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Abstract. We construct Bernstein sets in R having some additional algebraic
properties. In particular, solving a problem of Kraszewski, RaÃlowski, Szczepa-
niak and Żeberski, we construct a Bernstein set which is a < c-covering and
improve some other results of RaÃlowski, Szczepaniak and Żeberski on nonmea-
surable sets.

1. Introduction

A set B ⊆ R is Bernstein, if it intersects all perfect sets in R, but does not
contain any of them. A Bernstein set is a classical example of a nonmeasurable
set; a Bernstein set cannot be Lebegsue measurable and cannot have the Baire
property. Moreover, if A is an algebra of subsets of R, having the property that
every set which is in A but not hereditary in A, contains a perfect set, then no
Bernstein set can be a member of A. Most natural algebras of subsets of R have
this property (see [5]), therefore Bernstein sets are in a sense universal examples of
nonmeasurable sets.

In our paper, we introduce a general method of constructing Bernstein sets
having additional algebraic properties. In the following section, we will construct
Bernstein sets being κ-coverings and consider the possibility of constructing par-
titions of R into such sets. Our results improve and complement results of [4], as
well as answer an open question posed there.

Later, we improve results from [8], where nonmeasurable (in the sense of Lebesgue
measurability and Baire property) sets with certain algebraic properties were con-
structed – we construct Bernstein sets with the same properties.

Our notation is standard. The family of subsets of a set X of cardinality κ is
denoted by [X]κ. All groups considered are abelian (we shall not explicitly formulate
that assumption), so we stick to the additive notation. If A,B are subsets of a group
G, A + B = {a + b : a ∈ A, b ∈ B} (this is called a complex sum of A and B) and
a + B = {a} + B, for a ∈ G. Similarly A − B = {a− b : a ∈ A, b ∈ B}. If H is a
subgroup of a group G, then the quotient group is the family

G/H = {x + H : x ∈ G} ⊆ P(G),

equipped with the operation of the complex sum. The elements of G/H are called
cosets of H and the mapping π : G → G/H, defined by π(x) = x + H is called the
quotient epimorphism.

Our results are formulated in R, but it is easy too see that they also remain valid
in all Polish groups having the structure of a linear space over a countable field, in
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particular in Euclidean spaces Rn, all separable Banach spaces and in the Cantor
space.

2. Bernstein sets and κ-coverings

We begin with the following definition.

Definition 2.1. (Carlson, [1]) A subset C of a group G is a κ-covering, if for every
X ∈ [G]κ, there exist t ∈ G such that t + X ⊆ C. A set X is a < κ-covering, if it
is a λ-covering for every λ < κ.

Coverings have been studied extensively in the case of κ = ω (see [6] and [7]).
The following proposition is folklore, but we include it for completeness.

Proposition 2.2. A subset C of a group G is a κ-covering if and only if κ many
translates of G \ C do not cover G.

Proof. Observe that for every two sets A,B ⊆ G, we have

A−B = {t ∈ G : A ∩ (t + B) 6= ∅} .

Therefore (G \ C) − X = G, for X ∈ [G]<κ, if and only if, for no t ∈ G we have
t + X ⊆ C. ¤

Our work on κ-coverings was inspired largely by the following theorem from [4].

Theorem 2.3 (Kraszewski–RaÃlowski–Szczepaniak–Żeberski). There exists a par-
tition of R into c many < cf(c)-coverings which are Bernstein sets.

The authors formulated also the following

Question 2.4 (Kraszewski–RaÃlowski–Szczepaniak–Żeberski). Assume that c >
cf(c) = ω1. Does there exists a Bernstein set which is an ω1-covering?

The main goal of this section is to give a positive answer to this question. We
shall also discuss other variants and improvements of Theorem 2.3.

2.1. Coverings in abstract groups. Before we begin constructing Bernstein sets
being κ-coverings, we show two facts on coverings in arbitrary groups. The first
one will be useful later in one of our constructions. The analogous method to our
approach was used in [4], but the fact was not formulated in such a general setting.

Lemma 2.5. Let G be a group and assume that κ = |G| is regular. Then there
exists a partition of G into κ many < κ-coverings.

Proof. Write κ as a disjoint union of sets Aα, for α < κ, with each of Aα’s of
cardinality κ. Observe also that, by regularity of κ, there exists an increasing
family {Xα : α < κ} ⊆ [G]<κ such that for every X ∈ [G]<κ there exists α < κ
such that X ⊆ Xα.

We construct a partition {Cα : α < κ} by transfinite induction. In step β < κ,
find tβ ∈ G in such a way that tβ + Xβ is disjoint with

⋃
ξ<β(tξ + Xξ). Observe

that this is possible, because for cardinality reason,
( ⋃

ξ<β(tξ + Xξ)
) − Xβ 6= G

(see the argument in the proof of Proposition 2.2).
Let Cα =

⋃
β∈Aα

(tβ + Xβ), for α < κ. By our construction, these sets are
pairwise disjoint. Also, each Cα contains copies of cofinally many Xβ ’s, so it is a
< κ-covering. We have not guaranteed that G =

⋃
α<κ Cα, but if it is not true, me

may add the complement of
⋃

α<κ Cα to C0. ¤
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It turns out, however, that the assumption of regularity of the cardinality of the
group is necessary.

Proposition 2.6. If a group G of cardinality κ contains two disjoint < κ-coverings,
then κ is regular.

Proof. Suppose that A,B are two disjoint < κ-coverings in G, where |G| = κ.
Without loss of generality we can assume that A ∪ B = G. Observe that, by
Proposition 2.2, fewer than κ many translates of A = G \ B do not cover G. Let
G =

⋃
ξ<cf(κ) Xξ, where |Xξ| < κ. For every ξ < cf(κ) we may find tξ such that

tξ +A ⊇ Xξ, therefore we have G =
⋃

ξ<cf(κ)(tξ +A). As it was impossible to cover
G with fewer than κ translates of A, we must have cf(κ) = κ. ¤

2.2. Coverings and Bernstein sets. The main trick in our approach to con-
structing coverings in R is the application of the following Proposition. However,
its proof is so easy and straightforward that we leave ot to the reader.

Proposition 2.7. Let G be a subgroup of R and let π : R → R/G be the quotient
epimorphism π : x 7→ x + G. Then the following conditions are equivalent for
C ⊆ R/G and κ ≤ |R/G|

(1) C is a κ-covering in R/G,
(2) π−1[C] is a κ-covering in R. ¤

The following lemma is folklore (see similar arguments in [2]) but we sketch the
proof for completeness.

Lemma 2.8. For every cardinal κ such that ω ≤ κ ≤ c there exists a subgroup
G ⊆ R such that |R/G| = κ.

Proof. Let H ⊆ R be a Hamel base (i.e. a base of R as a linear space over Q). Take
Z ∈ [H]κ such that |H \ Z| = c and let G be the linear subspace of R generated
by H \Z. Then R/G is isomorphic to the space generated by Z, in particular it has
cardinality κ. ¤

Lemma 2.9. There exists a subgroup B ⊆ R such that
• R/B ' R,
• B is a Bernstein set in R.

Proof. The approach is similar to the proof of Lemma 2.8. By straightforward
transfinite induction we construct Bernstein sets B0 and B1 such that B0 ∪ B1

is linearly independent over Q. Let B be the linear space generated by B0. As
|B1| = c, the quotient R/B is isomorphic to the linear space over Q generated by c
many independent vectors (more precisely: B0 ∪ B1 can be expanded to a Hamel
base H, the generators are vectors from H \B0 and this set contains B1). But R is
also a linear space generated by c many independent vectors over Q and every two
such spaces are isomorphic.

We have to show that B is a Bernstein set. Clearly, B intersects all perfect sets,
because B0 ⊆ B does. On the other hand, if B contained a perfect set P , then each
non-zero coset of B, say z + B for z 6∈ B, would contain z + P . But then z + P
would be a perfect set disjoint with B. ¤

Remark 2.10. Let B be a group which is a Bernstein set and let C be a proper
nonempty subset of R/B. Then π−1[C] is a Bernstein set in R. This is because
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B is Bernstein, so all cosets of B are Bernstein sets. Therefore π−1[C] intersects
all perfect sets (because, as C 6= ∅, it contains a coset) but does not contain any
perfect set (because, as C 6= R/B, there is a coset disjoint with π−1[C]).

We are going to show that, considering questions similar to Theorem 2.3 and
being able to construct a partition into coverings, we can at no cost assume that
all pieces are Bernstein sets. The simplest and special case of our theorem is that
the existence of a partition of R into κ many λ-coverings implies the existence
of a partition of R into κ many λ-coverings which are Bernstein sets. We want,
however, a more general statement. First of all, we allow different λ’s for different
pieces of our partitions. Apart from that, we also want our theorem not only to
preserve the fact of being a λ-covering, but also want our Bernstein sets to be
coverings for exactly the same λ’s, as corresponding sets in the original partition.
We shall occasionally use that to construct partitions into sets which have a very
weak covering condition.

Observe that for any set A ( R we may define a cardinal

min {λ ≤ c : A is not a λ-covering}
which precisely characterizes for which λ ≤ c A is a λ-covering. This is a meaningful
definition for any proper subset of R (because R is the only c-covering).

Theorem 2.11. For every partition {Aα : α < κ} (κ > 1) of R into nonempty sets
there exists a partition {Bα : α < κ} of R into Bernstein sets such that

min {λ : Aα is not a λ-covering} = min {λ : Bα is not a λ-covering} .

Proof. Let B be a Bernstein group as in Lemma 2.9. As R/B and R are group iso-
morphic, we may assume that {Aα : α < κ} is partition of R/B. Let Bα = π−1[Aα],
where π : R → R/B is the quotient epimorphism. By Proposition 2.7, we obtain
that min {λ : Aα is not a λ-covering} = min {λ : Bα is not a λ-covering}.

The fact that each Bα is a Bernstein set follows from Remark 2.10 and from the
fact that Aα is nonempty and proper subset of R. ¤

As an immediate corollary we obtain something which requires a technical argu-
ment in [4].

Corollary 2.12 (Kraszewski–RaÃlowski–Szczepaniak–Żeberski, [4]). There exists a
partition of R into Bernstein sets A,B such that none of them is a 2-covering.

Proof. Consider a partition of R into two pieces R0 =
⋃

k∈Z[2k, 2k + 1), R1 =⋃
k∈Z[2k − 1, 2k) which are not 2-coverings, and apply the theorem. ¤

The following theorem in particular answers Question 2.4.

Theorem 2.13. For every cardinal κ such that ω ≤ κ ≤ c, there exists a Bernstein
set which is a < κ-covering and is not a κ-covering. In particular, a Bernstein
ω1-covering exists, if and only if, c > ω1.

Proof. By Theorem 2.11 it is enough to find any set in R which is a < κ-covering
and is not a κ-covering. For κ = c (which answers Question 2.4), simply take
R \ {0}.

For arbitrary infinite κ < c, we use Lemma 2.8 to construct a group G ⊆ R
such that |R/G| = κ. Then a complement of a singleton in R/G is a a < κ-covering
(because every proper subset of R/G can be translated into it) and is not a κ-covering
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(because the only κ covering is the whole group R/G). Then, by taking the preimage
and using Proposition 2.7, we transfer this example from the quotient to R. ¤

The previous theorem provides us just one Bernstein covering, while the authors
of [4] were interested in constructing partitions into such coverings. If c is regular,
Theorem 2.3 is in a sense the best possible – we have as many sets in the partition as
possible and their covering condition is as strong as possible. However, if c = ωω1 ,
this theorem gives us only a partition into ω-coverings. On the other hand, we know
that (Bernstein) < c-coverings exist in ZFC, but if c is singular, by Proposition 2.6
no partitions into such coverings are possible. Still we can construct partitions into
κ-coverings for a fixed κ < c in ZFC, but at the cost of reducing the number of sets
in the partitions, as compared to Theorem 2.3.

Theorem 2.14. For every infinite κ < c there exists a partition of R into κ+ many
κ-coverings which are Bernstein sets.

Proof. By Theorem 2.11 it is enough to construct a partition of R into κ+ many
κ-coverings. As κ+ ≤ c, by Lemma 2.8 we can to find a subgroup G ⊆ R with
|R/G| = κ+. Applying Lemma 2.5 in R/G, we can find a partition of R/G into κ+

many κ-coverings and this partition can be easily transferred to R by Proposition
2.7. ¤

3. Bernstein sets and other algebraic properties

3.1. Earlier results. In [8] the authors construct subsets R which are completely
nonmeasurable with respect to Lebesgue measure and Baire property and have
some special additive properties. Following the terminology from [8], a set X ⊆ R
is completely nonmeasurable with respect to a σ-ideal I, if neither X, nor its com-
plement contain a Borel set which is not in I. In the case of Lebesgue measurability
(or, more precisely, of the ideal of Lebesgue measure zero sets) this is equivalent to
saying that X has inner measure zero and outer full measure.

This section is devoted to constructing Bernstein sets having the same or similar
additive properties as considered in [8]. It is easy to check (see similar arguments
in [5]) that every Bernstein set is completely nonmeasurable with respect to every
σ-ideal I with a base consisting of Π1

1 sets. In particular, it is completely non-
measurable with respect to Lebesgue measure and Baire category. Therefore, our
results are improvements of those obtained in [8]. Occasionally, we will also improve
the number of sets in considered partitions - sometimes we are able to construct
partitions into c many Bernstein sets with desired property, while the methods used
in [8] can only produce countable partitions.

It should be noted that the results from [8] utilize very elegant geometric argu-
ments. The general method used there is to construct in R2 a set or a partition into
sets having certain algebraic properties in a definable way and then apply a theorem
of Cichoń and Szczepaniak from [3]. This theorem states that the image via linear
isomorphism (over Q) from R2 to R of a set X ⊆ R2 is completely nonmeasurable,
if only interior of X and the interior of R2 \X are nonempty. Taking such images
preserves simple algebraic properties, thus produces completely nonmeasurable sets
with desired algebraic properties.

Our approach is similar and based on constructions of RaÃlowski, Szczepaniak and
Żeberski - we will use the same or similar definable sets, but instead of the theorem
of Cichoń and Szczepaniak, we will apply Lemma 2.9 and Remark 2.10. This will
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work the same way, i.e. will preserve algebraic properties but will produce Bernstein
sets instead of merely completely nonmeasurable ones. We also have more liberty
with constructing definable examples - the theorem of Cichoń and Szczepaniak can
be applied to sets such that the interiors of the set and of the complement are
nonempty. Application of our method requires only the set and the complement
themselves to be nonempty (but possibly nowhere dense).

3.2. The method. We shall say that a property of a subset of a group (or a family
or a sequence of sets) is algebraic if it is preserved at taking preimages of sets via
(quotient) epimorphisms. In this terminology, Proposition 2.7 says that being a
κ-covering is an algebraic property. Other examples of algebraic properties are:

• A + A = A,
• A + B is the whole group,
• disjointness of a family of sets,
• being a strictly increasing sequence of sets.

We will now outline our general method. We intentionally avoid formulating it
as a precisely stated theorem and put it in a little bit vague way. This is done
because a formal definition of algebraic property would require introducing some
second-order logic, which we want to avoid here. Our general approach looks as
follows.

(1) We construct a set, a family or a sequence of sets in R or R2 (remember
that all Rn’s are group isomorphic) with some algebraic property. This will
be done in a definable way and our examples will be nonempty sets with
nonempty complements.

(2) We take a group B as in Lemma 2.9 along with the quotient epimorphism
π : R→ R/B and find an analogous object (i.e. a set, a family or a sequence)
with the same property in the quotient R/B.

(3) Taking preimages via π of sets constructed in (1) will preserve our algebraic
property but, by Remark 2.10, the preimages of all sets in question will be
Bernstein sets.

It should be clear that the method does what it is intended to do. As we
remarked earlier, being a κ-covering is an algebraic property, thus a particular
instance of application of this method is for example Theorem 2.11 along with its
proof. In the sequel we will only outline the proofs which fits to this scheme (that
is, we will indicate what definable sets we take and what is the algebraic property
in question) than formulate it precisely.

3.3. Applications. To illustrate our method we present a list of its possible appli-
cations. The following list of propositions is meant to be rather a set of examples
than a complete list of applications that the author can think of.

Proposition 3.1. There exists a Bernstein set such that B+B = B and B−B = R.

Proof. We have to construct a Bernstein set with an algebraic property. Observe
that [0, +∞) has the same property in R. ¤

Proposition 3.2. There exists a partition {Bξ : ξ < c} of R into Bernstein sets
such that Bξ + Bξ = Bξ for ξ < c.
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Proof. Each half-line in R2 starting in 〈0, 0〉 (and containing the endpoint or not)
has the algebraic property we are interested in ([8]). Therefore we may partition
R2 into such half-lines without the endpoint and add 〈0, 0〉 to one of them. ¤
Proposition 3.3. There exists a partition {Bn : n ∈ ω} of R into Bernstein sets
such that Bn + Bn = Bn for n ∈ ω.

Proof. Similar to the previous one - the angle between two half-lines (containing
〈0, 0〉 or not) has the same algebraic property ([8]). Therefore we may partition R2

into such “open” angles, the “open” half-lines forming their boundaries and toss
〈0, 0〉 into one of them. ¤
Proposition 3.4. There exists a partition {Bξ : ξ < c} of R into Bernstein sets
such that for every ξ < c, Bξ + Bξ = R.

Proof. Let Sr =
{〈x, y〉 ∈ R2 : x2 + y2 = r2

}
and Cr =

{〈x, y〉 ∈ R2 : x2 + y2 ≤ r2
}
,

then Sr + Sr = C2r. Therefore, for every r ∈ [0, 1), the set

Xr =
⋃

n∈N
Sr+n

has the property that Xr + Xr = R2, so we have constructed a partition of R2 into
c many sets with desired algebraic property. ¤
Proposition 3.5. There exists a set B ⊆ R such that all sets of the form

B(n) = B + B + . . . + B

(where the sum is of length n) form an increasing sequence of Bernstein sets and⋃
n∈ω B(n) = R.

Proof. The set (−∞, 1] has the desired algebraic property in R. ¤
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