 ≥ ω1} ⊇ x−G̃ ∈ N ∗.

Finally, we put H = H0 ∪ H1. Enlarging H if necessary we may assume that
it is Borel and Q invariant, i.e. Q + H = H. Clearly H + H is analytic and Q
invariant, thus M [c] |= H + H ∈ N ∗. As having positive measure is a Σ1

1 property
of a code of an analytic set (by Kondô–Tugué theorem applied to a universal Σ1

1

set, see [9]), also in V we have H + H ∈ N ∗. ¤

¤

Corollary 2.8. Suppose that A ⊆ R is a measurable set. Then there exists a
measure zero set X ⊆ A such that X + X is nonmeasurable.

Proof. Analogous to the proof of corollary 2.3. ¤

Remark 2.1. The proof of lemma 2.7 seems to be too complicated compared with
lemma 2.2. We were not able to give a simpler general argument.

In particular we could not find any variation of Sierpiński’s argument from [14]
which would work in this case. To give an example of measure zero sets X,Y such
that X+Y is nonmeasurable, Sierpiński considers a Hamel basis which has measure
zero. He finds such a basis as a maximal linearly independent subset of a measure
zero set N such that N + N = R. To adapt this argument for our purposes, we
would need to find such a set N being a subset of a given full measure set G, but
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this is even stronger than the lemma we are proving. A similar problem appears
when one tries to modify arguments from [3].

Corollaries 2.8 and 2.3 seem to give us the full picture when considering algebraic
sums of the form A + A. In theorems 2.1 and 2.6 we assume that both sets A,B
considered there are positive (non-meager or of positive measure). Of course, if
both sets are meager (for category) or null (for measure) theorem 1.2 gives us the
same conclusion. There remains, however, the case when both sets are measurable
(or have the Baire property) but only one is positive. An obvious example of A = Q
and B = R shows that we need to assume that both sets are somehow large. It is
a reasonable conjecture that it is enough to assume that one of the sets is positive
and the other contains a perfect set. This motivates the following questions.

Question 1. Suppose that A ⊆ R is non-meager set with the Baire property and
P is perfect. Do there exist meager sets X ⊆ A, Y ⊆ P such that X + Y is
non-meager?

Question 2. Suppose that A ⊆ R is measurable set with positive measure and P
is perfect. Do there exist measure zero sets X ⊆ A, Y ⊆ P such that X + Y is not
null?

Recall also that it is not so trivial to prove that for every perfect set P there
exists a (closed) measure zero set H such that P + H = R (see [6]). This result
may suggest that rather positive answers to these questions are to be expected. A
natural attempt to answer these questions positively would be to construct such a
set H as a subset of a given positive set A, it is not clear, however, how to modify
the proof from [6] for this purpose.

3. Borel sets

One might ask whether some analogous results are true for the algebra of Borel
sets. Erdős and Stone in [7] and, independently, Rogers in [13], gave an example
of two Borel sets whose algebraic sum is not Borel. This topic was also considered
recently by Cichoń and Jasiński in [3].

Obviously, if sets A,B are Borel, nonempty, and one of them is uncountable then
there exist X ⊆ A and Y ⊆ B such that X + Y is not Borel. Assuming that B is
uncountable, simply take X = {x} for any x ∈ A and Y any non-Borel subset of
B. Using theorem 1.2 we can also show that

Proposition 3.1. For every uncountable set A ⊆ R there exists a set X ⊆ A such
that X + X is not analytic.

Proof. The pair 〈[R]≤ω,Σ1
1〉 has the Perfect Set Property. ¤

The main disadvantage of this proposition is that it does not give us any infor-
mation on descriptive complexity of X, even if we assume that A is Borel. One
might, however, conjecture that for every pair A, B of uncountable Borel sets there
exist Borel X ⊆ A, Y ⊆ B such that X + Y is not Borel. We show that the
answer to this question is negative. Our argument is largely inspired by arguments
of RecÃlaw from [12] (similar arguments are also used in [3]).

Proposition 3.2. There exists a perfect set P ⊆ R such that for every pair of
Borel sets A,B ⊆ P the set A + B is Borel. In particular, for every Borel A ⊆ P
the set A + A is Borel.
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Proof. Let P ⊆ R be a perfect set linearly independent over Q. It is a matter of
simple calculation that for all pairs 〈p0, q0〉, 〈p1, q1〉 from P 2, if p0 + q0 = p1 + q1

then either 〈p0, q0〉 = 〈p1, q1〉, or 〈p0, q0〉 = 〈q1, p1〉.
Let C∗ = {〈p, q〉 ∈ P 2 : p ≤ q} and C∗ = {〈p, q〉 ∈ P 2 : p > q}. If A,B ⊆ P are

Borel, then

A + B = {a + b : 〈a, b〉 ∈ (A×B) ∩ C∗} ∪ {a + b : 〈a, b〉 ∈ (A×B) ∩ C∗}.
As the function 〈p, q〉 7→ p + q is restricted to C∗, as well as to C∗, is 1− 1, A + B
is the union of two 1− 1 continuous images of Borel sets, thus Borel.

¤
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